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Abstract. We assess the theoretical uncertainties on the total charm cross section.
We discuss the importance of the quark mass, the scale choice and the parton
densities on the estimate of the uncertainty. We conclude that the uncertainty on
the total charm cross section is difficult to quantify.

1 Introduction

Open charm measurements date back to the late 1970s when D and D mesons were first
detected, completing the picture of the fourth quark begun when the J/ψ was detected in
pBe and e+e− interactions. The charm quark was postulated to have a mass between 1.2 and
1.8 GeV, within the regime of perturbative quantum chromodynamics (pQCD). Because of its
relatively large mass, it is possible to calculate a total cc cross section, not the case for lighter
flavors such as strangeness. Charm hadrons are usually detected two ways. The reconstruction
of decays to charged hadrons such as D0 → K−π+ (3.8%) and D+ → K−π+π+ (9.1%) gives
the full momentum of the initial D meson, yielding the best direct measurement. Charm can
also be detected indirectly via semi-leptonic decays to leptons such as D → Klνl although the
momentum of the parent D meson remains unknown. Early measurements of prompt leptons in
beam dump experiments assumed that the density of the dump was high enough to absorb semi-
leptonic decays of non-charm hadrons, leaving only the charm component. At modern colliders,
it is not possible to use beam dumps to measure charm from leptons but, at sufficiently high
pT , electrons from charm emerge from hadronic cocktails [1,2].

Although D mesons alone are often used to calculate the total cc cross section, other charm
hadrons also exist. The excitedD states,D∗s, decay primarily to charged and neutralD mesons.
The charm-strange meson, the Ds, decays to charged hadrons and simultaneously to leptons.
The lowest mass charm baryon is the Λ+

c which decays primarily to Λ(uds) but also decays to
pK−π+ (2.8%) and semi-leptonically with a 4.5% branching ratio. The heavier ground state
charm baryons and their excited states (Σc and higher) decay through Λcs. The charm-strange
baryons are assumed to be a negligible contribution to the total cross section.

Extracting the total charm cross section is a non-trivial task. To go from a finite number of
measured D mesons in a particular decay channel to the total cc cross section one must: divide
by the branching ratio for that channel; correct for the luminosity, σD = ND/Lt; extrapolate to
full phase space from the finite detector acceptance; divide by two to get the pair cross section
from the single Ds; and multiply by a correction factor [3] to account for the unmeasured charm
hadrons. There are assumptions all along the way. The most important is the extrapolation to
full phase space. Before QCD calculations were available, the data were extrapolated assuming
a power law for the xF distribution, related to the longitudinal momentum of the charm hadron
by xF = pz/(

√
S/2) = 2mT sinh y/

√
S. The canonical parameterization is (1 − xF )c where c

was either fit to data over a finite xF range or simply assumed. These parameterizations could
lead to large overestimates of the total cross section when 0 < c < 2 was assumed, especially
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when data were taken only near xF = 0. Lepton measurements were more conservative but
were typically at more forward xF .

Rather than assess the uncertainties in the data, here we address the theoretical uncertainties
in the calculation of the charm and bottom cross sections. Since the data are generally taken
in a finite kinematic region, we begin with the calculation of the inclusive distributions to the
Fixed-Order Next-to-Leading Logarithm (FONLL) level and then discuss the total cross section
calculations to next-to-leading order (NLO), the most accurate calculation of the total cross
section.

We calculate the transverse momentum (pT ) distributions of charm and bottom quarks, the
charm and bottom hadron distributions resulting from fragmentation and, finally, the electrons
produced in semi-leptonic decays of the hadrons [4]. We then calculate the total charm and
bottom cross sections, both by the integral over the inclusive pT distribution and by integrating
the total partonic cross section. At each step, we clarify the theoretical framework as well as
the parameters and phenomenological inputs. Our final prediction is thus not a single number
but rather an uncertainty band which has a reasonably large probability of containing the
‘true’ theoretical prediction. We show that applying this procedure blindly may lead to an
apprent discrepancy in the two methods, particularly for charm production. We explain why
this seems to be the case as well as why, when the calculations are done consistently, there is no
discrepancy. The theoretical uncertainties in both methods of obtaining the total cross section
are estimated as extensively as possible. We show that, for charm production, the theoretical
uncertainty on the total cross section is difficult to quantify in a reliable way.

2 Total heavy flavor cross sections from integrated inclusive distributions

We first discuss how the total cross section and its accompanying uncertainty is obtained from
inclusive single particle distributions. We begin with a description of the calculated single
electron spectrum since heavy flavor hadrons are often observed through their semi-leptonic
decays, particularly at colliders where direct reconstruction of heavy flavored hadrons at low
pT is difficult. Reconstructed D and B meson decays can only be used to obtain the total
heavy flavor cross section if they are measured down to pT = 0, difficult at colliders. However,
STAR has reconstructed D0 → K±π∓ decays to pT ∼ 0 in addition to their single electron
measurement [1]. PHENIX has measured the single electron spectra from heavy flavor decays
alone [2].

The theoretical prediction of the electron spectrum includes three main components: the pT

and rapidity distributions of the heavy quark Q in pp collisions at
√
S = 200 GeV, calculated

in perturbative QCD; fragmentation of the heavy quarks into heavy hadrons, HQ, described by
phenomenological input extracted from e+e− data; and the decay ofHQ into electrons according
to spectra available from other measurements. This cross section is schematically written as

Ed3σe

dp3
=
EQd

3σQ

dp3
Q

⊗D(Q→ HQ) ⊗ f(HQ → e) , (1)

where the symbol ⊗ denotes a generic convolution. The electron decay spectrum term f(HQ →
e) also implicitly accounts for the proper branching ratio.

The distribution Ed3σQ/dp
3
Q is evaluated at the FONLL level, implemented in Ref. [7].

In addition to including the full fixed-order NLO result [8,9], the FONLL calculation also

resums [10] large perturbative terms proportional to αn
s logk(pT /m) to all orders with next-to-

leading logarithmic (NLL) accuracy (i.e. k = n, n− 1) where m is the heavy quark mass.
The perturbative parameters are the heavy quark mass and the value of the strong coupling,

αs, while the parton densities are a nonperturbative input. We take central values of 1.5 GeV
for charm and 4.75 GeV for bottom as reference values and vary the masses between 1.3 and
1.7 GeV for charm and 4.5 and 5 GeV for bottom to estimate the resulting mass uncertainties.

Since the FONLL calculation treats the heavy quark as an active light flavor at pT >> m,
the number of light flavors used to calculate αs includes the heavy quark, i.e. nlf + 1 where, for
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charm, nlf = 3 (u, d and s). The same number of flavors, nlf + 1, is also used in the fixed-order
scheme where the quark mass is finite. However, in other fixed-order calculations, the number
of light flavors is fixed to nlf . The QCD scale at five flavors, Λ(5), is set to 0.226 GeV, as in the
CTEQ6M parton densities [11].

The perturbative calculation also depends on the unphysical factorization (µF ) and renor-
malization (µR) scales. The sensitivity of the cross section to their variation can be used to
estimate the perturbative uncertainty due to the absence of higher orders. We have taken
µR,F = µ0 =

√
p2

T +m2 as a central value and varied the two scales independently within
a ‘fiducial’ region defined by µR,F = ξR,Fµ0 with 0.5 ≤ ξR,F ≤ 2 and 0.5 ≤ ξR/ξF ≤ 2. In
practice, we use the following seven sets: {(ξR, ξF )} = {(1,1), (2,2), (0.5,0.5), (1,0.5), (2,1),
(0.5,1), (1,2)}. The envelope containing the resulting curves defines the uncertainty. Finally,
the uncertainties stemming from mass and scale variations are added in quadrature.

The fragmentation functions, D(c→ D) and D(b→ B), where D and B indicate a generic
admixture of charm and bottom hadrons, are consistently extracted from e+e− data in the
context of FONLL [12]. Using the Peterson et al. fragmentation function [13], with standard
parameter choices ǫc ≃ 0.06± 0.03 and ǫb ≃ 0.006± 0.003 does not provide a valid description
of fragmentation to FONLL.

The measured spectra for primary B → e and D → e decays are modeled and assumed
to be equal for all bottom and charm hadrons respectively. The contribution of electrons from
secondary B decays, B → D → e, was obtained by convoluting the D → e spectrum with a
parton-model prediction of b → c decay. The resulting electron spectrum is very soft, giving
a negligible contribution to the total. The decay spectra are normalized using the branching
ratios for bottom and charm hadron mixtures [14]: BR(B → e) = 10.86±0.35%, BR(D → e) =
10.3 ± 1.2%, and BR(B → D → e) = 9.6 ± 0.6%.

We first present the transverse momentum distributions for charm and bottom quarks.
Figure 1 shows the theoretical uncertainty bands for the two distributions, obtained by summing
the mass and scale uncertainties in quadrature so that

dσmax

dpT

=
dσC

dpT

+

√√√√
(
dσµ,max

dpT

− dσC

dpT

)2

+

(
dσm,max

dpT

− dσC

dpT

)2

(2)

dσmin

dpT

=
dσC

dpT

−

√√√√
(
dσµ,min

dpT

− dσC

dpT

)2

+

(
dσm,min

dpT

− dσC

dpT

)2

. (3)

where C is the central values, µ, max (µ, min) is the maximum (minimum) cross section obtained
by choosing the central value with the scale factors in our seven fiducial sets, and m, max (m,
min) is the maximum (minimum) cross section obtained with ξR = ξF = 1 and the lower and
upper limits on the quark mass respectively. There is, however, considerable arbitrariness in
the choice of the method used to assess the theoretical uncertainties. In fact, the meaning of
the theoretical error due to unknown higher order effects is, to a large extent, subjective. The
recipe we follow is often used in calculations of cross sections at hadron colliders and is similar
to the one used to compute heavy flavor cross sections at the Tevatron (see Refs. [15–17]). By
experience, we assign a probability of 80-90% that the true result lies within the band.

Note that the charm quark uncertainty band is enlarged at low pT due to the large value of
αs at low scales and the increased sensitivity of the cross section to the charm quark mass. In
Ref. [4], we also noted that, due to the fairly hard fragmentation function, the D meson and
c quark distributions begin to differ outside the uncertainty bands only for pT > 9 GeV while
the b quark and B meson bands overlap over all pT .

The single electron uncertainty bands from D → e, B → e and B → D → e as well as the
sum are compared to the STAR [1] and PHENIX [2] data on the right-hand side of Fig. 1. As
expected, B → D → e is a negligible contribution to the total. While D → e decays dominate
at low pT , the B → e contribution begins to dominate at higher pT . The two uncertainty bands
cross each other in the region 3.5 < pT < 12 GeV. The region of crossover is rather broad
since we consider the c and b quark mass and scale uncertainties to be uncorrelated. If the scale
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Fig. 1. Left-hand side: The FONLL pT bands for c and b quark production compared to the STAR
D meson data [1]. Right-hand side: The heavy flavor contributions to the single electron spectra:
D → eX (dotted), B → lX (dashed), B → D → lX (dot-dashed) and the sum (solid). is compared to
the PHENIX [2] and STAR [1] data.

uncertainties were assumed to be correlated, the crossover region would be narrower, as shown
in Ref. [5]. However, for a true measure of the uncertainty, we cannot assume that the scales
are correlated. The PHENIX measurement is in relatively good agreement with the upper edge
of the uncertainty band in Fig. 1 while the STAR data tend to lie a factor of 4-5 above the
central value, falling well above the band.

If the distributions shown here are integrated over all phase space, the ‘perturbative’ inputs
used in the calculation lead to a FONLL total cc̄ cross section in pp collisions of

σFONLL
cc̄ = 256+400

−146 µb (4)

at
√
S = 200 GeV. The corresponding NLO prediction is

σNLO
cc̄ = 244+381

−134 µb . (5)

The theoretical uncertainty is evaluated as described above. Thus the two calculations are equiv-
alent at the total cross section level within the large perturbative uncertainties, as expected.
The total cross section for bottom production is

σFONLL
bb̄

= 1.87+0.99
−0.67 µb . (6)

Because the FONLL and NLO distributions tend to coincide at small pT and the total cross
section is dominated by the low pT region, the total cross sections and their uncertainties are
nearly equal in the FONLL and NLO approaches. Earlier papers [6] used mc = 1.2 GeV and
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µR = µF = 2
√
p2

T +m2 as reference parameters. With this choice we find σNLO
cc̄ = 427 µb,

within the calculated theoretical uncertainty band.

3 Total heavy flavor cross section from total partonic cross sections

The total partonic cross section has only been completely calculated to NLO [8]. Some NNLO

calculations are available near threshold, applicable for
√
S ≤ 20 − 25 GeV [18,19]. The NLO

corrections to the leading order (LO) cross sections are relatively large, Kth = σNLO/σLO ∼
2 − 3, depending on µ, m and the parton densities [20]. The NNLO corrections are about as
large to next-to-next-to-leading logarithm [18] but decrease to less than Kth when subleading
logs are included [19]. Scaling functions [8] proportional to logs of µ2/m2 are used to calculate
the total cross section to NLO.

The hadronic cross section in pp collisions can be written as

σpp(S,m2) =
∑

i,j=q,q,g

∫
dx1 dx2 f

p
i (x1, µ

2
F ) fp

j (x2, µ
2
F ) σ̂ij(s,m

2, µ2
F , µ

2
R) (7)

where x1 and x2 are the fractional momenta carried by the colliding partons and fp
i are the

proton parton densities. The partonic cross sections are

σ̂ij(s,m, µ
2
F , µ

2
R) =

α2
s(µ

2
R)

m2

{
f

(0,0)
ij (ρ)

+ 4παs(µ
2
R)

[
f

(1,0)
ij (ρ) + f

(1,1)
ij (ρ) ln

(
µ2

F

m2

)]
+ O(α2

s)

}
(8)

where ρ = 4m2/s and f
(k,l)
ij are the scaling functions to NLO [8].

At small ρ, the O(α2
s) and O(α3

s) qq and the O(α2
s) gg scaling functions become small while

the O(α3
s) gg and qg scaling functions plateau at finite values. Thus, at collider energies, the

total cross sections are primarily dependent on the small x parton densities and phase space.
The total cross section does not depend on any kinematic variables, only on the quark

mass, m, and the renormalization and factorization scales where now µR,F = µ0 = m is the
central value. The heavy quark is always considered massive in the calculation of the total cross
section. Thus, the number of light quark flavors, nlf , does not include the heavy quark, while
the FONLL calculation uses nlf + 1 flavors since the heavy quark is an active flavor at high pT ,
as described in Section 2.

The theoretical uncertainty on the total cross section is studied within the same fiducial re-
gion as the pT distributions with the upper and lower limits of the uncertainty band determined
as in Eqs. (2) and (3). The energy dependence of the charm and bottom total cross sections is
shown in Figs. 2 and 3 respectively. The left-hand sides of the figures blow up the fixed-target
and CERN ISR energy regime while the right-hand sides show the extrapolation of the cross
sections to the collider regime. The central value of the band is indicated by the solid curve
while the upper and lower edges of the band are given by the dashed curves. The dotted curves
in Fig. 2 are calculated with µF = µR = 2m and m = 1.2 GeV, used in Ref. [6]. Note that the
charm uncertainty band broadens as the energy increases. The lower edge of the charm band
grows more slowly with

√
S above RHIC energies while the upper edge is compatible with the

reported total cross sections at RHIC [1,2].
With nlf light flavors and a fixed scale, the charm and bottom NLO total cross sections at√

S = 200 GeV are

σ
NLOn

lf

cc
= 301+1000

−210 µb , (9)

σ
NLOn

lf

bb
= 2.06+1.25

−0.81 µb (10)

respectively. While the central values are only about 25% and 10% higher than the FONLL
result given in the previous section, the uncertainty is considerably larger, especially for charm.
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Fig. 2. The NLO total cc cross sections as a function of
√

S for
√

S ≤ 70 GeV (left-hand side) and
up to 14 TeV (right-hand side) calculated with the CTEQ6M parton densities. The solid curve is the
central result; the upper and lower dashed curves are the upper and lower edges of the uncertainty
band. The dotted curves are calculations with m = 1.2 GeV, µF = µR = 2m.

Fig. 3. The NLO total bb cross sections as a function of
√

S for
√

S ≤ 70 GeV (left-hand side) and
up to 14 TeV (right-hand side) calculated with the CTEQ6M parton densities. The solid curve is the
central result; the upper and lower dashed curves are the upper and lower edges of the uncertainty
band.

We now discuss the major sources of the theoretical uncertainty and how the apparent discrep-
ancy with the RHIC results in Section 2 comes about.

4 Comparison and discussion

From the results in the previous two sections, it seems that the total cross section is different
depending on whether it is calculated from the integral over the inclusive pT distribution or from
the total partonic cross sections. The difference seems especially large for charm production.
This is largely due to the way the strong coupling constant is calculated and the low x, low
scale behavior of the parton densities.
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Table 1. The values of αs for charm and bottom production at the given values of ξR = µR/m.

ξR nlf = 3, m = 1.5 GeV nlf = 4, m = 4.75 GeV
0.5 0.6688 0.2822
1 0.3527 0.2166
2 0.2547 0.1804

In this section, we discuss these two contributions to the theoretical uncertainty and show
that, if the two calculations of the total cross section are done the same way, the two methods
are, in fact, equivalent, as they should be.

The most trivial difference in the two calculations is that the pT distribution is calculated
with a running scale proportional to mT while the total cross section is calculated with a fixed
scale proportional to m. The charm quark uncertainty band is wider at low pT , as shown in
Fig. 1, because pT ≤ m and the calculation is more sensitive to the lower scale in αs since
mT ∼ m at low pT . While it is more appropriate to use the running scale to calculate inclusive
distributions, the difference between a fixed and a running scale can be checked by fixing the
scale in the pT distributions. The integral of the inclusive distribution increases about 20% for
charm and about 10% for bottom when a fixed scale is used. This difference is approximately
large enough to account for the difference in the central values of the total cross section.

One obviously important contribution to the uncertainty is the difference in the number of
flavors in the two calculations, especially for charm since the fiducial range, 0.5 ≤ ξR ≤ 2, is in
a region where αs is changing rapidly with µR. Although increasing the number of light flavors
involves more than just changing a parameter in the calculation of αs, we can get an estimate of
the importance of the value of αs to the uncertainty in the total cross section by looking at the
dependence of αs on the renormalization scale. When calculated with the 5 flavor QCD scale for
CTEQ6M, Λ5 = 0.226 MeV, and using a scheme where αs is continuous across mass thresholds,
we have the values shown in Table 1. It is clear, based on these values alone, that the charm
uncertainty is larger than that for bottom since αs(ξR = 0.5)/αs(ξR = 2) = 2.63 for charm
and 1.56 for bottom. The real difference in coupling strength between the two heavy quarks
is even larger since the leading order cross section is proportional to α2

s while the next-order
contribution is proportional to α3

s.
Using nlf + 1 in the full calculation of the inclusive distributions reduces the uncertainty.

When the total cross sections in Eqs. (4) and (5) are calculated with nlf , the uncertainty is
increased so that the results are in agreement with that of Eq. (9).

Finally, we discuss the influence of the parton densities on the theoretical uncertainty. Since
m is the only perturbative scale, the total cross section calculations in Section 3 are more
sensitive to the low x and low µ behavior of the parton densities. Probing the full fiducial
range of the uncertainty band is problematic for charm production since ξF = 0.5 is below the

minimum scale of the CTEQ6M parton densities, µCTEQ6M
0 = 1.3 GeV. Thus, for this scale,

backward evolution of the parton densities is required.
The CTEQ6M (NLO, MS scheme) gluon distributions in the fiducial region of the factoriza-

tion scale, 0.5 ≤ ξF ≤ 2, are shown in Fig. 4. The behavior of the gluon distributions for charm
(left) and bottom (right) are quite different. Since the range 0.5m ≤ µF ≤ 2m for bottom

quarks lies well above µCTEQ6M
0 , the scale dependence is as expected, with the gluon distribu-

tion increasing with decreasing x and with the highest low x gluon density at the largest scale.
For x values larger than that of central rapidity at RHIC, the gluon densities are rather similar
although the density at the lower scale is larger in the fixed-target regime. This x dependence
is quite typical for large perturbative factorization scales and demonstrates why the bottom
quark cross section is well behaved as a function of

√
S.

When the fixed factorization scale (in Eq. (7) is large enough, the lowest scales give the
highest cross sections. The largest cross sections in the fixed-target regime are obtained with
the combinations (ξR, ξF ) = (0.5, 0.5), (0.5,1) and (1,0.5). At relatively low

√
S, the slightly

higher value of αs(ξR = 0.5) compensates for the lower gluon density with ξF = 1 at large x so
that the cross section with (ξR, ξF ) = (0.5, 1) is higher than that with (1,0.5). As the energy
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Fig. 4. The CTEQ6M parton densities as a function of x for ξ = 0.5 (dot-dashed), ξ = 1 (dashed) and
ξ = 2 (solid) for m = 1.5 GeV (left-hand side) and 4.75 GeV (right-hand side). The vertical line is the
value x = 2m/

√
S in

√
S = 200 GeV pp collisions at RHIC.

increases and lower x values are probed, the lower small x gluon density with ξF = 0.5 can no
longer overcome the difference between αs(ξR = 1) and αs(ξR = 0.5) and, at LHC energies,
the cross section with (ξR, ξF ) = (1, 0.5) is smaller. Indeed, the lower factorization scale with
(ξR, ξF ) = (0.5, 0.5) is not enough to keep the cross section with this parameter set larger than
that with (1,0.5) or, for that matter, those with either or both ξR, ξF = 2 at sufficiently low x.

A similar effect occurs for (ξR, ξF ) = (2, 2), (2,1) and (1,2) except that now, at fixed-
target energies, (ξR, ξF ) = (2, 2) gives the lowest cross section of the three pairs. In this case,
(ξR, ξF ) = (1, 2) is the highest of the three since the gluon density with ξF = 1 is higher at

large x (lower
√
S) and αs(ξR = 1) is larger, compensating for the slightly lower gluon density

at large x. At collider energies (ξR, ξF ) = (1, 2) remains the largest of these three parameter

sets since the evolution at low x (large
√
S) is the dominant behavior. At large

√
S, the cross

section with (ξR, ξF ) = (2, 1) drops below those calculated with the other two sets.
These subtle changes in which (ξR, ξF ) set dominates the upper and lower limits of the

bottom quark total cross section uncertainty band as a function of
√
S do not significantly

broaden the uncertainty band, even at the highest energies. This is because the factorization
scale remains sufficiently above the minimum scale in the parton density.

The scale choice in the parton densities also affects the dominance of a particular parameter
set (ξR, ξF ) in the pT distributions albeit to a lesser extent because at pT > m the scales are
all large and perturbative. Different parameter sets dominate the pT distribution because, at
RHIC, high pT probes the large x range of the gluon distribution. At pT → 0, the upper and
lower edges of the band are determined by (ξR, ξF ) = (0.5, 1) and (1,0.5) respectively, as is also
the case for the total cross sections. However, as pT increases, the upper and lower edges of
the band are defined by (ξR, ξF ) = (0.5, 0.5) and (2,2) respectively. Going to larger pT has the

same effect as moving to smaller
√
S, both probe larger x where the gluon distribution with

ξF = 0.5 is higher than that with ξF = 2, as is obvious from the right-hand side of Fig. 4.
Even though the scale dependence of bottom production is not negligible, as we have seen,

the dependence is not strong in the defined fiducial range. The difference in the bb cross sections
in Eqs. (6) and (10) can be almost entirely attributed to the difference between the running
scale in Eq. (1) and the fixed scale in Eq. (7). Thus the bottom production cross section is
rather well under control.

However, the dependence of the total charm cross section on
√
S is another story due to

the behavior of the CTEQ6M gluon distribution at charm quark scales. The proximity of the

charm quark mass to µCTEQ6M
0 makes the application of the full fiducial region to the estimate
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of the theoretical uncertainty on the total charm cross section problematic. The smaller charm
mass exaggerates the factorization scale dependence of the total cross section described above
for bottom production.

The gluon distributions with ξF = 2 for charm and ξF = 0.5 for bottom are similar because
the values of µF are nearly the same: 3 GeV and 2.375 GeV respectively. Thus at the highest
value of ξF for charm, the gluon density at low x is well behaved. However, the behavior at
lower scales is quite different, especially for x < 10−2. When ξF = 1, the dashed curve on
the left-hand side of Fig. 4 is no longer increasing with decreasing x but, instead, starts to
dip and turn over. If fact, for ξF = 0.5, lower x values are not shown because the backwards
evolution gives xg(x, ξF = 1) = 0, accounting for the high

√
S behavior of the lower bound

on the uncertainty band. The low µF behavior of the gluon density is very dependent on the
choice of parton density because the groups making global parton density analyses all deal with
extrapolations to unmeasured regions differently. All that is required is minimization of the
global χ2 and momentum conservation.

Thus the charm quark uncertainty band on the total cross section, Fig. 2 spans an order of
magnitude at fixed-target energies, increasing to the value given in Eq. (9) for nlf at

√
S = 200

GeV. The low scale behavior for (ξR, ξF ) = (0.5, 1) and (1,0.5) defines the upper and lower
edges respectively of the uncertainty band at collider energies in all cases. Indeed, for the total
cross section calculated with nlf light quark flavors, the STAR point [1] is compatible with the
upper limit of the band although the inclusive pT data, with nlf + 1 light flavors, lies above it
[21].

The charm band grows broader with increasing
√
S, corresponding to decreasing x. At 10

TeV, the width of the uncertainty band has increased to almost two orders of magnitude. Thus,
without a better handle on the gluon density at low x and low scales, one may question whether
such a large uncertainty is meaningful. It may also be questionable whether the lowest scales,
ξR and ξF = 0.5 should be included in the calculation of the uncertainty when µF = 0.5m <

µCTEQ6M
0 for charm.

Even though the full fixed-target data set also exhibits a large uncertainty due to the method
of extrapolation used and the assumed branching ratios and A dependence, as shown on the
left-hand side of Fig. 2, if only more recent data are used, the uncertainty in the data seems
to be reduced. As an alternative, one may try to ‘fit’ the mass and scale parameters to these
data [6]. The dotted curves in Fig. 2 show the energy dependence of one such attempt with
m = 1.2 GeV, (ξR, ξF ) = (2, 2). The calculation lies just above the central value of the band
and, although the quark mass is smaller than the assumed central mass value, the larger value
of ξF guarantees a more regular

√
S dependence than that obtained with smaller values, as

shown in Fig. 4.

5 Conclusions

We have shown that when the total cross section is calculated with the same parameter sets
and the same number of light quark flavors, a consistent result is obtained by both integrating
over an inclusive distribution and starting from the total partonic cross section, as should be
expected. While this is true, the charm results are extremely sensitive to the number of flavors,
the scale choice and the parton densities. One of the biggest sources of uncertainty in the total
charm cross section at collider energies is the behavior of the gluon density at low x and low
scale, as yet not well determined. Until it is further under control, better limits on the charm
quark total cross section will be difficult to set.

It is thus not clear which estimate of the total charm cross section uncertainty is more
reliable. If the low pT region is ignored and the heavy quark may be considered an active
flavor then the appropriate number of flavors is nlf + 1 rather than nlf and the smaller error
band used to compare the RHIC pT distributions [21] is more reasonable. However, when
heavy flavor production is measured over the full pT range, down to pT ∼ 0, then three light
flavors should likely be used for charm, resulting in the larger uncertainty. Unfortunately, in
this case, the uncertainty is driven by scales lower than the initial scale of the parton density,



10 Will be inserted by the editor

further complicating the interpretation of the limits on the uncertainty band. Thus, rather than
arbitrarily choosing one result over another, we prefer to stress that there is little predictive
power in the charm production uncertainty.

Acknowledgements

I am very pleased to contribute to this volume in honor of Prof. Zimanyi. I would like to
thank him for introducing me to Budapest and Hungarian culture. From my very first trip to
Budapest, Joszo and Magda were very kind to me, making sure I saw something besides the
interior of the laboratory. Thanks to Joszo and his very active group, I have enjoyed many visits
over the years and look forward to more in the future.

I would like to thank M. Cacciari, G. Odyniec and T. Ullrich for discussions. This work
was performed under the auspices of the U.S. Department of Energy by University of Cali-
fornia, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48 and was also
supported in part by the National Science Foundation Grant NSF PHY-0555660.

References

1. J. Adams et al. [STAR Collaboration], Phys. Rev. Lett. 94 (2005) 062301 [arXiv:nucl-ex/0407006].
2. A. Adare et al. [PHENIX Collaboration], Phys. Rev. Lett. 97 (2006) 252002 [arXiv:hep-ex/0609010];

S. S. Adler S S et al. [PHENIX Collaboration], (2006) Preprint nucl-ex/0609032
3. S. Frixione, M. L. Mangano, P. Nason and G. Ridolfi, Adv. Ser. Direct High Energy Phys. (1998)

15 609.
4. M. Cacciari, P. Nason and R. Vogt, Phys. Rev. Lett. 95 (2005) 122001.
5. M. Djordjevic, M. Gyulassy, R. Vogt and S. Wicks, Phys. Lett. B 632 (2005) 81 [arXiv:nucl-

th/0507019].
6. R. Vogt [Hard Probe Collaboration], Int. J. Mod. Phys. E 12 (2003) 211 [arXiv:hep-ph/0111271].
7. M. Cacciari, M. Greco and P. Nason, JHEP 9805 (1998) 007 [arXiv:hep-ph/9803400];

M. Cacciari, S. Frixione and P. Nason, JHEP 0103 (2001) 006 [arXiv:hep-ph/0102134].
8. P. Nason, S. Dawson and R. K. Ellis, Nucl. Phys. B 303 (1988) 607;

P. Nason, S. Dawson and R. K. Ellis, Nucl. Phys. B 327 (1989) 49 [Erratum-ibid. B 335 (1990) 260].
9. W. Beenakker, W. L. van Neerven, R. Meng, G. A. Schuler and J. Smith, Nucl. Phys. B 351 (1991)

507.
10. M. Cacciari and M. Greco, Nucl. Phys. B 421 (1994) 530 [arXiv:hep-ph/9311260].
11. J. Pumplin et al., JHEP 0207 (2002) 012 [arXiv:hep-ph/0201195]; D. Stump et al., JHEP 0310

(2003) 046 [arXiv:hep-ph/0303013].
12. M. Cacciari and P. Nason, Phys. Rev. Lett. 89 (2002) 122003 [arXiv:hep-ph/0204025].
13. C. Peterson, D. Schlatter, I. Schmitt and P. M. Zerwas, Phys. Rev. D 27 (1983) 105.
14. S. Eidelman et al. [Particle Data Group Collaboration], Phys. Lett. B 592 (2004) 1.
15. M. Cacciari, S. Frixione, M. L. Mangano, P. Nason and G. Ridolfi, JHEP 0407 (2004) 033

[arXiv:hep-ph/0312132].
16. M. Cacciari and P. Nason, JHEP 0309 (2003) 006 [arXiv:hep-ph/0306212].
17. M. Cacciari, S. Frixione, M. L. Mangano, P. Nason and G. Ridolfi, JHEP 0404 (2004) 068

[arXiv:hep-ph/0303085].
18. N. Kidonakis, E. Laenen, S. Moch and R. Vogt, Phys. Rev. D 67 (2003) 074037 [arXiv:hep-

ph/0212173].
19. N. Kidonakis and R. Vogt, Eur. J. Phys. C 36 (2004) 201 [arXiv:hep-ph/0401056].
20. R. Vogt, Heavy Ion Phys. 17 (2003) 75 [arXiv:hep-ph/0207359].
21. A. A. P. Suaide, J. Phys. G 34 (2007) 369 [arXiv:nucl-ex/0702035].




