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ABSTRACT 

The effort to produce defect-free mask blanks for EUV lithography relies on increasing the detection sensitivity of 
advanced mask inspection tools, operating at several wavelengths. We describe the unique measurement capabilities of a 
prototype actinic (EUV wavelength) microscope that is capable of detecting small defects and reflectivity changes that 
occur on the scale of microns to nanometers. The defects present in EUV masks can appear in many well-known forms: 
as particles that cause amplitude or phase variations in the reflected field; as surface contamination that reduces reflectiv- 
ity and contrast; and as damage from inspection and use that reduces the reflectivity of the multilayer coating. This paper 
presents an overview of several topics where scanning actinic inspection makes a unique contribution to EUVL research. 
We describe the role of actinic scanning inspection in defect repair studies, observations of laser damage, actinic inspec- 
tion following scanning electron microscopy, and the detection of both native and programmed defects. 

Keywords: extreme ultraviolet lithography, EUV, mask inspection, reticle, defect repair, actinic inspection, bright-field, 
dark-field. 

1. INTRODUCTION 

The optical coatings and materials used in EUV masks exhibit strongly wavelength-dependent effects, including reso- 
nant reflectivity and thickness-dependent phase-shifts that sensitively affect aerial images that sensitively affect aerial 
images. Research on the development of EUV-mask inspection tools benefits by careful cross-correlation of measured 
results with EUV photolithographic printing' and actinic (EUV-wavelength) mask inspection. 

While the availability of high speed, commercial, actinic (EUV-wavelength) mask inspection systems is still several 
years away, existing and new tools that use ultraviolet light detection methods continue to make important advances in 
detection sensitivity2s3. Yet for ultraviolet inspection, with source wavelengths that are nearly twenty times longer than 
EUV light wavelengths, the measurement response to different types of defects is a subject of active research. Particles 
on the substrate (below the multilayer coating) or the top surface are only two of the many classes of defects that can 
affect printed features. There is also interest in damage caused by inspection and repair, which can occur in the form of 
small-scale reflectivity variations, and changes that only observable at-wavelength. While it is clear that micron-scale 
reflectivity changes of sufficient magnitude can affect the aerial image, little attention has been paid to this topic in part 
because no data has been available. 

2. AIT SYSTEM DESIGN 

The Sematech Berkeley Actinic Inspection Tool (AIT) is a dual-mode EUV-wavelength microscope, with scanning- 
beam and (zoneplate) imaging capabilities. The AIT is located at Lawrence Berkeley National Laboratory's Advanced 
Light Source (ALS) synchrotron, and operates on a bending magnet beamline that provides stable, tunable, narrow-band 
illumination (up to AEIE - 111500) centered around 13.4-nm wavelength. 



Fig. 1 The AIT Scanning Mode Configuration. (a) Bending-magnet 
beamline 11.3.2 at the ALS provides tunable, monochromatic EUV light 
to the AIT. A K-B mirror pair brings the beam to an intermediate focal 
point above the main chamber. A 20x Schwarzschild objective serves as 
an illuminator, re-imaging the K-B focus to the mask with a divergence 
angle up to 0.0625 NA. Essential optical elements for the microscope 
rotate and translate on a 4-axis turret arm into the 2-cm gap between the 
mask and the Schwarzschild objective. The CCD camera attached to the 
chamber is used in imaging mode. In scanning mode a photodiode is held 
on the end of the turret arm. The system operates at a base pressure of 
6 x 10.' Torr backfilled with oxygen to 6 x 10.' Torr during operation. 

(b) Identical 3x1 element photodiode arrays are mounted to intercept 
either the incident beam or the reflected beam. Each diode element has 
1 xl mm2 area. The diodes are positioned so that one element measures the 
specular beam, while an adjacent element sits just outside of the specular 
beam's solid angle. Phosphor paint covers many edges of the device to 
visually detect the beam location through the chamber view-ports. 

(c) A Schematic shows that the 6" incident angle of the central ray leaves 
only a small clearance for the photodiode to intercept the beam. 

In scanning beam mode, narrow-band EUV light is focused onto the mask surface with 6" incidence angle, and a spot 
size from 1-5 pm in diameter, as shown in Figs. l a  and lc. As the mask is scanned laterally, the stationary focused beam 
moves relative to the mask surface, and the reflected light is recorded by a 3x1 array of 1 mm2 square photodiodes 
(Fig. lb). These photodiodes are significantly larger than the beam size in that plane. Because of the small clearance, the 
downward-facing diode substrate was cut to bring the elements close to the edge of the holder. 

The AIT can record the signal from two of the downward-facing diodes simultaneously. One diode is positioned to de- 
tect the specular beam; it measures the bright-field local reflectivity changes of the mask surface.294 An adjacent diode is 
positioned just outside of the specular beam where it captures dark-field scattering and light re-directed outside of the 
specular beam's solid angle, in one direction. The bright-field measurements are sensitive to local reflectivity changes 
with uncertainties as small as 0.1 %, averaged over the beam diameter. Dark-field measurement sensitivity depends on 
the detection solid angle (adjustable by positioning the diode) and the sizes of the features being studied. Dark-field de- 
tection is limited by electronic noise in the detection and amplification of the small (1-100 PA) signal. 

The mask position under the stationary beam is controlled by a rotation and translation stage, x&. Longitudinal motion 
(z, through focus) is straightforward, but lateral motion (xy) must be performed as a combination of  rotation and transla- 
tion. For this reason, measurement at arbitrary mask locations requires an azimuthally rotated mask orientation dictated 
by the system geometry. 

Since the beamline focus is re-imaged onto the mask by the Schwarzschild illumination optics, the size of the beam 
footprint on the mask is determined by the aperture size used in the intermediate focus of  the beamline. With 20x 
demagnification from the Schwarzschild illuminator, the 100, 50, and 20 pm circular aperture sizes, create 5, 2.5, and 



1.0 pm beam footprints on the mask respectively. Since the beam size is slightly larger than the largest pinhole size, the 
apertures also restrict the transmitted flux in proportion to their area. Therefore, while the flux density on the mask re- 
mains roughly constant for all beam sizes, the experiment faces a trade-off between spatial resolution and the available 
light power, which largely determines the signal-to-noise ratio. 

The upward-facing photodiode was added in 2007 as a means to periodically measure, and thereby calibrate, the incident 
flux level. At this time, adequate calibration has not been achieved, and the scanning measurements are limited to rela- 
tive, rather than absolute, reflectivity changes on the mask surface. 

The scanning speed depends on many factors, but it is primarily limited by the current amplifier bandwidth. Detected 
signal levels in bright-field scanning are as high as 10 nA, and are typically in the 1-5-nA range. Darkfield signal 
strengths may be 100 times smaller. To achieve high signal-to-noise ratios it is necessary that the mask be scanned 
slowly beneath the beam. Normally the linear speed of the mask is limited to several microns per second. The time re- 
quired to scan an area depends on the scanning path, including the scan-line density, which is continuously adjusted: 
coarse to identify regions of interest, and fine to match the spatial scale of the features being studied. 

Accurate data processing in scanning mode is complex, and is briefly discussed in Section 3.1. The primary challenge 
for scanning measurement accuracy is the intensity-level stability of the illumination over time. Since the beamline light 
is focused onto a pinhole, the delivered flux is sensitive to the beamline's alignment stability, and any drift or vibration 
in the upstream alignment can change the transmitted flux. The beamline overfills the pinhole by a factor of 2-5 horizon- 
tally and 10-50 vertically, and the angular demagnification by the K-B optics also reduces misalignment sensitivity. Fur- 
thermore, changes in the synchrotron's storage ring current directly affect the flux delivered to the sample. 

In practice, we observe slow, unpredictable fluctuations in the flux level, up to several percent, that can decrease (and 
restore) the recorded photocurrent-changes typically occur on a time-scale of minutes. Attempts to use photocurrent 
from beamline mirrors as a normalization signal have been complicated by the nonlinearity of the photocurrent response. 
Therefore, signal normalization is a critical issue in achieving accurate measurements. 

During scanning, the beam follows a serpentine (back-and-forth) path across the mask surface. Because the signal is 
continuously acquired and recorded during the scan, the sampling density is high along the scan lines, and coarse in the 
perpendicular direction. Considering the presence of electronic noise and the unpredictable temporal changes in the 
beam intensity, surface reconstruction from the scanning data presents its own set of complications. 

When open areas of a mask blank are scanned, assumptions about the uniformity of the coating allow us to perform 
normalization from the data signal itself. Isolated defects stand out from the background signal level. However, when 
dense patterned regions are scanned, normalization becomes significantly more difficult; fluctuations in the illuminating 
intensity are difficult to separate from the pattern itself. In general, pattern and feature edges (i.e. abrupt reflectivity 
changes) are the most reliable measurements because instantaneous signal changes can be attributed to the sample. 

Regarding dark-field detection, we have found that it is difficult to predict the detector position that optimizes the dark- 
field response for a given measurement. As the dark-field detector element is placed farther away from the specular 
beam, the signal level from background scattering, and from the measured features, drops quickly. On the other hand, if 
the detector is placed too close to the specular beam, it ceases to serve as a dark-field detector and acts more like a knife- 
edge. (We acknowledge that this knife-edge configuration may be interesting for its high sensitivity, but it does provides 
neither reliable dark-field measurements of small scattering objects nor bright-field reflectivity measurements.) In prac- 
tice, we determine the 'compromise' detector position empirically by performing multiple scans and identifying the loca- 
tion where the response to a given set of defects is highest. This strategy can be adjusted to suit specific measurements, 
but repeatability in the dark-field detector position is an alignment challenge for the AIT. 

3. SCANNING-MODE MEASUREMENTS 

This section surveys the different kinds of measurements that have been performed in the AIT's scanning mode. A few 
of these results have been described previously in greater detail, but with a different emphasis. Here the goal is to show a 
variety measurement capabilities and interesting research problems that can be addressed with the AIT, more than to 
elucidate the detailed results. 



3.1 Laser damage and the issue of scanning-data normalization 

High-powered ultraviolet lasers are used in commercial mask blank inspection tools, and the potential for mask damage 
is an issue warranting special attention from actinic inspection tools. Laser power levels can be increased to improve the 
signal to noise ratio in the detection of light scattered from the smallest visible defects. However, the potential for mask 
damage is significant since the damage caused by inspection may not be apparent or observable at the inspection wave- 
lengths.5 

We have conducted actinic scanning to measure EUV reflectivity changes induced by exposure to ultraviolet laser wave- 
lengths. These tests are essential in setting the power thresholds below which damage is either imperceptible or tolerable. 
In an ultraviolet mask blank inspection system, light is highly concentrated, so the damage areas may have feature sizes 
as small as 5-100-pm in size. Reflectivity changes on this small size scale may not be easy to detect in conventional 
reflectometers, which use larger beam footprints (50-500-pm wide, or more). 

raw data 

time 

filtered 

Fig. 2. Large area scans of a region showing high-powered UV laser damage, raw and filtered -data reconstructions. 
Without filtering (a, b), fluctuations in the illumination flux level can appear as large-scale changes in the apparent reflectiv- 
ity that follow the direction of the scanning path, slightly inclined from vertical. Intensity-level tiltering (c, d) is most effec- 
tive in regions surrounded by open mask areas. In this example, the largest reflectivity change occurs in the dark regions, 
where the reflectivity falls to 3 1 % of the background level. 

Figure 2 shows scanning data from a 700x790-pm mask region where laser damage reduces the EUV reflectivity. Figure 
2a shows the (raw) current measured by the photo-diode during the scan, and a reconstruction of the local reflectivity 
variation based on the scan data and the measured encoder positions. The scan shown here is relatively coarse, with 
10-pm scan steps. Light areas are regions with full, reflectivity magnitude. The reflectivity falls as low as 3 1% of the 
background level in the regions rendered as black. 

Figure 2a also shows an example of the intensity fluctuations associated with the beamline alignment instability. The 
total data collection time shown is 105 seconds. The intensity data in Fig. 2a fluctuated by 4.7% of the average back- 
ground level during the scan. As shown here, the serpentine scan path follows a nearly vertical trajectory through the 
region and moves slowly from right to left. Without filtering, this fluctuation creates a light and dark banding (Fig. 2b) 
effect that mimics large-spatial-scale reflectivity variations. 



Figure 2c is a filtered version of the raw data, used to reconstruct Fig 2d. With each pass through the laser-damaged 
region, the reflectivity drops and returns to the background level, so the relative magnitude in these abrupt spatial 
changes can be measured accurately. (This is what gives rise to the comb pattern in the plot). 

Figures 2c and d show a filtered version of the same data and a reconstruction from it. Two filters are applied to create 
the signal shown in 2c. First, the data is median-filtered to remove spurious spikes and noise. The temporal width of the 
median filter is always much less than the filtering time-scale of the current amplifier to ensure that real data is not com- 
promised. The second filter addresses the intensity fluctuations by extracting the peak levels within relatively large time 
bands and using them for normalization. This filter uses the assumptions that (a) the background levels outside of the 
damage region is homogenous, and (b) it can be used for normalization. The filter performs best when at least some por- 
tion of each scan line includes the background region. 

3.2 SEM Inspection Damage 

It is well known that scanning electron microscope (SEM) inspection can induce carbon deposition onto  surface^.^ 
During SEM inspection, regions studied at high resolution (and thus high electron flux density) often appear noticeably 
darker in SEM micrographs. This staining is typically caused by the deposition of a thin layer of carbon caused by the 
interaction of primary or secondary electrons with residual hydrocarbons in the sample chamber. What is not well known 
is how that damage affects EUV reflectivity. 

A simple test was conducted in which a patterned EUV reticle was inspected in a commercial SEM, creating easily iden- 
tifiable stained regions, and then an actinic scan was performed on the same region. Several high-resolution images were 
collected in regions that included an I-pm square contact, and the end of a 2.5-pm bright line (Fig. 3a). Actinic scans 
were performed in bright-field mode only, using a 2.5 pm beam diameter. Only limited time was available for this test, 
and repeated measurements of the region were not conducted. The elliptical beam footprint evident in the appearance of 
the scanned contacts may be caused by astigmatism in the illumination system. 

In the single actinic scan acquired for this measurement (Fig. 3b), no evidence of  the prior SEM inspection could be 
detected within several percent measurement uncertainty. Neither the contact nor the line-end appeared to be detectably 
different from similar adjacent features. 

One reason for the negligible difference may be the relatively high transparency of  carbon to EUV light. The attenuation 
length in carbon for 13.4-nm wavelength light is approximately 158 nm7. Thus the absorption upon reflection through a 
I-nm carbon film is just 1.26%. 

A second reason may be the difficulty of achieving accurate signal normalization within patterned measurement regions. 
Had the tests been conducted within strictly open mask areas, small changes may have been more easily detected; 
follow-up tests should be conducted to confirm this supposition. 

Fig. 3. (a) SEM and @) actinic bright-field scan of the same region of a patterned EUV mask. High-resolution SEM in- 
spection was performed to induce intentional carbon contamination staining on the surface. Subsequent actinic bright-field 
inspection did not detect a decrease in the EUV reflectivity, within the measurement uncertainty. The contacts are 1-pm 
square, and the lines are 2.5-pm wide. The EUV beam diameter was 2.5 pm, and some astigmatism is apparent. 



While this single test was limited in scope, the absence of significant EUV reflectivity changes, despite the observable 
carbon-deposition staining in the SEM, shows that high-resolution SEM inspection, when performed quickly, may not be 
a severe threat to the quality of EUV masks. 

3.3 Open-field mask blank repair strategies 

As reported in 2 0 0 7 ~  the AIT has been used to probe the EUV response of prototype, open-field, mask blank defect re- 
pair strategies. Working in collaboration with researchers from Carl Zeiss and AMD, we found that the EUV bright-field 
(reflectivity) and dark-field (scattering) response to the repair sites could be markedly different, and uncorrelated. Such 
information has significant bearing on the effectiveness of proposed actinic inspection tools that rely solely on either 
bright-field or dark-field measurements. 

In the experiment, a multilayer-coated EUV mask blank was prepared con- 
taining an array of fourteen defects and repair sites. The mask was coated by 
the SEMATECH North Mask Blank Development Center (MBDC). The re- 
pair involved an e-beam-activated chemically induced etching process that 
can be controllably localized at the size of the defect. The process was devel- 
oped by Carl Zeiss SMS and performed on a mask repair tool prototype. The 
goal was to create repairs with sidewall slopes below 4", which has been cal- 
culated as the largest acceptable angle that does not create phase shift errors9. 
Repairs were performed in an open loop procedure (not using feedback) with- 
out tight control of surface roughness. (It should be noted that an adequate 
mask-repair recipe was not identified in these first  measurement^.^) 

The repair sites themselves were circular marks etched into the mask and 
treated in different ways to distinguish effects of the etching into the multi- 
layer from the effects of aprotection layer. The etch and repair site diameters 
varied from 2 to 6 pm. 

Measurements of two different sites are shown in Fig. 4 .  The site on the left is 
an etched pit, 4 pm diameter, with 2 4 "  sidewall angles, and no repair. The 
site on the right, with a 5-pm pit diameter, had similar etching and was cov- 
ered with a 6-pm-diameter Si02 protection layer, approximately 5-nm thick. 
Both sites were easily detected in the Lasertec M1350, which operates at 
488-nm wavelength. 

To improve the signal-to-noise ratio of the actinic dark-field detection, a 5-pm 
diameter was used in these measurements. The bright-field signal gains spatial 
discrimination and sensitivity when a smaller beam is used; thus for bright- 
field measurement we performed separate scans with a 1-pm-diameter beam. 

Fig. 4. Two sites on a reticle-repair test 
mask investigated with actinic and non- 
actinic inspection. "M1350" images were 
recorded in the Lasertec M1350's defect- 
review mode. SEM and AFM measure- 
ments are also shown. AFM-measured 
peak surface displacements are shown in 
nm. Each image is approximately 6-pm 
wide. "BF A R "  values (gray bars) are 
local reflectivity changes measured with 
a 1 pm beam. "DF S N R  are integrated 

The key statistics from the actinic scans are the bright-field peak reflectivity dark-fie1d to noise ratio levels 

loss, labeled "BF AR," and the dark-field signal strength (signal-to-noise so that zero corresponds to the 

ratio), labeled "DF SNR" in Fig. 4. For the bright-field data, the relative 
background level in the open, mask areas. 

reflectivity is normalized to the clear mirror areas adjacent to the defect sites. 
We report the peak local relative reflectivity loss (with 1-pm resolution). The dark-field signal is handled differently. At 
each site, the signal is offset to achieve a zero average value in the area outside the repair site. The signal from an 
8.1-pm square area containing the repair site is then integrated to produce a response-strength value. We report this 
value normalized to the standard deviation of the measured background (i.e. the RMS for 8.1-pm square regions); thus 
the actinic dark-field value is the signal-to-noise ratio (SNR) of  the measured defect site. 

These two sites were selected for Fig. 4 because they exemplify two very different responses that were observed. The 
first site scattered light strongly, making a positive dark-field signal, combined with a severe drop in local reflectivity. 
Possible interpretations are that this site either strongly scattering or it redirected the reflected light into the dark-field 
detector signal. The second site showed the effects of strong absorption in the protection layer: the scattered light signal 
was lower than the surrounding area (reported as a negative value), and the reflectivity was also lower. Similar behavior 
is observed in the detection of surface contamination discussed in Section 3.4. 



These two sites illustrate the significance of both bright-field and dark-field actinic measurements. While dark-field 
measurements may be highly sensitive to small defects, large shallow defects that absorb light may be very difficult to 
detect, even when they cause significant bright-field reflectivity changes. 

3.4 Scanning bright-field and dark-field measurements of phase and amplitude defects 

Actinic inspection provides cross-comparison and measurement validation for commercial mask inspection tools and 
modeling. W e  have previously described one such cross-comparison2, with results that led to significant new insights. 
Here we briefly describe that experiment and discuss the measurement of surface particle contamination. 

We performed actinic scanning inspection of a mask developed by Hoya and supplied by MIRAI (Serial No. M R A I  
DEFO~B)''. The region of interest is a 150 x 500 pm programmed defect field, containing an array of buried, substrate 
defects, arranged into columns by size and surrounded by a border comprised of larger defects. The defects were created 
from 7-nm-thick CrN pads patterned onto the substrate prior to multilayer coating. Following coating, AFM-measured 
surface profiles ranged from 70 to 420 nm wide and from 3.5 to 7 nm high. In the region of interest, there is no absorber 
pattern on the mask. 

Figure 5 shows scanned images of the defect array measured in bright-field and dark-field, collected simultaneously. A 
2 . 5 - ~ m  beam diameter was used in this scan. In the array there are nine columns total, with the largest defects on the left 
side. The defects in the right-most row suffered from resist collapse resulting in irregular shapes that appear larger than 
those in column eight. The figure caption explains the various scaling ranges used to reveal specific features of the data. 

a) bright-field 
196 0. 100 21% 

b) bright-field, dctail 
scaled 196.0. lM).21f:h 

c) dark-ficld, clctail 
scaiect f4).1.0.21" 

d) dark-ficld, detail 
scelcd 10 0.0.21 " 

Fig. 5. Bright-field and dark-field scanned images of a programmed defect array. (a,b) are bright field scans, with (a) 
showing the entire region, and (b) a detail of the top portion. With the background reflectivity normalized to 10076, the 
grayscale used for the bright-field images includes the range from 96% to 100.2% relative reflectivity. (c,d) are dark-field 
scans collected simultaneously with the bright-field scan. The data are scaled and normalized so that the average background 
level is set to 0.0 and the peak measured dark-field signal is 1.0. (c) shows that the absorbing surface defects reduce the 
background scattering amplitude significantly. 

An accidental contamination event prior to actinic inspection at the ALS added several particulate defects to the region 
of interest: these are easily seen in the upper-right sides of Figs. 5a and b, where the bright-field reflectivity shows a sig- 
nificant drop at the defect locations. The measurements show a 90% reflectivity drop within the largest defect, and ap- 
proximately 50% decrease in the other three, nearby defects. For the buried phase defects in the array, the observed 
bright-field reflectivity changes were less than 2%, and were typically much smaller. However, the peak magnitude of 
the reflectivity change is difficult to characterize because it depends sensitively on the beam footprint relative to the 
sizes of the defects. 

The juxtaposition of phase and amplitude defects helped us to recognize the importance of the dark-field background 
signal for detecting absorbing surface defects that do not scatter efficiently. In uniformly bright portions of the mask, 
scattering from small-scale mask structure leads to a consistent yet low, noisy background signal level. This 'back- 



ground' signal is scaled as gray in Fig. 5c. The dark-field signal level typically increases when the beam encounters 
phase defects (bright areas in Figs. 5c and d). However, the 1-10-pm-scale particulate defects on the mask surface are 
accompanied by noticeable decreases in the scattered signal levels, clearly visible at the surface defect locations in 
Fig. 5c where scaled image turns black. In Fig. 5d where the dark-field image has been scaled to enhance the appearance 
of the buried defects and minimize the background level, the surface defects disappear into the background and are more 
difficult to detect. 

Surface defects can thus decrease both the bright-field and the dark-field signals. If a mask were inspected using only 
actinic dark-field detection, then surface particles larger than several microns may be difficult to detect. To be effective 
actinic dark-field detection must be sensitive enough to clearly record the background scattering level with a signal-to- 
noise ratio high enough to observe changes associated with small, absorbing defects. 

4. SUMMARY 

It is presently unclear what role actinic mask defect inspection will play in the development and commercialization of 
EUV lithography. The separate requirements of mask blank inspection and patterned mask inspection place very differ- 
ent demands on existing and hture tools. At this time, actinic inspection, conducted in the US and ~ a ~ a n ' l - ' ~ ,  plays an 
essential supporting role; this is particularly true for imaging inspection15, which has improved our understanding of de- 
fect sensitivity and printability', and has been used to evaluate repair strategies16 among other topics. 

Scanning mode inspection, as described in this article, has not been thoroughly utilized in EUVL research. Our tests on 
the measurements of laser-damage regions, defect repair sites, and programmed defect arrays, show the significance of 
both bright-field and dark-field detection methods. In the AIT, bright-field is most useful for detecting reflectivity varia- 
tions on short length scales (from contamination, damage, etc.) in open field regions. Dark-field scanning is used to 
cross-correlate the measurements of other inspection tools, to detect phase defects, and to provide important insight for 
dark-field inspection system currently under development. The results of scanning tests have demonstrated that there 
would be significant risk associated with relying solely on bright-field or dark-field actinic inspection. The absorbing 
nature of micron-scale surface defects (e.g. particles and similar contamination) makes them difficult to detect in dark- 
field unless the tests are highly sensitive to the background reflectivity levels. 

In a simple test, we investigated the at-wavelength consequences of high-resolution SEM inspection, attempting to de- 
termine if the thin layers of carbon contamination "staining" caused by SEM imaging could be detected at-wavelength. 
Within our measurement uncertainties, we could not detect the presence of this staining in this limited test, despite the 
fact that it was strongly visible in the SEM. A more thorough experiment should be designed to determine when and if 
SEM staining becomes detectable at-wavelength. 

Intensity fluctuations during AIT scanning measurements are the primary challenge to overcome for achieving high ac- 
curacy and reducing measurement uncertainties. Scanning bright-field regions simplifies the intensity normalization that 
occurs in data processing and greatly improves our sensitivity to small, abrupt reflectivity variations. With sensitivity to 
reflectivity changes on the order of 0.1-0.2% and length scales as small as 1 pm, the AIT has capabilities not found in 
other tools, including reflectometers. Signal normalization within patterned regions is difficult in the AIT, leading to 
measurement uncertainties as large as several percent. Strategies to separately record illumination intensity as a normali- 
zation signal during scans are now being pursued. 
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