

Innovation for Our Energy Future

Optimized triple-junction solar cells using inverted metamorphic approach

John F. Geisz National Renewable Energy Laboratory Golden, CO USA

Presented at 5th International Conference on Solar Concentrators for the Generation of Electricity

> Sponsored by NREL, Amonix, Concentrix Solar, Emcore, Entech, Greenvolts, SolFocus, Solar Systems, & Spectrolab

> > Palm Desert, CA • November 16-19, 2008

NREL/PR-520-44478

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC

Acknowledgements

Inverted metamorphic approach - Mark Wanlass

Modeling - Dan Friedman, Sarah Kurtz

Fabrication - Scott Ward, Anna Duda, Michelle Young, Waldo Olavarria, Charlene Kramer

Characterization - Manuel Romero, Andrew Norman, Kim Jones, Keith Emery, Tom Moriarty, James Kiehl

Material research - Myles Steiner, Jerry Olson, Alejandro Levander

This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-99G010337 with the National Renewable Energy Laboratory

Outline

- Inverted design
- Modelling to optimize efficiency
- World record efficiency achieved
- Effects of temperature and concentration

Inverted Design

- OMVPE growth on GaAs
- Lattice-matched grown first
- Metamorphic grown last
- Mounted on Si or glass
- Substrate removed

Introduced by Mark Wanlass, 2005

Advantages of Inverted Design

- Monolithic one growth process
- Thin device handle properties dominate
 - weight
 - heat removal
 - mechanical robustness
 - flexible
 - cheap (reuse substrate)
- Efficient
 - more band gap choices
 - top junction (most power producing) is lattice-matched
- Requires good metamorphic growth
 - minimize defects
 - transparent buffers

- Iso-efficiency with shadow contours
- Thinned junctions
- 300K, 500 suns
- Direct spectrum
- Semi-empirical (GaAs-like)
- 52% (blue)
- 51% (black)
- Two maxima due to water absorption in terrestrial spectrum

 Lattice-matched not optimized

Lattice-matched on Ge

- Lattice-matched not optimized
- Constrained to Ge bottom junction
- Top two junctions latticematched to each other (grey line)
- Spectrolab (40.7%)
- Fraunhofer ISE (39.7%)

Optimized on Ge

Constrain middle junction to GaAs

- Constrain middle junction to GaAs
- Constrain top junction to GaInP lattice-matched to GaAs
- Inverted approach

- Constrain middle junction to GaAs
- Constrain top junction to GaInP lattice-matched to GaAs
- ✓ Inverted approach
- Relax constraint on middle junction
- Nearly Optimized

Two Triple-Junction Inverted Metamorphic Designs

Misfit

0.0%	1.8 eV GaInP		1.8 eV GalnP	0.0%
0.0%	1.4 eV GaAs		transparent grade	
	transparent grade		1.34 eV InGaAs	0.3%
1.9%	1.0 eV InGaAs		transparent grade	
	1MMJ		0.9 eV InGaAs	2.6%
2MMJ				
APL, 91 , 023502 (2007)			APL, 93 , 123505 (2008)	

Dislocations in Inverted Triple with Two Mismatched Junctions

lon beam image of FIB sample

220DF TEM

2 x 10⁶ cm⁻²

1 x 10⁵ cm⁻²

none

Plan-view CL 40μm x 40μm area

NREL National Renewable Energy Laboratory

Stress and Strain of 2MMJ

Near zero in both metamorphic junctions

in situ stress by MOS

(see J. Crystal Growth, 310, 2339 (2008)

ex situ strain by XRD

NREL National Renewable Energy Laboratory

Inverted Solar Cell Comparison

New 2MMJ design has

- higher current, lower voltage
- optically thick junctions

Both IMM designs reject much unused IR light

Inverted Solar Cell Comparison

High Concentration

40.8% efficiency at 326 suns in triple-junction with 3 different lattice constants!

AM1.5D (low AOD) spectrum

IV Curves of 2MMJ

 $R@V_{oc} = 0.324 \ \Omega$, $R@I_{sc} = 657 \ \Omega$

40.8% @ 326 Suns World Record

Irradiance is calculated from test device assuming linearity and it's 1-sun I_{sc} Vst:2.00 dV/dT:12.00 Ap:M PNV:555 point w/ ND=2 filters on ref. 647 has edmund brand. tunnel diode fail $R@V_{oc} = 0.126 \ \Omega, R@I_{sc} = 1970 \ \Omega$

Above TJ peak tunneling current @ 1211 Suns

Model Effects of Temperature and Concentration

Best 3J efficiencies drop with:

- High temperature
- Low concentration

Specific designs

Specific Designs Relative to Optimal

Optimized for each T,X

300K, 500X

Challenges

- Series resistance, tunnel junctions
- Broadband antireflective coatings
- Long term reliability of lattice mismatched devices
- Measurements of current matched multi-junctions
- More junctions
- Substrate reuse
- Technology transfer to industry

Conclusions

- Record efficiencies with triple-junction inverted metamorphic designs
- Modeling useful to optimize
- Consider operating conditions before choosing design

