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Abstract 1 

 2 

A simple technique is proposed for calculating global mean climate forcing from 3 

transient integrations of coupled Atmosphere Ocean General Circulation Models 4 

(AOGCMs). This “climate forcing” differs from the conventionally defined radiative 5 

forcing as it includes semi-direct effects that account for certain short timescale 6 

responses in the troposphere. Firstly, we calculate a climate feedback term from 7 

reported values of 2xCO2 radiative forcing and surface temperature time series 8 

from 70-year simulations by twenty AOGCMs.  In these simulations carbon dioxide 9 

is increased by 1%/year. The derived climate feedback agrees well with values that 10 

we diagnose from equilibrium climate change experiments of slab-ocean versions of 11 

the same models. These climate feedback terms are associated with the fast, quasi-12 

linear response of lapse rate, clouds, water vapor and albedo to global surface 13 

temperature changes.  The importance of the feedbacks is gauged by their impact on 14 

the radiative fluxes at the top of the atmosphere. We find partial compensation 15 

between longwave and shortwave feedback terms that lessens the inter-model 16 

differences in the equilibrium climate sensitivity. There is also some indication that 17 

the AOGCMs overestimate the strength of the positive longwave feedback.  18 

 19 

These feedback terms are then used to infer the shortwave and longwave time series 20 

of climate forcing in 20th and 21st Century simulations in the AOGCMs. We validate 21 

the technique using conventionally calculated forcing time series from four 22 

AOGCMs. In these AOGCMs the shortwave and longwave climate forcings we 23 

diagnose agree with the conventional forcing time series within ~10%. The 24 

shortwave forcing time series exhibit order of magnitude variations between the 25 
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AOGCMs, differences likely related to how both natural forcings and/or 1 

anthropogenic aerosol effects are included. There are also factor of two differences 2 

in the longwave climate forcing time series, which may indicate problems with the 3 

modeling of well-mixed-greenhouse-gas changes. The simple diagnoses we present 4 

provide an important and useful first step for understanding differences in AOGCM 5 

integrations, indicating that some of the differences in model projections can be 6 

attributed to different prescribed climate forcing, even for so-called standard 7 

climate change scenarios.  8 
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 1 

1. Introduction 2 

With both the increase in computer power and a more complete representation of the 3 

many interactions in the climate system, climate models have become increasingly 4 

complex. Consequently, understanding their responses can often be just as difficult as 5 

understanding climate change in the real world. Radiative forcing and climate sensitivity 6 

were key concepts developed in the early days of climate modeling to aid understanding 7 

of the global mean temperature response (IPCC, 2001). These concepts remain valuable 8 

today, but forcing and climate sensitivity are more difficult to diagnose in more advanced 9 

models (Gregory et al., 2004). 10 

 11 

In this paper we propose and validate a methodology for calculating both the global mean 12 

climate forcing time series and the climate feedback in coupled Atmosphere Ocean 13 

General Circulation Model (AOGCM) simulations.  We analyze recent simulations 14 

carried out in support of the Intergovernmental Panel of Climate Change (IPCC) Fourth 15 

Assessment Report. Importantly, these global time series can be calculated from routinely 16 

archived model output. To aid the understanding of inter-model differences in both 20th 17 

and 21st Century simulations, we also diagnose forcings and climate feedback terms from 18 

the current AOGCMs and provide a brief discussion of some of the more interesting 19 

findings. At each stage of our analysis, we analyze all available AOGCM output in the 20 

IPCC database.  21 

 22 

2. Approach  23 

The approach relies on a simple globally averaged linear forcing-feedback model. We 24 

adopt the Gregory et al., (2004) terminology, where the net flux imbalance of the climate 25 
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system (N) is related to the radiative forcing (Q), a climate feedback term (Y) and the 1 

globally averaged surface temperature change ( sT∆ ) 2 

sTYQN ∆−= ,   [1] 3 

The climate feedback factor (Y) is the inverse of the climate sensitivity. As interpreted 4 

here, the equation is approximate as it only considers climate feedbacks that turn out to 5 

be proportional to global mean temperature changes (i.e., it considers the part of the 6 

energy budget from clouds, water vapor, surface albedo  and lapse rate change  that are 7 

proportional to global mean temperature change). These temperature changes are largely 8 

governed by the ocean mixed layer relaxation time. Therefore this equation may not 9 

accurately reflect the impact of more slowly responding aspects of climate, such as ice-10 

sheets or the carbon-cycle.  11 

 12 

Estimates of radiative forcing, linear global feedback, and climate sensitivity are 13 

commonly used to summarize the causes of and to quantify the reasons for climate 14 

change, as well as to predict quantitatively future climate change. Several papers, 15 

however, suggest that these simple forcing response relationships are both inaccurate and 16 

unhelpful (e.g. Boer and Yu, 2003; Aires and Rossow, 2003; and especially the critical 17 

review of Stephens, 2005). Nevertheless, we contend that a simple model remains useful, 18 

and furthermore such models provide a useful framework for more regionally-based 19 

feedback analyses, such as the linear global feedback analysis commonly used to examine 20 

and diagnose model feedback differences (e.g. Cess et al., 1996, Colman, 2003, Soden 21 

and Held, 2006, Bony et al.,2006). These papers and others provide many useful insights 22 

into cloud, water vapor and other feedbacks, and the way they are represented within 23 

climate models.  Global mean radiative forcing has also been extensively used to 24 
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compare climate change mechanisms (e.g. IPCC, 2001). Even in today’s sophisticated 1 

GCMs, global mean radiative forcing is a useful predictor of global mean temperature 2 

response, and forcings with very different spatial patterns can have similar patterns of 3 

surface temperature change (e.g. Forster et al, 2000; Joshi et al., 2003, Hansen et al., 4 

2005). Reporting findings from several studies, IPCC (2001) concluded that responses to 5 

individual radiative forcings could be linearly added to gauge the global mean response, 6 

but not necessarily the regional response. Since then, studies based on both equilibrium 7 

and/or transient integrations by several different GCMs have found no evidence of 8 

important non-linearities in the global-scale climate response to changing concentrations 9 

of greenhouse gases and sulfate aerosols (Boer and Yu, 2003; Gillett et al., 2004; 10 

Matthews et al., 2004; Meehl et al., 2004). Two of these studies also examined several 11 

other forcing agents without finding evidence of a non-linear response (Meehl et al., 12 

2004; Matthews et al., 2004). In all four studies, even the regional responses typically 13 

add linearly. However, some studies have found marked non-linearity for large negative 14 

solar radiative forcing (e.g. Hansen et al., 2005). For the radiative forcings analyzed here, 15 

however, which are relatively small and positive, we believe a linear forcing-response 16 

assumption is justified. 17 

 18 

Using Equation 1, Gregory et al. (2004) employed a simple regression technique to 19 

estimate in slab and coupled versions of the Hadley Centre GCM both the global-mean 20 

climate forcing and the climate sensitivity from experiments with constant forcing. 21 

Conceptually the energy balance (N) is perturbed by an initial forcing (Q); this in turn 22 

causes the climate to respond (∆Ts), eventually returning N to zero at a new equilibrium 23 

state.  Gregory et al. (2004) regressed N against ∆Ts to diagnose Q from the intercept and 24 

Y from the slope of the regression line.  They found that the estimate of both climate 25 
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forcing (Q) and climate feedback (Y) agreed with that calculated by other methods. They 1 

also noted, however, that this “climate forcing” could be different from the conventional 2 

radiative forcing as it allowed aspects of short-term climate response in the troposphere 3 

(e.g., a semi-direct aerosol effect). As usually defined, radiative forcing does not allow 4 

the tropospheric climate state to change, but it does allow for the stratosphere to adjust 5 

(IPCC, 2001).  6 

 7 

Forster and Gregory (2006) extended the Gregory et al. (2004) approach to look at 8 

transient observations of the terms in Equation 1. They specified a time series for Q and 9 

then used Equation 1 to diagnose Y from transient observations of N and ∆Ts during 10 

1985-1996, when N was measured by the Earth Radiation Budget Satellite.  This paper 11 

extends the same methodology one stage further. It employs Equation 1 to diagnose both 12 

Y and Q in transient integrations of AOGCMs. Firstly, Y values are diagnosed from 13 

integrations where CO2 is increased by 1%/year and where the forcing due to a doubling 14 

of CO2 concentration is known. Then these Y values are used to diagnose the climate 15 

forcing time series (Q) in both 20th Century integrations and SRESA1B (IPCC, 2000) 16 

future scenario integrations.  In extending the methodology to transient integrations with 17 

changes in multiple radiative forcing agents, we make two assumptions in addition to 18 

those in Gregory et al. (2004): we assume that the climate sensitivity does not vary over 19 

the time-period of the integration and also that the climate sensitivity associated with 20 

multiple forcing agents is similar to that for carbon dioxide alone.  21 

 22 

On long time-scales (~500 years), there is evidence from AOGCMs that climate 23 

sensitivity can evolve with time.  To monitor the changes, an “effective” climate 24 

sensitivity has been used to describe an instantaneous climate sensitivity diagnosed from 25 
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the strengths of climate feedbacks at any point in the integration. Senior and Mitchell 1 

(2000) and Gregory et al. (2004) found in different versions of the Hadley Centre model 2 

that the effective climate sensitivity increased with time and that this was associated with 3 

the deep ocean slowly warming. In the HadCM3 the effective climate sensitivity 4 

increased after ~500 years (Gregory et al. 2004). We assume that for the ~200 year 5 

integrations described here, climate sensitivity is invariant for each AOGCM: tests 6 

described in Section 5 of this paper support this assumption. 7 

 8 

The relative impact of various forcing agents on climate is quantified by their so-called 9 

"efficacy" -- the response of climate to a given forcing agent relative to its response to an 10 

equivalent radiative forcing of carbon dioxide (e.g. Hansen et al., 2005). Slab GCM 11 

integrations have shown that whilst different forcing mechanisms can have different 12 

efficacies (e.g. Joshi et al., 2003; Hansen et al., 2005), realistic 20th Century forcing 13 

mechanisms have efficacies within ~25% of that associated with an equivalent carbon 14 

dioxide change. Further, as the majority of the radiative forcing in the 20th and 21st 15 

Centuries was, and is expected to be, associated with carbon dioxide, the efficacy of the 16 

combined forcings over these integrations would be expected to be close to 1.0. Hansen 17 

et al. (2005) found, for example, an efficacy for combined 20th Century forcings of 18 

between 0.99 and 1.11 (depending on their evaluation methodology). For our purposes, 19 

these findings therefore justify the use of a single value for climate sensitivity. 20 

 21 
In our analysis, the efficacy cannot be determined specifically, but instead it is 22 

incorporated into the forcing estimate (i.e., our estimate of forcing is effectively scaled by 23 

the efficacy).  Likewise, because the semi-direct effect, along with stratospheric 24 

adjustment, involve feedbacks that are generally not proportional to surface temperature 25 
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response, incorporating them into the adjusted forcing, which is inferred by our method, 1 

allows one to use Equation 1 to predict future climate change more accurately.  As 2 

pointed out by Shine et al. (2003) and Hansen et al. (2005), it is the effective climate 3 

forcing, after stratospheric adjustment and after accounting for various semi-direct effects 4 

and different efficacies, which is most accurate in estimating future climate responses. 5 

Imagine, for example, that the atmosphere alone (perhaps through some cloud change 6 

unrelated to any surface temperature response) quickly responds to a large radiative 7 

forcing to restore the flux imbalance at the top of the atmosphere, yielding a small 8 

effective climate forcing. In this case the ocean would never get a chance to respond to 9 

the initial radiative forcing, so the resulting climate response would be small and this 10 

would be consistent with our diagnosed effective climate forcing rather than the 11 

conventional radiative forcing. 12 

 13 

3. Data 14 

This study employs AOGCM model output obtained from the IPCC data archive (see 15 

http://www-pcmdi.llnl.gov/ipcc/about_ipcc.php). Among the variables found in this 16 

archive are monthly mean surface temperature and shortwave and longwave components 17 

of N (measured at the top of the atmosphere). As of March 2006, each model analyzed in 18 

this study had archived a preindustrial control integration, a 1%/year CO2 increase 19 

integration, a 20th Century integration, and a SRESA1B integration. The SRESA1B 20 

integration is forced by one of the standard 21st Century scenarios for increases in 21 

greenhouse gases (IPCC, 2000). A long preindustrial control integration was run for each 22 

model.  At some point part way through the control integration, the 1%/year CO2 increase 23 
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simulation was initiated, as was the 20th Century forcing simulation1. The SRESA1B 1 

simulation then started from the endpoint of the 20th Century simulation. Although results 2 

from multiple simulations were available from some models, only one of the ensemble 3 

members (run 1) from each model is analyzed here2. In order to correct for unforced 4 

model drift, the preindustrial control simulations are run for at least 220 years beyond the 5 

time when the other scenarios began. For each model we diagnose the linear drift in N 6 

and ∆Ts from the corresponding long control simulation and this drift was subsequently 7 

subtracted from the corresponding segments of the forced integration time series. Drifts 8 

were smaller than 10% of the climate change signal in all but five of the models analyzed. 9 

Results reported here are based exclusively on global and annual averages calculated 10 

from gridded monthly mean data. Table 1 lists the models and summarizes the forcing 11 

agents included in each. Further details of the models used and the integrations can be 12 

found at http://www-pcmdi.llnl.gov/ipcc/info_for_analysts.php. 13 

 14 

4. CO2 radiative forcing 15 

Although radiative forcings are not routinely calculated in coupled models, nine of the 16 

twenty models used here have submitted a calculation for the 2xCO2 radiative forcing to 17 

the IPCC model data archive. These radiative forcings are presented in Table 2, along 18 

with the line by line model estimates of Myhre et al. 1998 (used for the IPCC, 2001 19 

standard). Instantaneous and adjusted (i.e., after stratospheric adjustment) radiative 20 

forcings for clear skies and all-skies were calculated by the modeling groups. The 21 

average forcing from the nine models agrees very well with the line-by-line model 22 

estimate. However, there is a ~25% spread in the LW radiative forcing between models, 23 
                                                 
1 In contrast to the other models, CCSM3, PCM, ECHO-G and MRI-CGCM2.3.2 employed a present day 
control integration as the starting point for its 1%/year CO2 increase experiment. 
2 We used PCM1 upwelling tropopause flux data from run 5 for 2001-2100, as these data were not available 
from run 1.  
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and, where included, models have very different SW radiative forcings. Also bear in 1 

mind that the other modeling groups have not recorded radiative forcings, so the twenty 2 

model spread could be larger still. 3 

 4 

IPCC (2001) and Myhre et al. (1998) give a simple, but accurate, formula for the 5 

radiative forcing from CO2 changes of 2 ( ) 5.35.ln( / )CO oQ NET C C= , where Co is the 6 

unperturbed concentration and C the perturbed concentration of CO2. This formula gives 7 

the 2xCO2 radiative forcing value shown in Table 2. We use the SW and LW split of the 8 

2xCO2 NET forcing from Myhre et al. (1998) (Table 2) with this simple formula to 9 

obtain LW and SW time series of radiative forcing for a 1%/year CO2 increase. Thus, the 10 

model radiative forcing timeseries are represented by 11 

2 2( ) . .5.57.ln(1.01);   ( ) . . 0.22.ln(1.01)CO COQ LW f year Q SW f year= = − , 12 

where year is the number of years since the start of the integration (up to 70 years, the 13 

time of CO2 doubling) and f is the ratio of the models’ 2xCO2 radiative forcing estimate 14 

to the IPCC/Myhre et al. (1998) value.  Many models continued their integration for an 15 

additional 150 years, keeping CO2 constant after year 70. For models that did not record 16 

their 2xCO2 radiative forcing, time series were generated assuming f=1. 17 

 18 

5. Climate Sensitivities 19 

Twenty AOGCMs provided flux and temperature data from their 1%/year CO2 increase 20 

integration, allowing us to calculate the feedback strength, as gauged by Y. After the drift 21 

in the control climate integration was subtracted from the 1%/year CO2 integration, the 22 

first 70 years of the N and ∆Ts time series were calculated as the difference from the 23 

beginning of the runs. With Equation 1 applied separately to the shortwave and longwave 24 
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components of radiation, values of Y and their statistical uncertainty are calculated, based 1 

on the Q time series from Section 4, by regressing Q-N against ∆Ts (Figure 1 and Table 2 

3). Ordinary least squares (OLS) regression is used. The autocorrelations in the Q-N time 3 

series were high. Lag 1 correlations were typically 0.9 in the LW and 0.8 in the SW. 4 

These autocorrelations are accounted for when evaluating the statistical uncertainties. 5 

Forster and Gregory (2006) give extensive justification for the use of OLS regression 6 

within this climate modeling framework. Their argument is based on the reasoning that 7 

∆Ts is the likely driver for most of the changes in N. In practice the choice of regression 8 

model made little difference to the overall results, especially in the longwave. 9 

 10 

Figure 1 shows the results for the two models that had the best and the worst fits to Y. All 11 

the models began their 1%/year integration close to equilibrium (the origin on the graph). 12 

The derived Y values and their uncertainties are shown for all models in Table 3.  Most 13 

models had a very good straight-line fit to Y-LW, as illustrated by CGCM3.1(T47) 14 

(Figure 1). Likewise, the Y-NET value had small statistical uncertainties (Figure 1 and 15 

Table 3). Importantly, no model obviously departed from a straight line fit: i.e. Y appears 16 

constant over these 70 years.    17 

 18 

Even when the complete 220 year integration was included in the analysis, most models 19 

still exhibited a constant Y-LW. Exceptions are shown in Figure 2, where three models 20 

clearly exhibit temporal variation in Y-LW. Data after 70 years were not available from 21 

the Hadley Centre, therefore we were unable to test the non-linearities previously found 22 

with its models (see Section 2). The GFDL-CM2.0 model has a response very similar to 23 

GFDL-CM2.1. In the CNRM-CM3 model the slope changes after 70 years, which likely 24 

indicates that the specified forcing could be in error: we found that reducing the LW 25 
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forcing by 10% improved the straight line fit.  Only the GISS-EH model shows a large 1 

departure from a constant value for Y-LW. Interestingly, the GISS-ER model (not 2 

shown) does not exhibit this non-linearity. As there is no noticeable change in gradient 3 

after 70 years and the 2xCO2 forcing is known (see Table 2), errors in forcing are 4 

unlikely to be the cause. The variation in Y could be explained if the model’s ocean did 5 

not start near quasi-equilibrium at the beginning of the integration and was undergoing 6 

significant adjustment over the analysis period (see Senior and Mitchell, 2000). Analysis 7 

of global mean temperature trends in the pre-industrial control integrations supports this 8 

theory. Over a 200 year period the global mean surface temperature in the GISS E-H 9 

model's control integration cools by about 1K, whilst the GISS E-R model's surface 10 

temperature does not have a trend.  11 

 12 

For a further check of our results we compare the diagnosed Y-NET values given in 13 

Table 3 to values computed from actual equilibrium experiments from a slab version of 14 

the corresponding model. The global mean equilibrium surface temperature changes for 15 

11 models were available.  From the time series generated by each of these models, we 16 

selected years following the initial transient warming phase. The time series of annually 17 

and globally averaged surface temperature was plotted and the post “transient warming” 18 

years were identified by visual inspection. Then for those selected equilibrium periods, 19 

we calculated the difference between the multi-year mean for the control and 2xCO2 runs, 20 

yielding the equilibrium temperature change. The NET radiative forcing from Section 4 is 21 

then divided by these temperature changes, to obtain the Y-NET(2xCO2) values that are 22 

shown in Table 3. Within the quoted statistical uncertainty there is an approximate 23 

correspondence between these equilibrium Y-NET(2xCO2)  values and the diagnosed Y-24 

NET values in the table. Agreement would not be expected to be perfect, as the presence 25 
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of an ocean model could readily modify the atmospheric feedbacks (Gregory et al., 1 

2004).  2 

  3 

Figure 3 graphically illustrates the range of derived Y values (from the 70-year 4 

integrations) and their uncertainties. The Figure compares Y values to the uncertain 5 

estimate from Earth Radiation Budget observations made in Forster and Gregory (2006). 6 

In the models, the range of Y-LW and Y-NET values is less than a factor of two. Also, 7 

these values are always smaller than 3.3 Wm-2K-1, the value of Y for a black-body 8 

response (sometimes referred to as the Stefan-Boltzmann radiative damping). This 9 

indicates a positive LW feedback. For some models their large positive longwave 10 

feedback (smaller positive Y-LW) does not appear consistent with the Y-LW found from 11 

the observationally-based estimate (Figure 3). Forster and Gregory (2006) note that the 12 

sign of the observationally-based estimate of longwave cloud feedback is negative, in 13 

disagreement with most models, but the Y values derived from the observations are very 14 

uncertain.  15 

 16 

For all models, shortwave feedback is positive (i.e., Y-SW is negative). These values, 17 

however, are less constrained by the regression than the LW values, and for a few models 18 

the statistical uncertainties are too large to constrain the sign (Figures 1, 2, 3 and Table 19 

3). Forster and Gregory (2006) also noted similar difficulties in constraining Y-SW. 20 

Interestingly, there is some compensation between Y-SW and Y–LW, i.e. those models 21 

with the largest positive shortwave feedback also have the smallest positive longwave 22 

feedback (Figure 3, Table 3). This may be attributable to differing strengths of their cloud 23 

amount feedback. In most models cloud fraction decreases as surface temperatures rise, 24 

this leads to a positive shortwave cloud feedback and negative longwave cloud feedback 25 
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(Cess et al., 1996; Bony et al., 2005). The 2xCO2 equilibrium Y range (Figure 3 and 1 

Table 3) is similar to that from the range of model sensitivities quoted in IPCC (2001). 2 

 3 

The regression technique we use to derive Y values works considerably better here than it 4 

did for the constant forcing experiments in Gregory et al. (2004). In their experiments, N 5 

approached equilibrium so rapidly that only a few data points were available to constrain 6 

the statistics of the regression line.  In the 1%/year CO2 increase transient integrations of 7 

this paper, the Y values are much better constrained. There is also no evidence of a 8 

change in Y values over the 70 year time period of the CO2 increase, and most models 9 

had no evidence of a change in Y over all 200+ years of the integration. These findings 10 

suggest that in most AOGCMs our simple forcing response concepts are still applicable. 11 

However, as long-term data were not available from the Hadley Centre models to 12 

evaluate Y values after 70 years and the GISS E-H model exhibited a significant non-13 

linear response, caution needs to be used when assuming an invariant Y, as we do in 14 

Section 6 of this paper. 15 

 16 

6.  Derived Climate Forcings 17 

In the final part of this paper we combine the N and ∆Ts values from the 20th and 21st 18 

Century integrations (~1880-2100) with the Y values already diagnosed in Section 5 to 19 

find the time series of climate forcings, presented in Figures 4 and 5. The models from 20 

Section 5 contributed flux and temperature data for both a 20th Century integration and an 21 

SRESA1B integration. Using these data, LW and SW components of the climate forcing 22 

(Q) are derived separately from Equation 1. The total SW forcing includes a component 23 

due to any changes in the solar constant. This solar forcing is shown as the blue lines on 24 

the figures, as it can be diagnosed directly from changes in the models’ downward 25 
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shortwave flux at the top of the atmosphere. For comparison, the figure also shows the 1 

radiative forcing time series for the 20th Century from Myhre et al (2001) and for the 21st 2 

Century SRESA1B scenario from IPCC(2001, Appendix 2). A summary of the climate 3 

forcing changes over 50 and 100 year intervals is shown in Figure 6, and Table 3 shows, 4 

relative to the preindustrial control, the total climate forcing and surface temperature 5 

change up to year 2100. 6 

 7 

The climate forcing time series we derive are contaminated by changes in N that are 8 

unrelated to surface temperature change. These fluctuations are largest in the shortwave 9 

and in the models where the same variations in N contributed most to the uncertainty in Y. 10 

Their effect on the forcing time series can clearly be seen in the unsmoothed data 11 

presented in Figure 4. They appear to be of a small enough magnitude and occur over a 12 

sufficiently short timescale not to mask the major features of the time series. The 13 

diagnosed SW and LW climate forcing time series for the 20th Century have been verified 14 

for the two modeling groups (four models) that were able to provide time series of 15 

radiative forcings used in their model simulation; these were produced by off-line 16 

radiative transfer codes and are shown as magenta lines on Figure 4 for the MIROC 17 

models (Toshihiko Takemura, pers. comm.) and the GISS models (James Hansen, pers. 18 

comm.). These radiative forcings were provided as individual time series for each major 19 

forcing agent and these time series were then combined to obtain estimates of total 20 

shortwave and longwave radiative forcings. The reported well mixed greenhouse gas 21 

forcing was assumed to be longwave only and the reported aerosol and solar forcings 22 

were assumed to be  shortwave only; ozone and volcanism were taken to be composed of 23 

shortwave and longwave components which are estimated using the reported net forcing, 24 

partitioned according to IPCC (2001, Chapter 6). Figure 4 shows that the groups’ forcing 25 
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estimates agree very well with that diagnosed using our simple methodology. For the 1 

GISS models there is a small discrepancy (~10%) between our diagnosed forcing 2 

estimate and the radiative forcing provided by the GISS group. Given that Hansen et al. 3 

(2005) found a 20th Century efficacy close to 1.0 with the same model, the difference is 4 

unlikely to be due to an efficacy effect. 5 

 6 

By inspecting the shortwave and solar forcing results for the 20th Century, it is easy to 7 

identify the models that include natural forcings in their integrations (also see Table 1). 8 

Solar forcings are directly diagnosed from the downward solar flux, and the volcanic 9 

forcing manifests itself as a series of negative spikes. The solar and volcanic forcing 10 

signals are similar in size and shape in most models that incorporate them (Figure 4 and 11 

Table 1). However, the volcanic forcing is too small in the MRI-CGCM2.3.2 model, 12 

which incorporates it as a change in the solar constant. Several models have a negative 13 

total shortwave forcing, presumably due to scattering by tropospheric aerosols (see Table 14 

1). The strength of this aerosol effect differs greatly between the models and some, such 15 

as the two GFDL and CCSM3 models, do not appear to have a significant NET 16 

tropospheric SW forcing (Figure 4); this is likely due to a cancellation effect between 17 

scattering sulfate aerosols and absorbing black carbon aerosols, as both types are included 18 

in these models (see Table 1). Overall these differences in included SW forcing agents 19 

described in Table 1 (e.g. aerosols, solar and volcanic effects) lead to a wide range in the 20 

shortwave forcings for the 20th Century (Figure 6). 21 

 22 

Compared to the range of shortwave forcings, the longwave forcings for the 20th Century 23 

are in better agreement with each other and are similar to the estimates of Myhre et al. 24 

(2001). The shapes of the different longwave Q time series are similar (Figure 4), but the 25 
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magnitude of the estimated forcing still differs by a factor of two; compare, for example, 1 

the range of LW climate forcings shown in the top three panels of Figure 6.  2 

 3 

For the 21st Century (Figure 5) there is a much wider spread in the range of climate 4 

forcing estimates. Most models have an increasing SW climate forcing, presumably due 5 

to tropospheric aerosol reductions. The GISS models, however, have clear negative 6 

forcing trends which would partly offset the effect of their larger-than-average LW 7 

forcing. In the LW, the spread of the 2000-2100 climate forcing estimate is a factor of 8 

two. There is also some inconsistency in the time-evolution of 21st Century longwave 9 

forcing changes (Figure 5)). Particularly apparent is the relatively small increase in LW 10 

forcing in the latter part of the 21st Century for the GFDL-CM2.1, IPSL-CM4, NCAR-11 

PCM1 and MRI-CGCM2.3.2 models; reasons for this remain undiscovered.  12 

 13 
The range of model forcing estimates illustrated in Figures 4, 5, and 6 is perhaps 14 

surprising given that most of the LW forcing would be expected to be due to carbon 15 

dioxide, and the LW carbon dioxide forcings agreed to within 25% for the models 16 

evaluated (Table 2 and Section 4). Forcings from other well-mixed greenhouse gases and 17 

ozone would, however, also affect these time series. Further, several models that did not 18 

evaluate their CO2 forcing are outliers on Figure 6, thus the actual spread in model CO2 19 

forcing could be greater than indicated by Table 1. Among 16 GCM radiation codes 20 

employing identically prescribed clear-sky  vertical atmospheric profiles of temperature 21 

and water vapor, Collins et al. (2006) find spreads of up to 40% in their carbon dioxide 22 

forcing and 60% in their  well-mixed-greenhouse gas forcing. 23 

 24 

7. Conclusions 25 
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This paper has introduced a simple way of retrieving global mean climate forcing from 1 

energy balance and surface temperature diagnostics in coupled climate models. This is 2 

done by firstly estimating a global climate feedback term from integrations where CO2 is 3 

increased by 1%/year. Then the climate feedback term is used to diagnose climate forcing 4 

time series in transient climate change experiments with unknown radiative forcings.  5 

 6 

This methodology can be applied as a useful first step to aid understanding of AOGCM 7 

differences. Forcings are not routinely calculated by models, but without knowing them 8 

differences in model response are hard to interpret. Our results provide several useful 9 

illustrations of this. Three examples are discussed below. 10 

 11 

Firstly, one might assume that, as all models followed the SRESA1B scenario, 12 

differences in model response would be more likely due to climate response, rather than 13 

forcing. Our results in Table 3 suggest, however, that forcing scenarios also account for a 14 

significant fraction of the differences in temperature change found at year 2100: the 15 

models with the smallest NET forcing in 2100 also tend to be the ones with the smallest 16 

surface temperature change. Secondly,  comparison of the responses in two versions of 17 

the MIROC model leads to the unexpected result that at the end of the 21st Century, the 18 

larger temperature change found in the ‘hires’ model could be due to a stronger LW 19 

climate forcing, rather than a different climate response. Inspection of the Y-NET and Q-20 

NET values in Table 3 supports this conclusion. Thirdly, the technique also helps 21 

evaluate a single AOGCM's forcing, which, for example, enabled us to determine that the 22 

volcanic forcing in MRI-CGCM2.3.2 is too small compared to previously published 23 

volcanic forcing estimates (see Section 5).  24 

 25 
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Importantly, our paper suggests that several AOGCMs may not correctly model the 1 

forcing from well-mixed-greenhouse-gases. We found, across models, a large range in 2 

LW forcing  and different time-evolution of this forcing, which is surprising given that 3 

greenhouse gas changes should account for most of this forcing and that this forcing 4 

should be essentially the same in every model. These results support the findings of 5 

Collins et al. (2006) and suggest that in AOGCMs the radiative transfer of the well-mixed 6 

greenhouse gases should be examined as a matter of some urgency.  7 

     8 

The diagnosed forcings are not designed to replace conventional radiative forcing 9 

calculations. The diagnosed climate forcings cannot be split into components associated 10 

with different forcing agents (unless multiple integrations with individual forcing agents 11 

are performed), nor can it diagnose spatial patterns of forcings, so our analysis is 12 

somewhat limited if a more detailed understanding of climate forcing and response is 13 

sought. The techniques themselves also employ several assumptions that are not 14 

necessarily always valid. These assumptions (see Sections 5 and 6 for details) would 15 

suggest that the techniques are only likely to work well in ~100 year integrations that are 16 

slowly warming, largely as a response to CO2 increases. Further, although the technique 17 

gives good results in current AOGCMs, the linear forcing response model may not be 18 

valid in future AOGCMs that will likely incorporate additional climate feedbacks, such as 19 

biogeochemical effects.  20 

 21 

Despite these caveats it is hoped that the simple methodology presented in this paper will 22 

be routinely applied to diagnose coupled model integrations. Knowing the global climate 23 

forcing should be a first step in the quest to understand both an individual model’s 24 

response and differences between models. Comparing this climate forcing diagnostic to 25 
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conventionally calculated radiative forcing would also provide a useful estimate of the 1 

semi-direct effect.  2 

 3 
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Figure captions 1 

Figure 1. The OLS regression of Q-N vs. ∆Ts, used to diagnose the Y terms, is shown for 2 

two models, based on the first 70 years of data from their 1%/year CO2 increase 3 

integrations. CGCM3.1(T47) (top) had one of the better constrained Y estimates. In 4 

contrast, the FGOALS-g1.0 model (bottom) had the least constrained estimate. Shown 5 

from left to right are Y-LW, Y-SW and Y-NET regressions.  The titles of each plot show 6 

the derived Y value and its 1σ uncertainty range, as calculated by OLS regression. 7 

 8 

Figure 2. The OLS regression of Q-N vs. ∆Ts, used to diagnose the Y terms, is shown for 9 

four models, based on 220 years of data from their 1%/year CO2 increase integration. In 10 

these simulations CO2 is held constant after year 70 when CO2 concentration reaches 11 

twice its initial value. Shown from left to right are Y-LW, Y-SW and Y-NET regressions. 12 

The titles of each plot show the derived Y value and its 1σ uncertainty range, as 13 

calculated by OLS regression. The first three rows are models that exhibited non-14 

linearities in their derived values. The CCSM3 model shown in the fourth row is 15 

illustrative of the majority of models which did not exhibit marked non-linearities. 16 

 17 

Figure 3: a) Y-LW and Y-SW values and b) Y-LW and Y-NET values derived from the 18 

1%/year CO2 increase model integrations. Shown as horizontal and vertical lines centered 19 

on each model estimate are 1σ uncertainty ranges from OLS regression. Estimates based 20 

on observations are shown in black (from the work of Forster and Gregory, 2006); these 21 

estimates have errors that extend beyond the plot boundaries.    22 

 23 

Figure 4. Black lines show time series from 1850-2000 of diagnosed shortwave and 24 

longwave climate forcing relative to the pre-industrial control simulation.  Results from 25 
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twenty climate models and the Myhre et al. (2001) estimate are shown. Preindustrial 1 

values are ~1850 for most models and 1750 for Myhre et al. (2001). The model name 2 

refers to the time series below it.  Each of the time series begins near the corresponding 3 

zero line, and tick intervals are 1Wm-2. The solar constant component, which is included 4 

in the plotted total shortwave climate forcing, is also shown separately as the blue line on 5 

the left panel. For four models independent estimates of the radiative forcing are shown 6 

as the magenta lines. 7 

 8 

Figure 5. Black lines show time series of diagnosed shortwave and longwave climate 9 

forcing for the 21st Century SRESA1B scenario. Results from twenty climate models and 10 

an IPCC (2001) estimate based on SRESA1B tables are also shown. The model name 11 

refers to the time series below it.  Each of the time series begins near the corresponding 12 

zero line, and tick intervals are 1Wm-2. The solar constant component, which is included 13 

in the plotted shortwave climate forcing, is also shown separately as the blue line on the 14 

left panel. Data in these time series have been smoothed with a 10-year running mean 15 

filter. The magenta lines show the statistical error in the climate forcing diagnostic. These 16 

forcing time series are derived using the 1σ statistical uncertainty values of Y-SW and Y-17 

LW in Equation 1. 18 

 19 

Figure 6. Changes in the longwave and shortwave climate forcing calculated from the 20 

twenty models and from Myhre et al. (2001) or IPCC (2001), indicated by triangles. 21 

These forcing changes over 50 or 100 years are differences between two 9-year averages 22 

centered on the start and end years given in the panel titles.  23 

 24 
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Tables 1 
 2 

Table 1. The models used in this paper and the summary of their included radiative 3 

forcings (indicated by a "Y"), following Santer et al. (2005). Further model details can be 4 

found at http://www-5 

pcmdi.llnl.gov/ipcc/model_documentation/ipcc_model_documentation.php.  6 

 7 
AOGCM G O SD SI BC OC MD SS LU SO VL 
CGCM3.1 (T47 and T63) Y - Y - - - - - - - - 
CNRM-CM3 Y Y Y - Y - - - - - - 
CSIRO-Mk3 Y - Y - ? ? ? ? ? ? - 
GFDL-CM2.0 Y Y Y - Y Y - - Y Y Y 
GFDL-CM2.1 Y Y Y - Y Y - - Y Y Y 
GISS-EH Y Y Y Y Y Y Y Y Y Y Y 
GISS-ER Y Y Y Y Y Y Y Y Y Y Y 
FGOALS-g1.0 Y - Y ? - - - - - - - 
IPSL-CM4 Y - Y Y - - - - - - - 
MIROC3.2(hires) Y Y Y ? Y Y Y Y Y Y Y 
MIROC3.2(medres) Y Y Y ? Y Y Y Y Y Y Y 
ECHO-G Y - Y Y - - - - - Y Y* 
ECHAM5 Y Y Y Y - - - - - - - 
MRI-CGCM2.3.2 Y - Y - - - - - - Y Y* 
CCSM3 Y Y Y - Y Y - - - Y Y 
HadCM3 Y Y Y Y - - - - - - - 
HadGEM1 Y Y Y Y Y Y - - Y Y Y 
INM-CM3.0 Y - Y - - - - - - Y - 
PCM1 Y Y Y - - - - - - Y Y 
 8 
G = Well-mixed greenhouse gases O = Tropospheric and stratospheric ozone 
SD = Sulfate aerosol direct effects SI = Sulfate aerosol indirect effects 
BC = Black carbon OC = Organic carbon 
MD = Mineral dust SS = Sea salt 
LU = Land use change SO = Solar irradiance 
VL = Volcanic aerosols  

Y*: Volcanic aerosols modeled as a solar constant change 
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Table 2. The 2xCO2 radiative forcings computed by the AOGCM groups. Longwave 1 

adjusted all-sky (LW, ADJ) and instantaneous clear sky (LW, CLR-INST) are shown, 2 

where "adjusted" refers to forcing calculated after stratospheric adjustment. The 3 

shortwave instantaneous all-sky forcing (SW, INST) and NET adjusted forcing (NET, 4 

ADJ) are also shown. The Myhre et al. (1998) values are from a reference line-by-line 5 

model. These reference RF values are assumed for AOGCMs which do not diagnose their 6 

own RF values (see text).   7 

AOGCM NET
ADJ CLR-INST INST ADJ

CGCM3.1(T47) 3.39 - - 3.39
GISS-EH 4.21 5.17 -0.15 4.06
IPSL-CM4 3.50 - - 3.50
MIROC3.2(hires) 3.59 4.59 0.00 3.59
MIROC3.2(medres) 3.66 4.56 0.00 3.66
ECHAM5 3.98 4.94 0.03 4.01
CCSM3 4.23 4.89 -0.28 3.95
HadCM3 4.03 5.13 -0.22 3.80
HadGEM1 4.02 5.22 -0.24 3.78
AOGCM Average 3.85 4.93 -0.12 3.75
STD-dev 0.31 0.27 0.13 0.23
Myhre et al. 1998 3.85 4.94 -0.15 3.70

LW SW

(Wm-2)

 8 
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Table 3. In the first block of numbers AOGCM results are given for the diagnosed 1 

climate feedback (Y) terms and the 1 standard deviation uncertainties (see Section 5).  2 

Note that all but the last column of values in this block come from the 1% per year CO2 3 

increase integrations.   The values in the last column of this block come from doubled 4 

CO2 equilibrium experiments performed with atmospheric models coupled to slab-5 

oceans. For these calculations 2xCO2 radiative forcing estimates are taken from Table 2. 6 

The next block contains the diagnosed climate forcing values (Q) for year 2100 relative 7 

to preindustrial times (see Section 6) obtained from the SRESA1b simulations. Values in 8 

the right-most column are the globally averaged surface temperature changes at year 9 

2100 relative to preindustrial times (see Section 7). For comparison the last row in the 10 

table presents forcing values for the SRESA1B scenario presented in IPCC 11 

(2001).12 

AOGCM YLW 1σ YSW 1σ YNET 1σ YNET QLW QSW QNET ∆Ts

2xCO2 2100 2100 2100 2100
(Wm-2) (K)

CGCM3.1(T47) 2.48 0.15 -1.34 0.16 1.14 0.17 1.02 6.30 -0.79 5.51 3.65
CGCM3.1(T63) 2.22 0.11 -1.20 0.11 1.02 0.11 1.09 5.86 -0.36 5.50 4.33
CNRM-CM3 3.14 0.22 -1.63 0.24 1.51 0.26 8.62 -0.85 7.77 4.04
CSIRO-Mk3 2.81 0.26 -1.22 0.12 1.58 0.29 1.23 6.77 -0.69 6.07 2.83
GFDL-CM2.0 2.48 0.22 -0.85 0.15 1.63 0.21 6.73 0.03 6.75 3.30
GFDL-CM2.1 2.22 0.24 -0.46 0.17 1.76 0.24 6.68 0.15 6.83 3.03
GISS-EH 2.32 0.18 -0.67 0.11 1.65 0.18 1.54 7.67 -2.27 5.40 2.54
GISS-ER 2.44 0.16 -0.77 0.10 1.67 0.17 7.67 -1.80 5.87 2.48
FGOALS-g1.0 1.94 0.28 -0.07 0.08 1.87 0.35 7.24 0.67 7.91 3.59
INM-CM3.0 1.78 0.24 -0.20 0.10 1.58 0.28 1.83 5.72 0.16 5.88 3.07
IPSL-CM4 2.67 0.35 -1.75 0.21 0.92 0.17 6.41 -0.56 5.86 3.94
MIROC3.2(hires) 2.53 0.15 -1.63 0.15 0.91 0.14 0.88 7.07 -0.82 6.25 4.88
MIROC3.2(medres) 2.47 0.15 -1.49 0.16 0.98 0.17 0.92 6.45 -0.77 5.69 3.76
ECHO-G 1.65 0.20 -0.18 0.06 1.48 0.19 6.88 -0.93 5.95 3.55
ECHAM5 2.04 0.18 -0.92 0.18 1.12 0.17 1.24 6.64 -1.01 5.64 3.60
MRI-CGCM2.3.2 1.80 0.22 -0.57 0.12 1.23 0.16 4.23 0.40 4.62 2.97
CCSM3 2.51 0.20 -0.65 0.09 1.86 0.27 1.48 7.66 -0.18 7.48 3.22
PCM1 1.91 0.30 -0.10 0.05 1.81 0.28 5.28 0.20 5.48 2.54
HadCM3 2.28 0.19 -1.02 0.17 1.26 0.19 1.07 7.52 -1.46 6.06 3.61
HadGEM1 2.43 0.14 -1.05 0.16 1.38 0.21 0.93 7.48 -0.17 7.31 3.91
AOGCM AVG. 2.31 -0.89 1.42 1.20 6.74 -0.55 6.19 3.44
AOGCM StdDev 0.37 0.53 0.32 0.30 0.98 0.75 0.88 0.63
IPCC SRESA1B 6.75 -0.23 6.52

(Wm-2K-1) 

 13 
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Figures 1 

 2 

 3 
Figure 1. The OLS regression of Q-N vs. ∆Ts, used to diagnose the Y terms, is shown for 4 

two models, based on the first 70 years of data from their 1%/year CO2 increase 5 

integrations. CGCM3.1(T47) (top) had one of the better constrained Y estimates. In 6 

contrast, the FGOALS-g1.0 model (bottom) had the least constrained estimate. Shown 7 

from left to right are Y-LW, Y-SW and Y-NET regressions.  The titles of each plot show 8 

the derived Y value and its 1σ uncertainty range, as calculated by OLS regression. 9 
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 1 
Figure 2. The OLS regression of Q-N vs. ∆Ts, used to diagnose the Y terms, is shown for 2 

four models, based on 220 years of data from their 1%/year CO2 increase integration. In 3 

these simulations CO2 is held constant after year 70 when CO2 concentration reaches 4 

twice its initial value. Shown from left to right are Y-LW, Y-SW and Y-NET regressions. 5 

The titles of each plot show the derived Y value and its 1σ uncertainty range, as 6 
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calculated by OLS regression. The first three rows are models that exhibited non-1 

linearities in their derived values. The CCSM3 model shown in the fourth row is 2 

illustrative of the majority of models which did not exhibit marked non-linearities. 3 
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 1 

Figure 3: a) Y-LW and Y-SW values and b) Y-LW and Y-NET values derived from the 2 

1%/year CO2 increase model integrations. Shown as horizontal and vertical lines centered 3 

on each model estimate are 1σ uncertainty ranges from OLS regression. Estimates based 4 

on observations are shown in black (from the work of Forster and Gregory, 2006); these 5 

estimates have errors that extend beyond the plot boundaries.    6 

 7 
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 1 
Figure 4. Black lines show time series from 1850-2000 of diagnosed shortwave and 2 

longwave climate forcing relative to the pre-industrial control simulation.  Results from 3 

twenty climate models and the Myhre et al. (2001) estimate are shown. Preindustrial 4 

values are ~1850 for most models and 1750 for Myhre et al. (2001). The model name 5 
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refers to the time series below it.  Each of the time series begins near the corresponding 1 

zero line, and tick intervals are 1Wm-2. The solar constant component, which is included 2 

in the plotted total shortwave climate forcing, is also shown separately as the blue line on 3 

the left panel. For four models independent estimates of the radiative forcing are shown 4 

as the magenta lines. 5 



forsterandtaylor_inpress.doc Page 37 5/5/2006 

 1 

Figure 5. Black lines show time series of diagnosed shortwave and longwave climate 2 

forcing for the 21st Century SRESA1B scenario. Results from twenty climate models and 3 

an IPCC (2001) estimate based on SRESA1B tables are also shown. The model name 4 

refers to the time series below it.  Each of the time series begins near the corresponding 5 

zero line, and tick intervals are 1Wm-2. The solar constant component, which is included 6 
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in the plotted shortwave climate forcing, is also shown separately as the blue line on the 1 

left panel. Data in these time series have been smoothed with a 10-year running mean 2 

filter. The magenta lines show the statistical error in the climate forcing diagnostic. These 3 

forcing time series are derived using the 1σ statistical uncertainty values of Y-SW and Y-4 

LW in Equation 1. 5 
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Figure 6. Changes in the longwave and shortwave climate forcing calculated from the 2 

twenty models and from Myhre et al. (2001) or IPCC (2001), indicated by triangles. 3 

These forcing changes over 50 or 100 years are differences between two 9-year averages 4 

centered on the start and end years given in the panel titles.  5 




