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Quantum Monte Carlo Assessment of the Relevance of Electronic

Correlations in Defects and EOS in Metals

R. Q. Hood, A. J. Williamson, J. L. Dubois, and F. A. Reboredo

Abstract

We have developed a highly accurate computational capability to calculate the equation of state

(EOS) and defect formation energies of metallic systems. We are using a newly developed algorithm

that enables the study of metallic systems with quantum Monte Carlo (QMC) methods. To date,

technical limitations have restricted the application of QMC methods to semiconductors, insulators

and the homogeneous electron gas. Using this new “QMC for metals” we can determine, for the

first time, the significance of correlation effects in the EOS and in the formation energies of point

defects, impurities, surfaces and interfaces in metallic systems. These calculations go beyond the

state-of-the-art accuracy which is currently obtained with Density Functional Theory approaches.

Such benchmark calculations can provide more accurate predictions for the EOS and the formation

energies of vacancies and interstitials in simple metals. These are important parameters in deter-

mining the mechanical properties as well as the micro-structural evolution of metals in irradiated

materials or under extreme conditions. We describe the development of our “QMC for metals”

code, which has been adapted to run efficiently on a variety of computer architectures including

BG/L. We present results of the first accurate quantum Monte Carlo calculation of an EOS of a

realistic metallic system that goes beyond the homogeneous electron gas.
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INTRODUCTION/BACKGROUND

One of the challenges for computational models used to predict material failure is to

understand changes in a material’s mechanical properties caused by aging in a harsh envi-

ronment. In most metals, the mechanical properties are dominated by the formation energies

and migration energy barriers of defects. These defects can be generated by alloying, radi-

ation damage, plastic deformation, or thermal processing. When a material is in thermal

equilibrium, the abundance of a given defect is directly related to its formation energy. Out-

side thermal equilibrium, the situation is more complex: a combination of the rate of defect

diffusion (determined by the migration energy barrier), the stress field around a defect (re-

lated to its formation volume) and the binding energy of the various defect clusters decides

the micro-structural evolution. Therefore, to predict, for example, the rate of void growth

and swelling in an irradiated metal, one must be able to accurately calculate the formation

energies and mobilities of defects.

From a theoretical point of view, the formation energies of most defects in a crystal can

be decomposed into a long range elastic energy and a core energy. The long range energy

can be obtained from continuum elasticity theory. As one approaches the core, atomistic

calculations are required for two main reasons; (i) the atomic displacements are large and

inter-atomic distances differ substantially from the bulk so elasticity theory fails, and (ii)

the chemical bonding and atomic coordination are different.

To date, atomistic calculations of metals have been restricted to empirical interatomic

potentials, (e.g. the Embedded Atom Method [1]), empirical tight binding models [2], quan-

tum based interatomic potentials, [3] and first principles Density Functional Theory (DFT)

calculations. [4, 5] The empirical models contain adjustable parameters that are fitted to

experimental data and ab initio results. Only DFT calculations incorporate quantum me-

chanical effects without adjustable parameters.

DFT has proven to be an accurate tool for calculating a wide range of bulk and surface

properties of materials. It has demonstrated excellent agreement with experiments for a

range of properties such as lattice parameters and elastic constants. However, there are also

well known errors of DFT such as the “band gap error” band gaps are underestimated by

50% or more, and the “LDA over-binding error” in which LDA functionals typically predict

bond lengths that are shorter than measured values. In some cases, the origin of DFT errors
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has been traced to the mean field treatment of electron correlations. More accurate values

have been calculated by including dynamical electron correlations with configuration inter-

action (CI) or Quantum Monte Carlo (QMC) methods. [6] For example, diffusion quantum

Monte Carlo calculations of the formation energies of point defects and surface energies in

semiconductors have shown that important corrections arise when quantum correlations are

fully taken into account. [7] Additionally, activation energies of common chemical reactions

obtained by DFT methods have been shown to differ substantially from benchmark QMC

values. [8]

For metallic systems, the size of the errors in DFT calculations is largely unknown, as

more accurate QMC benchmark calculations do not currently exist. However, recent varia-

tional Monte Carlo calculations have demonstrated that important differences are expected

for highly inhomogeneous electron gases. [9] Under extreme temperatures and pressures,

when accurate experimental measurements become increasingly difficult, first principles DFT

calculations currently provide the only source of data for fitting empirical interatomic po-

tentials. Therefore, any inaccuracies related to the mean-field correlations used in DFT will

propagate to the predictions made by the empirical codes fit to DFT. In this project, we are

quantitatively evaluating the errors in DFT calculations of metals for the first time.

There are contrary points of view on the errors in DFT for metals which make evident

the need for accurate QMC calculations. As correlations are affected by the value of the gap,

there is good reason to expect that correlation effects will be more important in systems

without an energy gap, i.e., metals. On the other hand, in cases where the electronic density

is nearly homogeneous, DFT methods are expected to be most accurate as the correlation

effects included in DFT functionals are derived from QMC calculations for the homogeneous

electron gas. Similarly, one might expect that correlation errors in DFT calculations of

defects such as stacking faults, which do not induce strong changes in the density, would

be less significant than in calculations of vacancies, surfaces, and dislocations, where the

density changes significantly. This could, in turn, lead to errors in the relative formation

energies of dislocations, staking faults, and partial dislocations which are used to determine

the relative abundance of these defects (i.e., a single dislocation vs. an extended dislocation

with two partials and a staking fault) which, in turn, determine the mechanical properties

of the material. Therefore, a quantitative evaluation of the errors of DFT is required for a

better understanding of the properties of these materials across all length scales.
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While it would clearly be valuable to perform benchmark QMC calculations for metals,

QMC calculations for metals have historically lagged behind similar calculations for semi-

conductors. The reason is that, for metals, one must carefully evaluate the structure of the

Fermi surface. This requires the calculation of a larger number of electronic energy levels.

For QMC calculations this corresponds to calculating a large number of electrons.

RESEARCH ACTIVITIES

Quantum Monte Carlo (QMC) methods offer a direct and accurate wave function-based

treatment of quantum many-body effects. The trial wavefunction is central to QMC, as it

controls both the statistical variance and the final accuracy obtained. For the many-electron

trial wavefunction we use the standard Slater-Jastrow form

Ψ(R) = eJ(R)
∑

i

aiD↑i(r1, r2, . . . , rN↑)D↓i(rN↑+1, . . . , rN) (1)

where the configuration R = (r1, r2, ..., rN) is made up of the coordinates of the spin-up and

spin-down electrons with N being the total number of electrons. The Jastrow correlation

factor is eJ(R) in which J consists of one-, two-, and three-body terms. The spin-up and

spin-down determinants D↑i and D↓i, respectively are formed from single-particle orbitals

obtained from density functional theory calculations. It is the N3 scaling of the calculation

of the orbitals in the determinants which dominates the cost of a QMC simulation. These

orbitals however can be localized in real space by transforming them into an orthogonal

Wannier basis. [10] Truncating the Wannier orbitals reduces the number of evaluations for a

configuration R and results in a linear scaling in electron number. This approach has been

successfully applied to the study of many semiconductor systems, evaluating, for the first

time, non-trivial surface formation energies. [11] However, until recently, we have not been

able to implement this linear scaling method in metallic systems. This is because Wannier

orbitals decay exponentially in semiconductors and insulators but only decay polynomially

in metals. We have developed a novel non-orthogonal transformation [12] that overcomes

this limitation and enables us to perform QMC calculations for metals.

Generating optimal nonorthogonal orbitals in a metallic system is more challenging al-

gorithmically than constructing orthogonal Wannier orbitals in semiconductors. One must

insure that the transformation matrix that connects the original density functional single-
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particle orthogonal orbitals with the nonorthogonal orbitals is not singular. Our approach

is based on algorithms developed for linear scaling DFT calculations [13–18] and is designed

to minimize a cost function associated with the total number of orbital evaluations required

in a linear scaling QMC calculation. We translated this algorithm into an efficient parallel

code that allowed us to generate optimal nonorthogonal orbitals in real non-homogeneous

metals. Applied to metallic aluminum, using a sufficiently large number of points in mo-

mentum space (k-points) to accurately represent the Fermi surface, we were able to localize

and truncate nonorthogonal orbitals. We integrated this code into our standard density

functional electronic-structure software packages and QMC code CASINO. [19]

The evaluation of the orbitals, even if they are localized and truncated, takes the majority

of the computation time. Thus it is essential to develop representations of the orbitals that

can be evaluated efficiently. Because we require the orbitals at points in real space, the

most natural procedure is to use a basis localized in real space. This way the cost of

evaluation of the orbitals does not grow with system size, as would be the case if the orbitals

are represented in terms of plane waves. The density functional codes we use output single

particle orbitals expanded in plane waves. A portion of our orbital localization code converts

the plane wave representation of each orbital to a grid representation using cubic splines,

know as blips. [20] Our QMC calculations of metals are over a thousand times faster when

we use a blip rather than a plane-wave representation.

The downside of using a blip basis is the large amount of computer memory required, of

the order of ten gigabytes for systems with around a thousand electrons. In the standard

version of CASINO each processor stores all of the orbitals since it must independently

evaluate the trial wavefunction for its own walk in configuration space. We generalized the

CASINO code such that each processor only needs to store and evaluate a portion of the

orbitals. This introduced some additional overhead, of around twenty percent, involving the

communication and synchronization of the orbital evaluations. With this change the size of

our calculations are no longer memory bound. We can perform QMC simulations on any

computer architecture including memory limited systems like BG/L. The formatted files

that store the blip represented orbitals between different QMC calculations have been as

large as sixty gigabytes. Reading such a file and distributing the data to the other processors

at the beginning of a QMC calculation can take as long as an hour. For this reason we added

a feature to CASINO that allows one to store the orbitals as unformatted files, and made a
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more judicious use of MPI routines for communicating the data.

In a QMC calculation independent walkers wander through the 3N dimension configu-

ration space with each electron moving in turn. Updating the determinants in the trial

wavefunction after a single electron move requires evaluating all of the single-particle or-

bitals at the same electron position. Existing blip evaluators did not take full advantage

of the fact that several operations can be eliminated when calculating the values of several

different orbitals at the same coordinates. We wrote a blip evaluator from scratch that was

over ten times faster than the best one previously available. This alone translated into an

overall factor of five speedup in our QMC calculations of metals.

Using a finite simulation cell with periodic boundary conditions in QMC calculations to

model an extended system like a metal introduces finite-size effects. One source of finite-size

effects is the electronic Coulomb interaction, that is often treated using an Ewald interaction.

We instead use a model periodic Coulomb interaction [21] that has been shown to dramati-

cally reduce the finite-size effects in the interaction energy. In large systems the evaluation

of this model periodic Coulomb interaction as originally implemented in CASINO can take

a majority of the computers resources. By representing a portion of this interaction using

blips we obtained an additional three fold reduction in overall computer time.

In QMC calculations of solids the Slater determinants in the trial wavefunctions usually

are made up of the DFT orbitals that have the lowest single-particle DFT energies. The

presence of a Fermi surface in a metal complicates this approach. In DFT calculations the

single-particle states at the Fermi energy are partially occupied to insure that the electronic

density has the correct symmetry. A DFT calculation of a metal utilizing partial occupa-

tions formally goes beyond a wavefunction based approach relying instead upon a statistical

density-matrix formalism. In QMC a determinant in the Slater-Jastrow trial wavefunction

either contains a DFT orbital or it doesn’t. Partial occupations are not possible. A finite

sum of the determinants composed of DFT orbitals will not in general produce an electronic

density with the correct symmetry. Trial wavefunctions constructed using different occu-

pations of the single-particle states at the Fermi energy will in general produce different

QMC energies. Our QMC tests in a homogeneous metal revealed that the energy differences

between different fillings of the states were less than 0.02 eV/atom.

The first application of our “QMC for metals” code was to aluminum. We used a simu-

lation cell with 256 aluminum atoms, containing 768 valence electrons, which we found to
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be large enough to insure that finite-size effects were negligible. Shown in Fig. 1 are plots

of the QMC energy as a function of the lattice constant a for FCC aluminum. Our first

QMC calculations (green circles) were with trial wavefunctions, Eq. 1, that consisted of one

up-spin and one down-spin determinant. The unphysical discontinuity at around a = 3.98 Å

originated from a band crossing at the Fermi energy. At each value of a we fill the deter-

minants using the lowest energy single-particle orbitals taken from a DFT calculation. At

around a = 3.98 Å the symmetry of the highest energy orbital contained in the determi-

nants changes. This change in symmetry changes the symmetry of the many-electron nodal

surface of the trial wavefunction. This effects the total QMC energy since we use the fixed-

node approximation; the standard approach used in all large-scale QMC applications. This

type of discontinuity is unique to metals and cannot arise in fixed-node QMC calculations

of semiconductors [22, 23] and insulators [24] because of their electronic gaps.

With the aim of removing the unphysical discontinuity in Fig. 1 we used trial wavefunc-

tions with six up-spin and six-down spin determinants. The determinants were filled with

orbitals that were either occupied in the DFT calculation or had DFT single-particle ener-

gies slightly higher than the Fermi energy. We first optimized the coefficients in ai in Eq. 1

using variance minimization, [25, 26] shown as red circles in Fig. 1. The calculated QMC

energy was a physically smooth function of a. At some values of a the QMC energies with

six up-spin and down-spin determinants were higher than with one up-spin and down-spin

determinant. The six determinant trial wavefunctions had been constructed, such that when

the values of ai in Eq. 1 took certain combinations of 1 and 0, one would obtain the one

determinant trial wavefunction, shown as green circles in Fig. 1. Thus the six determinant

trial wavefunctions had a larger variational freedom than the one determinant trial wave-

function. This larger variational freedom, however, did not always result in a lower energy.

While it was known that minimizing the variance of the trial wavefunction is no guarantee

that the corresponding fixed-node QMC energy would be lowered as the variational freedom

is enhanced, there had been no known examples until now of this possibility. Recently an

effective method [27–29] has been developed for optimizing a trial wavefunction by mini-

mizing the energy that is applicable to large systems. During this project this method was

implemented and tested within our “QMC of metals” code. Optimizing the coefficients ai

in Eq. 1 of the same six determinant trial wavefunctions using energy minimization we ob-

tained the results shown as black cirles in Fig. 1. To within the statistical error bars this
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approach gave the lowest energies and produced results that were physically smooth. This

demonstrated that energy minimization of multiple-determinant trial wavefunctions is an

effective approach to calculating the properties of metals. The solid black line in Fig. 1 is a

quartic fit to the black circles. This gives a QMC calculated ground-state equilibrium lattice

constant of 3.94 Å. After removal of the finite-temperature and zero-point effects the exper-

imental equilibrium lattice constant [30] is 4.02 Å. For comparison the DFT (local density

approximation) calculated ground-state equilibrium lattice constant is 3.96 Å. Subsequent

calculations suggest that the deviation of our calculated equilibrium lattice constant from

experiment originates mostly from using a DFT-based pseudopotential rather than from the

fixed-node error. We are actively investigating this issue by carrying out calculations using a

different DFT-based pseudopotential and using trial wavefunctions with very different nodal

surfaces.

EXIT PLAN

The development of an accurate approach for calculating the equation of state of metals

from first-principles is important for the ASC program. We are currently using funds from

this program to continue our development of a “QMC for metals” code and to begin calcu-

lations of beryllium, a programmatically relevant metal. Our development of the computa-

tional and the algorithmic capabilities in this area has given us the tools to conduct highly

visible research that cannot be performed by other groups in the world. The next phase will

involve calculating the most accurate properties of defects in metals to date. Research in

this area was slowed by the departure of the two previous principal investigators, Reboredo

and Williamson, from the laboratory. This project could evolve into the study of metal-

lic systems with increasing complexity relevant for programmatic applications. The results

obtained can be used to benchmark DFT calculations and to fit quasi-classical potentials

for large scale simulations that are currently used to describe matter at extreme conditions.

Additionally, QMC calculations of realistic metallic systems could help the development of

better density functionals by providing data outside the constant density regime.
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FIG. 1: QMC energies (eV/atom) of FCC aluminum as a function of the lattice constant a (Å)

calculated using a Slater-Jastrow trial wavefunction consisting of one up-spin and one down-spin

determinant (green circles) and six up-spin and six down-spin determinants in which the coefficients

ai in Eq. 1 were optimized using variance minimization (red circles) and energy minimization (black

circles). The statistical error bars are shown. The red and black solid lines are quartic fits (energy

as a function of a) corresponding to the red and black circles, respectively.
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