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Abstract

The initial stages of wet thermal oxidation of Si(100)-(2xl) have been

investigated by in-situ ambient pressure x-ray photoemission spectroscopy (ApXpS),
I



including chemical-state resolution via Si 2p core-level spectra. Real-time growth rates of

silicon dioxide have been monitored at 100 mTorr of water vapor. This pressure is

considerably higher than in any prior study using XPS. Substrate temperatures have been

varied between 250 and 500'C. Above a temperature of -400t, two distinct regimes, a

rapid and a quasi-saturated one, are identified and growth rates show a strong temperature

dependence which cannot be exprained by the conventional Deal-Grove model.



I. Introduction

A precise control of silicon oxide, or alternative gate oxide, growth at atomic

scales is a major issue in the semiconductor industry as the gate thicknesses in metal-

oxide-semiconductor transistors shrinks down to -10 A. The importance of intermediate

oxidation states and the structure of the interface between crystalline Si and amorphous

SiO2 have become fundamental in many processing steps and in general in device

fabrication. An extensive number of studies have thus been devoted to understanding

oxygen-based as well as water-based oxidation. In both of these processes, a key role is

played by the kinetics of the initial stages: how oxygen molecules in dry oxidation and

water molecules in wet oxidation react at the Si surface and promote the formation of the

oxide layer. In classic early studies, Deal and Grover proposed a model to explain the

kinetics of the oxide growth, which is based on diffusion of the oxidant through the oxide

layer and reaction at the interface between the silicon substrate and the oxide layer. This

Deal-Grove (DG) model explains experimental results fairly well for oxide thicknesses

above 20nm. However, in the case of thinner layers, it has been shown that the DG model

needs to be modified and several models have been proposed to explain much faster

growth rates in the early stages of oxidation'''. A 
"o-plete 

understanding of oxidation

kinetics in the fast regime still remains a challenging problem to be solveda.

From an experimental point of view the difficulty of identi8'ing the growth

mechanism in the early stages of oxidation arises from the lack of high-precision tools for

monitoring growth rates in-situ at pressures that are realistic from a technological point of

view. As one non-destructive, chemical-state and surface sensitive analytical tool, x-ray

photoelectron spectroscopy (XPS) has been widely utilized to provide important

information on Si oxidation such as interfacial chemical statess, interfacial bonding



structures6, and initial growth rates with very high precisionT. However, due to the short

inelastic scattering length of emitted electrons and the need to maintain the electron

spectrometer at high-vacuum conditions, standard XPS measurements are usually carried

out in ultra-high vacuum (UHV) or near-UHV environments which radically differ from

typical oxide formation conditions. As prior examples, for the case of dry oxidation, the

initial kinetics has been studied in real time using XPS at oxygen pressure up to l0-5 Torr

or less8, but there have been no equivalent in-situ studies of wet oxidation by XPS at

these lower pressures. By ex-situ XPS measurements in which surfaces are prepared in

one chamber and then transfened to another for measurement, it has been pointed out that

the presence of surface hydrogen bonding (Si-H) and initial growth rates at elevated

temperatures are closely related phenomenae. It is thus clear, that only real time and in-

situ measurements can provide direct information on the dynamics of all the oxidation

states while the oxide growth is in progress and thus consequently assist in unveiling

critical information on the interfacial oxide formation processes at atomic scale.

II. Experimental Setup

In this work, we apply XPS in-situ, in real time, and at much higher ambient

pressures, which we term ambient pressure XPS (APXPS), to the initial stages of the wet

thermal oxidation process on Si(100)-(2xl) using a specially designed system that is

located at beamline 9.3.2 at the Advanced Light Source of the Lawrence Berkeley

National Laboratory, and described in detail elsewherelO. Briefly, this system consists of

an Al foil window to separate the beamline from the sample chamber, and a PHI electron

analyzer equipped with a specially-designed differentially-pumped electrostatic lens in

order to permit measuring spectra with the local ambient sample pressures from UHV to



several Torr. Si 2p core level spectra have been recorded while the chamber pressure was

held at 100 mTon of water vapor pressure or -l0a times higher than in prior XPS studies

of Si oxidation. The samples were cut from commercially available Si(100) wafers3,

cleaned in a boiling solution of HzSO+/HzOz for l0 minutes, rinsed in deionized water,

and dipped in a 50%o HF solution for 30 seconds. A thin oxide layer passivating the

surface is then grown by immersing the sample in HCI:HzOz:HzO:l:l:4 at 80"C for 10

minutes. The oxide layer is removed after transferring the sample inside the chamber by

repeated cycles of direct current flow heating the surface up to 1000'C. Once a clean

surface is achieved, as verified by high-resolution Si 2p spectra and the temperature

adjusted, water vapor is introduced in the chamber via a metal leak-valve controller and

the pressure is kept constant at l00mTorr throughout the experiment. Continuous

acquisition of the Si2p core-level range monitor in real time the formation of chemically

shifted oxidation states on the initially-clean silicon surface. The incoming photon energy

was set to 350eV. The overall instrument resolution in real-time measurement was

estimated to be -400 meV, which is small compared to the typical chemical shifts of

about I eV per unit change in oxidation state. The scanning time of a single spectrum

for such real-time measurements was l8 seconds, with this acquisition speed being

selected in order to have sufficient count rates in the least amount of time so as to better

follow oxidation dynamics. The temperature was controlled by a feed-back system with a

resistive button heater undemeath the sample and a thermocouple attached to its surface.

Higher-resolution XPS spectra requiring longer acquisition times were collected at the

beginning and end of each set of measurements, before admitting and after pumping out

the water vapor in the chamber. All spectra werc analyzed by subtracting a Shirley

background, due to inelastic scattering, and deconvoluting each spectrum into six



doublets: elemental silicon 2p (Si0), three intermediate oxidation states (Sir*, Si2*, Si3),

stoichiometric Si oxide (Sia*) and an additional component located next to the Sio state

that has been attributed to Si-H (X)6. Each doublet was considered as a Voigt function

with free Gaussian width, a fixed Lorentzian width of 85meV, a spin-orbit splitting of

600meV and a spin-orbit branching ratio set constant to 0.5. The positions and widths of

our resulting oxide and Si-H bonding components agree with previously published worku.

III. Results and discussion

Fig. I shows a collection of spectra acquired after exposing the clean silicon

surface to water vapor for 30 minutes at temperatures between 250 and 500oC, andFig.2

high-resolution spectra after oxidation at the two different temperatures. To permit easier

visualization in Fig. 1, the fitted spectra have been plotted as a function of temperature

with normalizationto the intensity of the Siocomponent, 
/si0. 

Fig. I clearly shows

that the intensity of the oxide component, 
1sio. 

, startS to increase rapidly as the substrate

reaches temperatures near 400oC. Not only a dramatic enhancement in the Sia*

component intensity is evident above 425"C but a careful analysis also reveals that the

position of this peak shifts towards higher binding energies by about 0.5 eV as the oxide

thickness grows. This energy shift can be attributed to a lack of core-hole screening from

electrons in the bulk Si bulk substrate, probably due to valence band mismatch as the

oxide thickness is increased 6'tt, but also perhaps to the onset of slight charging at the

surface of the oxide.

Previous studies have shown that the adsorption of water on silicon is mainly

dissociative, with the formation of -H and -OH species passivating the surface at lower



temperaturestt. The enhanced growth rates we observe at temperatures above 425oC thus

suggest an abrupt modification of the Si-H and Si-OH bonding states. One possible

explanation for the faster oxidation at 425oC is that it is the result of the initiation of the

thermal desorption of hydrogen molecules. The intensity of the Si-H peak X has been

included in our fits to the real-time spectra of Fig. 1, but it is difficult to accurately

estimate its contribution due to it strong overlap with Sio and the combined effects of

moderate resolution and statistical accuracy in the raw data. However, with the high-

resolution XPS spectra in Fig. 2 collected after the real-time measurements, it is possible

to gauge the presence of this peak at the end of each oxidation run. Fig. 2 thus shows two

high-resolution XPS spectra at 250oC and 450'C together with their fitted components.

While a Si-H peak is indicated at250"C, the spectrum at 450oC does not show any sign

of Si-H, suggesting that oxidation growth rate is directly related to the presence of Si-H

bonding on the surface. These results are qualitatively consistent with prior work by

Enta et a1.7, who report that the Si-H component remains above 500"C but moves to

higher binding energies with a significant reduction of its intensity. In the case of Fig. 2

the lack of a Si-H signal at 450oC is most likely due to a lower surface sensitivity with

respect to this prior experiment where the kinetic energy of the detected photoelectrons

was only 40 eV while in our case is 255 eV.

In order to get more quantitative information on wet oxidation kinetics, we plot in

Fig. 3 the time evolution of the oxide thickness growth rate, as measured via the ratio of

r f

's,o*and 's,' intensities, for seven different temperaturert3'to. This plot provides a

clear indication of the different dynamics of silicon wet oxidation at this higher pressure

of 100 mTorr as a function of temperature. It is clear that the samples below 350oC show



very similar, and significantly lower, growth rates. In these cases the coverage of oxide

thickness barely reaches one monolayer of oxide, suggesting that hydroxyl groups hinder

the oxidation process. On the other hand, in agreement with Fig. l, starting at 400oC and

more obviously above 425"C, the system enters an active regime wherein the oxidation

proceeds much faster. In particular, in the early stages of oxidation, at 450oC and 500oC,

the curves exhibit a steep slope immediately after the insertion of the water vapor. For

those curves at temperatures of 425'C and higher, two distinct regimes can be clearly

seen, a rapid regime in the early stages followed by a quasi-saturated regime of much

slower growth. In addition, as the temperature increases, the slopes of the rapid regimes

are steeper, indicating faster growth of oxide at higher substrate temperature. At the same

time, the quasi-saturation point occurs at shorter times for higher temperatures. Finally,

once the quasi-saturation point is reached, the growth rate slows down, yet oxidation

continues, as shown in Fig. 3. Growth rates from linear fits to the quasi-saturated regimes

are shown in Table l, together with corresponding substrate temperatures. It is interesting

to note that the growth rates of this quasi-saturated regime in wet oxidation are much

higher than the linear regime of the DG model, which is only 8xlO-aA/trr at lTorr and

500"C r. Clearly, these two distinct regimes in wet oxidation show very different

behaviors from the DG model.

As a final comment, it is not only interesting but also very important to compare

these wet oxidation APXPS results to similar APXPS results for the dry oxidation case to

get a complete overall picture, with result of the latter type to be published shortlyrs.

However, in order to have an adequate comparison between these two processes, a more

detailed approach needs to be taken, since there are several factors that differentiate them:

the higher density of dry oxide, the presence of hydrogen desorption in wet oxidation,



And different delays in the diffusion of the oxidant due to strain effects at the interfaces. Of 

course, pressure dependence of the wet oxide growth rate also needs to be considered. We 

plan to expand these studies accordingly.  

IV. Conclusions  

In this work, the early stages of in-situ wet thermal oxidation process on Si(100)(2xl) are 

studied via APXPS and growth rates are monitored in-situ for the first time. Above the 

temperature of 400oC,a rapid initial increase of oxide growth rate is found, followed by a 

quasi-saturated regime. 

Below 350oC, oxide growth rates are significantly slower without any rapid initial growth 

or saturation limit. The presence of these two regimes and its strong temperature dependence 

above 400'C cannot be explained within the conventional DG model. The lack of Si-H 

bonding states in high-resolution XPS spectra at temperatures above 425"C is consistent 

with previous works reporting hydrogen desorption on Si surface. Finally, the further 

application of APXPS to problems of interest in semiconductor technology is most 

promising. For example, future studies with a higher luminosity spectrometer and better 

multi-channel detection which we are planning should make it possible to resolve all 

oxidations states as a function of time.  
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Figure Captions

Figure 1 - Comparison of Si 2p spectra after a 30-minute oxidation at 100 mTorr,

normalized to the SiO peak intensity. Both a strong oxidation enhancement and a

slight Sia* peak shift to higher binding energy can be observed above 400oc.

Figure 2 - High Resolution XPS scans at 450oc (top) and 250"c (bottom), after a
30 minute oxidation at 100 mTorr. Spectra were fit using 6 doublets conesponding
to SiO, 4 oxidation states and the Si-H component at l00ev visible only at lower
temperatures

Figure -i -Crowth rate evolution at seven different temperatures. This plot again
illustrates the strong oxide formation enhancement above 400.c.

Tables

Table I - Growth rates calculated from least-square fits to the quasi-saturation

regimes of Fig. 3, which begin at the temperatures indicated by the arrows in the

frgure.

Temperature (oC) 400 425 450 500

Slope 2.12 Nhr 2.88 A /hr 6.12 A lhr 12.6 A lhr
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hv = 350eV

Si wet oxidation
100mTorr - 30 min.
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