brought to you by **CORE**

UCRL-TR-235434

Spoke cavity power coupler conceptual design work for the HEL-JTO beam exp.

B. Rusnak

October 10, 2007

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Spoke cavity power coupler conceptual design work for the HEL-JTO beam exp. done by: Brian Rusnak lab: Lawrence Livermore National Laboratory, MS L-050 phone: 925/422-0435 email: rusnak1@llnl.gov

Objectives:

- Create a low-cost, modest-power RF coupler for a SRF spoke cavity beam test of electrons test to be done at LANL

Deliverables:

- Develop a detailed design concept of a workable coupler for the beam test
- Deliver a technical design report

Work Performed:

- Created a coupler parameter sheet as to what is being designed
- Developed a conceptual design
- Evaluated conceptual design using CST MWS transient analysis
- Improved design over successive runs to establish final design
- Evalauted potential for multipacting behavior in final design
- Generated an estimate of the external Q of the coupler
- Generatde a detailed 3D assembly model highlighting design features
- Created a Technical Design report in the form of an Excel spreadsheet to maximize info transfer while minimizing writing.

Design Highlights and Commentary:

Developing the design for this magnetically-coupled SRF spoke cavity testing coupler was basically straightforward since the cavity coupling port needed to be one of the 1.22" ID ports, and the power level was limited by the available RF to less than 400 W TW power. In addition, the coupler would be immersed in bath cryostat filled with liquid helium, and ultimately used in a pulsed mode to accelerate beam, thereby significantly relaxing the thermal loads on the coupler.

Combining the above considerations with the level of resources available for this task, emphasis was placed on rapidly developing a robust, reliable design that would use commercially-available components as available to save design, engineering, and fabrication costs. Analysis was also kept to a minimum. As such, the design incorporates the following features:

- Use of a commercially-available Type-N ceramic feedthrough. For the power and frequency range of the test, with the feedthrough immersed in LHe, it was felt the Type-N feedthrough would provide a robust, low-cost vacuum window solution.

- The coupler outer conductors would be solid OFE copper that is brazed into two 2.75" CFF, with the cavity-sde flange being rotatable to allow minor Qx adjustments by rotating the coupler. The braze joint shown has the copper brazed into a groove in the SST to ensure maximum strength for successive thermal cyclings. The outer wall of the copper between the two flanges serves as the heat sink for depositing coupler heat to the liquid helium.

- The inner conductor would be solid OFE copper brazed to the outer conductor at the top to ensure maximum thermal conductivity from the outer thermal sink area to the base of the feedthrough. A mass-reducing hole is placed down the center of the inner conductor to decrease thermal mass and weight.

- This assembly would be mated to the Type-N feedthrough by pushing the pin from the feedthrough into a spring-loaded connector on the base of the inner conductor, then bolting the flanges together.

- If the coupling needs to be greatly reduced, an additional 1/2" CFF can be insered between the coupler and cavity flanges. Increasing the coupling can be done with a 3 stub tuner.

Further details are included in the balance of this report.

Baseline final design graphic sectioned to show detail

Baseline final design graphic half section

Overall parameter sheet for coupler design process orig 9/21/2007 vers 10/3/2007

parameter	units	value	comments
cavity type		λ/s 2 gap spoke	
cavity mode		0	cavity "0" mode
operating temp	K	4.0	
frequency (cavity, no coupler)	MHz	454.236	
frequency (cavity, with coupler)	MHz	445	
wavelength	cm	65.999	free space
λ/2	cm	33.000	
λ/4	cm	16.500	
impedance	Ohms	50	match xmission line
window/feedthrough		Type N	Kyocera or Ceram Tec
pulsed or CW		pulsed	assume CW for startup
pulse length	usec	5	1 usec beam length
rep rate	Hz	10	total guess
duty factor	%	0.0050	Ū
coupling		magnetic	Ιοορ
adjustability		limited	manual adi for Qx set
adjustment range	inches	+/- 0.5	manual agror an oor
port flange to c-stat wall	inches	10.66	max length of coupler body
port flange	inches	2 75	Conflat
port length	inches	2.75	corrected by EK 9/25
port diam	inches	1.22	confirmed EK 9/25
outer cond outer diam	inches	1.095	1/16" radial clearance
outer cond outer diam	inches	0.07	1/16" radial wall thickness
inner cond outer diam	inches	0.422	
P operating TW ave	W	200	
P operating SW ave	W	800	
P max TW ave	W	400	600 W amp w/ 1.7 dB loss
P max SW ave	W	1600	
P design TW ave	W	400	assume CW for now
P design SW ave	W	1600	
est. operating pk power on coupler	W	200	assuming VSWR < 1.1
est. operating ave power on coupler	W	1.00	
est. max pk power on coupler	W	400	assuming VSWR < 1.1
est. max ave power on coupler	W	2.00	
Type N coupler max voltage DC	volts	1500	from CeramTec specs
Type N coupler max current DC	amps	3.6	from CeramTec specs
Type N coupler peak power	Ŵ	22.500.0	based on max DC voltage
Type N coupler ave power	W	324.0	based on max DC current
cavity Qo at 4K		4,54E+09	
peak beam power at 4K	W	200	
cavity wall power at 4K	Ŵ	1 25	
cavity beam loaded Q	••	2.84E+07	
baseline design geometry Qx		2.09E+07	needs to be confirmed

Baseline final design graphic half section

Multipacting assessment using scaling orig 9/27/2007

vers

10/3/2007

frequency (MHz)	350	454.26
diameter (mm)	100	30.99
impedance (Ohm)	50	50
MP order	TW (kW)	TW (kW)
7	32	0.837
6	36	0.942
5	60	1.570
4	118	3.088
3	152	3.978
2	300	7.852
1	428	11.201

diameter (mm)	100	100	75	75	50	
impedance (Ohm)	75	50	75	50	50	
MP Order	multipacting power band average power (kW)					
7	48	32	15	10	2	
6	52	36	16	11	2	
5	88	60	29	19	4	
4	176	118	56	37	7	
3	234	152	72	48	10	
2	448	300	146	97	19	
1	640	428	203	136	27	

scaled bands at 350 MHz for travelling-wave power from ADTF spoke cavity coupler report

counter	(GHz)	= 2b (mm)	(Ohm) 7	one-point	g= b-a = d/2(two-point lp(fd)^4*7^2	1-exp(-Z/60))	for Hatch MHz-cm (fg)
CERNIEP	0.352	103	75	18 680	22 997	1314 50	1293 42
CERN LHC	0.4	103	75	19,191	23.509	1697.44	1469.80
KEK TRISTAN	0.508	150	50	21.245	25.157	5806.44	2154.18
KEK B fac	0.508	150	50	21.245	25.157	5806.44	2154.18
HERA	0.5	100	50	19.560	23.472	2500.00	1413.50
APT 4"	0.7	100	50	20.906	24.818	4900.00	1978.91
APT 6.13"	0.7	150	50	22.528	26.440	11025.00	2968.36
LANL spoke coupler des	0.45426	30.99	50	14.490	18.402	198.18	397.97

These values of the fd parameters combined with the low operating power levels indicate 2P MP will not be supported, and the graphical results for 1P MP are inconclusive.

Simplified model for analyzing coupler parameters.

The stopband at ~1300 MHz is due to a quarter-wave resonance that is being set up between the outer electrical conductor and the vacuum wall (highlighted in red below). The distance between the cavity and the base of the outer conductor (blue below) needs to be short for higher (>400 MHz) frequency applications.

Comments on External Q analysis: The analysis was done using the Qx calculation function in MWS, vers 2006B.03. While doing this was straightforward, it was not checked against a proven alternative calculational route like a Balleyguier analysis modified for magnetic coupling loops. While the Qx values produced by MWS appear to be reasonable, and the slope is consistent with the cutoff for a 1.27" diam port, it is recommended that the above plot be confirmed with a measurement on the cavity done at LANL, instead of by doing additional analyses. This is proposed for efficiency purposes, as additional analysis work would easily take 3-4 days, where a measurement in the lab would take ~0.5 days, and would be more rigorous. In addition, the design value needs to be confirmed by LANL for adequacy for beam loading and cavity operation bandwidth.

Magnetic and electric field patterns in the coupling port are analagous to TE11 mode patterns except near loop

