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Abstract 

 

A crucial step in human breast cancer progression is the acquisition of invasiveness. There is a distinct 

lack of human cell culture models to study the transition from pre-invasive to invasive phenotype as it 

may occur ‘spontaneously’ in vivo. To delineate molecular alterations important for this transition, we 

isolated human breast epithelial cell lines that showed partial loss of tissue polarity in three-dimensional 

reconstituted-basement membrane cultures. These cells remained non-invasive; however, unlike their 

non-malignant counterparts, they exhibited a high propensity to acquire invasiveness through basement 

membrane in culture. The genomic aberrations and gene expression profiles of the cells in this model 

showed a high degree of similarity to primary breast tumor profiles. The xenograft tumors formed by the 

cell lines in three different microenvironments in nude mice displayed metaplastic phenotypes, including 

squamous and basal characteristics, with invasive cells exhibiting features of higher grade tumors. To find 

functionally significant changes in transition from pre-invasive to invasive phenotype, we performed 

attribute profile clustering analysis on the list of genes differentially expressed between pre-invasive and 

invasive cells. We found integral membrane proteins, transcription factors, kinases, transport molecules, 

and chemokines to be highly represented. In addition, expression of matrix metalloproteinases MMP-9,-

13,-15,-17 was up regulated in the invasive cells. Using siRNA based approaches, we found these MMPs 

to be required for the invasive phenotype. This model provides a new tool for dissection of mechanisms 

by which pre-invasive breast cells could acquire invasiveness in a metaplastic context.



                                                                                                                                             

   

Introduction 

 

Breast carcinomas are phenotypically and behaviorally heterogeneous (1). Subtypes of breast cancer with 

distinct behavioral characteristics have been recognized morphologically as well as by molecular 

analyses. For all breast cancers, conversion to the invasive phenotype is distinct from metastasis but is an 

obligate prerequisite for metastasis thus representing a crucial step in cancer progression. Molecular 

profiling studies have begun to determine markers that are associated with progression in different breast 

cancer subtypes (2-17). Relevant models that recapitulate the morphological and molecular aspects of 

progression within subtypes are needed to determine which of these molecular changes function in 

acquisition of the invasive phenotype.  

 

Culture models of human breast cells could provide such an opportunity if relevance to cancer 

progression in vivo were established. Pathways associated with transition to malignancy have traditionally 

been studied using either transgenic mouse models or primary human cells engineered to express genes 

with oncogenic properties. To deal with the heterogeneity of human breast tumors, cell lines originating 

from a large number of malignant breast carcinomas have been employed (18). It would be useful also to 

have models of ‘spontaneous’ transition to malignancy -as opposed to transgenic- which could include 

intermediate non-invasive and pre-invasive stages of carcinogenesis -as opposed to modeling only the 

invasive carcinoma stage. Such models could facilitate the discovery of steps in progression to the 

invasive phenotype in a context which recapitulates more of the complexity of carcinogenesis. 

 

The HMT-3522 human breast epithelial cell line series (S1, S2, and T4-2) were derived from a reduction 

mammoplasty specimen of a patient with fibrocystic breast disease more than 20 years ago. The epithelial 

component of the tissue was grown in defined medium to give rise to S1 cells that became immortalized 

spontaneously; these cells are EGF-dependent for growth and are non-tumorigenic (19). Continuous 

culturing in the absence of EGF gave rise to a cell population referred to as S2, a cell line that is 

heterogeneous and essentially still non-malignant (20). Frequent inoculation of S2 cells into mice 

eventually produced a rare tumor which was cultured and passaged again through mice (20). The cell line 

derived from this tumor is referred to as T4-2 (20).  Previously, we designed a three dimensional laminin-

rich basement membrane (3DlrBM) assay to model both the normal breast and breast cancers (21) (Figure 

1A). In 3DlrBM, S1 cells produce growth-arrested acini that express differentiation markers mimicking in 

vivo polar patterns of localization of a number of markers (21): S2 colonies are heterogeneous (this 

report), and T4-2 cells form large and disorganized colonies (22). 

 



                                                                                                                                             

   

Here, we isolated three essentially homogeneous cell populations from S2 cells which we refer to as S3-

A, S3-B, and S3-C using colony size in 3DlrBM as a screening tool (Figure 1A). These cells were non-

invasive but had a higher potential for acquiring invasiveness than the parent S2. We found a substantial 

number of similarities between the model of S3 vs. T4-2 and pre-invasive to invasive transition in breast 

carcinogenesis based on progressive loss of tissue polarity, ability to form tumors with squamous and 

basal metaplastic histology, 76% similarity to recurrent CGH abnormalities found in breast tumors, and 

gene expression changes in classes of genes previously identified as being important for malignancy and 

invasion. These observations establish the S3 cell lines as the pre-invasive counterpart of a model of 

breast cancer progression within a metaplastic context. Using matrix metalloproteinases we demonstrate 

the utility of this model in identifying functionally significant changes in transition from the pre-invasive 

to the invasive phenotype in metaplastic breast cancer.  The usefulness of the model is demonstrated 

further in another report (23) which describes the discovery of a novel pathway involved in invasion using 

this progression series. 

 

Materials and Methods 

 

Cell culture. S1 and T4-2 cells were grown in tissue culture monolayers (2D) using Falcon
TM 

tissue 

culture plastic or 3D in lrBM (Matrigel
TM

) in defined medium as described previously(21, 22), S2 and S3 

cells were grown under the same conditions as T4-2. 

 

Indirect immunofluorescence analysis and image acquisition in 3DlrBM. Cells in 3DlrBM were 

embedded in sucrose and frozen on dry ice in Tissue-Tek OCT (Miles Laboratories), sectioned and 

immunostained as described previously (22). 

 

Comparative Genomic Hybridization (CGH). Chromosomal CGH and BAC array CGH were 

performed essentially as described previously (24). Hierarchical clustering analysis was performed with 

GeneSpring software (Silicon Genetics), using standard correlation with a minimum distance metric of 

0.001 to determine relatedness of cell lines. This was done using both the chromosomal and the BAC 

array data, with only significant amplification/deletion data points, as well as with the complete datasets, 

producing comparable results.  

 

Analysis of tumor formation in vivo. We injected the cells into female balb/c athymic nude mice 

(Simonsen laboratories), measured tumors weekly using a calipher, and graphed the tumor frequency and 

volumes of tumors taken out after 9-10 weeks of tumor growth at which time the animals were sacrificed. 



                                                                                                                                             

  

Statistical analysis of the mean tumor volumes was performed by pair-wise comparison using one-tailed 

homoscedastic t-test analysis. We injected 10 million cells subcutaneously into the rear flanks, or 5 

million cells in 50% Matrigel
TM

 subcutaneously into the front flanks, or 2 million cells into the left and 

right fourth inguinal mammary glands. Tumors from all injections and surrounding tissues were fixed in 

4% formaldehyde, paraffin embedded, sectioned into 5µm slices, and stained with Hematoxylin and 

Eosin –H&E (HRL laboratories, Hercules, CA). 350 H&E sections were examined independently by two 

expert breast pathologists (ADB and RAJ). 

 

Global mRNA expression analysis by cDNA microarrays. cDNA microarrays with ~8000 known gene 

spots on poly-L-lysine-coated chips (custom arrayed at  LBNL using Research Genetics 8k human clones) 

were used. mRNA samples were directly compared to each other by co-hybridization to the same slide 

using dendrimer technology to label with red-Cy5 or green-Cy3 (Genisphere). Total RNA (1µg) isolated 

with Qiagen RNEasy reagents was used for each sample hybridized. Cells in 3DlrBM were extracted 

using 5mM EDTA in cold PBS to dissolve the Matrigel™. For each comparison, 3 independent sets of 

cultures were processed, and cells were examined at day 10 of culture. For each comparison, 4 slides were 

hybridized. This corresponded to 3 sets of RNAs from independent cultures plus a dye-swap experiment 

in which the red and green label was switched for the two samples in question. Data were analyzed as 

described in SF 8.   

 

RT-PCR. 1-Quantitative. The RNA prepared for microarrays was used to prepare cDNA after DNAse I 

(Invitrogen) treatment, using Superscript First-Strand Synthesis System for RT-PCR (Invitrogen).  

Quantitative real time PCR was done using Lightcycler (Roche) and FastStart SYBR Green (Roche). 

Primer sequences were as follows (5’ -to- 3’): MMP13 forward aagatgcatccaggggtcct, MMP13 reverse 

gtccaggtttcatcatcatca; GAPDH forward cccctggccaaggtcatccatgac, GAPDH reverse 

cataccaggaaatgagcttgacaaag.  Lightcycler reaction cycles were as recommended by Roche with the 

following modifications: For MMP13, 57
o
C for annealing, 27 seconds of extension, and signal acquisition 

at 84
o
C; for GAPDH, 56

o
C for annealing and 25 seconds for extension. 2-Semi-quantitative RT-PCR for 

MMP9, MMP13, MMP15, and MMP17 was performed using the following primer sets (5’-to-3’): MMP9 

(forward: atgcgtggagagtcgaaatc, reverse: tacacgcgagtgaaggtgag), MMP13 (forward: 

aagatgcatccaggggtcct, reverse: gtccaggtttcatcatcatca), MMP15 (forward: ccatatgtccaccatgcgtt, reverse: 

atgatggcattggggttgct), MMP17 (forward: acgcaagaggagctgtctaag, reverse: acatggcttaacccaatggc), and 

conditions (after having determined linear range): MMP9, MMP15, and MMP17 (96
o
C 3min, 34x[96

o
C 

30sec, 55
o
C 1min, 72

o
C 1min], 72

o
C 5min), MMP13 (96

o
C 3min, 29x[96

o
C 30sec, 55

o
C 30sec, 72

o
C 

1min] 72
o
C 5min). 



                                                                                                                                      

  

 

Expression analysis of cell surface proteins by FACS. Live cells were immunostained in suspension 

prior to fixing with 2% paraformaldehyde.  Primary antibodies were used at 1:10 dilution, and FITC-

conjugated secondary antibodies were used at 1:100 dilution. Primary antibodies were: MMP15, clone 

162-22G5 (Oncogene); MMP17, rabbit polyclonal 475934 (Calbiochem). FACS analysis was performed 

using EPICS XL-MCL data acquisition and display software on XL flow cytometry analyzers (UC 

Berkeley, Flow Cytometry Facility). Gating of FLS (Forward Light Scatter) vs. LS (90 degree scatter) 

allowed us to obtain data relevant to intact cells only, FITC fluorescence peak was evaluated for its 

median value and was corrected using samples that had not been treated with primary antibody.  

 

Gelatin zymography. Conditioned medium (for 48 hrs) from 10 day cultures of S1, S2, S3, and T4-2 

were used. Samples were analyzed by SDS-PAGE zymography (25) to determine the molecular weights 

and the relative abundance of the gelatinases present. 

 

Invasion assay. The ability to invade through lrBM (Matrigel™) was measured in Boyden chamber 

assays, essentially as described (26). The number of invading T4-2 or S3-C cells (out of 1 X 10
5
 seeded) 

was determined after 48 hrs of incubation in either regular growth medium, in medium containing T4-2 

conditioned medium (CM), in medium with DMSO, with different concentrations of the MMP inhibitor, 

GM6001 (AMS Scientific), or its inactive analog (C1004), or with CM that had previously been treated 

with DMSO, GM6001, or C1004. For siRNA treated T4-2 cells, transfection of 30-to-150nM oligo with 

4µl of siPORT NeoFX (Ambion) per ml of media was performed 1 day after plating cells at regular 

density. siRNAs were allowed to down regulate protein levels for 2 days. Cells were then trypsinized and 

1x10
5
 cells were seeded for Boyden chamber assays. siRNAs against MMP9 (oligo 1: Ambion ID143941; 

oligo 2: Ambion ID 113182: oligo 3: Ambion ID 113183), MMP13 (oligo 1: Ambion ID 143556; oligo 2: 

Ambion ID 212725; oligo 3:Ambion ID 112915), MMP15 (oligo 1: Ambion ID 112917; oligo 2: Ambion 

ID 143557; oligo 3: Ambion ID 112916) MMP17 (oligo 1: Ambion ID 105396; oligo 2: Ambion ID 

113514; oligo 3: Ambion ID 24016), or scrambled control siRNA (Ambion, Silencer
TM

-Cy3 labeled) 

were used. 

 

Immunohistochemistry. Ki67. Formalin fixed mouse xenograft tissue was paraffin embedded and 

sectioned into 5 µm thick tissue sections (HRL laboratories, Hercules, CA). The paraffin was removed by 

serial incubation in Xylene, 100% ethanol, 95% ethanol, 70% ethanol, and water. Tissues were blocked in 

3% hydrogen peroxide in PBS for 5 minutes. Antigen retrieval was performed by incubating in 0.01% 

pre-warmed trypsin in PBS for 15min, followed by 10 minutes of microwaving in 10mM sodium citrate 



                                                                                                                                              

   

buffer. Tissues were blocked in 1.5% normal horse serum in PBS for 30 minutes and incubated with 

primary Ki67 antibody which specifically recognizes human but not mouse Ki67 protein (Calbiochem, 

Anti-Ki-67-Human (Mouse), NA59) at 5µg/ml overnight at 4
o
C. Slides were washed with PBS and 

incubated with biotinylated anti-rabbit antibody (1:200 dilution, Vector Laboratories, Biotinylated anti-

mouse IgG / anti-rabbit IgG (H+L), BA-1400) for 30 minutes at room temperature, followed by 

streptavidin-HRP (Vector Laboratories, Vectastain ABC kit, Elite PK-6100) for 30 minutes, and complete 

DAB (3,3’-Diaminobenzidine tetrahydrochloride, SIGMA) medium for 5 minutes. Slides were washed 

and counterstained with hematoxylin, followed by dehydration in 70% ethanol, 95% ethanol, 100% 

ethanol, Xylene, and coverslips mounted using Permount (Fisher Scientific, SP15). Strong nuclear 

staining was scored as positive and %Ki67 positive nuclei were determined for at least three tumor areas 

for each cell type injection, counting a minimum of 100 cells per area. p63. Immunohistochemistry was 

performed essentially as described for Ki67, except for omitting the trypsin step in antigen retrieval and 

increasing hydrogen peroxide blocking to 15 minutes. Primary antibody (Lab Vision, p63 Ab-1 clone 

4A4) was used at 2µg/ml. CK5/6, ER, PR. Immunohistochemistry was performed as described in (27) 

using CK5/6 primary antibodies from Zymed (1:100), ER from DAKO (1:25) and PR from DAKO 

(1:200) and for HER2-neu, the Herceptest kit from DAKO was used. 

 

 

Results 

 

S3 cells display partial loss of tissue polarity in 3DlrBM, and a pre-invasive phenotype  

Using colony size in 3DlrBM as an initial screen, we isolated multiple small, medium, and large sized 

colonies, expanded and propagated these clones for at least six generations, and examined their 

morphology in the 3D assay (Figure 1B). We chose three isolates that essentially bred true for the size of 

colony formed. We refer to these as S3-A, S3-B, and S3-C cell lines where colony size is A<B<C. S3-A 

cultures contain ~10% very large colonies (not shown); otherwise the colony size, especially for S3-C’s, 

is essentially homogeneous. S3 cells displayed intermediate phenotypes compared to S1 and T4-2 

colonies in 3DlrBM, as determined by markers that have been used extensively to describe tissue (acinar) 

polarity (22, 28-31) such as basolateral expression of β catenin, basal  β4 integrin, cortical actin, and Ki67 

labeling (Figure 1C). In Boyden Chamber assays S1, S2, and S3 cell lines did not invade lrBM but T4-2 

cells were invasive (Figure 1D). When conditioned-medium (CM) from T4-2 cells was added to the 

chambers, S1 and S2 cells, they did not invade whereas S3-A, S3-B, and S3-C became invasive with the 

S3-C cells displaying the highest propensity to invade: T4-2>C>B>A. 



                                                                                                                                        

   

 

S3 cells display an intermediate potential to form tumors.  

We determined tumorigenicity of the cells when injected into nude mice under three different 

microenvironments: in the flank with cells alone or cells plus Matrigel, and into mammary fat pads with 

cells alone (Figure 2). In none of the injections did S1 cells or media control produced any measurable 

growth but T4-2 cells formed palpable tumors at high frequency as shown also previously (20, 22, 32, 33) 

(Figure 2A-C, top panel) When injected subcutaneously, S2 cells and the S3-series formed very small 

tumors at low frequencies. Subcutaneous injection in the presence of Matrigel (Figure 2A-C, middle 

panel) resulted in tumor formation in 50% of S2, 75% of S3-A, 73% of S3-B, 56% of S3-C (please see 

the section on tumor histology, below), and 100% of T4-2 cell injection sites. Importantly, mammary fat 

pad injections (Figure 2A-C, bottom panel) resulted in progressively increasing tumor frequency going 

from S2, S3-A, S3-B, S3-C, to T4-2 mirroring the rate of invasion observed in Boyden chambers (Figure 

1D). Comparing the p-values for tumor volume (Figure 2C) showed that the mammary fat pad most 

clearly distinguished the non-tumorigenic S1, pre-invasive S3, and the malignant T4-2. 

 

Tumor histology reveals similarities to cancer progression within a metaplastic context. In 

subcutaneous injections (SF 1B), the T4-2 tumors had viable, dividing cells with squamous metaplastic 

morphology. The S2 and S3 tumors had non-dividing cells suggesting they did not maintain growth, but 

they contained keratin clusters and inflammatory cells which are characteristics of well-differentiated 

squamous carcinomas of the breast. An average increase of 27 fold in tumor volume was observed when 

half the number of cells was injected in the presence of Matrigel (lrBM). In the Matrigel injections 

(Figure 2A-D middle panel, Supplemental File: SF 1A,C), 5/18 of the S1 injection sites showed a 

phenotype similar to low grade adenosquamous carcinomas despite the lack of a palpable tumor at the 

time of sacrifice (Figure 2J). Whereas 100% of the S2 and S3 tumors displayed the more benign mixed 

tumor histology, only 25% of the T4-2 tumors were mixed with the remainder being pure squamous.  In 

addition, T4-2 tumors had features of higher grade squamous carcinoma than did the S2 and S3 tumors: 

83% of the S2 and S3 tumors were well-differentiated compared to only 11% of the T4-2 tumors. Soft 

tissue involvement indicating either invasion or proliferative expansion into neighboring tissues was 

observed only in T4-2 tumors (Figure 2J). Similarly, calcifications which are an indication of necrosis 

usually observed in high grade tumors were found in almost all T4-2 tumors but only in a few of S2 or 

S3s. The fat pad tumor histology also showed similarities to squamous metaplasias of the breast (Figure 

2J, SF 1D) with T4-2 tumors being higher grade in general, based on the degree of differentiation, soft 

tissue involvement, and calcification phenotypes.  

 



                                                                                                                                            

   

S3 cells display genomic aberrations that are distinct from those found in S1 and T4-2, but are 

relevant to some human breast cancers. We determined the genomically amplified or deleted regions 

by comparative genomic hybridization (CGH) (SF 2). The number of aberrations increased progressively 

when S1, S2-S3 and T4-2 cells were compared (Figure 3A-B). Hierarchical clustering analysis (Figure 

3C) showed that the S2-S3 and T4-2 cell lines were more closely related to each other than they were to 

the S1 cells, and that the malignant T4-2 chromosomal aberration profiles were distinct from those of the 

S2-S3 cells. S2, S3, T4-2 cell lines contained 76% (22 of 29) of the chromosomal gains or losses that are 

reported to be commonly found in primary breast tumors (Figure 3D). Of the aberrations recurrently 

found in carcinoma in situ (pre-invasive), 6/10 were present in S3-A, S3-B, and S3-C cells; but all 10 

were found in T4-2. The aberrations that were present in T4-2 but not in S3 were those found in high 

grade in situ or invasive carcinomas. 

 

Transition from S3-C to T4-2 phenotype is associated with altered expression of gene classes 

previously implicated in human breast cancer progression. We determined differences in global gene 

expression between S3-C and T4-2 when cells were grown either in 2D (monolayers) or in 3DlrBM 

cultures (SF 3). To discover groups of genes with shared attributes in an unbiased manner, we analyzed 

these two sets of differentially expressed genes by model-based clustering according to their Gene 

Ontology (GO) terms and other annotations by developing and using a method called Attribute Profile 

Clustering (34) (SF 8). The 141 genes altered between S3-C and T4-2 in 2D were placed into four groups 

summarized as integral membrane proteins, transcription factors, kinases, and transport molecules (SF 4, 

6, 8).  The groups for the 502 genes with different expression between S3-C and T4-2 when grown in 3D 

were integral membrane proteins, transcription factors, kinases, and chemokines (SF 5,7, 8).  The best 

defined group in the comparison of S3-C and T4-2 in 3D, but not 2D, revealed a class with 100% of the 

genes sharing the GO term “Chemokine Activity”. Chemokines have previously been shown to play a 

significant role in metastasis (35) and have been found in association with human breast cancer 

progression in patient tissues (36). 

 

MMP9, 13, 15, and 17 are functionally significant in the acquisition of invasiveness. In addition to 

the genes that were relevant to human breast cancer progression by attribute clustering analysis, the 

microarray data contained another class of genes, the matrix metalloproteinases (MMPs), that 

demonstrated differential expression when S3-C and T4-2 were compared only in 3DlrBM. Microarray 

analysis showed that MMP13 (collagenase-3), MMP15 (MT-2 MMP), and MMP17 (MT-4 MMP) had 

approximately 30% higher expression in T4-2 versus S3-C in 3D cultures (SF 3). For MMP13, we 

confirmed these results using quantitative RT-PCR (Figure 4A) and western blots of CM (not shown). For 



                                                                                                                                            

 

the membrane-bound MMP15 and MMP17, FACS analysis showed that cell surface expression was 

higher in T4-2 than in S3-C cells (Figure 4B-C). MMP15 has been shown to activate proMMP2 by 

cleavage (37). Therefore, we determined overall gelatinolytic activity, including MMP2 and MMP9 

activity, present in S1, S2, S3, and T4-2 cell lines using zymograms. S1 cells expressed proMMP2 but not 

MMP9; S2, S3-A, S3-B had no detectable expression of MMP2 or MMP9; S3-C had a small amount of 

proMMP9 expression and T4-2 showed high levels of proMMP9 but no MMP2 expression (Figure 4D).  

 

In this model, we could directly assess the significance of MMP expression changes for the invasive 

phenotype. A broad-spectrum MMP inhibitor, GM6001 (38), abrogated T4-2 invasiveness whereas 

treatment of cells with C1004 an inactive analog of GM6001, had no detectable effect (Figure 5B). To 

confirm the inhibitor data specifically, we used siRNAs to transiently and individually knock down the 

levels of MMP9, 13, 15, and 17 (Figure 5A) and found that siRNAs which successfully knocked down 

these MMPs decreased the amount of invasiveness of T4-2 cells compared to the scrambled control 

siRNA (Figure 5C).  MMPs were important for acquisition of invasiveness in S3-C cells as well: addition 

of GM6001, and not the control C1004, to either the S3-C or T4-2 media (the CM was taken from the 

latter) inhibited the ability of the T4-2 CM to induce invasiveness in S3-C (Figure 5D). 

 

 

Discussion 

 

Modeling human breast cancer in culture traditionally has relied on carcinoma-derived cell lines or 

addition of potent oncogenic stimuli to non-malignant cells. What we have lacked so far are models with 

which we can recapitulate intermediate stages of cancer progression to simulate the complexity of 

different types of breast cancers (39). Here we describe one such human cell culture model. Neither the 

process of immortalization nor the process of selection of the pre-invasive S3 or malignant T4-2 cells 

entailed introduction of oncogenic transgenes. The model is not biased towards either one or more 

pathways but provides a transgene-free opportunity to study the involvement of different and possibly 

unrelated pathways in malignant transition (Table 1, SF 8). The cell lines produced tumors with various 

metaplastic features, such as rare low grade adenosquamous carcinoma, mixed benign tumors, and 

aggressive squamous metaplasia suggesting progression within a metaplastic context. 

 

Pure squamous carcinomas of the breast are rare, although mixed adenocarcinomas are diagnosed at a 

higher frequency (40). Some studies describe squamous metaplastic breast cancers as being extremely 



                                                                                                                                           

 

aggressive and they have been characterized to be at least as aggressive as grade 3 hormone receptor-

negative adenocarcinomas (40-43). Five year survival for patients with pure squamous carcinomas of the 

breast appears to be only marginally worse than what is reported for all breast cancers, although these 

comparisons suffer from lack of a sufficient number of squamous carcinomas with follow up data (41). 

Squamous metaplasias of the breast share similarities with the aggressive basal-like subtype of 

carcinomas in clinical behavior as well as in the expression of a panel of markers (40, 44). HMT-3522 

cells resemble the basal-like subtype of breast cancers at the molecular level by gene expression profiling 

(45). In addition, the HMT-3522 xenograft tumors are p63 and CK5/6 positive as well as being ER, PR, 

and HER2 negative (SF 1F-G), similar to myoepithelial/basal cells and squamous metaplastic carcinomas 

(46). In addition to the rare pure squamous carcinomas of the breast, 39% of breast cancers in pre-

menopausal African-Americans and the majority of tumors in BRCA1 mutation carriers are ER-PR 

negative, and have basal characteristics (47, 48). Understanding whether such similarities in marker 

expression translate to overlap in the mechanism of transition to invasiveness would require developing 

models that recapitulate these subtypes, as described for at least one subtype developed here.  

 

The HMT-3522 cells display xenograft tumor histology consistent with the breast cancer type represented 

by their molecular makeup. This is a rare situation. Most human breast cancer cell line xenografts display 

an undifferentiated phenotype (observations of ADB). To our knowledge, in addition to the cell line 

model described here, the MCF10A series of Ha-Ras transformed cell lines comprise the only other 

model which recapitulates some of the histological characteristics of human carcinomas (DCIS and IDC) 

as xenograft tumors (49). In order to capture a more complete picture of the malignant progression in 

vivo, more complex microenvironments need to be created in 3D cultures, and a number of laboratories 

including ours are engaged in this endeavor.  

 

Comparison of the phenotypes of S3 cells in culture to their ability to form tumors in three different 

microenvironments in vivo show that these cells are particularly sensitive to their host microenvironment 

producing complex phenotypes in vivo. For example, the S3-A cell line throws off ~10% large colonies in 

the 3DlrBM but these do not invade through lrBM in Boyden chambers possibly because the duration of 

the assay is too short (two days). However, S3-A tumor frequency is higher than the other S3s in the skin 

injections -but interestingly not in the skin+Matrigel or fat pad injections- and the S3-A tumor volumes in 

the skin+Matrigel and fat pad injections are higher than the other S3s (Figure 2). The other S3 cell lines 

also appear to be very sensitive to their particular host microenvironment, resulting in the breakdown of a 

one-to-one correlation between the progressive phenotypes observed in culture for S3-A, S3-B, and S3-C 

and the more complex phenotypes found in the xenografts. It is conceivable that, given the length of the 



                                                                                                                                          

  

9-10 week period of time, the host microenvironment within which the injected cells are in dynamic and 

reciprocal interactions with the stromal and humoral factors could allow for selection of the aggressive 

subpopulations, resulting in gain or loss of necessary functions to become malignant. In addition, results 

confirm that the cells poised to become malignant have not yet inactivated all pathways or gained all the 

new functions needed for a stable malignant phenotype. 

 

What was found to be consistent across all assays performed (invasion, 3D polarity, CGH profile, 

tumorigenicity) is that all of the S3 cells displayed a phenotype distinct from both S1 and T4-2 cells in 

vivo as well as in the 3DlrBM assay. For tumorigenicity, this was supported by statistical analysis of 

tumor volume, as well as by histological analysis showing that S3 tumors manifested more benign 

characteristics than the T4-2 tumors. Also, the S3 cells displayed more homogeneous phenotypes and a 

higher propensity to become invasive than the parent S2 cells when induced with T4-2 conditioned- 

medium. Therefore by these criteria, S3 cells have indeed progressed further than their parent S2 cells 

towards malignancy, and are intermediate between the non-tumorigenic S1 and malignant T4-2s. 

 

Here we have described this model as one of transition from pre-invasive to invasive phenotype, to mimic 

the multi-step carcinogenesis hypothesis of breast cancer (50, 51). However, the emerging cancer stem/ 

progenitor cell hypothesis also needs to be considered. Sontag and Axelrod have proposed four separate 

models to describe how atypical hyperplasia, ductal carcinoma in situ, invasive ductal carcinoma and 

metastasis may relate to each other (1). These are the linear, non-linear, branched, and parallel pathways. 

Unlike the other three hypotheses, the parallel pathway does not assume that in situ carcinoma develops 

into invasive carcinoma, but rather that in situ and invasive carcinomas can arise from the same 

progenitor. In our cell lines, S2 gave rise to both the pre-invasive S3-C and the invasive T4-2 cells via 

different steps of manipulation in culture and in mice, respectively (Figure 1A). Therefore, it is tempting 

to speculate that the model described here could be placed as supporting the parallel progression 

hypothesis. Regardless of which mathematical model we consider, what we have developed are human 

breast epithelial cells with pre-invasive and invasive characteristics which recapitulate some aspects of 

pre-invasive and invasive carcinomas with basal and squamous histologic and molecular phenotypes.  

 

Analysis of this malignant transition in 3D cultures allowed us to identify candidate genes as potential 

therapeutic targets. For example, of the MMPs we identified as having a function in invasion- MMP9, 

MMP13, and recently MMP17 have been shown to be associated with- and increased in- breast cancer 

progression (52-54). Although broad spectrum inhibitors of MMPs have failed in clinical trials, targeting 

specific genes for certain subtypes of cancers may eliminate non-specific effects, thereby producing more 



                                                                                                                                            

   

desirable clinical outcomes (55). In addition to the list of genes differentially expressed between S3-C and 

T4-2 (Table 1, SF 8), this model system is conducive to functional siRNA screens probing either gain of 

invasion function in S3-C or loss of invasion of T4-2 to find new genes involved in invasion. Using the 

same model, we recently discovered a new pathway of invasion regulated by polo-like kinase I (23). In 

general, the results described here provide a proof-of-principle for the development of spontaneous 

transition models for additional subtypes of breast cancers, with potential utility in discovering other 

mechanisms of invasion and other potential targets for therapy 
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Figure Legends 

 

Figure 1. Partial loss of tissue polarity, and pre-invasive phenotypes of S3 cells 

A. Steps involved in the isolation of the HMT-3522 series of cell lines. B. 3DlrBM cultures of HMT-

3522-S2 cells and small (S3-A), medium (S3-B) and large (S3-C) colonies isolated from the parent 

culture of S2, on day 10.  C. Confocal images of immunostained colonies in 3DlrBM, day 10. D. Invasion 

assays: two experiments, triplicate samples. Black bars, untreated cells; gray bars, cells treated with T4-2 

conditioned medium (CM). 

 

Figure 2. S3 cells display low tumorigenicity and squamous metaplastic phenotype in nude mice 



                                                                                                                                 

  

A. % injection sites that produced tumors sustained for the duration of the experiment; top: Subcutaneous 

injections: Three experiments; 14 S1, 22 S2, 20 S3-A, 16 S3-B, 22 S3-C, 30 T4-2, and 3 media controls; 

middle: Subcutaneous + Matrigel injections: Two experiments; 18 S1, 18 S2, 20 S3-A, 22 S3-B, 18 S3-

C, and 18 T4-2 injections. bottom: Mammary fat pad injections: 15 S1, 16 S2, 16 S3-A, 16 S3-B, 15 S3-

C, 24 T4-2, and 4 media controls. B. Mean tumor volume (in mm
3
) excised from sacrificed animals; C. p-

values for the volume comparisons indicated; p<0.05 in bold; top: Subcutaneous injections, middle: 

Subcutaneous + Matrigel injections, bottom: Mammary fat pad injections. D. H&E images of S1, S2, 

S3-B subcutaneous + Matrigel tumors, and S3-A, S3-C, T4-2 fat pad tumors; scale bar 50 µm. S1, low 

grade adenosquamous carcinoma-like phenotype at the injection site; S2, squamous differentiation with 

whorls and bridges, transition from cuboidal cells to larger squamous cells in the center; S3-A, well-

differentiated area with a small cyst, less well differentiated area with calcification; S3-B, cords of cells 

surrounding areas of extracellular matrix showing solid tumor areas with proliferation and squamous 

differentiation and displaying pleomorphic adenoma phenotype, S3-C, squamous differentiation, foamy 

squamous carcinoma cells, abundant stromal reaction; T4-2, squamous carcinoma invading the skeletal 

muscle. 

 

Figure 3. CGH profile of S3 cells compared to other HMT-3522 cells and to primary tumors 

A. Chromosomal amplifications (red) and deletions (green) for each cell type examined at the indicated 

passage number (e.g. S1_27 = S1 cells at passage 27). B. Chromosomal aberrations common to all cell 

lines shown on the left, e.g. “S1” means, common to all S1 lineages shown in part A. C. Hierarchical 

clustering of 119 significantly amplified or deleted regions for the indicated cell lines. D. Chromosomal 

aberrations commonly found in primary tumors, as described in each study cited; shown in bold if shared 

with HMT-3522 cell lines; complete list of aberrations shared between the cell lines and primary tumors 

listed at the bottom (TOTAL).  

 

Figure 4. Candidate MMPs from microarrays are differentially expressed between S3-C and T4-2 

cells 

A. Quantitative RT-PCR for MMP13 normalized to GAPDH internal control, for S3-C and T4-2 in 

3DlrBM; p-value <0.05. B-C. Cell surface expression of MMP15 and MMP17: four independent 

experiments; p-value < 0.05. D. Zymogram detecting gelatinoylitic activity in cell lines, compared to 

APMA (p-Aminophenylmercuric Acetate)-activated recombinant MMP2 control. 

 

Figure 5. Candidate MMPs function in invasion through lrBM 



                                                                                                                             

  

A. RT-PCR for MMP9, 13, 15, and 17 in cells transfected with siRNAs to the respective MMPs or a 

scrambled control (Scr.). B. Invasion assays for T4-2 cells treated with the indicated MMP-inhibitor or 

control: two experiments, duplicate samples. C. Invasion assays for T4-2 cells transfected with MMP9, 

13, 15, or 17 siRNAs vs. Scr.; p-values compared to Scr. D. Invasion assays for S3-C cells, number of 

invading cells normalized to S3-C cells treated with T4-2 CM ; “post-treated”: CM was added to the S3-C 

medium after the indicated MMP-inhibitor or control (40µm), “pre-treated”: CM was pre-treated with the 

MMP-inhibitor or control (40µm) for 48 hrs before being added to the S3-C medium in the invasion 

assays: three experiments. 

 

Table 1. Attribute profile clustering of differentially expressed genes between S3-C and T4-2  

The titles (e.g., Transport, Kinase, etc) describe the most common gene function in each class; the ratio of 

genes in the class that fit this functional definition is shown in parenthesis. For each gene, the row of 

information contains a Genbank number (e.g., NM_005050), a gene name (e.g. ABCD4), the mean value 

of the ratio of T4-2 / S3-C expression over 4-microrarray experiments (e.g. 0.15), and t-test, penalized p-

value, p<0.05 

 

Supplemental Files (SFs) 

SF 1. Xenograft tumors. A. Ki67 staining of tissue sections obtained from tumors formed by injection of 

S3-A, S3-B, S3-C, and T4-2 cells with lrBM. Positive and negative nuclei are shown with arrows. The 

diffuse non-cellular staining in tumors is the injected lrBM. Graph shows % Ki67 staining for S3-A, S3-

B, S3-C, and T4-2 xenograft tumors (with lrBM). At least three tumor areas were counted to determine 

mean and standard error. B. Subcutaneous xenograft morphology. An S3-A tumor area (top panel), 

showing keratin pearls, massive infiltration, and non-dividing squamous epithelial cells; a low and high 

magnification photomicrograph of a T4-2 tumor (middle and bottom panels), showing actively dividing 

squamous breast epithelial cells within the subcutaneous tumor. C. Matrigel-induced pleomorphic 

histology in the subcutaneous tumor. An S3-A tumor (left panel), showing extensive matrix deposition, 

basal epithelial, and squamous epithelial cells; a T4-2 tumor (right panel), containing mostly squamous 

carcinoma cells. D. Fat pad xenograft morphology. A small, well differentiated S3-C tumor with few 

foamy squamous cell carcinoma cells; a T4-2 tumor; local high grade with local inflammation; 

calcifications. E. S3-A tumor containing excessive cystic area. A large cyst encompassing most of the 

volume of an S3-A tumor of cells injected subcutaneously with Matrigel. F. Nuclear p63 

immunohistochemical signal (brown) in a T4-2 tumor grown in the fat pad displaying a diffuse pattern 

characteristic of squamous cell carcinomas. G. ER, PR, HER2, and CK5/6 immnohistochemistry in T4-2 

tumors of cells injected subcutaneously with Matrigel, showing triple receptor negative and CK5/6 



                                                                                                                                            

 

positive phenotype. ER and PR control are receptor-positive IDC, CK5/6 control is tonsil tissue with 

positive histiocytes and negative lymphocytes. 

 

SF 2. CGH data. Chromosomal CGH Results. 1200 data points per chromosome represented as 

normalized log2 values. First raw shows cell type and passage number, first column lists chromosome 

number/name. Chromosomal Summary: List of gains and losses per cell line and passage listed in the first 

column. Chromosomal Cytobands:Estimated cytobands involved in each amplification and deletion 

determined by chromosomal CGH analysis.  BAC Array CGH Results. Spot # column shows unique 

location on the array, Gene/Locus column lists the BAC name which can be found on the 950_BAC 

information worksheet in order to link to the UCSC database and find which genes are on each BAC, Loc. 

column lists the genomic cytoband location, remaining columns list the normalized log2 values for each 

BAC spot, for the indicated cell line and passage. Red indicates significant deletions, green indicates 

significant amplifications. 950_BAC information and Extra BAC Info contain links to the UCSC genome 

browser for determining details about each BAC clone.  

 

SF 3. Global gene expression data. Worksheet titles containing “All genes” show gene expression 

differences between either S1 and T4-2 or S3-C and T4-2 for all ~8000 genes on the arrays. The 

normalized ratios represent T4-2/S3-C or T4-2/S1. Worksheet titles containing “Differential” show gene 

expression differences that have a penalized p-value of 0.05 or lower.  S1-T4 (or S3-T4) CGH-Expression 

lists all BAC clones with potential to produce gene expression differences between the two cell lines 

compared. All genes present on each BAC clone are listed. Of these, the ones present on the cDNA 

expression arrays are in bold. For these genes, expression differences (normalized mean and p-values) 

between the two cell lines (compared in 2D or in 3D) are shown. Gene expression patterns that 

correspond to expected patterns from CGH analysis are in bold. 

 

SF 4. and 5. Attribute clustering results. Gene clusters for the differentially-expressed genes between 

S3-C and T4-2 in 2D (4), and S3-C and T4-2 in 3D (5). 

 

SF 6. and 7. Influential attributes. List of influential attributes for each cluster, as well as the summary, 

for attribute clustering results for differentially expressed genes between S3-C and T4-2 in 2D (6), or in 

3D (7). 

 

SF 8. Experimental procedures supplement. Detailed descriptions of how the gene expression data was 

analyzed and how attribute profile clustering was performed. 
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D
Study Reference Primary Tumor Type Commonly Found Chromosomal Gains and Losses 

Buerger et al, 1999 DCIS gain: 1q, 11q, 17q, loss: 16q

Waldman et al, 2000 DCIS gain: 17q, loss: 8p, 17p

Moore et al, 1999 High grade DCIS gain: 1q, 6p, 11q, 12q, 16p, 20q, loss: 6q, 9p, 13q

Etzell et al, 2001 LCIS gain: 1q, loss: 8p, 12q, 16q, 17p

Gong et al, 2001 ADH, UDH loss: 16q, 17p

Tirkkonen et al, 1998 Carcinoma gain: 1q, 5p, 8q, 11q, 16p, 17q, 19p, 19q, 20q, loss: 6q, 8p, 9p, 11q, 13q, 16q, 17p, 18q, Xq

Loveday et al, 2000 Carcinoma gain: 1p, 4q, 5q, 6q, 13q, 5p, loss: 16q

Isola et al, 1995 Node negative carcinoma (recurrence) gain: 8q, 20q

Isola et al, 1999 ErbB2 amplif ied carcinoma gain: 1q, 8q, 20q, loss: 3p, 13q, 18q

Nishizaki et al, 1997 Lobular carcinoma gain: 1q, 8q, 20q, loss: 16q

Waldman et al, 2001 Tubular carcinoma gain: 1q, 16p, loss: 16q, 8p 

Thor et al, 2002 Invasive micropapillary carcinoma gain: 1q, 8q, 16p, 17q, loss: 8p, 16q, 17p

Nishizaki et al, 1997b Primary and metastatic carcinoma gain: 1q, 8q, 17q, loss: 6q, 9q, 13q, 16q, 17p, Xp

gain: 1q, 1p, 4q, 5p, 5q, 6p, 6q, 8q, 11q, 12q, 13q, 16p, 17q, 19p, 19q, 20q;         loss: 3p, 6q, 8p, 9p, 9q, 11q, 12q, 13q, 16q, 17p, 18q, Xq, XpTOTAL
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