

Holistic Evaluation of Lightweight Operating Systems using the PERCU

Method

William T.C. Kramer1, Yun (Helen) He1, Jonathan Carter1, Joseph Glenski2, Lynn

Rippe1, Nicholas Cardo1

LBNL Technical Report

Abstract: The scale of Leadership Class Systems presents unique challenges to the features and performance of

operating system services. This paper reports results of comprehensive evaluations of two Light Weight

Operating Systems (LWOS), Cray's Catamount Virtual Node (CVN) and Linux Environment (CLE) operating

systems, on the exact same large-scale hardware. The evaluation was carried out over a 5-month period on

NERSC's 19,480 core Cray XT-4, Franklin, using a comprehensive evaluation method that spans Performance,

Effectiveness, Reliability, Consistency and Usability criteria for all major subsystems and features. The paper

presents the results of the comparison between CVN and CLE, evaluates their relative strengths, and reports

observations regarding the world's largest Cray XT-4 as well.

1. Introduction

Seldom is a leadership class system available for extended periods of time to evaluate

significantly different software implementations. This paper reports the results of one of these very

unique opportunities – using the 100 TF (peak) Cray XT-4 dual core system at NERSC running

two completely different Light Weight Operating Systems (LWOS) – Cray‟s implementation of

Sandia National Laboratory‟s Catamount Virtual Node (CVN) and Cray‟s Linux Environment

(CLE). The NERSC XT-4 was the first platform to move fully to CLE and remains the largest

platform running CLE today.

NERSC and Cray staffs were able to evaluate CVN and CLE over an extended time period,

and used a comprehensive evaluation methodology called PERCU to holistically assess Hardware

and Software from the perspective of the large, diverse user community that uses NERSC

resources. PERCU
i
, which stands for Performance, Effectiveness, Reliability, Consistency and

Usability, is an evaluation methodology developed specifically for assessing systems. PERCU

represents the five areas of interest to both the system managers and the user communities that

make use of these systems.

This paper is organized with some introduction to the PERCU method, the Cray XT-4

hardware, and a description of the two operating systems – CVN and CLE. The introduction is

followed by the results of the comparison for CVN and CLE.

1.1 Introduction to PERCU

PERCU stands for the major characteristics a user of HPC systems needs to be productive in

solving science and engineering problems. The working definitions of these five categories that

PERCU assesses are:

 Performance – factors that contribute how fast or how much work can be done on the

system. Factors in this category are performance rates and amounts and/or capacities.

 Effectiveness – factors that relate to managing workflow on the systems so the users of

the system are able to get high performance results.

 Reliability – factors that relate to functions, features or services that make the systems

reliable and serviceable.

1
 The National Energy Research Scientific Computing (NERSC) Facility at Berkeley National Laboratory

2 Cray, Inc.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNT Digital Library

https://core.ac.uk/display/71320981?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 Consistency – factors that relate to providing consistent results, both in terms of

reproducibility of answers and time to do a given amount of work.

 Usability –features that make systems usable to both the end users and system

managers.

These five categories represent more than 84% of evaluation factors across a number of

Requests for Proposals (RFPs) that have been studied, and an even larger percentage of the

technical factors of those RFPs. They also include virtually all the tests – be they benchmarks or

other types of tests that RFPs specify.

1.2 Introduction to the Cray XT-4

The Cray XT-4 used for this evaluation is the largest XT-4. It was acquired by NERSC as the

NERSC-5 system in the first half of 2007 and named Franklin
ii
 after America‟s first

internationally acclaimed scientist. Franklin has 102 XT-4
iii

 cabinets, with each cabinet holding 96

dual core nodes. Each core is a 2.6 GHz AMD 64-bit processor
iv
 running and capable of two

Floating Point Operations per clock. All nodes have 4 GB of dual channel 667 MHz DRAM

running, of which 3.6-3.75 GB is user accessible. Each core has separate 64KB instruction and

data L1 caches (3 cycle latency) and a 1 MB dedicated L2 cache (11 cycle latency).

Nodes are connected in a SeaStar2.2 3-D Torus of dimension 17 x 24 x 24. Each hop has a

peak transport time of 53 nanoseconds. The SeaStar2 chip connects the Hyper Transport(HT) on

each core to the SeaStar2 interconnect network. Each network link is capable of 7.6 GB/s peak bi-

directional bandwidth while the HT is capable of 6.4 GB/s of peak bi-directional bandwidth. The

SeaStar2 network is accessed through the Portals
vvi

 data transport layer.

Franklin has 19,320 computational cores with 16 login nodes, 24 I/O service nodes each with

two 4 Gbps Fibre Channel interfaces, four network gateway nodes each with two 10 Gbps

Ethernet interfaces and 20 spare computational nodes. Approximately 450 TB of usable disk

storage are directly attached to Franklin – using Lustre 1.4.6, with another 170 TB of disk

mounted in a shared configuration as part of the NERSC Global File System.

1.3 Introduction to the Cray Catamount Virtual Node Operating System

On the XT-4, Cray offers two LWOSs – the CVN and the CLE for the compute nodes. CLE

was also commonly known as the Compute Node Linux (CNL),. CVN
vii

 is an extension of the

Catamount kernel developed at Sandia National Laboratory, originally created for the single core

per node Cray XT-3 systems. It uses a master-slave implementation for the dual core XT-4. CVN

provides minimal functionality, being able to load an application into memory and start execution,

and manage communication over the Cray Seastar Interconnect. Among many things, CVN does

not support demand paging or user memory sharing, but does use the memory protection aspects

of virtual memory for security and robustness, the latter to a limited extent. CVN does not support

multiple processes per core, and only has one file system interface.

1.4 Introduction to the Cray Linux Environment Operation System

The CLE
viii

 system, based on SUSE 9.2 during this comparison, separates, as much as

practicable, computation from service. The dominant components of CLE are the compute nodes

that run application processes. Service nodes provide all system services and are scaled to the level

required to support computational activities with I/O or other services. The High Speed Network

(HSN) provides communication for user processes and user related I/O and services.

Each CLE compute node is booted with a version of Linux and a small RAM root file system

that contains the minimum set of commands, libraries and utilities to support the compute node‟s

operating environment. A compute node‟s version of Linux has almost all of the services and

demons found on a standard server disabled in order to reduce the interference with the

application. The actual demons running vary from system to system but include init, file system

client(s), and/or application support servers. CLE had specific goals to control OS jitter while

maintaining application performance. CLE uses a user space implementation of the Portals

interconnect driver that is multithreaded and optimized for Linux memory management. CLE also

addressed I/O reliability and metadata performance.

1.5 Evaluation Method

The evaluation period for CVN and CLE each lasted six to eight weeks between the late

spring and early fall of 2007. During this time, the LWOSs were progressively presented with

more challenging tests and tasks, in all the areas of PERCU. The evaluation period can be

considered evolving through three phases that have different focus – albeit still approaching the

system holistically. The first was a test of all functionality. Did the systems have all the features

that were required and did they produce the expected (correct) results? The second phase was

performance assessment when the systems were tested to determine how fast and how consistently

they processed work. The third phase is an availability and performance assessment of the

system‟s ability to run a progressively more complex workload while at the same time

determining the general ability to meet the on-going system metrics. By the end of the third phase,

a large part of the entire NERSC workload runs on the system, although with some limitations and

a different distribution of jobs than is seen in production.

NERSC uses multiple tests to assess the performance ranging from low-level specialized

subsystem component tests such as streams
ix
 and multipong

x
 to system wide composite tests such

as the Sustained System Performance
xi

 (SSP) and Effective System Performance
xii

 (ESP) tests.

Each test has specific goals and functions, and are selected to support each other to reduce the

overall number and effort of the tests. Benchmarks are approximations of the real work a computer

system can accomplish estimating the potential of the system to solve sets of problems.

Each test is made up of one computer code with one problem data set that may exhibit

different behavior based on the problem being solved and the parameters involved. The tests used

in this evaluation have four purposes, each one distinct. Each purpose influences the selection and

the characteristics of the benchmarks as well. The four purposes of are:

1. Evaluation and/or selection of a system from among its competitors.

2. Validating the selected system actually works the way it is expected.

3. Assuring the system performance and function stays as expected throughout its

lifetime (e.g. after upgrades, changes, and regular use).
4. Helping guide future system designs.

The sophistication of the approximation represented by the benchmarks depends on the

fidelity needed to represent the true workload.

2. Performance –From Kernel to Sustained System Performance (SSP) Measures

Many of the subsystem component tests, kernels, and abbreviated applications used are well

discussed in other reports so the reader will be directed to the references for that information. In

this document, we will introduce the tests that make up the SSP since it is an important method to

evaluate potency and value of the system, at different points in time.

SSP, Version 4, was used in the LWOS assessment. SSP-4 consists of the geometric mean of

seven full application benchmarks: MADbench
xiii

, Paratec
xiv

, CAM3.0
xv

, GAMESS
xvi3

, MILC
xvii

,

3
 SSP-4 was the first time a DOE Office of Science site and the DOD sponsored HPC Modernization
Program coordinated the use of the same application benchmark, GAMESS with same problem sets. This
cooperation was intended to reduce the effort for bidders to provide data and to be responsive the HECRTF
Workshop report, which urged government agencies to coordinate benchmark requirements. This
benchmark and its data input is identical to the DOD HPCMP TI06 Gamess benchmark. NERSC and
HPCMP coordinated benchmarks for the NERSC-5/TI06 RFPs.

GTC
xviii

, and PMEMD
xix

, each with one large problem data set. For SSP-4, the benchmarks run at

differing concurrencies, ranging from 240 tasks to 2,048 tasks. The SSP-4 used more and larger

application codes than any SSP to date, including one with a concurrency of 2,048. As an aside,

this SSP-4 combination struck a good balance between the number and size of the benchmarks

because all vendors who proposed systems for NERSC-5 provided complete data.

Application Science Area Basic
Algorithm

Language Library Use SSP-4
Concurrency

CAM Climate – Finite
Volume

CFD, FFT FORTRAN 90 56 and 240 using the
finite volume method

GAMESS Chemistry DFT FORTRAN 90 DDI, BLAS 64 and 384

GTC Fusion Particle-in-cell FORTRAN 90 FFT(opt) 64 and 256

MADbench Astrophysics

Out of Core Power
Spectrum
Estimation

C Scalapack and
large scale I/O

64, 256 and 1,024

MILC QCD

Conjugate
gradient

C none 64, 256
and 2,048

PARATEC Materials
Nanoscience

3D FFT FORTRAN 90 Scalapack 64 and 256

PMEMD Life Science

Particle Mesh
Ewald

FORTRAN 90 none 64 and 256

Table 2-1: Seven applications that make up the SSP-4 test.

For the purposes of this evaluation, since the underlying hardware did not change, the SSP is

defined as the composite per processor performance of the each of the applications in Table 2-1

running the largest test case multiplied by the total number of cores dedicated to computational

work across the entire system. The composite function used is the geometric mean as shown in

Equation 2-1. Because the evaluation uses only the largest concurrency test cases, all the weights

are set to 1, and number of compute cores for Franklin is 19,320, the general equation simplifies to

Equation 2.2.

SSP
fi, j

i, jm
i,jt

wi

1

iwj1
iJi1

I

j1

J

i1

I

*N

Equation 2-1: The equation for SSP using the geometric mean as the compositing function. fi,j, mi,j, and ti,j are, respectively,

the number of floating point operations, the concurrency and the execution time of application i to process test case j. wi is

the weight assigned to application i, which for the assessment is set to 1 for all applications. J is 1 since the SSP uses the

largest test case. N is the total number of computing cores in the system, which are 19,320 for this assessment.

SSP
fi,max

i,maxm
i,maxt

i1

7

1
7

*19320

Equation 2-2: For the LWOS assessment, Equation 2.1 simplifies to this equation.

2.1 SSP Results for NERSC-5

Figure 2-1 shows the SSP-4 application run times for both CVN and CLE. The seven

contributing applications to the SSP-4 metric are the five large applications (CAM, GAMESS,

GTC, Paratec and PMEMD) and two X-large applications (MADBench and MILC). The run times

for five of the seven SSP-4 applications are lower on CLE than on CVN. GAMESS shows the

most improvement, at 22%, followed by Paratec at almost 14%. The GAMESS‟ CLE run time

resulted from combining MPI and SHMEM communications in different sections of the code since

MPI-alone or SHMEM-alone implementations ran longer on CLE than on CVN. Because

GAMESS already supported MPI and SHMEM methods, it was not tremendously hard to combine

the two. The need to mix communication libraries results from a different implementation of the

Portals low-level communication library on CLE and CVN that changed the relative advantages

between using the MPI and SHMEM APIs. In addition, the improved Paratec timings were due in

part to optimizing message aggregation in one part of the code. Two other codes, large PMEMD

and xlarge MADBENCH showed better run times on CVN by 10% and 1% respectively.

Figure 2-2 shows the CLE SSP performance is 5.5% better than CVN, which was surprising.

CVN was in operation on multiple systems for several years before the introduction of CLE, and

the expectation set by Cray and others was that using Linux as a base for a LWOS would

introduce performance degradation while providing increased functionality and flexibility. The

fact CLE out performs CVN, both on the majority of the codes and in the composite SSP, was a

pleasant surprise and helped convince NERSC and other sites to quickly adopt CLE.

2.2 Further LWOS Comparisons

Here we digress for a moment to point out other interesting results from the comparison of

CLE and CVN on the XT-4. This section briefly discusses other tests that are used at NERSC for

evaluating systems.

Before proceeding, it is important to note these observations are based on data collected in the

SSP Application Timing Comparision

0

500

1000

1500

2000

2500

3000

3500

La
rg

e
Ap

pl
ic
at

io
ns

C
A
M

G
A
M
ES

S
G
TC

M
ad

B
en

ch

Pa
ra

te
c

PM
EM

D
M
IL
C

X
-L

ar
ge

 A
pp

lic
at
io
ns

M
ad

B
en

ch

M
IL
C

Application

T
im

e
 i

n
 S

e
c
o

n
d

s
 (

L
o

w
e
r
 i

s
 B

e
tt

e
r
)

Average CVN Times

Average CLE Times

Figure -2-1: The SSP-4 application run times for two LWOSs running on the same XT-4 hardware. Note that most of the

runtimes for CNL are lower than for CVN.

Sustained System Performance Metric for the Cray XT-4

17.6 17.8 18 18.2 18.4 18.6 18.8 19 19.2 19.4

SSP

SSP Metric (TFlops/s)

Average CLE Times

Average CVN Times

Figure 2-2: The SSP-4 metric for the same XT-4 hardware running two different LWOSs - the Catamount Virtual

Node (CVN) and Cray's Linux Environment (CLE). It was a surprise that CLE outperformed CVN.

summer and fall of 2007, with the last data point being in mid October. At the time, Catamount

(the single core version) and CVN had been in service for close to four years and had been through

many cycles of improvements and tuning. It had also run thousands of applications at scale even

though most were on single core nodes in XT-3 systems. At the time of this study, CLE was not

yet released for general use, having exited development at the start of the study and was only in

use on NERSC-5 for four months in by the time the last results from this study were observed.

NERSC-5 was the first large scale exposure of CLE, and the study showed that there are many

areas that will benefit from tuning and further improvement. However, the fact that such robust

testing was feasible and the quality of the results so good for a very early operating system is very

encouraging. That being said, now here are other observations about CLE and CVN.

Appendix A shows data from a wide range of performance tests for CLE and CVN. The

average run times of the seven medium size application problems were slightly slower on CLE

than on CVN, whereas several of the large and extra-large applications were faster. This combined

with observations of early-user science applications that we do not have space to expand on,

indicate codes may scale better on CLE. This was previously discussed in the Wallace paper on

the design goals of CLE referenced above. Whether due to improved message handling in the node

rather than the master-slave CVN is not clear.

CLE had significantly lower streams memory performance than CVN due to the Linux

memory manager. This was particularly true when the test occupied only 30% of the memory.

However, the streams memory rate had less impact on applications than might be expected,

probably because most applications can make reasonable use of cache. Initially, several NPBs

were impacted negatively on CLE, but they could be tuned using straightforward methods to

match CVN performance. Full applications, as indicated above, needed little or no tuning to

address memory performance differences.

I/O performance differed between CLE and CVN for the IOR benchmark and also for

metadata. Lustre version 1.4.6 was used for the file system software for both CLE and CVN. For

IOR, CVN did better for aggregate I/O in the initial assessment, while CLE did much better for

single stream performance. The aggregate performance of CLE has since improved. Meta data

performance on CLE was somewhat better than CVN.

Looking forward to the discussion of consistency in Section 5, the average Coefficients of

Variation across the SSP-4 applications was 0.40% for CLE and 0.35% for CVN – remarkably

close considering CLE was derived from a full blown operating system. The Coefficient of

Variation (CoV) was calculated for each SSP-4 application by doing multiple runs of the same

application and problem set, and then these individual CoVs were averaged. The low variability of

CLE was unexpected as there was concern that increased OS jitter using Linux would decrease

consistency.

Finally, the ESP-2 test, described below, ran on CLE, but never completely executed on CVN

within the evaluation time period. The traditional throughput test (submitting a set of applications

to over subscribe the batch job scheduler) on NERSC-5 used showed less than 1% difference

between the two LWOSs.

3. Effectiveness - How Likely is Access to Performance?

Performance is only one aspect of having a system that is productive for its intended user

community. The ability for users to effectively access the performance when they need it is also

necessary. The ESP
xx

 test was designed to provide a quantitative evaluation of parallel systems in

areas not normally covered by traditional benchmarks or throughput tests but which are,

nonetheless, important to production usage. There is a myriad system features and parameters that

are potentially important in this regard, such as parallel launch time, job scheduling and

preemptive job launch. As an alternative to assessing and ranking each feature individually, the

ESP test is a composite measure that evaluates the system via a single figure of merit, the smallest

elapsed time of a representative workload that includes operational paradigm shifts.

On the Cray XT-4, ESP-2 was used to evaluate the job scheduling system for both the CVN

and the CLE – both running the Torque job management system with the Moab scheduler.

Multiple ESP-2 tests were performed in order to guide the adjustment of scheduling parameters.

The improvements in system effectiveness rating for CLE ranged up to 22% based on

improvements suggested by ESP-2.

3.1 ESP-2 Design

Overall design goals for the Effective System Performance test are:

1. Independence from the effects of CPU speed or compiler improvements on the test

codes so that system management features remain the focus of the test.

2. Ability to assess the potential for a system to support different operational scheduling

modes.

3. Scalability and repeatability to the test so it can be used on systems of different size

and scale, as well as to compare system improvements over time.

4. Ability to reflect operational paradigm shifts.

5. Ability to reflect the performance of a scheduler as it operates with incomplete

information.

6. Ability to evaluate the efficiency of job scheduling and job launching at scale.

7. Ability to encourage new features that improve a system‟s ability to schedule work

effectively.

The ESP-2 test has been deliberately constructed to be processor-speed independent with low

contention for shared resources (e.g. the file system) and be a specific measure of scalability,

stability and effectiveness of a system‟s scheduling and resource management software. As such,

it is different from a throughput test that is influenced by processors speed and compiler

performance and assumes a single operational paradigm. The ESP-2 approach runs a fixed number

of parallel jobs through a batch scheduler. Individually, the jobs specifically tailor their elapsed

run times to closely approximate a fixed target run time. The elapsed time of the total test is

independent of the processor speed and is determined, to a large degree, by the efficiency of the

scheduler and the overhead of launching parallel jobs. In ESP-2, there are 230 jobs derived from a

list of 14 job types, which can be adjusted if a different proportional job mix is needed. The size of

each job scales with the entire system size in order to keep the test constant with regard to the

number of cores. Table 3-1 shows the job types with their relative size compared to the entire

system, instance count and target run time.

The ESP-2 test includes two “full configuration jobs”, called Z-jobs in the test scripts, with

concurrencies equal to the total number of available computational cores. The run rules for the

ESP test specify the full configuration jobs cannot run at the beginning or end of the test period.

The first full configuration job is only submitted after a part of the workload has already been

scheduled and is running. The first Z-job has to run before any other remaining work is started.

Similarly, the second full configuration job must complete within 90% of the test and not simply

be the last job to be launched. The requirement to run two full configuration jobs is a difficult test

for a scheduler, but it is nonetheless a common scenario in capability environments. The jobs in

the ESP-2 suite are into two blocks. The first block contains all jobs except the two job type Z

jobs. This first block is submitted to the queuing system in a pseudo-random order. After 40

minutes the first Z-job is submitted, and after 2 hours the second Z job is submitted. No manual

intervention is permitted once the test has been initiated.

Job Type -

Fraction of Job Size

relative to total system

size -

Count of the number

of Job Instance-

Target Run Time

(Seconds)-

A 0.03125 75 267

B 0.06250 9 322

C 0.50000 3 534

D 0.25000 3 616

E 0.50000 3 315

F 0.06250 9 1846

G 0.12500 6 1334

H 0.15820 6 1067

I 0.03125 24 1432

J 0.06250 24 725

K 0.09570 15 487

L 0.12500 36 366

M 0.25000 15 187

Z 1.00000 2 ~100

Total 230

Table 3-1: The ESP-2 Job Mix. The amount of work ESP-2 performs is based on system scale.

The fractional-size is the size of the job as a fraction of total system size. For example, if the

system under test has 1024 cores for computation, then the size of job-type B is 64 (= 0.06250 x

1024) cores. The ESP-2 test can be applied to any system size and has been verified on 64, 512,

2048, 6726 and 19,320 computational core systems.

For the purposes of this discussion, it is useful to define the ESP unit of computational

“work” as the product of the run time of a job and job size (number of cores). Following our

example, job-type B is designated 64 CPU x 322 seconds = 20,608 CPU seconds of work. For a

system with 1,024 processors, and not counting the Z type jobs since their time will slightly vary

based on system size, the work is 11,031,792 CPU seconds.

Given a total amount of work, s, a hypothetical absolute minimum time, with N being the

total number of computational processors in the system (T-BEST) can be computed by dividing

the work by the system size. In the example above, T-BEST = 10,773 seconds (~ 3 hours). T-

BEST is independent of the total system size and the processing speed of the system. The ESP

efficiency ratio is defined as the T-BEST divided by the observed elapsed time of the ESP-2 test.

This is the metric of the ESP test. For increasingly efficient systems, the ratio approaches unity.

The T-BEST is simply a convenient definition of a lower bound. It is not possible to obtain T-

BEST in a real test even in the optimal case. Therefore, most attainable ESP-2 ratios fall in the

range of 0.6 - 0.8.

Equation 3-1: The Effectiveness ratio is the time the test actually runs compared to the time

the best packing solution indicates.

The ESP-2 and instructions for installation are located at

http://www.nersc.gov/projects/esp.php.

3.2 ESP-2 and the NERSC-5 Cray XT-4

T BEST N * n *n * n
n1

TBEST

 i Ti
i1

I

http://www.nersc.gov/projects/esp.php

Once the job scheduler, launcher and resource manager were functional with CLE, ESP-2 was

used to tune and improve the software components. Figure 3-1 shows a chart of one of the earlier

ESP-2 runs, which took 14,882 seconds. The target time on Franklin was 13,671 seconds -

reflecting about a 75% rating. In these charts (created by Sarah Anderson of Cray Inc.) the job

colors are matched to the job sequence number in the ESP-2 test.

The tick marks on the X-axis are in intervals of 1,000 seconds. The target test time of 13,671

seconds is indicated by the third dashed line. The first and second dashed lines are Z job

submission times. The test run in Figure 3-1 shows a large amount of white – indicating long

periods where many processors were idle, lowering effectiveness. Observe the system was starting

many large scale (many tasks) jobs early in the test, and deferring the longer running jobs.

Compare Figure 3-1 with another test represented by Figure 3-2. The test runs in 12,156

seconds – 22% faster. The difference is a better selection of the longer running jobs earlier. The

Figure 3-2 test was done after changing two MOAB parameters. RESWEIGHT was changed from

0 to 1 and WALLTIMEWEIGHT was set to be 1. These changes allowed jobs to be launched in a

more deterministic order than the previous selections with the longest job first, if other job

characteristics are equal. The result is the duration of the drain periods drops significantly and that

there are many fewer times with idle CPUs.

Time (in secs) - Each Tic mark= 1,000 seconds

C
P

U
s

av
ai

la
b
le

;
c
o
lo

r
m

ea
n
s

in
 u

se
 b

y
a

jo
b

Figure 3-1: An ESP-2 run on NERSC's Cray XT-4. The Y axis is the number of CPUs used in the systems (19,320

compute processors). The X-axis is time from the start of the test – 0 at the left. Hence a job with a concurrency of

1,024 takes and 1,000 second long is represented by a colored rectangle 1,024 points high and 1,000 seconds long.

The Y-axis tick marks represent 1,000 second intervals. The tick marks on the Y-axis are in intervals of 1,000

seconds. The target test time of 13,671 seconds is indicated in but the third dashed line. The first and second dashed

lines are Z test submission times, which will be explained below in detail.

C
P

U
s

av
ai

la
b

le
;

c
o

lo
r

m
ea

n
s

in
 u

se
 b

y
a

jo
b

Time (in secs) - Each Tic mark= 1,000 seconds

Figure 3-2: Another ESP-2 run with priority placed on longer running and larger jobs. This test confirms the system

can be effectively scheduled and was significantly faster than the target time.

The scheduling priority used in Figure 3-2 is aligned with NERSC operational scheduling,

which favors the highest concurrency jobs above all others. This policy is needed to overcome the

default scheduling of the smaller jobs because it is easier for a scheduler to accumulate resources

for smaller jobs, and reflects NERSC‟s role as a capability high-performance computing center.

The ESP-2 test showed the XT-4 with Torque/Moab/ALPS was capable of running the NERSC

workload effectively.

3.3 Additional ESP-2 Results for NERSC-5

In addition to the discussion about setting scheduler parameters to meet the expected time, it

is noteworthy that ESP-2 made other contributions. ESP-2 ran on both CVN and CLE versions of

the system software.

For the CVN runs, ESP-2 encountered a minor obstacle since it uses standard Linux/Unix

system calls within for each task to get the time. Each task then uses that time returned to calculate

how long it should run since jobs are self-terminating. CVN provided no mechanism for a task to

get system time or time of day, so a new routine was added to the ESP-2 jobs. This was just a

minor inconvenience. More importantly, ESP-2 failed on CVN a number of times. These failures

were due mostly to the large number of nodes in use during the test. A variety of hardware and

software problems were detected using ESP-2 as a blunt diagnostic.

ESP-2 on CLE also brought to light a number of problems, particularly with the early versions

of Torque, which had just been ported to the CLE environment. CLE used an entirely new

resource manager – the Application Level Placement Scheduler, ALPS – which replaced the

resource manager on the CVN systems. The interaction between Torque and ALPS needed to be

refined and ESP-2 helped identify the length of time it takes to start jobs, the load balancing for

the job scheduling nodes and other issues. Furthermore, the ESP-2 workload continued to uncover

infant mortality of hardware components.

Thus, ESP-2 was an excellent stress test in its own right, in addition to validating the job

scheduling and launch softwares‟ effectiveness.

4. Reliability

The reliability and availability characteristics differed between CLE and CVN. CVN was

more sensitive to individual hardware component failures within the system, including single node

failures. The number of system-wide failures was higher for CVN. CLE enabled more components

to have redundant features. For example, the Lustre file system, version 1.4.6, was part of both

operating environments. However, if Lustre detects a failure of hardware components or OSTs, it

can use alternate paths but since CVN is a polling LWOS, Lustre cannot to indicate the change in

roles to the computational nodes. CLE provides the ability to make use of redundant paths. Other

failures in CVN also generated system wide impact, while under the CLE environment, these

turned into failures of job.

Memory errors under CLE became more obvious. CLE uses standard Linux memory

management on the compute nodes, where CVN uses a simplified memory manager. Since

hardware vetting was going on during the initial CVN testing, we expected early hardware failures

to be mostly node failures. Despite having the hardware error rate stabilize, it was surprising to see

a large number of memory errors occur when the CLE evaluation began. This was suspected to be

due to the difference in how CLE lays out memory. The number of applications during this time

that used more than 80% of the full memory was less than 20%. CVN memory allocation is linear

and very repeatable, but CLE was more likely to try to use memory areas that had not been

previously been exercised. Over time, with some hardware adjustments as well as more CLE use,

the memory errors under CLE stabilized to the same rate as CVN.

4.1 Comparison of CLE with Other Full OS Systems at NERSC

Failure data for all NERSC systems from 2001 to 2006 was assembled from the NERSC

operational trouble ticket system where operations and systems staff record all system outages and

issues
xxi

. In addition to the operational logs, data was accumulated from paper records of repairs

kept by operations staff, vendor repair logs and automatic operating system error logs. The data

was assembled for analysis in a mysql database. Each data record was manually reviewed and

correlated with other information so the database is as consistent as possible. Redundant and

overlapping records were combined. Furthermore, each event was reviewed to determine the most

likely subsystem category that generated the error.

The NERSC failure data is available at a web site – http://pdsi.nersc.gov - as part of the

Petascale Data Storage Institute SciDAC research collaboration. The web site allows interactive

queries, charting and exporting of the data to CSV formatted files.

The NERSC systems covered during this time period were the IBM SP 3+ Seaborg (2001),

the IBM SP 5- Bassi (December 2005), the Linux Networx AMD/IB cluster Jacquard (July 2005),

the SGI Altix 3200 Davinci (September 2005), the High Performance Storage System HPSS

(2003), the NERSC Global Filesystem, NGF (October 2005) and the commodity cluster system

PDSF (2001). The dates show the beginning of the data collection period in the data base, which

corresponds to the date of production or 2001 (the start the data collection).

The Franklin Cray XT-4 failure data, which begins in October 2007 is not part of the database

yet, but has been compiled separately and correlated with the data in the database. This enables

comparison of the two largest NERSC systems – Seaborg with 6,756 cores and Franklin with

19,576 cores.

4.1.1 Software and Hardware Errors

Analysis of the data shows for five of the six systems, software is the primary cause of down

time of the entire system. In some cases the amount of time a system is down due to software is

more than five times that of hardware generated outages. Figure 4-1 shows this data as the percent

of unscheduled downtime for six major NERSC systems. Franklin, Seaborg, Bassi, Jacquard

Davinci and PDSF are computational systems of various architectures and HPSS is a large data

archive. Franklin had been in service for less than ½ a year at the time of this analysis – 154 days

to be exact -- from October 26, 2007 to March 28, 2008. For comparison, the Franklin times are

projected to a full year by multiplying by 2.37.

Uncheduled System Outage for 1 Year (SW and HW)

-

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

20,000

Franklin
(Projected
based on
154 days)

Bassi DaVinci Jacquard Seaborg HPSS

M
in

u
te

s

Software Hardware

Figure 4-1: Total number of unscheduled downtime for the major NERSC systems over a 1 year period. All systems

other than Franklin are from 2006. Franklin is a partial year - 154 days spanning late 2007 and 2008 which is projected

to a full year for comparison.

http://pdsi.nersc.gov/

There are several aspects that should be considered in the comparison. First, Franklin and

Bassi were in their initial period of operation, while all the other systems were in operation for at

least a year before the data collection period. Hence, it may be expected that the number of

outages for Franklin and Bassi reduce for later periods. This is exactly what happened to Bassi.

Comparing the downtime between 2006 and 2007 indicates the hardware downtime decreasing by

more than a factor of 2 and the software improving by more than 6 times. However, even with

those improvements, software still caused 2.4 times more downtime than hardware. Second, only

Jacquard shows more hardware downtime than software. This is in part due to a continuing

problem with memory components during 2006, which produced significant downtime.

The assignment of an outage to the hardware or software category – and in the next section to

the subsystems – is not foolproof. Root cause analysis was not done for all failures but instead the

most likely cause was assigned. For example, it may be that some software outages had an

underlying hardware cause that contributed to the failure but was not reported. The assignment of

the failure category is guided by type of corrective action taken by the system managers and the

vendor support personnel.

4.1.2 Subcomponent Error Analysis

Looking more closely at the two largest systems available, Seaborg and Franklin, it is useful

to compare outage times by subsystem for system wide failures. A system wide failure is one

where the entire system is unable to meet its service commitments. Individual failures must not

degrade system performance sufficiently to cause a system wide failure. NERSC uses the

following definition for system wide failure.

An entire system is considered down if the system is unable to process work at a specified

level. Many components in the system have redundancy including spare compute nodes and login

nodes, alternative routing in the interconnect and for I/O access. A system wide outage occurs if

any of the following requirements cannot be met:

 Complete a POSIX „stat‟ operation on every file within all file systems and access all

data blocks associated with these files.

 Complete a successful interactive login on at least 75% of the login nodes in the system.

Failures in the LAN do not constitute a system-wide failure.

 Run the NERSC benchmark suite for that system, including the full configuration test.

 Sufficient file system bandwidth is available and all files are accessible.

 Full Interconnect bandwidth is available. For systems that can route messages in multiple

paths, some links or paths may be out of service but only to a negotiated limit.

 All nodes have access to external networks and bandwidth is at least 75% of total

network I/O node bandwidth.

 User applications can be submitted, launched and/or completed via the job scheduler.

 Other failures that reasonably disrupt work on a large portion of the nodes.

 A spare node is unavailable when a compute node fails. The number of spare nodes is

negotiated based on the total number of compute nodes.

Figure 4-2: Average Daily Downtime by Subsystem Category for both systems.

Average Daily Downtime by Susbsytem Category

0.00 5.00 10.00 15.00 20.00 25.00

HW - Storage

HW - Control Work Station

HW- Node&Interconnect

SW - Accounting

SW - File System

SW - Interconnect

SW - IP Network

SW - Job Scheduler

SW - Security

Minutes

Seaborg Franklin

The Hardware category is separated in three major areas – Node and Interconnect hardware,

Storage hardware, and Control hardware. Software failures are placed into seven categories –

Accounting, Filesystem, Interconnect, IP Networking (externally), Job Scheduling, Security, and

Various. The various category covers things like license servers and mis-configurations. Figure 4-

2 shows outage and recovery time for Seaborg and Franklin. Because Seaborg was in service more

than 10 times longer than Franklin, the absolute times would be on different scales, so outage time

is normalized to daily average outage. Figure 4-2 shows the two systems together in a normalized

comparison of downtime, the amount of downtime was divided by the total time period of the data

collection giving the average minutes of downtime per day. Seaborg has outages in more

categories that may be due to the longer time it was in service. Seaborg also has less average

downtime than Franklin because the number of outages per unit time was less, not because the

length of any given outage was less.

Comparing the charts indicates the majority of hardware problems are node and interconnect

and not the shared storage. Seaborg has local disks, whereas Franklin does not. Both systems

suffer the majority of their software outages from interconnect software and file systems. A word

of caution is that symptoms of other subsystem failures, such as interconnects and nodes, can

exhibit as file system failures since the file system is spanning all components.

Figures 4-3 shows the Mean Time To Repair by subsystem for both systems. The data is

independent of the data collection period, and the scale is the same. MTTR is calculated as the

total downtime divided by the number of incidents. Overall the outages on Franklin are

significantly shorter because it is possible to bring Franklin up in less than 25% of the time it took

to boot Seaborg. The large MTTR for Seaborg Security is the result of two events, one of which

required a complete system build that took more than a week because of the complexity of

Seaborg‟s rebuild process.

4.2 Job Completion

As noted above, some system wide outages under CVN became job failures under CNL. Job

success rates were collected and analyzed. The basic logistics of evaluating job completion was

more complicated than first envisioned. Initially, CLE provided inconsistent and incomplete error

messages due in part to incorrect error message propagation across layers of the software stack.

Many inconsistencies were resolved within the evaluation period so more accurate error messages

were being produced. The completion status of jobs is traced from logs and system process logs.

Table 4-1 shows the job success rate between Sept 18, 2007 and April 11, 2008 – more than ½ a

year from the early acceptance testing of CLE through production usage. Unlike other job

completion metrics that assess how often the exact same job completes successfully, this metric

Mean Time To Repair by Susbsytem Category

0 200 400 600 800 1000 1200 1400

HW - Storage

HW - Control Work Station

HW- Node&Interconnect

SW - Accounting

SW - File System

SW - Interconnect

SW - IP Network

SW - Job Scheduler

SW - Security

Minutes

Seaborg Franklin

Figure 4-3: The Mean Time to Repair by Subsystem Category for two very large systems.

deals with all jobs running on the production system. During this time, 178,133 significant

computational jobs ran on the system, Jobs that failed due to a system wide error outage or were

killed before a scheduled outage are excluded.

Failure Error Category Number of

Jobs

Percent of

Jobs

SUCCESS - Job clearly succeeds 117,884 66.2%

WALLTIME - Job ran to the wall clock time limit. A number of

users let the job run out of time intentionally. However, there are

cases where a node assigned to the job is in ill health but has not

yet been detected, causing the job to go very slowly or hang with
no progress.

12,614 7.1%

WIDTH - A mismatch between what the job requested and what

the aprun command uses -– normally a user error

0 0.0%

NODEFAIL – A node assigned to the job failed or crashed –

possibly hardware.

192 0.1%

UNEX - This error indicates MPI buffers need to be increased. 75 >0.05%

ENOENT – A requested executable file does not exist. 1,148 0.6%

LIBSMA - An error within the SHMEM communication library 70 >0.05%

SIGTERM - Job received a Terminate Signal (Kill -9) This could
have been from the user or the system

58 >0.05%

NOAPRUN - The batch job did not appear to execute an aprun.

This is usually due to a batch scripting error.

6,516 3.7%

NOTRACE – For some unidentified reason, process accounting

data could not be traced to identify the aprun associated with this

job. The job did execute an aprun but the parent process id was 1

so it could not be properly matched. The usually cause is that a job

was killed and the last process to exit was aprun so its ppid was 1

11,389 6.4%

QUOTA - Job exceeded a File System quota 2,865 1.6%

ATOMIC – The job failed due to a software problem when using
parts of the SHMEM library (the problem has since been fixed)

4 >0.05%

UNKNOWN - The status of the job completion was non-

determinate. What is known is the aprun command had a non-zero

exit code. This may be due to a system problem but more likely

due to some user action that prevents recording the exit status in
system logs, e.g. an application trapping a signal or redirecting I/O.

25,318 14.2%

Total 178,133

Table 4-1: Job Failure Error Categories and Data.

A subset of the failing jobs – several hundred – was manually analyzed in detail. Users who

submitted the job were contacted to determine if the failure was intentional, in the application, or

system generated. This investigation led to several conclusions:

1. Root cause job failure analysis is very time consuming for support staff and users, so

it is not tractable to do a full analysis of every job failure. Automation is required.

2. NERSC has sophisticated users who can determine the cause of errors in their runs

and proactively report suspect job failures that are not due to their error.

3. Many errors were due to user mistakes or code problems. However, each category

had job failures due to system issues assigning a single category to only user

problems is not possible.

a. For example, many WALLTIME errors were under user control, but

occasionally a hung node or other undiagnosed error caused jobs to start,

make no progress for their entire time slot, and exit, giving the same error.

b. Over running file quota typically is considered a user error, but the system

generated 49 such errors since January 2008 despite having the quota

function entirely turned off while awaiting bug fixes. This is a system-

generated error.

4. WALLTIME, WIDTH, SIGTERM, NOAPRUN, are now considered likely user

generated unless there is a pattern detected when many user jobs generate the same

error. QUOTA will be in the category once it is functional.

5. NODEFAIL and ATOMIC is clearly a system issue.

6. UNKNOWN and NOTRACE represent a significant number of failures and is

troubling since it means an exit status could not be automatically determined. It

should be possible for the system to reliably record all process exit codes for post

mortem analysis. It remains a goal to drastically reduce the number of unknown

conditions for job exits.

Job completion metrics were unexpectedly difficult to accurately assess in the automated

manner that is necessary on such a large system. Work continues to more accurately report and

diagnose errors. Despite the difficulties, tracking job exit codes is valuable. At the moment, we are

looking for patterns such as large increases in the percent of a particular category, which then

merits then manual investigation.

5. Consistency of Performance

A useful metric for understanding consistency is the Coefficient of Variation (CoV), defined

by the standard deviation of a sample divided by the arithmetic mean. The CoV has shown to be

very useful in a number of situations in diagnosing consistency issues on real systems
xxii

,
xxiii

.
xxivxxv

.

Specifically, for a given number, O, of application performance results that show performance of

t-obso on a given system, the Coefficient of Variation is defined as:

t obs
1

O o
tobs

o1

O

CoV

1

O

2

o
tobs tobs

o1

O

t obs

Equation 5-1: The Coefficient of Variation is the standard deviation divided by the mean of a series of observations.

The average CoV across the SSP-4 applications was 0.4% for CLE and 0.35% for CVN –

remarkably close considering CLE was derived from a full-blown operating system. The CoV was

calculated for each SSP-4 application by doing multiple runs of the same application and problem

set, and then these individual CoV‟s were averaged.

However, other tests show significant decreases in consistency with CLE, particularly shorter

running tests such as the NAS Parallel Benchmarks. Streams, particularly the version of the

streams test that use less than 50% of available memory, showed increased variability as well as

lower performance. If the ratio of CLE CoV to CVN CoV for all tests – from single core to the full

configuration test - are averaged, CLE has a CoV six times that of CVN. This is opposed to about

a 14% increase for the larger scale SSP applications. It is important to note the CLE CoV is still

more than a factor of five lower than that observed on other systems that run full blown Linux or

Unix based operating systems on different hardware.

Both CLE and CVN provide very consistent timing for applications. Under CLE, the

consistency actually seems to improve with scale. Both CVN and CLE provide an improvement in

consistency over systems that use full operating systems on compute nodes.

6. Usability

Both CVN and CLE used in this study had full-featured programming environments
xxvi

,

including PGI, Pathscale, and Gnu compilers for Fortran, C and C++ codes; Cray‟s Portals

communication layer that supports MPI and SHMEM parallel programming models; a rich set of

Cray LibSci and AMD Core Math libraries; Cray performance and profiling tools; modules

environment for managing system and custom built software; Torque/Moab for batch system

managements; and Lustre parallel file system.

Usability was assessed for both ease of use by the computational community and ease of

management for system managers. 377 separate criteria were examined for CLE and CVN

Expected features were tested for functionality as well as performance. Of the 377 items, 254 were

testable for this analysis – with 35 applying only to future functions and 88 being more descriptive

and not testable. More than half, 53%, of these criteria related to Usability, with 39% focused on

user Usability issues and 14% on System Manager Usability. Table 6-1 shows the comparison of

how many usability features were operational between CVN and CLE. Less than 10% of the items

under CLE have issues, almost all regarding modest to slight discrepancies with performance.

Only one of the 134 Usability tests is currently outstanding for CLE - proper functioning of disk

quotas which is current a high priority problem report.

 CVN CLE

Number of features tested 248 254

Number of features properly

working

232-90.5% 232 – 91.3%

Table 6-1: Initial Usability Tests for CVN and CLE.

Further, usability was assessed by moving large scale applications to the systems – work done

in conjunction with early users. The usability advantages of CLE over CVN are a bigger set of

standard POSIX C library routines for compute node applications, so users have more control for

their applications, and less need to rewrite the source codes. CLE‟s increased OS functionality

simplifies code porting from other platforms than CVN. At least in some cases, compilations are

quicker. CLE provides other needed functions, such as OpenMP, pthreads, Lustre failover, and the

possibility of adding Checkpoint/Restart and other features. CLE enabled more options for

debugging tools, such as the Allinea DDT (Distributed Debugging Tool), which is now the

operational debugger running on Franklin.

Some disadvantages of CLE over CVN are the increased memory footprint for OS so that it

leaves less usable memory space for user applications. The difference is about 170 MB/node from

our measurements (about 4.25% of the available memory). MPI latency for farthest intra-node is

higher under CLE (8.12 sec) than CVN (7.55 sec), although this may improve for future CLE

OS releases.

NERSC launched an early user program on Franklin during the CVN and CNL assessment

period. We worked with experienced users on Franklin to benefit all parties. Many early users

were able to run high concurrency jobs to tackle much larger problem sizes and model resolutions

that were impossible before. Users got a chance to get hands-on a new architecture and a relatively

lightly loaded system, and user jobs were free of charge from their allocations. Running the

broader range of user applications helped find any problems (and fixes) in the system. The overall

user feedback for CLE was very positive, even at its early exposure. Most applications were

relatively easy to port to Franklin, the user environment (via modules) was familiar, and the batch

system worked well.

7. Conclusions and Observations

The PERCU holistic approach to system evaluation proved valuable in differentiating the

Performance, Effectiveness, Reliability, Consistency and Usability characteristics of two different

operating systems running on the same hardware. Both CVN and CLE proved functional Light

Weight Operating Systems when tested in this comprehensive manner.

CLE showed benefits over CVN in performance, scalability, reliability and usability, while

showing only slight, acceptable decreases in consistency. The full benefits of one or the other

could not be exposed with evaluation of only one dimension such as performance. The ability to

test different system software at scale on the same hardware is extremely beneficial to all parties.

The use of PERCU for evaluation speeded the introduction of CLE at scale and assured the

Franklin system would be able to serve the needs of a diverse and large science community.

8. Acknowledgements and Thanks

This work was supported by the Director, Office of Science, Office of Basic Energy Sciences,

of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.. We also wish to

thank our co-workers at NERSC and Cray for all the hard work deploying Franklin and solving

many problems during the time periods of these tests.

Appendix A. CVN and CLE Times and Rates for all Performance Tests

 Average CVN

Results

CVN

CoV

Average

CLE

Results

CLE

CoV

Ratio

CLE/CVN

Kernels

Serial NPBs v2.3 Class B NPB not the final

 BT Mflops 612.78 0.21% 627.66 0.36% 102.4%

 CG Mflops 259.95 0.05% 347.74 0.09% 133.8%

 FT Mflops 520.45 0.30% 648.12 1.02% 124.5%

 LU Mflops 658.67 1.81% 716.12 0.30% 108.7%

 MG Mflops 720.67 0.18% 717.05 0.72% 99.5%

 SP Mflops 380.6 0.31% 390.46 1.49% 102.6%

64 way NPBs V 2.4 Class D

 BT Mflops 576.12 0.02% 584.44 0.42% 101.4%

 CG Mflops 81.97 0.25% 106.07 0.07% 129.4%

 FT Mflops 348.02 0.31% 552.83 0.30% 158.9%

 LU Mflops 679.42 7.00% 716.49 0.53% 105.5%

 MG Mflops 785.02 0.05% 958.63 0.07% 122.1%

 SP Mflops 350.67 0.02% 403.52 0.08% 115.1%

256 way

NPBs

v 2.4 Class D

 BT Mflops 585.54 0.04% 575.9 0.13% 98.4%

 CG Mflops 112.08 0.17% 165.77 1.80% 147.9%

 FT Mflops 302.1 0.79% 467.96 0.35% 154.9%

 LU Mflops 1107.05 0.03% 1037.93 0.59% 93.8%

 MG Mflops 667.72 0.25% 802.95 0.15% 120.3%

 SP Mflops 340.32 0.05% 387.58 0.41% 113.9%

Streams - 30% MB/sec 7326.43 0.01% 6470 0.90% 88.3%

Memory/ 1 Core

Streams - 60%

Memory/1 Core

MB/sec 7130.23 0.01% 6469.8 90.7%

Streams - 60%

Memory/2 Core

MB/sec 3606.2 0.01% 3445.7 95.5%

Multipong-Min Microseconds 4.65 0.92% 5.94 2.49% 127.7%

Multipong-Max Microseconds 7.55 0.30% 7.75 1.76% 102.6%

Multipong DC

Farthest Node

Microseconds 8.11 0.45%

Multipong DC

Intranode

Microseconds 2.08 0.41% 2.72 0.41% 130.8%

Multipong DC

Nearest Node

Microseconds 6.15 0.38%

Meta Data -

Aggregate -

Dedicated

IOPs 6658.04 1.83% 7199 18.32% 108.1%

Meta Data - Single -

Dedicated

IOPs 4518.08 2.03% 4280 1.35% 94.7%

Meta Data -

Aggregate - Multi-

use

IOPs

Meta Data - Single -

Multi use

IOPs

IOR - I/O Aggregate

- Read

MB/s 12644.01 1.02% 11411.7 4.85% 90.3%

IOR - I/O Aggregate

- Write

MB/s 9634.7 0.30% 4197.44 1.65% 43.6%

IOR - I/O Single -

Read

MB/s 592.93 1.65% 1299.97 1.48% 219.2%

IOR - I/O Single -

Write

MB/s 535.91 21.87% 926.26 32.88% 172.8%

Full Config Seconds 24.63 0.38% 24.86 0.44% 100.9%

Medium Applications

CAM Seconds 1591.77 0.02% 1605.84 0.07% 100.9%

GAMESS Seconds 2683.67 0.02% 3269.23 0.13% 121.8%

GTC Seconds 1504.54 0.01% 1469.72 0.32% 97.7%

MadBench Seconds 1281.78 0.05% 1269.73 0.15% 99.1%

Paratec Seconds 692.09 0.05% 699.95 0.57% 101.1%

PMEMD Seconds 450.5 0.13% 457.33 0.46% 101.5%

MILC Seconds 191.86 0.16% 194.02 0.17% 101.1%

Large Applications

CAM Seconds 407.09 0.05% 405.54 0.17% 99.6%

GAMESS Seconds 3297 0.16% 2572.18 0.47% 78.0%

GTC Seconds 1636.47 0.06% 1590.01 0.33% 97.2%

MadBench Seconds 1132.4 0.14% 1153.73 0.20% 101.9%

Paratec Seconds 1171.67 0.11% 1017.06 0.26% 86.8%

PMEMD Seconds 543.25 0.18% 598 0.88% 110.1%

MILC Seconds 1421.48 0.94% 1355.35 0.05% 95.3%

X-Large Applications

MadBench Seconds 627.5 0.19% 635.35 0.17% 101.3%

MILC Seconds 1735.65 2.05% 1629.85 0.20% 93.9%

SSP Tflops/s 18.26 19.26 0.21% 105.5%

Throughput Seconds 1979.5 3.32% 1993 2.00% 100.7%

ESP Seconds 13497 1.40%

Consistency %

OS Jitter - EP -

Dedicated

 0.263

OS Jitter - FT -

Dedicated

 0.574

Average SSP CoV 0.40% 0.35%

References
i
 A full explanation of the PERCU method is available in the draft PhD Dissertation –

www.nersc.gov/~kramer/PhD/draft_dissertation
ii
 http://www.nersc.gov/nusers/systems/franklin/

iii
 Cray XT Series System Overview,, Cray, Cray inc., S-2423-20 , the Cray XT-4 Data Sheet -

http://www.cray.com/downloads/Cray_XT4_Datasheet.pdf and the Cray XT Overview -

http://www.cray.com/products/xt4/index.html
iv
 LBL-62500. John Levesque, Jeff Larkin, Martyn Foster, Joe Glenski, Garry Geissler, Stephen

Whalen (Cray, Inc); Brian Waldecker (AMD); Jonathan Carter, David Skinner, Helen He, Harvey

Wasserman, John Shalf, Hongzhang Shan, and Erich Strohmaier (2007). Understanding and

Mitigating Multicore Performance Issues on the AMD Opteron Architecture.
v
 Brightwell, Ron, Rolf Riesen, William Lawry, Arthur Maccabe, Portals 3.0: Protocol Blocks for

Low Overhead Communication, Proceeding of the International Parallel and Distributed

Processing Symposium (IPDPS ‟02) http://www-

static.cc.gatech.edu/classes/AY2008/cs8803hpc_spring/papers/brightwell-portals.pdf
vi
 Brightwell, Ron, Rold Riesen, Authur Maccabe, Desing, Implemtation and Performnce of MPI

on Portals 3.0, http://www.cs.unm.edu/~maccabe/papers/p3-mpi-journal.pdf
vii

 Wallace, David, Compute Node Linux, New Frontier in Compute Node Operating Systems, 2007

Cray User Group Conference, May 7-10, 2007 Seattle, Washington
viii

 Wallace, David, Cray XT-3/XT-4 Software Status, 2007 Cray User Group Conference, May 7-

10, 2007 Seattle, Washington
ix

 http://www.cs.virginia.edu/stream/
x
 Reference for Multipong

xi
 Kramer, William T.C., PERCU Results in a Reawakended Relationship for NERSC and Cray,

Cray User Group (CUG 2007) Conference, Seattle, WA, May 2007.
xii

 Wong, Adrian T., Leonid Oliker, William T. C. Kramer, Teresa L. Kaltz, and David H. Bailey,

System Utilization Benchmark on the Cray T3E and IBM SP, 5th Workshop on Job Scheduling

Strategies for Parallel Processing, May 2000, Cancun, Mexico.
xiii

Oliker, Lenoid, J. Borrill, J. Carter, D. Skinner, R. Biswas, Integrated Performance Monitoring

of a Cosmology Application on Leading HEC Platforms, International Conference on Parallel

Processing: ICPP 2005.
xiv

 http://www.nersc.gov/projects/paratec/
xv

 http://www.ccsm.ucar.edu/models/atm-cam/index.html

http://www.nersc.gov/~kramer/
http://www.cray.com/downloads/Cray_XT4_Datasheet.pdf

xvi
M.W.Schmidt, K.K.Baldridge, J.A.Boatz, S.T.Elbert, M.S.Gordon, J.H.Jensen, S.Koseki,

N.Matsunaga, K.A.Nguyen, S.J.Su, T.L.Windus, M.Dupuis, J.A.Montgomery J. Comput. Chem.

14, 1347-1363 (1993).

xvii
 http://www.physics.indiana.edu/~sg/milc.html

xviii
 W. W. Lee, Gyrokinetic particle simulation model, Journal of Computational Physics, v.72

n.1, p.243-269, September 1, 1987 [doi>10.1016/0021-9991(87)90080-5]
xix

http://amber.scripps.edu/pmemd-get.html

xx
 Wong, Adrian T., Leonid Oliker, William T. C. Kramer, Teresa L. Kaltz, and David H. Bailey,

Evaluating System Effectiveness in High Performance Computing Systems,. Proceedings of

SC2000, November 2000 Postscript | PDF
xxi

 Schroeder, Bianca, Garth A. Gibson Understanding Failures in Petascale Computers.. SciDAC

2007. Journal of Physics: Conference Series 78 (2007) 012022. - Also see http://www.pdsi-

scidac.org/
xxii

 Kramer, William and Clint Ryan, Performance Variability on Highly Parallel Architectures,

the International Conference on Computational Science 2003, Melbourne Australia and St.

Petersburg Russia, June 2-4, 2003
xxiii

 Skinner, David and William Kramer, Understanding the Causes of Performance Variability in

HPC Workloads, 2005 IEEE International Symposium on Workload Characterization (IISWC-

2005), October 6-8, 2005, Austin, Texas.
xxiv

 Kramer, William and Clint Ryan, Performance Variability on Highly Parallel Architectures,

the International Conference on Computational Science 2003, Melbourne Australia and St.

Petersburg Russia, June 2-4, 2003
xxv

 Skinner, David and William Kramer, Understanding the Causes of Performance Variability in

HPC Workloads, 2005 IEEE International Symposium on Workload Characterization (IISWC-

2005), October 6-8, 2005, Austin, Texas.
xxvi

 DeRose, Luiz and John Levesque, Tools and Techniques for Application Performance Tuning

on the Cray XT4 System, a tutorial at the 2007 Cray User Group Conference, May 7-10, 2007

Seattle, Washington

http://www.nersc.gov/~kramer/papers/esp-sc2000.pdf
http://www.nersc.gov/~kramer/papers/esp-sc2000.ps
http://www.nersc.gov/~kramer/papers/esp-sc2000.pdf

