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Abstract

The resonant Auger effect of atomic neon exposed to high-intensity x-ray radiation in resonance

with the 1s → 3p transition is discussed. High intensity here means that the x-ray peak intensity

is sufficient (∼ 1018 W/cm2) to induce Rabi oscillations between the neon ground state and the

1s−13p (1P ) state within the relaxation lifetime of the inner-shell vacancy. For the numerical

analysis presented, an effective two-level model, including a description of the resonant Auger

decay process, is employed. Both coherent and chaotic x-ray pulses are treated. The latter are

used to simulate radiation from x-ray free-electron lasers based on the principle of self-amplified

spontaneous emission. Observing x-ray-driven atomic population dynamics in the time domain

is challenging for chaotic pulse ensembles. A more practical option for experiments using x-ray

free-electron lasers is to measure the line profiles in the kinetic energy distribution of the resonant

Auger electron. This provides information on both atomic population dynamics and x-ray pulse

properties.

PACS numbers: 32.80.Hd, 33.20.Xx, 41.60.Cr, 82.50.Kx

∗Present address: Lawrence Livermore National Laboratory, Livermore, California 94551, USA
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I. INTRODUCTION

Since its discovery in 1980 [1], the resonant Auger effect [2, 3] and its influence on various

experimental observables have been the subject of intense investigation [4–17]. In a simple

picture, the resonant Auger effect may be interpreted as a resonant photoionization process

mediated by a particle-hole configuration involving an inner-shell hole and an excited electron

in a discrete one-electron state. The electronic decay of the inner-shell hole gives rise to an

electron spectrum that is similar to an Auger electron spectrum. The excited electron

generally does not participate in the Auger decay step. However, in contrast to regular

Auger decay, where the photoexcited electron is completely removed from the parent ion,

the presence of this electron in the resonant case leads to a characteristic modification of

the positions of the Auger electron spectral lines. Further, for narrow-bandwidth x rays,

the kinetic energy of a photoelectron associated with a given resonant Auger decay channel

displays a linear dependence on the photon energy, and the width of the electron line profile

is determined by the photon bandwidth, not by the Auger decay width.

Like all other x-ray-induced processes currently experimentally accessible, the resonant

Auger effect studied so far is a first-order process with respect to the interaction with the

photon field. In this paper we show how the resonant Auger effect will be modified at high

x-ray intensity. This topic is timely for two reasons. First, the x-ray free-electron lasers

[18, 19] that are currently under construction [20–22] are expected to provide the intensity

necessary to drive nonperturbative x-ray processes on a time scale that is comparable with

the lifetime of an inner-shell hole [23]. Second, these fourth-generation synchrotron radiation

sources are based on the principle of self-amplified spontaneous emission (SASE) [24]. As

a consequence, the pulse properties of the x-ray radiation generated vary from shot to shot

[25, 26]. This limits the longitudinal coherence time near a photon energy of 1 keV to

a few femtoseconds [27], which is again comparable with Auger lifetimes. As shown in

Ref. [28], this has interesting consequences for double-core-hole formation via x-ray two-

photon absorption at high, nonresonant photon energies. Here, we discuss consequences for

the high-intensity resonant Auger effect. Because the Linac Coherent Light Source (LCLS)

[20] is the first of the x-ray free-electron lasers that is expected to come online, we focus in

the following on its parameter regime [29]. Section II briefly reviews resonant Auger decay

at the 1s → 3p absorption resonance of atomic neon. In Sec. III, we describe the theoretical
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model we use to investigate how the presence of high-intensity x rays is reflected in the

resonant Auger effect. The results of our computations on neon are presented in Sec. IV.

Section V contains a summary. Atomic units are used throughout unless otherwise stated.

II. THE 1s → 3p RESONANCE IN NEON

The LCLS will initially operate in the soft-x-ray regime above 800 eV. Since the 1s

ionization threshold of Ne lies at 870.2 eV [30], it is planned to perform some of the first

experiments at LCLS using atomic neon [23]. The most prominent and well-isolated pre-

edge resonance in Ne is the excitation from the atomic ground state (1S) to the 1s−13p

(1P ) state at a photon energy of 867.1 eV [31–35]. Good agreement with the experimentally

observed resonance profile [33] is obtained [36, 37] by assuming that the decay width Γ1s−13p

of the 1s−13p state equals the Auger width Γ1s−1 of Ne+ 1s−1, i.e., to a good approximation

Γ1s−13p = Γ1s−1 = 0.27 eV [30]. (Ab initio calculations indicate that Γ1s−13p could be smaller

than Γ1s−1 by ∼ 0.01 eV [33].) The 1s−13p resonance state of Ne decays with a branching

ratio of 64% into electronically bound states of Ne+ plus a resonant Auger electron [34]. This

is the case we will concentrate on in the following. Particularly important final states in

this category are the 2p−2(1D)3p (spectator) and 2p−2(1D)4p (shake-up) states of Ne+ [31].

They give rise to distinct peaks in the resonant Auger electron spectrum. Because of the

relatively large Auger decay width, the 2P , 2D, and 2F terms associated with 2p−2(1D)3p

can only be partially resolved; they are unresolved for 2p−2(1D)4p [31].

III. THEORETICAL MODEL

Even without employing a monochromator, the spectral bandwidth of LCLS near the

1s → 3p absorption resonance is expected to be only a few hundred meV [29]. By choosing

the carrier frequency ωx of LCLS to coincide with the resonance frequency, it will be possible

to selectively excite the transition from the Ne ground state to the 1s−13p state. We therefore

adopt an effective two-level model, including a description of the resonant Auger decay

process, to investigate the impact of high-intensity x-ray interaction. State |1〉 in this model

is the Ne ground state. State |2〉 is the closed-channel component of the 1s−13p resonance

wave function. By diagonalizing the exact many-electron Hamiltonian in a suitably selected
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subset of the electronic configuration space, the Coulomb-interaction-mediated coupling to

the open Auger decay channels |i, εi〉 can be eliminated. Here, |i, εi〉 stands for the ith

eigenstate of Ne+ plus a resonant Auger electron of energy εi. Employing Wigner-Weisskopf

theory [38, 39], the partial decay width Γi associated with the irreversible transition from

|2〉 to |i, εi〉 is obtained as

Γi = 2π
∣

∣

∣
〈i, εi|V̂C|2〉

∣

∣

∣

2

, (1)

where V̂C symbolizes the Coulomb two-body operator, and |i, εi〉 is assumed to be energy-

normalized. Thus, the Coulomb coupling matrix element between |2〉 and |i, εi〉 is determined

by Γi up to a phase ϕi:

〈i, εi|V̂C|2〉 =

√

Γi

2π
eiϕi . (2)

We assume that the x-ray field is linearly polarized along the z axis with field strength

E(t) = Ec(t) cos (ωxt) + Es(t) sin (ωxt), (3)

where Ec(t) and Es(t) are slowly varying on the time scale of 2π/ωx. Thus, the cycle-averaged

intensity is

I(t) =
1

8πα
{E2

c (t) + E2
s (t)}. (4)

In this expression, α is the fine-structure constant, and the intensity is measured in units

of I0 = Eh/(t0a
2
0) = 6.43641 × 1015 W/cm2 (Eh is the Hartree energy, t0 the atomic unit of

time, and a0 the Bohr radius).

In the calculations presented in Sec. IV, we consider two scenarios for E(t). In the first

scenario, in order to simulate the statistical nature of SASE free-electron laser pulses (see

Sec. I), we adopt an approach developed in Ref. [40]. Within this model, the Fourier ex-

pansion coefficients of the electric field in ω space are each Gaussian random variables with

zero mean and a variance equal to the power spectrum at the corresponding frequency. We

choose a Gaussian power spectrum centered at the frequency ωx with a variance correspond-

ing to the relative LCLS gain bandwidth of 4.4 × 10−4 [41]. For each simulated pulse, the

Fourier expansion coefficients of the electric field in ω space are selected according to their

respective probability distribution. The fields Ec(t) and Es(t) are then determined by ap-

plying the fast Fourier transform algorithm to the representation of the electric field in ω

space. We employ a masking function in the time domain to smoothly turn the pulses on

and off. The ensemble average is a square pulse with rise and fall times equal to 1% of the
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total pulse duration T . The sampling width in ω space is 2π/T . The number of independent

modes determines the temporal resolution. We choose T = 230 fs [29] and include 12288

independent modes. In the second scenario, we simulate nonfluctuating, coherent pulses by

employing for Ec(t) a simple Gaussian temporal envelope with root-mean-square width σ.

In this case, we set Es(t) = 0.

Let Ĥ0 denote the field-free atomic Hamiltonian, and let ẑ stand for the z component of

the electric dipole operator. Then the Hamiltonian in the presence of the x-ray field is given

by

Ĥ(t) = Ĥ0 + ẑE(t). (5)

Because of the compactness of the 1s orbital in Ne in comparison to the 1s → 3p reso-

nance wavelength, nondipole effects are of minor importance and may be neglected. Using

the electronic model space specified above, the state vector satisfying the time-dependent

Schrödinger equation

i
∂

∂t
|Ψ, t〉 = Ĥ(t)|Ψ, t〉 (6)

may be written as

|Ψ, t〉 = c̃1(t)|1〉 + c̃2(t)|2〉 +
∑

i

∫

dεig̃i(εi, t)|i, εi〉. (7)

For the expansion coefficients appearing in Eq. (7) we make the ansatz

c̃1(t) = c1(t)e
−i(E1+δ/2)t, (8)

c̃2(t) = c2(t)e
−i(E2−δ/2)t, (9)

and

g̃i(εi, t) = gi(εi, t)e
−i(E2−δ/2)teiϕi . (10)

Here, E1 is the Ne ground-state energy, E2 is the energy position of the resonance state

(including any shifts due to Coulomb coupling between |2〉 and the |i, εi〉), and δ = E2 −
E1 − ωx is the x-ray detuning with respect to the resonance transition energy.

We assume that the x-ray field couples only |1〉 and |2〉. Describing |1〉 in terms of a

closed-shell Slater determinant and |2〉 in terms of a linear combination of two particle-

hole Slater determinants forming a spin-singlet state, the transition dipole matrix element

between |1〉 and |2〉 is given by [42]

〈2|ẑ|1〉 =
√

2〈3pz|ẑ|1s〉 ≈ 0.0096, (11)
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where the 1s and 3pz orbitals of Ne were calculated using the Hartree-Fock-Slater mean-field

model [43]. (This strategy gives accurate absolute x-ray absorption cross sections near the

Ne K edge [37].) The direct x-ray-induced transition from |1〉 to any of the |i, εi〉 is neglected.

Since |2〉 and |i, εi〉 have the same parity, 〈2|ẑ|i, εi〉 = 0.

In order to obtain equations of motion for c1(t), c2(t), and gi(εi, t), Eqs. (7), (8), (9), and

(10) may be inserted into Eq. (6). Upon making the rotating wave approximation [44] and

introducing the complex Rabi frequency

R(t) = 〈2|ẑ|1〉{Ec(t) + iEs(t)}, (12)

it follows that the equation of motion for the ground-state amplitude reads

iċ1(t) = −δ

2
c1(t) +

R∗(t)

2
c2(t). (13)

Treating the decay of |2〉 into the manifold of the |i, εi〉 in the standard way [44], the equation

of motion for the resonance-state amplitude is

iċ2(t) = −i
Γ1s−1

2
c2(t) +

δ

2
c2(t) +

R(t)

2
c1(t), (14)

with the total decay width

Γ1s−1 =
∑

i

Γi. (15)

Finally, we use Eq. (2) to express the equation of motion for the amplitude for the decay

channel |i, εi〉 in terms of the partial decay width Γi:

iġi(εi, t) =

[

E
(+)
i + εi − E2 +

δ

2

]

gi(εi, t) +

√

Γi

2π
c2(t). (16)

We have introduced E
(+)
i to denote the channel threshold of the ith channel (i.e., the energy

of the ith energetically accessible state of Ne+). As mentioned in Sec. II, we consider only

electronically stable states of Ne+ and therefore do not assign a decay width to them.

From Eq. (16) we may conclude that the resonant Auger electron line profile associated

with the ith channel is given by

Pi(εi) = lim
t→∞

|gi(εi, t)|2 (17)

=
Γi

2π
lim
t→∞

∣

∣

∣

∣

∫ t

−∞

dt′c2(t
′)ei[E

(+)
i

+εi−E2+δ/2]t′
∣

∣

∣

∣

2

.
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Note that while the area under the resonant Auger electron line profile is proportional to

the partial width Γi, the shape of the resonant Auger electron line profile does not depend

on Γi, but is dependent on the details of the time evolution of the amplitude of state |2〉
[cf. Eq. (14)]. Since for resonant Auger decay E2 � E

(+)
i in comparison to the decay width,

the resonant Auger electron line shape is also independent of the channel threshold E
(+)
i .

Therefore, within this model, the line profiles calculated in Sec. IV have the same shape for

each of the resonant Auger channels discussed in Sec. II.

Throughout the rest of this paper we assume that ωx equals the energy separation between

the atomic ground state and the resonance state, i.e., we set δ = 0. The equations of motion

(13), (14), and (16) are solved utilizing a fourth-order Runge-Kutta integrator. Before the

interaction with an x-ray pulse, the atom is assumed to be in its neutral ground state. Our

numerical calculations are based on a transverse spatial pulse profile that is circular with a

uniform intensity distribution inside the circle. Spatial averaging, which would be necessary

for non-uniform intensity distributions, is not performed.

IV. NUMERICAL RESULTS

At low x-ray intensity, the probability of depopulating the Ne ground state is small, and

the transition from level |1〉 to level |2〉 may be treated perturbatively. Even as the intensity

is increased, x-ray-induced emission from |2〉 back to |1〉 remains irrelevant as long as the

resonant Auger decay of |2〉 is faster than the induced emission process. In order to induce

Rabi oscillations [44] between levels |1〉 and |2〉 on a time scale that is comparable to the

resonant Auger lifetime of level |2〉, the x-ray intensity required is

Imin =
1

8πα

(

2πΓ1s−1

〈2|ẑ|1〉

)2

≈ 1.5 × 1018 W

cm2
. (18)

This approximate minimum intensity needed for Rabi oscillations is so unusually high be-

cause Auger decay is ultrafast, taking place on a time scale of femtoseconds, and because

transition dipole matrix elements involving an inner-shell electron are relatively small.

Assuming LCLS pulse parameters, it is possible to reach and even exceed Imin. In Fig. 1a,

we plot the time evolution of the Ne ground-state population during a typical chaotic x-

ray pulse [first scenario described in the paragraph following Eq. (4)]. The ground-state

population drops rapidly during the first few radiation spikes, as a consequence of the x-ray-
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FIG. 1: (Color online) Time evolution of the x-ray intensity (red dashed line) and of the neon

ground-state population (solid black line) for a single shot (a) and for the averaged ensemble (b).

Parameters characterizing the x-ray pulse ensemble: pulse length 230 fs (FWHM); 1013 photons

per pulse; focal diameter 1 µm.

induced excitation from the ground state to level |2〉 followed by the resonant Auger decay

of level |2〉. Superimposed on the irreversible depletion of the ground-state population are

Rabi oscillations with a period of the order of one femtosecond. Because of x-ray phase

fluctuations, the chaotic x-ray pulse is not exactly in resonance with the 1s → 3p transition.

This is the reason why generally there is no complete population transfer from level |1〉 to

level |2〉 during the Rabi oscillations.

In order to detect the x-ray-induced Rabi oscillations in Ne as suggested by Fig. 1a, one

would have to measure—for an individual SASE free-electron laser pulse—the time evolution

of the ground-state population (or, alternatively, of the resonant Auger electron yield) with
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sub-femtosecond time resolution. As shown in Fig. 1b, after averaging over an ensemble of

10000 chaotic x-ray pulses, the oscillatory behavior of the Ne ground-state population disap-

pears. A time-domain measurement of the x-ray-induced population dynamics is therefore

quite challenging.
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FIG. 2: (Color online) Total resonant Auger electron yield after exposure to a Gaussian-shaped

pulse of duration σ = 0.5 fs (green dotted line), σ = 2 fs (red solid line), and σ = 10 fs (blue

dashed line) as a function of the x-ray peak intensity.

If the x-ray pulses are coherent and sufficiently short, a time-resolved measurement is,

in fact, not necessary. This is illustrated in Fig. 2, where the total resonant Auger electron

yield after exposure to a coherent x-ray pulse [second scenario described in the paragraph

following Eq. (4)] is plotted as a function of the x-ray peak intensity. The idea here is that

for fixed pulse duration, the state |Ψ, t〉 reached at the end of the x-ray pulse will depend on

the x-ray peak intensity. If the x-ray pulse is long in comparison with the resonant Auger
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lifetime (σ = 10 fs in Fig. 2), then even if Rabi oscillations take place during the x-ray pulse,

by the time the pulse is over, the atom is ionized with a probability of one (cf. Fig. 1).

However, when the pulses are sufficiently short (σ = 0.5 fs and σ = 2 fs in Fig. 2), then,

after the laser pulse is over, the atom has a finite probability of being in its ground state

after having undergone one or more Rabi oscillations. As the intensity is increased, the first

minimum in the resonant Auger electron yield appears when the atom manages to complete

one Rabi cycle during the x-ray pulse (2π pulse); the second minimum appears when the

atom manages to complete two Rabi cycles during the x-ray pulse (4π pulse), and so forth.

As shown in Fig. 3 for σ = 2 fs, Rabi flopping induced by a coherent x-ray pulse also leads

to a marked modification of the resonant Auger electron line profile associated with a given

resonant Auger channel. At an x-ray peak intensity of 8.6 × 1016 W/cm2, corresponding

to a π pulse, the resonant Auger electron line profile consists of a single peak (Fig. 3a).

A fit reveals that this peak is more similar to a Gaussian than to a Lorentzian. Even

when fitted to a Lorentzian, the width (FWHM) obtained is only 0.20 eV, which is smaller

than Γ1s−1 . This is consistent with the fact that for the pulse duration chosen here, the

spectral bandwidth of the coherent x-ray pulse is smaller than the Auger width; for a π

pulse, the width of the resonant Auger electron line profile is largely determined by the

x-ray bandwidth. However, if nπ pulses with n > 1 are chosen, the resonant Auger electron

line profile does not resemble either a Gaussian or a Lorentzian and is substantially broader

than either the x-ray bandwidth or the Auger width. This is illustrated in Fig. 3a for

3π (4.9 × 1017 W/cm2) and 5π (1.3 × 1018 W/cm2) pulses, and in Fig. 3b for 2π (2.4 ×
1017 W/cm2), 4π (8.3×1017 W/cm2), and 6π (1.7×1018 W/cm2) pulses. For both (2n+1)π

[n = 0, 1, . . .] and 2nπ [n = 1, 2, . . .] pulses, the resonant Auger electron line profile displays

n + 1 local maxima. Such a multipeak electron spectrum for a short, intense laser pulse

was predicted more than 20 years ago [46]. An analogous multipeak effect should exist in

resonance fluorescence [47] and has been interpreted as a temporal diffraction phenomenon

[48].

We would like to point out that the width (FWHM) of the multipeak line profiles plotted

in Fig. 3 approximately tracks the peak Rabi frequency during the respective x-ray pulse and

thus is a measure of the x-ray peak electric field amplitude. For instance, at a peak intensity

of 4.9 × 1017 W/cm2, the peak Rabi frequency is 1.0 eV, which agrees approximately with

the width of the corresponding line profile shown in Fig. 3a. The peak Rabi frequency at a
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FIG. 3: (Color online) Resonant Auger electron line profile for a Gaussian-shaped pulse of duration

σ = 2 fs for different peak intensities. The peak intensities chosen correspond, respectively, to the

first three maxima (a) and the first three minima (b) of the total resonant Auger electron yield

depicted in Fig. 2.

peak intensity of 1.7 × 1018 W/cm2 is 1.8 eV, in approximate agreement with Fig. 3b.

The multipeak structure in resonant electron or fluorescence spectra has apparently not

yet been experimentally observed [49]. Part of the problem may be that precise control of

the pulse area is required [49]. (Another practical difficulty is volume averaging over the

spatially non-uniform intensity profile of the laser beam.) Using a SASE free-electron laser

such as LCLS, control of the pulse area will not be available. We therefore compare in Fig. 4

resonant Auger electron line profiles obtained for a single chaotic x-ray pulse (Fig. 4a) and

11



0.2

0.4

0.6

0.8
A

ug
er

-e
le

ct
ro

n 
sp

ec
tru

m

8.5×1017 W/cm2

2.0×1015 W/cm2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
energy [eV]

0

0.1

0.2

a)

b)

FIG. 4: (Color online) Resonant Auger electron line profiles for a single shot (a) and after aver-

aging over an ensemble of 10000 shots (b). The red dashed lines are results for an average peak

intensity of 8.5 × 1017 W/cm2 (focal diameter of 1 µm with temporal intensity distribution for

single shot corresponding to Fig. 1). Solid black lines correspond to an average peak intensity of

2.0×1015 W/cm2 (focal diameter of 21 µm). A pulse duration of 230 fs and 1013 photons per pulse

are assumed.

for an ensemble of 10000 chaotic x-ray pulses (Fig. 4b). The single-shot electron line profile

at low intensity (2.0× 1015 W/cm2 in Fig. 4) is extremely spiky and reflects the multimode

nature of a chaotic radiation pulse. When averaged over many shots, the resonant Auger

electron line profile can be approximated by a Lorentzian with a width (FWHM) of 0.24 eV,

which is ∼ 10% less than Γ1s−1 . However, if the x-ray intensity is high enough to induce
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Rabi oscillations within a resonant Auger lifetime (8.5 × 1017 W/cm2 in Fig. 4), both the

single-shot electron line profile and the ensemble average are substantially broader than

Γ1s−1 . Thus, even without control over the pulse area, the measurement of resonant Auger

electron line profiles could be used to indirectly detect the presence of x-ray-driven Rabi

oscillations. It would be particularly interesting if single-shot measurements of resonant

Auger electron line profiles were feasible. As can be seen in Fig. 4a, at high x-ray intensity

the single-shot electron line profile is much smoother than at low intensity, and a nodal

structure reminiscent of the multipeak structures in Fig. 3 is discernible.

V. CONCLUSION

In this paper, we have employed an effective two-level model to investigate the impact

of resonant high-intensity x-ray radiation on the resonant Auger effect of atomic neon at

the 1s → 3p transition. This model assumes, for instance, that x-ray absorption by valence

electrons may be neglected in comparison to the strong coupling between levels |1〉 and |2〉.
We have also neglected AC Stark shifts due to electronic states outside the model space.

Estimates indicate that these effects are relatively small and should not affect the general

conclusions of this paper. A comprehensive analysis of these effects will be a subject of

future investigations.

As shown in the previous section, detecting x-ray-induced Rabi oscillations using a SASE

free-electron laser by measuring the time evolution of the Ne ground-state population (or

of the resonant Auger electron yield) is challenging. Besides requiring single-shot measure-

ments, this would necessitate sub-femtosecond temporal resolution. In principle, it is possible

to measure the peak-intensity dependence of the resonant Auger electron yield. However,

the resonant Auger electron yield as a function of the peak intensity will display oscillations

associated with Rabi flopping in the time domain only if the x-ray pulses are ultrashort

(shorter than the Auger lifetime) and fully longitudinally coherent. As an alternative, we

recommend to perform spectroscopy of the resonant Auger electron line profile. For ultra-

short, coherent x-ray pulses, one would expect to see interesting multipeak effects as soon

as the x-ray intensity is high enough to induce Rabi oscillations. Hints of such multipeak

effects are still visible for individual chaotic pulses. After averaging over many chaotic x-ray

pulses, the resonant Auger electron line profile at high x-ray intensity is structureless, but is
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substantially broadened relative to the resonant Auger electron line profile obtained at low

x-ray intensity. The width of the resonant Auger electron line profile allows one to estimate

the peak electric field amplitude, and thus the peak intensity, for x rays of sufficiently high

intensity. It may therefore be possible to exploit the resonant Auger effect as an effective

diagnostic tool for x-ray free-electron lasers.
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J. Electron Spectrosc. Relat. Phenom. 114-116, 49 (2001).

[32] Y. Shimizu, H. Yoshida, K. Okada, Y. Muramatsu, N. Saito, H. Ohashi, Y. Tamenori, S.

Fritzsche, N. M. Kabachnik, H. Tanaka, and K. Ueda, J. Phys. B 33, L685 (2000).

[33] M. Coreno, L. Avaldi, R. Camilloni, K. C. Prince, M. de Simone, J. Karvonen, R. Colle, and

S. Simonucci, Phys. Rev. A 59, 2494 (1999).

[34] T. Hayaishi, E. Murakami, Y. Morioka, E. Shigemasa, A. Yagishita, and F. Koike, J. Phys. B

28, 1411 (1995).
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