
UCRL-JRNL-230195

Speech recognition systems on
the Cell Broadband Engine

Y. Liu, H. Jones, S. Vaidya, M. Perrone, B.
Tydlitat, A. Nanda

April 23, 2007

IBM Journal of Research and Development

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNT Digital Library

https://core.ac.uk/display/71321046?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Disclaimer

 This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

Speech recognition systems on the Cell
Broadband Engine

Y. Liu, H. Jones, S. Vaidya, M. Perrone, B. Tydlitát, A. Nanda

In this paper we describe our design, implementation, and first results of a prototype

connected-phoneme-based speech recognition system on the Cell Broadband Engine
™

(Cell/B.E.). Automatic speech recognition decodes speech samples into plain text (other

representations are possible) and must process samples at real-time rates. Fortunately, the

computational tasks involved in this pipeline are highly data-parallel and can receive

significant hardware acceleration from vector-streaming architectures such as the

Cell/B.E. Identifying and exploiting these parallelism opportunities is challenging, but

also critical to improving system performance. We observed, from our initial

performance timings, that a single Cell/B.E. processor can recognize speech from

thousands of simultaneous voice channels in real time—a channel density that is

orders-of-magnitude greater than the capacity of existing software speech recognizers

based on CPUs (central processing units). This result emphasizes the potential for

Cell/B.E.-based speech recognition and will likely lead to the future development of

production speech systems using Cell/B.E. clusters.

Introduction

Speech recognition has already been successfully integrated into many application areas

and commercial products. Consider, for example, the Honda Acura
**

 TL navigational

system that responds to verbal queries, the Palm OS
**

 5 Voice Command recognition

51-5 Liu MM1 Page 2 of 24

software for personal digital assistants (PDAs), the Motorola Bluetooth
**

 Car Kit that

includes voice recognition and automatic dial, or the Genesta speech-controlled portable

computer. These products together demonstrate that speech recognition at interactive

rates is viable even within the limited processing capabilities and resources of portable

and embedded devices. However, many other applications require speech processing

beyond interactive rates. Speech recognition systems in telephony applications for

automatic call centers represent the largest segment of the speech processing market;

these centers receive and must process thousands of telephone conversations. Similarly,

in areas of data mining, such as intelligence and surveillance, there is also a growing

interest in applying speech recognition to both online compressed speech channels and

repositories of archival speech.

These systems must process many channels of speech at real-time rates and are

generally constructed from clusters of processors based on commodity central processing

units (CPUs). The number of nodes in such a cluster scales commensurately with the

amount of speech traffic the system is expected to process. Using the current generation

of processors, each node can manage roughly 20 to 30 speech channels in real time, and

cluster sizes range from tens to thousands of nodes. System performance can also be

scaled by incorporating more powerful processors. This is perhaps a more viable

approach since recent trends show that streaming vector architectures, such as the Cell

Broadband Engine
**

 (Cell/B.E.), exhibit a better cost-performance ratio than traditional

computer architectures for a variety of data-parallel applications. Implementing a speech

system on the Cell/B.E., however, requires more effort than simply porting legacy source

codes and then expecting automatic hardware acceleration to result only from compiler

51-5 Liu MM1 Page 3 of 24

optimizations and special hand-tuned math libraries. Individual algorithms must be

profiled and reformulated to explicitly expose areas of data parallelism amenable for a

streaming and vector implementation. This is the approach we took in designing a

prototype speech recognition engine on Cell/B.E. The results we observed were very

surprising and encouraging: Our system performs roughly two orders of magnitude faster

than existing speech systems.

Cell/B.E.

The Cell/B.E. is a new streaming heterogeneous multiprocessor architecture jointly

designed by Sony, Toshiba, and IBM. This architecture is heterogeneous in the sense that

it combines a general purpose IBM PowerPC
*
 processing element (PPE) with several

special purpose vector processing cores, called synergistic processing elements (SPEs).

Each core executes on an independent instruction stream. Cell/B.E. also supports data

streaming by providing explicit user management over the data communication via DMA

memory transfers between the PPE main memory and the local store memories of the

SPEs. Memory transactions can be interleaved with instruction execution, allowing their

transfer latencies to be partially or completely concealed to improve pipeline efficiency.

This design provides Cell/B.E. with several interesting advantages over traditional

processors. Many data-parallel tasks can be structured to expose single-instruction

multiple-data (SIMD) parallelism, predictable memory access patterns, and

data-independent processing. These parallel tasks generally execute much faster on the

SPE processors than on the PPE processor. SIMD computations map directly to vector

instructions, predictable memory access patterns allow prefetching of data elements, and

51-5 Liu MM1 Page 4 of 24

data-independent processing enables a simplification of the vector execution pipeline (no

need for complex branch-prediction strategies). Furthermore, whereas traditional

processors employ caches to exploit data coherency, Cell/B.E. allows users to directly

program the memory hierarchy and implement their own application-specific data

caching policies. Streaming applications with completely predictable memory access

benefit the most from user-managed caches and, when implemented correctly, can

experience 100% cache hit performance. For further information on the Cell/B.E.

architecture and its programming models, please refer to References [1] and [2].

Speech processing

Early analysts segmented speech signals into small windowed intervals and annotated

them by phonemes (linguistically distinct speech sounds). This classification is possible

because a speech signal looks roughly like a sequence of stationary waveforms. Analysts

look at the waveforms and spectrogram plots and distinguish phonemes by examining

their spectral characteristics (e.g., format frequencies) (Figure 1). Today, this analysis is

completely automated by digital signal processing and pattern-matching algorithms.

Speech recognition systems generally consist of three components: feature

extraction, pattern matching, and model training. These components work together to

recognize the information being communicated by verbal speech. In a real-time system,

the first two components require special optimization since this system has the special

constraint that speech channels must be processed at line rates using a fixed amount of

memory. Optimizations for model training are less important since the models only need

to be trained once prior to any recognition activity. Efforts to optimize this step, however,

51-5 Liu MM1 Page 5 of 24

are still worthwhile because training is an iterative process and can be very

computationally expensive. We limit our discussion here to only the feature extraction

and pattern-matching components.

Feature extraction

The feature extraction front-end takes a windowed speech frame from the speech audio

waveform and from it derives a compact feature vector representation that captures

important spectral and temporal properties. The most common features used by speech

systems are the mel frequency cepstral coefficients (MFCC). MFCC features are based

on the Fourier spectrum of the audio signal, mapped to a nonlinear frequency scale that

roughly corresponds to the human perception of sounds. The first and second derivatives

of this spectrum are also considered to measure the rate at which sounds change. The

mean energy is subtracted and the variance is normalized to remove the channel transfer

function.

There are 12 stages of processing:

1. Window frame extraction.

2. Mean subtraction.

3. Energy computation.

4. Preemphasis filtering.

5. Hamming window filtering.

6. Spectrum computation (using fast Fourier transform).

7. Mel frequency scale mapping.

8. Cepstrum computation.

51-5 Liu MM1 Page 6 of 24

9. Decorrelation (using discrete Fourier transform).

10. Cepstral filtering.

11. Cepstrum energy normalization.

12. First and second order derivatives.

The first processing stage starts with a windowed frame of 200 samples (25 ms of

audio at 8 kHz) and the final result is a 39-component feature vector (12 MFCC, 1

energy, 13 first derivative, 13 second derivative). This processing is uniformly applied to

overlapping frames (10 ms of overlap) in the speech signal to produce a sequence of

MFCC feature vectors.

Pattern matching

Under this representation, new speech samples can be compared with reference samples

by discovering and quantifying common patterns in their feature vector sequences. This

is a test for similarity rather than equality, since speech samples are not expected to

match exactly. Matches are scored using hidden Markov models (HMMs), which

statistically summarize patterns over a reference set. The purpose of the pattern-matching

component is to then evaluate or decode new speech samples against a set of HMMs.

HMMs

An HMM [3–5] models a stochastic temporal process with parameters that are not

directly observable (hence hidden), but can only be inferred from the set of observation

sequences that it generates (here, the observations are MFCC feature vectors). HMMs are

graphically represented by a set of nodes and directed edges. The nodes represent states

and edges represent transitions between states. Observation sequences are generated by

51-5 Liu MM1 Page 7 of 24

paths between the start node and the end nodes. These are special states that do not

generate observations. All other states generate observations whenever they are visited

according to their probability density functions (PDFs). State transitions also occur

probabilistically.

An HMM learns patterns over reference examples by assigning state PDFs and

transition probabilities that maximize the probabilities of their sequence output, while

also accommodating the variability of individual feature sequences. For example,

constructing an HMM to recognize the word “one” requires several verbal samples of this

word by different speakers. The pronunciation of this word could vary from speaker to

speaker, and even the same speaker cannot exactly reproduce the same sounds twice.

However, these pronunciations share common spectral and temporal patterns that are

captured by the HMM through selectively strengthening paths and feature distributions in

the network during the training process. Although HMMs cannot be explicitly trained

using negative examples, discrimination is possible by comparing probabilities across all

other models.

An HMM is scored against a new speech sample by evaluating paths through the

HMM network. Multiple paths could generate the same feature sequence, so the

likelihood for an HMM matching the feature sequence is given by the total of all possible

path probabilities. This requires an exhaustive search through the network which can be

efficiently computed using the Viterbi algorithm, explained in the next section.

Viterbi algorithm

A direct search of all paths in the network is not feasible computationally, so the Viterbi

algorithm applies recursion to cache the intermediate path probabilities. This recursion

51-5 Liu MM1 Page 8 of 24

can be efficiently implemented using dynamic programming. For each feature vector

frame fi, the algorithm examines each HMM state sj and computes its emission

probability p(f = fi | sj) by evaluating the feature vector against the PDF of state sj. All

possible transitions into this state are then examined. Probabilities from previous states

that transition into this one are multiplied with their respective transitional probabilities

p(s = sj | sk) and then summed together. This result is multiplied with the emission

probability of state sj to give the total probability Li,j of all intermediate paths between the

start state and the current state that generate feature vector frames up to fi. The initial

conditions are set such that path computations begin at the start state for the first feature

vector frame. The recurrence is given by

i,j i j i 1,k j k

k

(|) (|)L p f f s L p s s s
/

? ? ?Â , (1a)

with the initial values set to

0,0 0, j
1, 0 | 0L L j? ? $ @ . (1b)

Since the system obeys stochastic constraints, all path probabilities sum to unity.

This means that probabilities of individual paths can be quite small. Therefore, it is useful

to express these probabilities on a log scale. However, it is very expensive to add two

numbers together in the log scale, i.e., computing log(a + b) directly from log(a) and

log(b). To simplify matters, the maximal path is generally a good approximation to the

summation of all possible paths. Using this approximation, Equations (1a) and (1b) can

be approximated by

* + * +* +1,, log (|) max log (|)
i j k i k j ki j p f f s L p s s sL

/
|? - - ?| ? , (2a)

51-5 Liu MM1 Page 9 of 24

with the initial conditions

0,0 0,0, | 0j jL L? ? /¢ $ @| | . (2b)

The goal of this computation is to evaluate Lm,n, the probability that the feature

sequence was generated by a path through the HMM. The approximation for the term

Lガm,n is called the Viterbi probability and is computed recursively using Equations (2a)

and (2b). Strictly speaking, Lガm,n is not a probability, but rather a likelihood. This

likelihood value is sufficient for recognizing speech from samples that contain exactly

one word unit (called the isolated digit recognition problem). However, in most practical

recognition systems, the speech channels contain multiple words, and decoding from

these channels (called the connected digit recognition problem) requires an additional

trace-back step after computing Lガm,n to recover the maximal path through the HMM

network and to identify the actual sequence of decoded words encountered along this

path. Supporting this trace-back step requires that bookkeeping information, such as

back-pointers and model labels, be maintained along with intermediate path likelihoods

during the recursion. The Viterbi algorithm decodes HMMs against isolated digits, but

recognizing connected digits requires searching hypothetical paths that pass through

multiple HMM models. This search can also be organized efficiently using dynamic

programming to extend the basic Viterbi algorithm. Such an approach, called the

level-building algorithm (LBA), is discussed in the next section.

51-5 Liu MM1 Page 10 of 24

Speech system design

Constructing a speech recognition system requires modeling at two levels. At the highest

level, the vocabulary of words and the language grammar that govern their syntactic use

must be first decided. Figure 2 is an example of a simple task of recognizing sequences

of numeric digits. The vocabulary consists of the numbers “one” through “nine” and

“oh”. The grammar allows any arrangement of digits in the sequence. A special silence

model is also included to account for periods of silence (or background noise) between

each number utterance. The set of numbers along with the silence model are all modeled

by HMMs. The type of HMM (e.g., number of states and the allowable transitions

between them) most commonly used in speech recognition is called the left-right HMM

model. Here, the number of states roughly corresponds to the duration of the utterance,

and the states are connected and arranged sequentially so that transitions occur only

monotonically from left to right; that is, each state allows only self-transitions and

forward-transitions. The PDF for each HMM state is generally modeled by a set of

Gaussian functions over the feature vectors. This representation is called the Gaussian

mixture model (GMM). The parameters of a GMM includes the Gaussian means and

covariances (the feature vectors are decorrelated such the covariance matrices are

diagonal) and weights for each Gaussian. Gaussian functions are commonly shared across

multiple GMMs to reduce the model complexity, a technique called Gaussian parameter

tying.

Decoding isolated digits amounts to evaluating the Viterbi probability of a speech

sample against several HMM word models and selecting the best. Decoding connected

digits is more challenging because the speech sample contains several words, and the

51-5 Liu MM1 Page 11 of 24

word boundaries are unknown. The LBA solves this problem by evaluating multiple

hypothetical intervals within the speech sample. The computation is organized into levels

where each level corresponds to a single digit decode. The process begins by initializing

all HMMs to decode starting at the first speech frame. The location of the ending frame

for the first digit is unknown, so each HMM evaluates all speech frames thereafter as a

potential candidate for the last frame of the first digit. In practice though, only a small

interval past the first speech frame is searched since the word utterance is not expected to

span the entire speech sample. The second level then evaluates each of the ending frames

from the first level as a possible starting frame for the second digit, and this process

proceeds so on until all speech frames are evaluated. During the course of the decode

process, word transition probabilities (e.g., bigrams or trigrams) can be applied to enforce

a local syntax. Back pointers are also kept to support the trace-back step, in which we

work backwards from the last speech frame to recover all the word-level transitions that

were made.

The algorithm just described has an exponential computational complexity, but

captures the idea of decoding connected digits. In real-time systems, the amount of

processing must be directly proportional to the size of the speech sample, and the amount

of storage must be constant. Therefore, the decoding must occur synchronously with each

speech frame, and only a small word transition history can be kept. For details about this

approach, please refer to the frame-synchronous level building (FSLB) algorithm by Lee

and Rabiner [6].

51-5 Liu MM1 Page 12 of 24

System implementation

Our speech recognition system on Cell/B.E. is implemented by three SPE kernel

programs: spe_extract, spe_computeobs, and spe_viterbi. The PPE

processor is responsible for initializing and loading data into the SPE kernels, invoking

the SPE kernels, and final scoring. In the future, we will implement a scheduler on the

PPE to analyze and distribute load across the SPE processors. The feature extraction

frontend is implemented by spe_extract while the decoder is factored into two SPE

programs: spe_computeobs and spe_viterbi. Our system processes a speech

channel by calling each of the SPE kernels in sequence. Intermediate data is streamed

between the SPE local store and PPE memory during successive SPE calls. The final

scoring lattice from spe_viterbi is traversed by an FSLB implementation on the PPE

to perform a trace-back step and recover the decoded text.

spe_extract

The design of the feature extraction is based on the pipeline from the Mississippi State

Institute for Signal and Information Processing (MS ISIP) speech recognition toolkit [7],

with the stages listed in the section on feature extraction. All of these steps are

implemented within the resources of a single SPE program. The mean subtraction and

energy computation across the speech window requires the summation of elements in the

window. The computation for this sum is vectorized by laying out data elements as an

array of 128-bit (4-component) SIMD vectors, and then performing the sum across the

vectors. Elements in the resulting array are then combined together by dot product with a

ones vector. The spectrum computation step is considered the pivot or core of the

51-5 Liu MM1 Page 13 of 24

pipeline as it is the algorithm with the highest computational cost. Fortunately the

Cell/B.E. software development kit library contains an extremely efficient fast Fourier

transform (FFT) algorithm [8] which we judiciously apply. We profiled the FFT

performance and determined that it completes eight FFTs in 3,800 cycles, which roughly

accounts for 69 Gflops of computation and represents 34% efficiency on the Cell/B.E.

Data vectorization occurs along the axis of a speech window frame; each block of four

sequential data elements in the window are processed concurrently using vector

instructions. However, the FFT routine expects a complex signal input in a format that

interleaves real and imaginary components. Accommodating this data layout incurs only

a small performance penalty to perform data interleaving and deinterleaving when

moving data in and out of the FFT routine. Many of these stages require precomputed

look-up tables. For example, FFT requires a table of twiddle factors to be precomputed

for one of its parameters. Likewise, the discrete cosine transform (DCT) step, which

decorrelates the MFCC vectors (to allow diagonal covariance matrices), and the various

filtering operations also take advantage of precomputed factors. Using table lookups

helps in both computation and accuracy as constant data terms can be computed only

once and in higher precision. The first and second MFCC derivatives are computed by

central differencing. Supporting this computation requires a short queue of MFCC frames

to be maintained.

spe_computeobs

Evaluating the emission probability of generating a particular feature vector at a

particular HMM state is independent of the network search, and this computation can be

easily factored from the main decode. This is actually necessary for recognition tasks of

51-5 Liu MM1 Page 14 of 24

higher complexity since the parameters for the GMMs occupy a significant amount of

memory. Currently, we use four Gaussians per mixture (1 GMM per state) with 57 total

HMM states. These parameters use roughly 71 KB of memory, which is almost a quarter

of the SPE local store memory. Future implementations may require the parameter to be

streamed into the local store. The end result of this kernel computation is a

two-dimensional table (feature vector frames by HMM states) of emission probabilities.

Since probabilities are expressed in log space, vectorizing this computation is very

straightforward:

* +
* + * +

* +
* + * +1 1

2 1 2 2 1 2

1 1 1 1
log exp log

2 22ヾ 2ヾ
N N

x x x xo o o o
V V/ /

/ / U / ? / / U /
Â Â

Ã Ô Ã ÔÃ Ô
Ä ÕÄ Õ Ä ÕÅ ÖÅ Ö Å Ö

. (3)

The first term on the right-hand side of Equation 3 can be precomputed, and the second

term can be computed by a dot product, since ¬-1
 is diagonal. The dot-product

computation is vectorized by first multiplying the three vectors together componentwise

using the 128-bit SIMD registers and then aggregating the result into a single value by

summing across the vector, four components at a time. Evaluating the emission

probabilities is the most arithmetic-intensive step and represents the bottleneck of our

system.

spe_viterbi

The decoding process occurs frame-synchronously by permitting the predecessor state for

a model start state to come from the end state of any HMM model (as allowed by the

language grammar). This computation is vectorized along the HMM state axis by

concatenating HMM models together and setting transitional probabilities across model

boundaries to zero. The recurrence relations given in Equations (2a) and (2b) are

51-5 Liu MM1 Page 15 of 24

processed using vector instructions for each block of four states. The layout for this

computation is shown in Figure 3. Shaded groups of four elements in each column are

stored in 128-bit registers and operated on by SIMD vector instructions. Evaluating the

path probabilities requires only two columns of data to be stored at any given time. In

addition to path probabilities, additional bookkeeping information is kept to support the

trace-back process. Since all HMM models in our experiment are strictly first order

left-right, data access to previous state probabilities is aligned by shifting the state

column down by one state. Decoding proceeds by seeding the start states of each model

with an initial probability and then streaming the emission probability table in and

streaming the intermediate path probabilities out to main memory.

Results

To profile the performance of our recognizer, we set up a simple experiment to perform

speaker-independent speech recognition of phonemes from a digit vocabulary based on

the TIDIGITS corpus. This vocabulary includes the utterances “zero”, “one”, …, “nine”,

and “oh” (as a substitution for “zero”), (meaning zero) by speakers of different gender

and dialects, which are altogether modeled by 19 phonemes (each a three-state HMM

with four Gaussians per HMM state). We used the MS ISIP speech decoder to provide

model training and establish the baseline decoder performance. The platforms we used

for testing are shown in Table 1.

The performance is measured by timing the latency to process a single-channel

speech sample on a single SPE, and then extrapolating to the total number of physical

SPEs available. This helps to estimate peak system performance under perfect load

51-5 Liu MM1 Page 16 of 24

balancing and task scheduling. Speech recognition performance for these platforms is

summarized in Table 1. Units are measured in real-time channels (RTCs), where

1 RTC = 1 s of audio/1 s of processing time.

On both the Cell/B.E. and software platforms, recognition accuracy was scored at

99%, which is to be expected for such a simple recognition task. Since recognition

accuracy depends only on the training and language modeling, the performance of our

prototype speech recognition engine on Cell/B.E. will extend to production systems

because the SPE kernel programs were designed to scale with model and language

complexity.

Conclusions

We have implemented and demonstrated a prototype speech recognition engine that is

capable of processing approximately a thousand speech channels on a single Cell/B.E.

processor. The kernel computations are designed to be highly scalable, and we expect this

performance result to generalize well to commercial speech systems. We attribute the

performance gains in our system mainly to the raw computational power and memory

management of the Cell/B.E. We harness these resources by carefully choosing data

layouts and reformulating algorithms to expose data parallelism and streaming

opportunities.

Although the performance we measured pertains to only a simple digit

recognition problem with a small vocabulary, the relative performance between CPU and

Cell/B.E. systems is important to note. Speech recognition systems that incorporate very

large vocabularies, complex grammar, and detailed GMMs decode channels at rates far

51-5 Liu MM1 Page 17 of 24

below real time. Implementing these systems on Cell/B.E. allows not only the channel

density to be scaled, but also the task complexity and recognition quality.

Future work

Having implemented the core algorithms in a basic speech recognition system, we

identify three areas in which we can focus our future development efforts: language

modeling, compressed speech, and speech activity detection.

Language modeling

Toward the longer-range goal of developing a production speech system, we plan to

apply tools from the HTK 3.3 framework [9] to train HMM and language models to

recognize speech from more complex and challenging sources. The simple experiment

we conducted for this study did not include any language modeling; any digit can follow

any other digit, and we made no attempt to construct actual words from the sequence of

decoded phonemes. HTK is a collection of software utilities and tools to train, decode,

and evaluate HMM models. We plan to start with the TIMIT corpus [10], which contains

conversations from a finite dictionary and strictly follows a language grammar. After

constructing and training the appropriate models, we will integrate them into our existing

Cell/B.E. speech recognition system.

Compressed speech

The amount of speech traffic being transmitted over digital networks (e.g., Voice Over

Internet Protocol) is rapidly outpacing our existing ability to efficiently process it. To

51-5 Liu MM1 Page 18 of 24

communicate over a digital network, speech samples are first encoded by a lossy

compression protocol. This compression step allows speech to be represented using a

very low (fixed) bit rate, which increases the channel density given a target bandwidth,

but also introduces significant noise and degradation to the original audio signals.

Qualifying and quantifying how recognition accuracy is affected by compression artifacts

is an interesting area of study. Furthermore, recent techniques have been proposed to

derive MFCC features from the speech-encoding parameters and use the encoding

parameters directly as a feature set. We expect to test both approaches and compare their

results with a third approach, which is to compress and decompress audio samples (to

artificially add compression noise) and apply speech recognition to establish a baseline.

After establishing the best approach to computing features on compressed speech, we

will integrate it into our existing feature-extraction pipeline on Cell/B.E.

Speech activity detection

Speech channels often contain long periods of with no speech. Removing these segments

will not only help cull computation, but also improve recognition performance since

speaker normalization is intended to be performed over voice activity. Identifying and

annotating intervals of speech activity in voice channels is a binary classification

problem; we are trying to classify speech from background. Therefore, models for both

will be required. We plan to investigate approaches using linear classifiers, such as

support vector machines, single-state HMMs, GMMs, or a hybrid combination of these

approaches. We plan to integrate the best result in our Cell/B.E. speech-recognition

pipeline.

nijhuis2
Text Box
This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

51-5 Liu MM1 Page 19 of 24

*
 Trademark, service mark, or registered trademark of International Business Machines

Corporation in the United States, other countries, or both.

**
 Trademark, service mark, or registered trademark of Honda Motor Company, Ltd.,

Bluetooth SIG, Inc., Sony Computer Entertainment, Inc., or Intel Corporation in the

United States, other countries, or both.

References

1. J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maurer, and D. Shippy,

“Introduction to the Cell Microprocessor,” IBM J. Res. & Dev. 49, No. 4/5, 589–604

(2005).

2. A. Nanda, J. Moulic, R. Hanson, G. Goldrian, M. Day, B. D’Amora, S. Kesavarapu,

and T. Sanuki, “Cell Blades: Building Blocks for Scalable, Real Time, Interactive

and Digital Media Servers,” IBM J. Res. & Dev. 51, No. 5, ___–___ (2007, this

issue).

3. J. Picone, “Continuous Speech Recognition Using Hidden Markov Models,” IEEE

ASSP Magazine 7, No. 3, 26–41 (1990).

4. J. W. Picone, “Signal Modeling Techniques for Speech Recognition,” Proceedings

of the IEEE 81, No. 9, 1215–1247 (1993).

5. L. R. Rabiner, “A Tutorial on Hidden Markov Models and Selected Applications in

Speech Recognition,” Proceedings of the IEEE 77, No. 2, 257–286 (1989).

6. C.-H. Lee and L. Rabiner, “A Network-Based Frame-Synchronous Level Building

Algorithm for Connected Word Recognition,” Proceedings of the International

51-5 Liu MM1 Page 20 of 24

Conference on Acoustics, Speech, and Signal Processing, New York, NY, 1998, pp.

410–413.

7. A. Ganapathiraju, N. Deshmukh, J. Hamaker, V. Mantha, Y. Wu, X. Zhang, J. Zhao,

and J. Picone, “ISIP Public Domain LVCSR System,” Proceedings of the Speech

Transcription Workshop, Linthicum Heights, MD, 1999; see

http://scholar.google.com/scholar?hl=en&lr=&q=cache:0xINGex23gEJ:www.isip.

msstate.edu/publications/conferences/dod_lvcsr/1999/asr/doc/paper_v2.pdf+author:

%22Ganapathiraju%22+intitle:%22ISIP+Public+Domain+LVCSR+System%22+.

8. A. C. Chow, G. C. Fossum, and D. A. Brokenshire, “A Programming Example:

Large FFT on the Cell Broadband Engine,” Proceedings of the Global Signal

Processing Expo and Conference, Santa Clara, CA, 2005; see http://www-

306.ibm.com/chips/techlib/techlib.nsf/techdocs/0AA2394A505EF0FB872570AB005

BF0F1/$file/GSPx_FFT_paper_legal_0115.pdf.

9. What is HTK?, University of Cambridge, Cambridge, U.K.; see

http://htk.eng.cam.ac.uk/.

10. W. M. Fisher, G. R. Doddington, and K. M. Goudie-Marshall, “The DARPA Speech

Recognition Research Database: Specifications and Status,” Proceedings of DARPA

Workshop on Speech Recognition, 1986, pp. 93–99.

Received 3-15-07; accepted for publication April 3, 2007

Yang Liu Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore,

California 94550 (liu24@llnl.gov). Dr. Liu is a computer scientist at the Lawrence

Livermore National Laboratory (LLNL). He received a Ph.D. degree in computer science

51-5 Liu MM1 Page 21 of 24

from the University of California, Davis, in 2004. His research interests are in computer

graphics, scientific visualization, high-performance computing, and bioinformatics. Dr.

Liu has directed his recent efforts at LLNL to applying hardware acceleration to data and

computation-intensive algorithms using commodity computer processors.

Holger Jones Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore,

California 94550 (holgerjones@llnl.gov). Mr. Jones is a projects team leader and

senior developer at LLNL, with experience in signal processing, systems programming,

distributed computing, control systems engineering, and scientific visualization. He

received an M.S. degree in electrical and computer engineering from the University of

California, Davis, in 2002.

Sheila Vaidya Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore,

California 94550 (vaidya1@llnl.gov). Dr. Vaidya is an embedded computing and data

processing solutions program leader at LLNL. She has a background in high-performance

computing, information technology, and digital imaging, and extensive experience in

microelectronics systems and technology, semiconductor devices, integrated-circuit

design and fabrication, and chip-manufacturing infrastructure. She received a Ph.D.

degree in materials science and solid state physics from the State University of New

York, Stony Brook, in 1979. She has over 100 scientific publications and 14 patents. Dr.

Vaidya is currently responsible for developing embedded computing and data processing

solutions for national security applications at LLNL.

51-5 Liu MM1 Page 22 of 24

Michael Perrone IBM Research Division, Thomas J. Watson Research Center, P.O. Box

218, Yorktown Heights, New York 10598 (mpp@us.ibm.com). Dr. Perrone is an IBM

Master Inventor and the manager of the Cell/B.E. Solutions department, which has the

mission of identifying and optimizing high-affinity workloads for the Cell/B.E. and other

multicore processors. Current projects include high-performance computing workloads,

seismic imaging, network intrusion detection, digital content creation, rich media mining,

image analysis, speech recognition and bioinformatics. He received a Ph.D. degree in

physics from Brown University. Dr. Perrone’s research includes algorithmic optimization

for the Cell/B.E. processor, parallel computing, and statistical machine learning.

BoUivoj Tydlitát IBM Czech Republic, Voice Technologies and Systems, V Parku

2294/4, 148 00 Praha 4, Czech Republic (borivoj_tydlitat@cz.ibm.com). Mr. Tydlitát

received an M.S. degree in computer engineering from the Czech Technical University,

Prague. He has worked at the IBM Thomas J. Watson Research Center on multiple

projects related to speech recognition and natural language understanding. Mr. Tydlitát is

currently a member of the IBM Research team in Prague, working on the development of

embedded IBM ViaVoice
*
 speech recognition software and participating in speech

technology research.

Ashwini Nanda IBM Research Division, Thomas J. Watson Research Center, P.O. Box

218, Yorktown Heights, New York 10598 (ashwini@us.ibm.com). Dr. Nanda is a Research

Staff Member currently leading research and technology strategy on the Cell/B.E.

processor-based systems, clusters, and their applications. He is also the chief architect of

51-5 Liu MM1 Page 23 of 24

the Cell/B.E. processor blades prototype and roadmap in IBM. Dr. Nanda has been a

co-general chair of the International Symposium on High Performance Computer

Architecture (HPCA-7), served on the editorial board of IEEE Transactions on Parallel

and Distributed Systems, and co-edited a special issue of IEEE Computer magazine. He

holds ten patents and has published over 40 papers on computer system architecture,

design, and performance.

* * * * *

51-5 Liu MM1 Page 24 of 24

Table 1 Speech recognition performance.

Platform Processor Real-time channels
(RTCs)

SIM 4.0 GHz Cell/B.E. simulator 1,759

Cell/.B.E. 2.4 GHz Cell/B.E. hardware 1,216

Sony PlayStation
**

 3 (PS3) 3.2 GHz Playstation 3 (6 SPEs) 526

Central processing unit (CPU) 3.2 GHz Intel Pentium
**

 4 10

Figure 1

(a) Oscillogram and (b) spectrogram for,

“Heute ist schönes Frühlingswetter.” (It’s nice

weather today.)

(a)

(b)

(a)

(b)

Figure 2

(a) First order left-right HMM model and (b) HMM system for

recognizing connected digits.

s0 s1 s2 s3

P(s
0
|s
0
)

P(s
1
|s
0
)

P(s
1
|s
1
) P(s

2
|s
2
) P(s

3
|s
3
)

P(s
2
|s
1
) P(s

3
|s
2
)

P(x|s
0
) P(x|s

1
) P(x|s

2
) P(x|s

3
)

Two

One

Three

Four

Oh

Silence Silence

Figure 3

SIMD vectorization of the Viterbi algorithm.

“o
n
e”

“t
w

o
”

“t
h
re

e”
“f

o
u
r”

H
M

M
 S

ta
te

s

Observation Frames

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

