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Abstract

M-Band and L-Band Gold spectra between 3 to 5 keV and 8 to 13 keV, respec-
tively, have been recorded by a photometrically calibrated crystal spectrometer.
The spectra were emitted from the the plasma in the laser deposition region of a
’hot hohlraum’. This is a reduced-scale hohlraum heated with ≈ 9 kJ of 351 nm light
in a 1 ns square pulse at the Omega laser. The space- and time- integrated spec-
tra included L-Band line emission from Co-like to Ne-like gold. The three L-Band
line features were identified to be the 3s→2p, 3d5/2→2p3/2 and 3d3/2→2p1/2 tran-
sitions at ≈9 keV, ≈10 keV and ≈13 keV, respectively. M-Band 5f→3d, 4d→3p,
and 4p→3s transition features from Fe-like to P-like gold were also recorded be-
tween 3 to 5 keV. Modeling from the radiation-hydrodynamics code LASNEX, the
collisional-radiative codes FLYCHK and SCRAM, and the atomic structure code
FAC were used to model the plasma and generate simulated spectra for compari-
son with the recorded spectra. Through these comparisons, we have determined the
average electron temperature of the emitting plasma to be ∼ 6.5 keV. The electron
temperatures predicted by LASNEX appear to be too large by a factor of about
1.5.

Key words:
52.20.Fs, 52.25.Jm, 34.70.+e, 34.30.lj

Preprint submitted to Elsevier 22 February 2008



1 Introduction

Reduced-scale hohlraums heated by high power lasers are being developed as
x-ray sources for studies of materials under extreme conditions [1–3]. Deposit-
ing a large amount of laser energy (∼ 10 kJ) into a small cylindrical gold
hohlraum on nanosecond time scales produces a hot radiation environment
inside the hohlraum. The achieved radiation temperatures are ∼ 300 eV. As
they are heated, the gold material in the hohlraum walls is ablated, quickly
filling the hohlraum with high-Z plasma. The electrons in this plasma, heated
mainly through inverse bremsstrahlung interactions with the laser, conduct
heat to the hohlraum walls. The walls absorb and re-emit the heat through
x-rays, producing the high thermal radiation field. The plasma also interacts
with the drive laser through laser-plasma interactions (LPI). The LPI are de-
pendent on the plasma parameters (e.g. electron temperature, electron density,
plasma flow, charge state, etc.) and include parametric instabilities (e.g. stim-
ulated Raman backscatter (SRBS), stimulated Brillouin backscatter (SBBS))
[4], filamentation, crossed-beam energy transfer, and beam deflection [5]. The
extreme plasma conditions in reduced-scale hohlraums may also give rise to
novel LPI mechanisms, such as rescatter (SBBS of stimulated Raman forward
scatter) [6]. Since LPI instabilities can reduce laser-hohlraum coupling [5] and
thus reduce the thermal radiation field, LPI losses must be understood and
then mitigated for successful use of reduced-scale hohlraums as backlighters or
thermal radiation drivers for materials studies or inertial confinement fusion
studies (ICF). A better understanding of the hohlraum plasma and LPI can
be obtained by comparing the measured plasma parameters (electron tem-
perature, electron density, ionization state, etc.) to radiation-hydrodynamic
simulations.

A common method for determining plasma parameters is through analysis
of spectroscopic measurements. Particular emission lines and features in a
recorded spectrum can be identified as belonging to particular charge states.
By comparing modeled emission spectra from a range of ions to the mea-
sured emission features, one can infer an experimental charge state distribu-
tion (CSD). This can then be compared with temperature-dependent CSD
predictions from collisional-radiative models to estimate the plasma tempera-
ture. This type of CSD analysis have been performed by several authors. On
the Nova laser [7], Foord et al. [8] buried a gold microdot in a Be foil that was
laser heated to steady state conditions with electron temperature, Te = 2.2
keV (determined from Thomson scattering measurements) and ne = 6x1020

cm−3 (measured by imaging the target expansion). In these conditions, the
5f→3d lines in the 3 to 4 keV photon energy range from Ni-like to As-like gold
ions were used to infer an average charge state 〈q〉 of 49.3 by comparing the
recorded spectrum with modeling from the Hebrew University Lawrence Liv-
ermore Atomic Code (HULLAC) [9]. In other work, Glenzer et al. [10] created
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and characterized a fusion hohlraum plasma with Te = 2.6 keV, ne = 1.4x1021

cm−3 and Trad = 210 eV. The measured spectrum of the 5f→3d lines were
used to infer a 〈q〉 of 52±1. The inferred CSDs from both of these experiments
were in reasonable agreement with predictions from the plasma modeling code
RIGEL [11]. Recently at the Omega Laser facility [12], Heeter et al. [13,14]
determined the ionization balance of well characterized Non-Local Thermal
Equilibrium (NLTE) gold plasmas with and without external radiation fields
at electron densities near 1021 cm−3 and various electron temperatures span-
ning the range 0.8 to 2.4 keV. Time- and space-resolved M-shell gold emission
spectra were analyzed using a collisional-radiative model with hybrid level
structure [15], finding average ion charges 〈q〉 ranging from 42 to 50. At the
lower temperatures (∼ 165 eV), the spectra included emission features from
complex N-shell ions and exhibited significant sensitivity to external radiation
fields.

For the higher electron temperatures that exist in the plasma in the reduced-
scale hohlraums, it is necessary to measure higher charge states of gold at
higher photon energies. Here, we present analyses from both M-band and
L-band spectra recorded from reduced-scale hohlraum plasmas in NLTE con-
ditions produced with the Omega laser. We observed the 3s→2p, 3d3/2→2p1/2

and 3d5/2→2p3/2 L-Band transitions between 8 to 13 keV and the 5f→3d M-
Band transitions between 3 to 5 keV from Co-like to Ne-like gold ions. The
HENWAY [16] x-ray crystal spectrometer was used to record the gold emission
from the high-Z plasmas. The recorded spectra were not temporally resolved
and were spatially integrated over the varying plasma conditions along the
line of sight of the HENWAY, which complicates the spectroscopic analysis
and determination of plasma parameters.

To interpret the recorded spectra and characterize these hot, high-Z plasmas,
the radiation-hydrodynamics code LASNEX [17] was used to model the ex-
periment. The LASNEX simulations predicted the electron temperatures and
densities on a spatial and temporal grid along the line of sight of the spec-
trometer [1]. Emission spectra for each isosequence from Ne-like to Ni-like Au
were generated by the hybrid-structure collisional-radiative code SCRAM [15],
which uses atomic structure and transition rate data from the Flexible Atomic
Code (FAC) [18]. The FLYCHK code [19] was used to calculate the CSD. We
began by constructing line-integrated spectra at multiple times by folding the
SCRAM, FLYCHK and LASNEX modeling along the HENWAY line of sight.
Summing these spectra produced a simulated HENWAY spectrum that did
not agree with the measured data. Obtaining good agreement with the mea-
surements required reducing the electron temperatures predicted by LASNEX
by a factor of 0.65.
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2 Experiment

We present the analysis of a small hohlraum which was 600 μm in diameter,
660 μm in length, with a single laser entrance hole (LEH) and a back wall. The
side walls were 40 μm thick and the back wall was 1 μm thick. The hohlraum
was heated with nineteen beams from the Omega laser [12]. The spectral data
reported here is from shot 41727. A schematic of the experimental geometry
showing the target, the laser beams and the view of the relevant diagnostics
is given in Fig. 1.

Three separate beam cones 1, 2 and 3 at 3ω light (351 nm) were fired into
the LEH. The pulse shape was square in time with a 1 ns duration as shown
in Fig. 2. Cone 1 had 5 beams angled at 21.4o from the hohlraum axis. These
beams were pointed and focused 450 μm in front of the LEH. Cone 2 had 5
beams at 42.0o. Cone 3 had 9 beams at 58.9o. Cones 2 and 3 were pointed
and focused to the center of the LEH. All beams had distributed polarization
rotators (DPRs) for beam smoothing [20]. The total energy delivered to the
target was 8.84 kJ. Further details of this type of experiment are given in
Refs. [1,2].

The DANTE is an absolutely calibrated low-resolution, soft x-ray spectrom-
eter [21]. It measures the soft x-radiation emitted from the target. In the
present geometry, DANTE viewed the target at 37.4o to the hohlraum axis.
The target geometry combined with the integral of the flux from 0 to 2 keV is
used to calculate the radiation temperature, Trad. Shields (Pb-doped plastic
or plastic-coated Ta) are used to confine the DANTE view to the region of
interest. For shot 41727, the DANTE viewed the back wall of the target. A
similar target, rotated 180o to give DANTE a view of the LEH, indicated the
radiation temperature inside the hohlraum was Trad = 292 eV. This was in
agreement with LASNEX calculations [2].

The location of the plasma that emits x-rays in the L band region of gold (8 to
13 keV) can be determined by imaging a thin-walled hohlraum [1]. This shot
used the same geometry as in Fig. 1 but the side walls of the target are 3.5
μm thick, so that they are transparent to L-band x-rays. X-ray images of the
target were recorded as a function of time with a filtered x-ray pinhole snout
attached to an x-ray framing camera [22]. The snout had a 8x magnification
and recorded several images at different times during the experiment. The
camera used 50 μm pinholes and 508 μm thick Al and 128 μm thick Be foils.
This filter set significantly rejected x-rays with photon energies below ≈ 7
keV. The filter transmissions at 10 keV and 5 keV were 0.05 and < 10−9,
respectively. Recorded images at ≈ 300, 600 and 900 ps during the experiment
are shown in Fig. 3. The thick Au walls of the reduced-scale hohlraum were
opaque to 3 to 5 keV photons. The majority of the 3 to 5 keV and 8 to 13
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keV x-rays recorded by the HENWAY were emitted from the laser entrance
hole [1].

3 HENWAY Spectrometer

The Au spectra were recorded by the HENWAY crystal x-ray spectrome-
ter [16]. The HENWAY has four channels in a convex crystal geometry to
disperse the x-rays. DEF film was used as a recording media. Each channel
typically has a different crystal to record a different spectral range onto pho-
tometrically calibrated DEF x-ray photographic film. Two channels were used
to record the L-band emission between 8 to 13 keV and the M-band emis-
sion between 3 to 5 keV. The HENWAY viewed the target with an angle of
63.4o to the cylindrical axis of the target. The HENWAY had no slit and is
spatially integrating. The recorded spectrum is time integrated since no tem-
poral gating system is available for the HENWAY spectrometer. For the 8 to
13 keV spectral region, the crystal was PET(002) with a 2d of 8.742 Å and
had a 25.4 cm radius of curvature. For the 3 to 5 keV spectral region, the
crystal was again PET(002) with a 2d of 8.742 Å and had a 21.6 cm radius of
curvature. Each crystal mount was cut differently to select the correct angle
to satisfy the Bragg equation for a given photon energy. The HENWAY was
located ∼185 cm from target chamber center. The DEF film was scanned into
a digital image by a densitometer for analysis.

The energy dispersion of each HENWAY channel was determined by the en-
ergies of K absorption edges of several materials used as filters. The design
of the HENWAY spectrometer allowed a complex set of different filters to be
positioned before the crystal in the direction perpendicular to the plane of
dispersion. Each filter set produced a different strip on the film image. For
these experiments, four different sets of filters were used for both the 8 to 13
keV and the 3 to 5 keV channels and are given in Table 1. Three of the filter
sets contained the K edge filters of Ge, Cu and V (L-Band) or Ti, Sc and V
(M-Band) that were used to determine the dispersion curve. The dispersion
was not linear in film position so three edge filters were necessary. The fourth
strip was used to determine the intensity of the emission and did not contain
any edge filters. A typical spectral image from the 8 to 13 keV channel is
shown in the top of Fig. 4. The lineouts for each strip in film density versus
position in cm are shown in frames A to D. A similar image was recorded for
the 3 to 5 keV channel. The position on the film, x, in cm of each edge was
determined from the lineouts. A 2nd order polynomial was fit to the data of
absorption edge energy versus position to determine the dispersion. The fit
for the 8 to 13 keV channel was
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E(keV ) = 4.8424 + 0.28598x + 0.060889x2

which gave a correlation coefficient R = 1. The fit is shown in Fig. 5 with the
three calibration points. A similar dispersion curve was generated for the 3 to
5 keV spectrum.

The measured film density from the lineouts was converted to absolutely cal-
ibrated flux units of keV/4π-keV. Details of the geometry and the analytical
equations describing the HENWAY instrument are given by Koppel et al. [16].
The conversion factor or sensitivity of the spectrometer can be expressed as:

S(E) = T (E)D(E)
Ω

4π

R(θ)

E

(
Δg

Δθ

)
/

(
Δg

ΔE

)

The variables, T(E), Ω and R(θ) are the transmissions of the filters, solid angle
subtended by the spectrometer and the integrated reflectivity of the crystal,
respectively. The crystal reflectivities chosen were the average of the mosaic
model and the Darwin-Prins relation given by Henke et al. [23]. Measurements
by Gilfrich et al. [24] indicated that the PET reflectivities have the same re-
sponse as a function of energy as the average Henke values. However, the
absolute reflectivities are roughly half of the values we have used. This is an
indication of the error bars on the absolute line emission values presented here.
The filter transmissions were taken from the Center for x-ray Optics (CXRO)
at University California Berkeley [23,25,26]. D(E) is the conversion factor of
film density to (photons/cm2). The conversion was done by the method de-
tailed by Henke et al. [27–29]. Δg

ΔE
is the plate factor. Δg

Δθ
is the dependence of

the Bragg angle as a function of plate position. A sample spectrum is given in
Fig. 6 and Fig. 7 in flux units of keV/4π-keV. The intensities were converted
to ph/4π-eV for comparison with the spectral modeling.

The spectral resolution for the 3 to 5 keV channel determined from the
recorded spectral images was ∼ 5 eV which was adequate to resolve indi-
vidual spectral lines. For the 8 to 13 keV channel, the spectral features were
too blended to determine the spectral resolution. Several factors contribute to
the resolution of both recorded spectra, including the crystal resolution, the
film grain size, and the effect of the finite source size. The crystal resolving
power is large and about 6000 [30]. The grain size of the film is 1.6 μm in
diameter and is not resolution limiting [27–29]. The spectral resolution of the
HENWAY was limited by the size of the target for both spectral ranges. This
effect could be determined from geometric considerations and the analytical
solutions given by Koppel et al.. This formalism correctly predicted the dis-
persion curve of the HENWAY and was used to predict the spectral resolution,
which is given as a function of photon energy in Fig. 5 for a 600 μm target.
The resolution was ∼ 30 eV at a photon energy of 10 keV.
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4 Atomic Physics and Spectral Modeling

4.1 LASNEX Modelling

The radiation-hydrodynamics code LASNEX [17] was used to simulate the
conditions of the plasma created inside the laser heated target under the
experimental conditions. Details of the modeling are given in Ref. [2] for a
reduced-scale hohlraum which is 600 μm in diameter and 600 μm in length.
The incident laser energy was 9.5 kJ, spread among three cone angles in a 1 ns
square laser pulse. The total energy used in the simulations was ∼7% larger
than the measured total energy. Fig. 8 and Fig. 9 show the temperatures and
densities of the plasma along the line of sight of the HENWAY spectrometer
as a function of time. Since most of the 3 to 5 keV and 8 to 13 keV emission
recorded by the HENWAY is assumed to be emitted from the hot LEH region
(Fig. 3), the synthetic spectra were calculated along a line of sight of the HEN-
WAY which was 63.4o to the LEH axis. Temperatures and densities for this
line of sight on a grid with 10 μm spacing outside the LEH and 5 μm spacing
inside were tabulated every 100 ps from 400 to 1300 ps. These profiles were
combined with CSD and line emission modeling to create simulated spectra
for comparison with the recorded HEWNAY spectra.

4.2 CSD Modeling

FLYCHK is a simple and fast tool to provide ionization and population dis-
tributions of laboratory plasmas in zero dimensions with reasonable accuracy.
Its application is general enough to study low to high Z ions for steady-state
or time-dependent cases. FLYCHK is useful for CSD calculations and time
dependent modeling but uses less accurate atomic structure than an atomic
structure code like the Flexible Atomic Code (FAC) [18]. Since collisional-
radiative calculations based on complete detailed atomic structure can be
computationally expensive, FLYCHK was used to calculate the CSD for the
gold plasma created in this experiment.

FLYCHK solves rate equations by using collisional and radiative processes.
The energy levels are based on the hydrogenic expressions [31] with a few key
lookup tables. Each hydrogenic level for each ionization stage is described by
the principal quantum number of ‘n’. The ionization potential of an excited
level with an outermost bound electron of principal quantum number ‘n’ is
computed using the hydrogenic approximation with relativistic corrections.
For accuracy and consistency with the existing FLY, empirical ionization en-
ergies for the ground states are used [32]. Autoionizing inner-shell excited
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levels are included in the hydrogenic approximation.

The collisional and radiative processes are not computed ab initio as they
are in FAC. The rates are based on previously published analytic formalisms.
These formalisms allow much faster computations sacrificing some accuracy.
The collisional excitation cross-sections are based on oscillator strength for the
allowed transitions [33]. The same formalism is used for inner-shell excitation
processes. A semi-empirical formula of Burgess and Chidichimo [34] is used
for collisional ionization from a level ‘n’.

An absorption oscillator strength of a transition from a level ‘n’ to a level ‘m’
uses hydrogenic oscillator strengths. The oscillator strength together with Ein-
stein’s relation are used to generate the spontaneous and stimulated emission
rates and absorption coefficients for radiative bound-bound transitions. For
bound-free processes, Kramers’ quasi-classical photoionization cross-sections
are used [35]. Using detailed balance and photoionization rate coefficients, the
spontaneous radiative recombination rate coefficients are generated.

The two processes involving inner-shell excited level autoionization and inner-
shell photoionization are implemented with atomic data generated by jj config-
uration average codes. K- and L-shell photoionization cross-sections are com-
puted for hydrogenic levels by using Hartree-Fock-Slater wave functions [36,37].
Autoionization rates are included for KLn (and LMn) transitions and these
rates are calculated by perturbation theory in the Dirac-Hartree-Slater ap-
proach [38,39].

Dielectronic recombination processes are included via electron capture pro-
cesses, whose rates are determined by detailed balance. It should be noted,
however, that due to the hydrogenic approximation, n = 0 transitions are not
included and these contributions can be the dominant dielectronic recombina-
tion processes at low temperatures.

FLYCHK was used to calculate the CSD on a grid of temperatures from 1
keV to 50 keV. The grid between 3 and 10 keV was spaced every 1 keV. The
grid was every 5 keV for temperatures greater than 10 keV. The calculated
CSDs are plotted in Fig. 10. The average 〈q〉 predicted by FLYCHK as a
function of temperature are shown in Fig. 11 at electron densities of 1020,
1021 and 1022 cm−3. The 〈q〉 is very similar for densties less than 1021, but
increased by about 5% at ∼ 1022. The CSD for each LASNEX temperature was
determined through a linear interpolation of the calculated FLYCHK CSDs.
The FLYCHK CSD at the temperature just above and below each LASNEX
temperature were used as the interpolation basis. The total fraction of each
interpolated CSD was normalized to one. This procedure created a grid of
CSDs as a function of space and time along the line of sight of the HENWAY
spectrometer.
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4.3 Line Emission Modeling

The hybrid-structure collisional-radiative model SCRAM [15] was used to gen-
erate synthetic M- and L-shell spectra for Ne-like to Ni-like Au ions. SCRAM
uses atomic structure and transition rates calculated using the FAC atomic
data package [18]. FAC calculates energy level structures from the Dirac equa-
tion with a parametric potential and provides radiative transition and autoion-
ization rates along with collisional excitation, collisional ionization, and pho-
toionization cross sections which are integrated over the electron and photon
distribution functions to obtain direct rates coupling the energy levels. Reverse
rates of three-body recombination, radiative recombination, and dielectronic
capture are calculated using detailed balance.

Generally, fine-structure energy levels with full treatment of configuration in-
teraction effects are necessary to obtain spectroscopic-quality model predic-
tions. Models based on relativistic configuration averaged levels that exclude
configuration interaction do not have the accuracy necessary to fit experi-
mental data: they may give energies for L-shell transitions in Au ions that
are shifted by as much as 50 eV from fine structure calculations and exper-
imental values. However, a complete fine structure model with open M- and
L-shells might have more than ∼ 108 levels in a single M-shell ion and would
be computationally intractable.

Based on the procedures described in [15], we have developed a computation-
ally tractable hybrid model which combines fine structure data for a limited
subset of coronal levels (levels accessible via a single excitation from the ground
configuration) with a complete set of relativistic configuration-averaged levels.
Ions from Ne to Ni-like Au are included, each with at least all of the config-
urations belonging to the superconfiguration (SCs) that are listed in Table 2.
Configuration interaction effects on line positions and strengths in each ion
are propagated from transitions among fine structure levels to all transitions
among the relativistic configuration-averaged levels with the same underlying
initial and final nlj. We note that the hydrogenic structure used by FLY-
CHK is much more extensive than the SC structure used in the hybrid model,
with singly excited electrons from the valence and inner-shells and doubly ex-
cited electrons from the valence shell up to n=10. Although such states do
not contribute much to the emission, they are critical for accurate predictions
of the charge state distribution, particularly through the inclusion of dielec-
tronic recombination channels in the doubly excited SCs. The 〈q〉 calculated
by SCRAM with the restricted set of SCs listed in Table 2 tend to be higher
than the FLYCHK 〈q〉 by about three charge states.

The restricted-structure, partially averaged hybrid model has ∼ 106 levels,
which exceeds the memory constraints on many computers. Therefore, the hy-
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brid structure is further averaged within the SCRAM code before the collisional-
radiative rate matrix is solved. In this second averaging, fine-structure and rel-
ativistic configurations are retained in the ground superconfigurations but all
other levels are averaged into non-relativistic configurations. This cuts down
the number of levels in the solver to ∼ 104. All of the rates are computed
individually and averaged to obtain a 104x104 rate matrix that is solved for
the averaged level populations. Before constructing synthetic spectra, SCRAM
uses these averaged-level populations and stored rates between SCs and the
levels of the original hybrid model to obtain better-than-statistical populations
for the original set of hybrid-structure levels. Each level in each non-ground-
SC is populated according to the populations of the ground SCs in its own ion
and its neighbors multiplied by their total rates into the original hybrid-model
level, roughly following the procedure given in [40].

The original radiative decay rates and transition energies are used with the
final hybrid level populations to construct synthetic spectra. Line emission
spectra from each iso-sequence from Ni- to Ne-like Au were generated for
photon energies from 2 to 15 keV for ne = 3x1021 for Te from 4 to 10 keV
every 1 keV. These emission spectra were then combined with the LASNEX
and FLYCHK modeling to compare with the recorded HENWAY data. At each
temperature and density point on the grid described above, the line emission
ISCRAM(iso,T(x,t)) (in ph/ion/s) from each iso-sequence was multiplied by
the relative ionic fraction predicted by FLYCHK, FFLY CHK(iso,T(x,t)) and
then convolved with the spectral response function of the HENWAY. (The
line emission was not interpolated between each LASNEX temperature on the
grid but rather the spectrum calculated at the temperature nearest to the
LASNEX temperature was used.) The spectrum at a given time is thus (see
Fig. 12):

I(t) = Σx ∗ C ∗ ISCRAM(iso, T (x, t))[ph/sec/ion] ∗
FFLY CHK(iso, T (x, t)) ∗ nIon[particles ∗ cm−3] ∗ V (x)[cm3]

where nIon is proportional to the electron density assuming a neutral plasma,
V is the volume of each grid, C is a constant, and the sum is done over the
line of sight, x. The final time-integrated spectrum is then the sum of I(t) over
time.

5 Spectral Line Analysis

The calibrated spectrum recorded by the HENWAY between 8 to 13 keV is
shown in Fig. 6. It comprises three broad features of L-Band gold whose in-
dividual lines are not resolved by the spectrometer. The three features were
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identified through comparisons with the SCRAM/FAC modeling to be emis-
sion from Co to Ne-like Au. The feature at 9 keV was the least intense and
contains the 2p2

1/22p3
3/23s23pk3dk′ → 2p63s3pk3dk′

transitions. The feature
at 10 keV was the most intense and contains the transitions of the type
2p2

1/22p3
3/23sk3pk′

3dk′′
3d5/2→2p63sk3pk′

3dk′′
. The feature at 12 keV contains

the 2p1/22p4
3/23sk3pk′

3dk′′
3d3/2 →2p63sk3pk′

3dk′′
transitions.

The calibrated M-shell spectrum recorded between 3 to 5 keV is shown in
Fig. 7. The identified transitions are 5f5/2 → 3d3/2 from Fe-like to P-like
gold [41]. Other M-shell transitions such as 5f7/2 → 3d5/2, 4p3/2 → 3s1/2,
and 4d3/2 → 3p1/2 on the low-energy side of the 5f5/2 → 3d3/2 transitions also
contribute to the emission.

The simulated L- and M-shell spectra are compared with the recorded spectra
in Figs. 13 and Fig. 14, respectively. The spectra calculated using the electron
temperature predictions from LASNEX appear to be over-ionized and are
in rather poor agreement with the measured data. The central charge state
inferred from the measured spectra is near Ti-like Au (Au57+) which is about
6 charge states lower than the P- or S-like (Au63+−64+) central charge state
predicted by FLYCHK at the LASNEX electron temperatures. Introducing a
scaling factor of 0.65 to globally adjust the LASNEX temperatures downwards
brought the simulated spectra into good agreement with the experimental
data, as shown in Fig. 13 and Fig. 14. The CSD from FLYCHK varies slightly
with electron density (see Fig. 11) and introduces some uncertainty into the
comparison. The scaling factor was determined using the FLYCHK CSD at
1020 cm−3 and 1022 cm−3 to be 0.65 and 0.6, respectivelty. The variation was
on the order of 5%.

Previous comparisons of LASNEX modeling to measured radiation flux and
radiation temperature (Fig. 2) have shown excellent agreement [1–3] for exper-
iments using the multiple beam cone geometry in Fig. 2. LASNEX has some-
times underpredicted plasma filling and radiation temperature for a simpler
geometry where a single laser beam is incident along the hohlraum axis [42].

The experimental line-averaged and time-integrated CSD from the HENWAY
spectral analysis can be compared with FLYCHK CSD predictions to give an
estimate for the average temperature of the plasma. The CSD predictions from
FLYCHK for electron temperatures of 6, 6.5, 7 and 8 keV are given in Fig. 15
for ne = 1021 cm−3. The CSD at 6.5 keV is interpolated. The line-averaged
CSD from the LASNEX/HENWAY comparison using a scaling factor of 0.65
is plotted as black squares. The experimentally inferred CSD agrees with the
overall shape of the FLYCHK prediction at 6.5 keV.

The electron temperature helps describes plasma conditions in the highly non-
LTE laser deposition region. Recent comparisons of non-LTE codes for gold
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plasmas in the temperature and density range of interest show variations in
predicted Te of 1.8 keV for 〈q〉 ∼ 53 at ne = 1021 cm−3 [43]. The data and anal-
ysis described in this paper can be used to benchmark the codes. However, the
electron temperature has never been directly measured on these experiments.

6 Conclusions

M-Band and L-Band gold spectra have been recorded between 3 to 5 keV and
8 to 13 keV from a reduced-scale gold hohlraum target heated with ∼ 9 kJ
from the OMEGA laser. The line emission has been identified as 3d3/2→2p1/2,
3d5/2→2p3/2, and 3s→2p transitions from Ne-like to Co-like Au in the L-Band
and 5f→3d, 4d→3p, and 4p→3s transitions from Fe-like to P-like Au in the
M-Band. The radiation-hydrodynamics code LASNEX, collisional-radiative
codes FLYCHK and SCRAM, and the atomic structure code FAC were used
to simulate the conditions in the reduced scale hohlraum targets and to con-
struct synthetic spectra for comparison with the measured time- and space-
integrated emission. Initial comparisons between the modeling and the exper-
iment suggested that the electron temperatures predicted by LASNEX were
too high by a significant factor. Agreement was obtained by scaling the pre-
dicted Te from LASNEX by 0.65, and the average temperature of the plasma
was determined to be ∼ 6.5 keV.
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Table 1
Filters used in the HENWAY

Channel Line Out Front Filter Edge Filter Edge Energy (keV)

8 - 13 keV A 12 µm Al/25 µm Be 25 µm V 5.465

8 - 13 keV B 12 µm Al/25 µm Be - -

8 - 13 keV C 25 µm Be 25 µm Cu 8.979

8 - 13 keV D 75 µm Be 10 µm Ge 11.103

3 - 5 keV A 25 µm Be 10 µm V 5.465

3 - 5 keV B 25 µm Be - -

3 - 5 keV C 12 µm Al/25 µm Be 12.5 µm Sc 4.492

3 - 5 keV D 12 µm Al/25 µm Be 12.5 µm Ti 4.966

Table 2
Superconfigurations included in the SCRAM/FAC modelling. Here, ‘n’ is the prin-
ciple quantum number of a given shell and N is the number of electrons in that
shell.
n = 1 n = 2 n = 3 n = 4

(1)2 (2)8 (3)N

(1)2 (2)8 (3)N-1 (4)1

(1)2 (2)8 (3)N-1 (5)1

(1)2 (2)7 (3)N+1

(1)2 (2)7 (3)N (4)1
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Fig. 1. Schematic of reduced-scale hohlraum targets shot at the Omega laser and
the laser beams used. Note that beams in three cone angles heat the target.
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Fig. 2. Time evolution of the 1 ns beam pulse used to heat the target.
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Fig. 3. Time resolved pinhole camera images of the target filtered for > 7 keV
photons.
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Fig. 6. Calibrated spectra from the HENWAY between 8 to 13 keV for OMEGA
shot 41727.
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Fig. 8. Electron Temperature Simulations from LASNEX
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Fig. 9. Electron Density Simulations from LASNEX
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Fig. 10. Predictions for charge state distribution by FLYCHK used to simulate the
HENWAY spectra.
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Fig. 11. Average charge state 〈q〉 predicted by FLYCHK as a function of temperature
at three different electron densities.

Fig. 12. Simulated spectra for photon energies from 8 to 13 keV as a function of
time. The time increment is every 100 ps.
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Model Te scaled x1.0

Model Te scaled x0.65

Fig. 13. Comparison of the 8 to 13 keV HENWAY spectrum and the simulations
from LASNEX, FLYCHK and SCRAM/FAC. The LASNEX temperature is scaled
by 1.0 and 0.65 for ne = 1021 cm−3.

Fig. 14. Comparison of the 3 to 5 keV HENWAY spectrum and the simulations
from LASNEX, FLYCHK and SCRAM/FAC. The LASNEX temperature is scaled
by 1.0 and 0.65 at ne = 1021 cm−3.
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Fig. 15. Comparison of the average CSD from the HENWAY/LASNEX analysis to
the predicted CSD from FLYCHK for a uniform plasma having a Te of 6.5 keV and
ne = 1021 cm−3.
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