
UCRL-JRNL-230195

Speech recognition systems on
the Cell Broadband Engine

Y. Liu, H. Jones, S. Vaidya, M. Perrone, B.
Tydlitat, A. Nanda

April 23, 2007

IBM Journal of Research and Development

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNT Digital Library

https://core.ac.uk/display/71321046?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Disclaimer 
 

 This document was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor the University of California nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for 
the accuracy, completeness, or usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any 
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, 
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United 
States Government or the University of California. The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States Government or the University of California, 
and shall not be used for advertising or product endorsement purposes. 
 



Speech recognition systems on the Cell 
Broadband Engine 

 

Y. Liu, H. Jones, S. Vaidya, M. Perrone, B. Tydlitát, A. Nanda 

In this paper we describe our design, implementation, and first results of a prototype 

connected-phoneme-based speech recognition system on the Cell Broadband Engine
™

 

(Cell/B.E.). Automatic speech recognition decodes speech samples into plain text (other 

representations are possible) and must process samples at real-time rates. Fortunately, the 

computational tasks involved in this pipeline are highly data-parallel and can receive 

significant hardware acceleration from vector-streaming architectures such as the 

Cell/B.E. Identifying and exploiting these parallelism opportunities is challenging, but 

also critical to improving system performance. We observed, from our initial 

performance timings, that a single Cell/B.E. processor can recognize speech from 

thousands of simultaneous voice channels in real time—a channel density that is 

orders-of-magnitude greater than the capacity of existing software speech recognizers 

based on CPUs (central processing units). This result emphasizes the potential for 

Cell/B.E.-based speech recognition and will likely lead to the future development of 

production speech systems using Cell/B.E. clusters. 

Introduction 

Speech recognition has already been successfully integrated into many application areas 

and commercial products. Consider, for example, the Honda Acura
**

 TL navigational 

system that responds to verbal queries, the Palm OS
**

 5 Voice Command recognition 
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software for personal digital assistants (PDAs), the Motorola Bluetooth
**

 Car Kit that 

includes voice recognition and automatic dial, or the Genesta speech-controlled portable 

computer. These products together demonstrate that speech recognition at interactive 

rates is viable even within the limited processing capabilities and resources of portable 

and embedded devices. However, many other applications require speech processing 

beyond interactive rates. Speech recognition systems in telephony applications for 

automatic call centers represent the largest segment of the speech processing market; 

these centers receive and must process thousands of telephone conversations. Similarly, 

in areas of data mining, such as intelligence and surveillance, there is also a growing 

interest in applying speech recognition to both online compressed speech channels and 

repositories of archival speech. 

These systems must process many channels of speech at real-time rates and are 

generally constructed from clusters of processors based on commodity central processing 

units (CPUs). The number of nodes in such a cluster scales commensurately with the 

amount of speech traffic the system is expected to process. Using the current generation 

of processors, each node can manage roughly 20 to 30 speech channels in real time, and 

cluster sizes range from tens to thousands of nodes. System performance can also be 

scaled by incorporating more powerful processors. This is perhaps a more viable 

approach since recent trends show that streaming vector architectures, such as the Cell 

Broadband Engine
**

 (Cell/B.E.), exhibit a better cost-performance ratio than traditional 

computer architectures for a variety of data-parallel applications. Implementing a speech 

system on the Cell/B.E., however, requires more effort than simply porting legacy source 

codes and then expecting automatic hardware acceleration to result only from compiler 
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optimizations and special hand-tuned math libraries. Individual algorithms must be 

profiled and reformulated to explicitly expose areas of data parallelism amenable for a 

streaming and vector implementation. This is the approach we took in designing a 

prototype speech recognition engine on Cell/B.E. The results we observed were very 

surprising and encouraging: Our system performs roughly two orders of magnitude faster 

than existing speech systems. 

Cell/B.E.  

The Cell/B.E. is a new streaming heterogeneous multiprocessor architecture jointly 

designed by Sony, Toshiba, and IBM. This architecture is heterogeneous in the sense that 

it combines a general purpose IBM PowerPC
*
 processing element (PPE) with several 

special purpose vector processing cores, called synergistic processing elements (SPEs). 

Each core executes on an independent instruction stream. Cell/B.E. also supports data 

streaming by providing explicit user management over the data communication via DMA 

memory transfers between the PPE main memory and the local store memories of the 

SPEs. Memory transactions can be interleaved with instruction execution, allowing their 

transfer latencies to be partially or completely concealed to improve pipeline efficiency. 

This design provides Cell/B.E. with several interesting advantages over traditional 

processors. Many data-parallel tasks can be structured to expose single-instruction 

multiple-data (SIMD) parallelism, predictable memory access patterns, and 

data-independent processing. These parallel tasks generally execute much faster on the 

SPE processors than on the PPE processor. SIMD computations map directly to vector 

instructions, predictable memory access patterns allow prefetching of data elements, and 
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data-independent processing enables a simplification of the vector execution pipeline (no 

need for complex branch-prediction strategies). Furthermore, whereas traditional 

processors employ caches to exploit data coherency, Cell/B.E. allows users to directly 

program the memory hierarchy and implement their own application-specific data 

caching policies. Streaming applications with completely predictable memory access 

benefit the most from user-managed caches and, when implemented correctly, can 

experience 100% cache hit performance. For further information on the Cell/B.E. 

architecture and its programming models, please refer to References [1] and [2]. 

Speech processing 

Early analysts segmented speech signals into small windowed intervals and annotated 

them by phonemes (linguistically distinct speech sounds). This classification is possible 

because a speech signal looks roughly like a sequence of stationary waveforms. Analysts 

look at the waveforms and spectrogram plots and distinguish phonemes by examining 

their spectral characteristics (e.g., format frequencies) (Figure 1). Today, this analysis is 

completely automated by digital signal processing and pattern-matching algorithms. 

Speech recognition systems generally consist of three components: feature 

extraction, pattern matching, and model training. These components work together to 

recognize the information being communicated by verbal speech. In a real-time system, 

the first two components require special optimization since this system has the special 

constraint that speech channels must be processed at line rates using a fixed amount of 

memory. Optimizations for model training are less important since the models only need 

to be trained once prior to any recognition activity. Efforts to optimize this step, however, 
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are still worthwhile because training is an iterative process and can be very 

computationally expensive. We limit our discussion here to only the feature extraction 

and pattern-matching components. 

Feature extraction 

The feature extraction front-end takes a windowed speech frame from the speech audio 

waveform and from it derives a compact feature vector representation that captures 

important spectral and temporal properties. The most common features used by speech 

systems are the mel frequency cepstral coefficients (MFCC). MFCC features are based 

on the Fourier spectrum of the audio signal, mapped to a nonlinear frequency scale that 

roughly corresponds to the human perception of sounds. The first and second derivatives 

of this spectrum are also considered to measure the rate at which sounds change. The 

mean energy is subtracted and the variance is normalized to remove the channel transfer 

function.  

There are 12 stages of processing: 

1. Window frame extraction. 

2. Mean subtraction. 

3. Energy computation. 

4. Preemphasis filtering. 

5. Hamming window filtering. 

6. Spectrum computation (using fast Fourier transform). 

7. Mel frequency scale mapping. 

8. Cepstrum computation. 
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9. Decorrelation (using discrete Fourier transform). 

10. Cepstral filtering. 

11. Cepstrum energy normalization. 

12. First and second order derivatives. 

The first processing stage starts with a windowed frame of 200 samples (25 ms of 

audio at 8 kHz) and the final result is a 39-component feature vector (12 MFCC, 1 

energy, 13 first derivative, 13 second derivative). This processing is uniformly applied to 

overlapping frames (10 ms of overlap) in the speech signal to produce a sequence of 

MFCC feature vectors. 

Pattern matching 

Under this representation, new speech samples can be compared with reference samples 

by discovering and quantifying common patterns in their feature vector sequences. This 

is a test for similarity rather than equality, since speech samples are not expected to 

match exactly. Matches are scored using hidden Markov models (HMMs), which 

statistically summarize patterns over a reference set. The purpose of the pattern-matching 

component is to then evaluate or decode new speech samples against a set of HMMs. 

HMMs 

An HMM [3–5] models a stochastic temporal process with parameters that are not 

directly observable (hence hidden), but can only be inferred from the set of observation 

sequences that it generates (here, the observations are MFCC feature vectors). HMMs are 

graphically represented by a set of nodes and directed edges. The nodes represent states 

and edges represent transitions between states. Observation sequences are generated by 
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paths between the start node and the end nodes. These are special states that do not 

generate observations. All other states generate observations whenever they are visited 

according to their probability density functions (PDFs). State transitions also occur 

probabilistically. 

An HMM learns patterns over reference examples by assigning state PDFs and 

transition probabilities that maximize the probabilities of their sequence output, while 

also accommodating the variability of individual feature sequences. For example, 

constructing an HMM to recognize the word “one” requires several verbal samples of this 

word by different speakers. The pronunciation of this word could vary from speaker to 

speaker, and even the same speaker cannot exactly reproduce the same sounds twice. 

However, these pronunciations share common spectral and temporal patterns that are 

captured by the HMM through selectively strengthening paths and feature distributions in 

the network during the training process. Although HMMs cannot be explicitly trained 

using negative examples, discrimination is possible by comparing probabilities across all 

other models. 

An HMM is scored against a new speech sample by evaluating paths through the 

HMM network. Multiple paths could generate the same feature sequence, so the 

likelihood for an HMM matching the feature sequence is given by the total of all possible 

path probabilities. This requires an exhaustive search through the network which can be 

efficiently computed using the Viterbi algorithm, explained in the next section. 

Viterbi algorithm 

A direct search of all paths in the network is not feasible computationally, so the Viterbi 

algorithm applies recursion to cache the intermediate path probabilities. This recursion 
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can be efficiently implemented using dynamic programming. For each feature vector 

frame fi, the algorithm examines each HMM state sj and computes its emission 

probability p(f = fi | sj) by evaluating the feature vector against the PDF of state sj. All 

possible transitions into this state are then examined. Probabilities from previous states 

that transition into this one are multiplied with their respective transitional probabilities 

p(s = sj | sk) and then summed together. This result is multiplied with the emission 

probability of state sj to give the total probability Li,j of all intermediate paths between the 

start state and the current state that generate feature vector frames up to fi. The initial 

conditions are set such that path computations begin at the start state for the first feature 

vector frame. The recurrence is given by 

i,j i j i 1,k j k

k

( | ) ( | )L p f f s L p s s s
/

? ? ?Â , (1a) 

with the initial values set to  

0,0 0, j
1, 0 | 0L L j? ? $ @ . (1b) 

Since the system obeys stochastic constraints, all path probabilities sum to unity. 

This means that probabilities of individual paths can be quite small. Therefore, it is useful 

to express these probabilities on a log scale. However, it is very expensive to add two 

numbers together in the log scale, i.e., computing log(a + b) directly from log(a) and 

log(b). To simplify matters, the maximal path is generally a good approximation to the 

summation of all possible paths. Using this approximation, Equations (1a) and (1b) can 

be approximated by 

* + * +* +1,, log ( | ) max log ( | )
i j k i k j ki j p f f s L p s s sL

/
|? - - ?| ? , (2a) 



51-5 Liu MM1  Page 9 of 24 
 

with the initial conditions 

0,0 0,0, | 0j jL L? ? /¢ $ @| | . (2b) 

The goal of this computation is to evaluate Lm,n, the probability that the feature 

sequence was generated by a path through the HMM. The approximation for the term 

Lガm,n is called the Viterbi probability and is computed recursively using Equations (2a) 

and (2b). Strictly speaking, Lガm,n is not a probability, but rather a likelihood. This 

likelihood value is sufficient for recognizing speech from samples that contain exactly 

one word unit (called the isolated digit recognition problem). However, in most practical 

recognition systems, the speech channels contain multiple words, and decoding from 

these channels (called the connected digit recognition problem) requires an additional 

trace-back step after computing Lガm,n to recover the maximal path through the HMM 

network and to identify the actual sequence of decoded words encountered along this 

path. Supporting this trace-back step requires that bookkeeping information, such as 

back-pointers and model labels, be maintained along with intermediate path likelihoods 

during the recursion. The Viterbi algorithm decodes HMMs against isolated digits, but 

recognizing connected digits requires searching hypothetical paths that pass through 

multiple HMM models. This search can also be organized efficiently using dynamic 

programming to extend the basic Viterbi algorithm. Such an approach, called the 

level-building algorithm (LBA), is discussed in the next section. 
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Speech system design 

Constructing a speech recognition system requires modeling at two levels. At the highest 

level, the vocabulary of words and the language grammar that govern their syntactic use 

must be first decided. Figure 2 is an example of a simple task of recognizing sequences 

of numeric digits. The vocabulary consists of the numbers “one” through “nine” and 

“oh”. The grammar allows any arrangement of digits in the sequence. A special silence 

model is also included to account for periods of silence (or background noise) between 

each number utterance. The set of numbers along with the silence model are all modeled 

by HMMs. The type of HMM (e.g., number of states and the allowable transitions 

between them) most commonly used in speech recognition is called the left-right HMM 

model. Here, the number of states roughly corresponds to the duration of the utterance, 

and the states are connected and arranged sequentially so that transitions occur only 

monotonically from left to right; that is, each state allows only self-transitions and 

forward-transitions. The PDF for each HMM state is generally modeled by a set of 

Gaussian functions over the feature vectors. This representation is called the Gaussian 

mixture model (GMM). The parameters of a GMM includes the Gaussian means and 

covariances (the feature vectors are decorrelated such the covariance matrices are 

diagonal) and weights for each Gaussian. Gaussian functions are commonly shared across 

multiple GMMs to reduce the model complexity, a technique called Gaussian parameter 

tying. 

Decoding isolated digits amounts to evaluating the Viterbi probability of a speech 

sample against several HMM word models and selecting the best. Decoding connected 

digits is more challenging because the speech sample contains several words, and the 
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word boundaries are unknown. The LBA solves this problem by evaluating multiple 

hypothetical intervals within the speech sample. The computation is organized into levels 

where each level corresponds to a single digit decode. The process begins by initializing 

all HMMs to decode starting at the first speech frame. The location of the ending frame 

for the first digit is unknown, so each HMM evaluates all speech frames thereafter as a 

potential candidate for the last frame of the first digit. In practice though, only a small 

interval past the first speech frame is searched since the word utterance is not expected to 

span the entire speech sample. The second level then evaluates each of the ending frames 

from the first level as a possible starting frame for the second digit, and this process 

proceeds so on until all speech frames are evaluated. During the course of the decode 

process, word transition probabilities (e.g., bigrams or trigrams) can be applied to enforce 

a local syntax. Back pointers are also kept to support the trace-back step, in which we 

work backwards from the last speech frame to recover all the word-level transitions that 

were made. 

The algorithm just described has an exponential computational complexity, but 

captures the idea of decoding connected digits. In real-time systems, the amount of 

processing must be directly proportional to the size of the speech sample, and the amount 

of storage must be constant. Therefore, the decoding must occur synchronously with each 

speech frame, and only a small word transition history can be kept. For details about this 

approach, please refer to the frame-synchronous level building (FSLB) algorithm by Lee 

and Rabiner [6]. 
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System implementation 

Our speech recognition system on Cell/B.E. is implemented by three SPE kernel 

programs: spe_extract, spe_computeobs, and spe_viterbi. The PPE 

processor is responsible for initializing and loading data into the SPE kernels, invoking 

the SPE kernels, and final scoring. In the future, we will implement a scheduler on the 

PPE to analyze and distribute load across the SPE processors. The feature extraction 

frontend is implemented by spe_extract while the decoder is factored into two SPE 

programs: spe_computeobs and spe_viterbi. Our system processes a speech 

channel by calling each of the SPE kernels in sequence. Intermediate data is streamed 

between the SPE local store and PPE memory during successive SPE calls. The final 

scoring lattice from spe_viterbi is traversed by an FSLB implementation on the PPE 

to perform a trace-back step and recover the decoded text. 

spe_extract 

The design of the feature extraction is based on the pipeline from the Mississippi State 

Institute for Signal and Information Processing (MS ISIP) speech recognition toolkit [7], 

with the stages listed in the section on feature extraction. All of these steps are 

implemented within the resources of a single SPE program. The mean subtraction and 

energy computation across the speech window requires the summation of elements in the 

window. The computation for this sum is vectorized by laying out data elements as an 

array of 128-bit (4-component) SIMD vectors, and then performing the sum across the 

vectors. Elements in the resulting array are then combined together by dot product with a 

ones vector. The spectrum computation step is considered the pivot or core of the 
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pipeline as it is the algorithm with the highest computational cost. Fortunately the 

Cell/B.E. software development kit library contains an extremely efficient fast Fourier 

transform (FFT) algorithm [8] which we judiciously apply. We profiled the FFT 

performance and determined that it completes eight FFTs in 3,800 cycles, which roughly 

accounts for 69 Gflops of computation and represents 34% efficiency on the Cell/B.E. 

Data vectorization occurs along the axis of a speech window frame; each block of four 

sequential data elements in the window are processed concurrently using vector 

instructions. However, the FFT routine expects a complex signal input in a format that 

interleaves real and imaginary components. Accommodating this data layout incurs only 

a small performance penalty to perform data interleaving and deinterleaving when 

moving data in and out of the FFT routine. Many of these stages require precomputed 

look-up tables. For example, FFT requires a table of twiddle factors to be precomputed 

for one of its parameters. Likewise, the discrete cosine transform (DCT) step, which 

decorrelates the MFCC vectors (to allow diagonal covariance matrices), and the various 

filtering operations also take advantage of precomputed factors. Using table lookups 

helps in both computation and accuracy as constant data terms can be computed only 

once and in higher precision. The first and second MFCC derivatives are computed by 

central differencing. Supporting this computation requires a short queue of MFCC frames 

to be maintained.  

spe_computeobs 

Evaluating the emission probability of generating a particular feature vector at a 

particular HMM state is independent of the network search, and this computation can be 

easily factored from the main decode. This is actually necessary for recognition tasks of 
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higher complexity since the parameters for the GMMs occupy a significant amount of 

memory. Currently, we use four Gaussians per mixture (1 GMM per state) with 57 total 

HMM states. These parameters use roughly 71 KB of memory, which is almost a quarter 

of the SPE local store memory. Future implementations may require the parameter to be 

streamed into the local store. The end result of this kernel computation is a 

two-dimensional table (feature vector frames by HMM states) of emission probabilities. 

Since probabilities are expressed in log space, vectorizing this computation is very 

straightforward: 

* +
* + * +

* +
* + * +1 1

2 1 2 2 1 2

1 1 1 1
log exp log

2 22ヾ 2ヾ
N N

x x x xo o o o
V V/ /

/ / U / ? / / U /
Â Â

Ã Ô Ã ÔÃ Ô
Ä ÕÄ Õ Ä ÕÅ ÖÅ Ö Å Ö

. (3) 

The first term on the right-hand side of Equation 3 can be precomputed, and the second 

term can be computed by a dot product, since ¬-1
 is diagonal. The dot-product 

computation is vectorized by first multiplying the three vectors together componentwise 

using the 128-bit SIMD registers and then aggregating the result into a single value by 

summing across the vector, four components at a time. Evaluating the emission 

probabilities is the most arithmetic-intensive step and represents the bottleneck of our 

system.  

spe_viterbi 

The decoding process occurs frame-synchronously by permitting the predecessor state for 

a model start state to come from the end state of any HMM model (as allowed by the 

language grammar). This computation is vectorized along the HMM state axis by 

concatenating HMM models together and setting transitional probabilities across model 

boundaries to zero. The recurrence relations given in Equations (2a) and (2b) are 
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processed using vector instructions for each block of four states. The layout for this 

computation is shown in Figure 3. Shaded groups of four elements in each column are 

stored in 128-bit registers and operated on by SIMD vector instructions. Evaluating the 

path probabilities requires only two columns of data to be stored at any given time. In 

addition to path probabilities, additional bookkeeping information is kept to support the 

trace-back process. Since all HMM models in our experiment are strictly first order 

left-right, data access to previous state probabilities is aligned by shifting the state 

column down by one state. Decoding proceeds by seeding the start states of each model 

with an initial probability and then streaming the emission probability table in and 

streaming the intermediate path probabilities out to main memory. 

Results 

To profile the performance of our recognizer, we set up a simple experiment to perform 

speaker-independent speech recognition of phonemes from a digit vocabulary based on 

the TIDIGITS corpus. This vocabulary includes the utterances “zero”, “one”, …, “nine”, 

and “oh” (as a substitution for “zero”), (meaning zero) by speakers of different gender 

and dialects, which are altogether modeled by 19 phonemes (each a three-state HMM 

with four Gaussians per HMM state). We used the MS ISIP speech decoder to provide 

model training and establish the baseline decoder performance. The platforms we used 

for testing are shown in Table 1.  

The performance is measured by timing the latency to process a single-channel 

speech sample on a single SPE, and then extrapolating to the total number of physical 

SPEs available. This helps to estimate peak system performance under perfect load 
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balancing and task scheduling. Speech recognition performance for these platforms is 

summarized in Table 1. Units are measured in real-time channels (RTCs), where 

1 RTC = 1 s of audio/1 s of processing time. 

On both the Cell/B.E. and software platforms, recognition accuracy was scored at 

99%, which is to be expected for such a simple recognition task. Since recognition 

accuracy depends only on the training and language modeling, the performance of our 

prototype speech recognition engine on Cell/B.E. will extend to production systems 

because the SPE kernel programs were designed to scale with model and language 

complexity. 

Conclusions 

We have implemented and demonstrated a prototype speech recognition engine that is 

capable of processing approximately a thousand speech channels on a single Cell/B.E. 

processor. The kernel computations are designed to be highly scalable, and we expect this 

performance result to generalize well to commercial speech systems. We attribute the 

performance gains in our system mainly to the raw computational power and memory 

management of the Cell/B.E. We harness these resources by carefully choosing data 

layouts and reformulating algorithms to expose data parallelism and streaming 

opportunities. 

Although the performance we measured pertains to only a simple digit 

recognition problem with a small vocabulary, the relative performance between CPU and 

Cell/B.E. systems is important to note. Speech recognition systems that incorporate very 

large vocabularies, complex grammar, and detailed GMMs decode channels at rates far 
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below real time. Implementing these systems on Cell/B.E. allows not only the channel 

density to be scaled, but also the task complexity and recognition quality. 

 

Future work 

Having implemented the core algorithms in a basic speech recognition system, we 

identify three areas in which we can focus our future development efforts: language 

modeling, compressed speech, and speech activity detection. 

Language modeling 

Toward the longer-range goal of developing a production speech system, we plan to 

apply tools from the HTK 3.3 framework [9] to train HMM and language models to 

recognize speech from more complex and challenging sources. The simple experiment 

we conducted for this study did not include any language modeling; any digit can follow 

any other digit, and we made no attempt to construct actual words from the sequence of 

decoded phonemes. HTK is a collection of software utilities and tools to train, decode, 

and evaluate HMM models. We plan to start with the TIMIT corpus [10], which contains 

conversations from a finite dictionary and strictly follows a language grammar. After 

constructing and training the appropriate models, we will integrate them into our existing 

Cell/B.E. speech recognition system. 

Compressed speech 

The amount of speech traffic being transmitted over digital networks (e.g., Voice Over 

Internet Protocol) is rapidly outpacing our existing ability to efficiently process it. To 
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communicate over a digital network, speech samples are first encoded by a lossy 

compression protocol. This compression step allows speech to be represented using a 

very low (fixed) bit rate, which increases the channel density given a target bandwidth, 

but also introduces significant noise and degradation to the original audio signals. 

Qualifying and quantifying how recognition accuracy is affected by compression artifacts 

is an interesting area of study. Furthermore, recent techniques have been proposed to 

derive MFCC features from the speech-encoding parameters and use the encoding 

parameters directly as a feature set. We expect to test both approaches and compare their 

results with a third approach, which is to compress and decompress audio samples (to 

artificially add compression noise) and apply speech recognition to establish a baseline. 

After establishing the best approach to computing features on compressed speech, we 

will integrate it into our existing feature-extraction pipeline on Cell/B.E. 

Speech activity detection 

Speech channels often contain long periods of with no speech. Removing these segments 

will not only help cull computation, but also improve recognition performance since 

speaker normalization is intended to be performed over voice activity. Identifying and 

annotating intervals of speech activity in voice channels is a binary classification 

problem; we are trying to classify speech from background. Therefore, models for both 

will be required. We plan to investigate approaches using linear classifiers, such as 

support vector machines, single-state HMMs, GMMs, or a hybrid combination of these 

approaches. We plan to integrate the best result in our Cell/B.E. speech-recognition 

pipeline. 
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Table 1 Speech recognition performance. 

Platform Processor Real-time channels
(RTCs) 

SIM 4.0 GHz Cell/B.E. simulator 1,759 

Cell/.B.E. 2.4 GHz Cell/B.E. hardware 1,216 

Sony PlayStation
**

 3 (PS3) 3.2 GHz Playstation 3 (6 SPEs) 526 

Central processing unit (CPU) 3.2 GHz Intel Pentium
**

 4 10 

 

 



Figure 1

(a) Oscillogram and (b) spectrogram for, 

“Heute ist schönes Frühlingswetter.” (It’s nice 

weather today.)
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Figure 2

(a) First order left-right HMM model and (b) HMM system for 

recognizing connected digits.
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Figure 3

SIMD vectorization of the Viterbi algorithm.
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