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The dihadron fragmentation fun
tion and its evolutionA. Majumder and Xin-Nian WangNu
lear S
ien
e Division,Lawren
e Berkeley National Laboratory1 Cy
lotron road, Berkeley, CA 94720(Dated: April 27, 2006)Dihadron fragmentation fun
tions and their evolution are studied in the pro
ess of e+e� annihi-lation. Under the 
ollinear fa
torization approximation and fa
ilitated by the 
ut-vertex te
hnique,the two hadron in
lusive 
ross se
tion at leading order (LO) is shown to fa
torize into a short dis-tan
e parton 
ross se
tion and a long distan
e dihadron fragmentation fun
tion. We provide thede�nition of su
h a dihadron fragmentation fun
tion in terms of parton matrix elements and deriveits DGLAP evolution equation at leading log. The evolution equation for the non-singlet quark frag-mentation fun
tion is solved numeri
ally with a simple ansatz for the initial 
ondition and resultsare presented for 
ases of physi
al interest.PACS numbers: 13.66.B
, 25.75.Gz, 11.15.BtI. INTRODUCTIONLatti
e QCD 
al
ulations [1℄ predi
t a phase transitionfrom a hadroni
 gas to a quark gluon plasma (QGP) atvery high energy densities in whi
h quarks and gluons areno longer 
on�ned to the size of individual hadrons. To
reate su
h a dense and hot matter, heavy ions are a
-
elerated to extremely high energies to 
ollide with ea
hother. If formed in su
h heavy-ion 
ollisions, the QGP israther short lived and hadronizes qui
kly into a plethoraof mesons and baryons. Hen
e, the existen
e of su
ha state in the history of a given 
ollision must be sur-mised through a variety of indire
t probes. One of themost promising signatures has been that of jet quen
hing[2℄, whi
h leads to the suppression of high pT parti
lesemanating from su
h 
ollisions. Su
h jet quen
hing phe-nomena have been among the most striking experimen-tal dis
overies from the Relativisti
 Heavy Ion Collider(RHIC) at Brookhaven National Laboratory. Not onlyhas the suppression of single in
lusive high pT hadronspe
tra been observed [3℄, but also the disappearan
e ofba
k-to-ba
k 
orrelations of high pT hadrons has beennoted [4℄. Both phenomena and the observed azimuthalanisotropy of high pT hadron spe
tra are qualitatively
onsistent with the pi
ture of parton energy loss thatleads to jet quen
hing. This is indi
ative of the forma-tion of a hot mediumwhi
h is opaque to energeti
 partonsand has a parton density about 30 times higher than ina 
old heavy nu
leus.In the investigation of jet suppression, 
orrelations be-tween two high pT hadrons in azimuthal angle are used tostudy the 
hange of jet stru
ture [4℄. While the ba
k-to-ba
k 
orrelations are suppressed in 
entral Au+Au 
ol-lisions, indi
ating parton energy loss, the same-side 
or-relations remain approximately the same as in p+ p andd+Au 
ollisions. Given the experimental kinemati
s, thisis 
onsidered as an indi
ation of parton hadronizationoutside the medium. However, sin
e the same-side 
or-relation 
orresponds to two-hadron distribution within asingle jet, the observed phenomenon is highly nontriv-

ial. To answer the question as to why a parton with aredu
ed energy would give the same two-hadron distri-bution, one has to take a 
loser look at the single anddouble hadron fragmentation fun
tions and their modi-�
ation in medium. In this paper we take the �rst stepby studying the dihadron fragmentation fun
tions in thepro
ess of e+e� annihilations.In
lusive hadron produ
tion 
ross se
tions in e+e� 
ol-lisions have turned out to be one of the many su

ess-ful predi
tions of perturbative QCD [5, 6, 7℄. For re-a
tions at an energy s
ale mu
h above �QCD one 
anfa
torize the 
ross se
tion into a short-distan
e par-ton 
ross se
tion whi
h is 
omputable order by orderas a series in �s(Q2); and a long-distan
e phenomeno-logi
al obje
t (the single hadron in
lusive fragmenta-tion fun
tion) whi
h 
ontains the non-perturbative in-formation of parton hadronization [8℄. These fragmen-tation fun
tions 
an be de�ned in an operator formal-ism [9℄ and hen
e are valid beyond the perturbativetheory. They, however, 
annot be 
al
ulated pertur-batively and have to be, instead, inferred from experi-ments. The de�nition of these fun
tions a�ords them themantle of being universal or pro
ess-independent. On
emeasured in one pro
ess, e.g. e+e� annihilation, they
an be applied to another, e.g. deep inelasti
 s
atter-ing or p + p 
ollisions, and therein lies the predi
tivepower. Another 
ontribution of pQCD rests in the fa
tthat on
e these fun
tions are measured at a given en-ergy s
ale, they 
an be predi
ted for all other energys
ales via the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi(DGLAP) evolution equations [10, 11, 12℄.The single in
lusive fragmentation fun
tion Dhq (z;Q2)
an be interpreted as a multipli
ity distribution forhadrons of type h with a longitudinalmomentumfra
tionz that materialize from a fragmenting parton of 
avourq. One 
an have, in prin
iple, an n-hadron fragmen-tation fun
tion Dh1 ;h2;:::hnq (z1; z2; :::zn; Q2) whi
h 
ountsthe number of hadrons of type h1; h2; :::hn with mo-mentum fra
tions z1; z2; :::zn materializing from a frag-menting parton q. In this arti
le, we will be 
on-
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2
erned with the double in
lusive fragmentation fun
tionDh1 ;h2q (z1; z2; Q2) or the dihadron fragmentation fun
-tion. The operator de�nition of this fun
tion is notmerely a trivial extension of the single hadron 
ase; thereare no straightforward sum rules 
onne
ting it to sin-gle in
lusive fragmentation fun
tions. Similar fun
tionshave been 
onsidered previously [13, 14, 15℄. However,su
h formulations 
onsidered the double fragmentationfun
tion with a �xed angle Æ (or a �xed tranverse mo-mentum di�eren
e qT ) between the two hadrons. For alarge enough 
hoi
e of Æ (or qT ) the dominant 
ontribu-tion to Dh1 ;h2q (z1; z2; Æ; Q2) was postulated to emanatefrom a pro
ess where the fragmenting parton had un-dergone a split into two partons whi
h then fragmentedindependently. This formulation, however, requires Æ (orqT ) to be large enough that the splitting pro
ess may be
al
ulated in perturbation theory. In our formulation,the internal angle Æ (or relative momentum qT ) will beexpli
itly integrated over. In this regard, our 
al
ula-tions are similar in spirit to those of Ref. [16℄. In thate�ort, general evolution equations for n-hadron fragmen-tation fun
tions were motivated, and an algebrai
 solu-tion of the moments of the fragmentation fun
tions wasobtained. In none of the previous studies, however, hasan attempt been made to generalize the operator de�ni-tion of the fragmentation fun
tion from one hadron tomany hadrons. Evaluation of the n-hadron produ
tion
ross se
tion at leading order (LO) and leading twist al-lows one to analyti
ally de�ne su
h a fun
tion. Evalua-tion of 
orre
tions to the same 
ross se
tion at leading log(LL) and leading twist allows one to derive the evolutionequations for su
h fun
tions. This is the obje
tive of the
urrent study. To the knowledge of the authors, no su
h
al
ulation has hitherto been attempted.Our eventual goal is to derive the mediummodi�
ationto the dihadron fragmentation fun
tion as the fragment-ing parton propagates through the medium. As shownin the 
ase of single hadron fragmentation fun
tions [17℄,the medium modi�
ation of the fragmentation fun
tiondue to multiple s
attering and indu
ed gluon radiationresembles very mu
h that of radiative 
orre
tions due togluon bremsstrahlung in va
uum. Therefore, the study ofDGLAP evolution of dihadron fragmentation fun
tions inthis paper 
an already provide us hints of what one mayexpe
t for medium modi�
ations.The remaining se
tions are organized as follows: inSe
. II we present a general dis
ussion of the doublefragmentation fun
tion. We outline how su
h a fun
tionmay be isolated in the expression for a double di�erentialin
lusive 
ross se
tion and dis
uss the possible nature ofits evolution equations. In Se
. III we begin with theS-matrix expression for the double di�erential 
ross se
-tion for the produ
tion of two hadrons in e+e� 
ollisionsat leading order (LO); we then fa
torize the expressionat leading twist into the 
onventional hard part and thedouble fragmentation fun
tion. We also derive the rulesfor su
h an obje
t in the 
ut-vertex te
hnique of Mueller.In Se
. IV we write down the double di�erential 
ross

se
tion at next-to-leading order (NLO) and on
e againfa
torize it at leading twist into the 
onventional hardpart and NLO 
orre
tion to the fragmentation fun
tion.Using these we derive the DGLAP [10, 11, 12℄ evolutionequations for the double fragmentation fun
tions. In Se
.V we fo
us on the evolution equation for the non-singlet(NS) quark fragmentation fun
tion and solve its evolu-tion equation numeri
ally. Finally in Se
. VI we dis
ussthe results of our 
al
ulation and present our 
on
lusions.II. THE PARTON MODELIn this se
tion, we present a general dis
ussion of theproperties of a dihadron fragmentation fun
tion withina parton-model-like pi
ture with 
ollinear fa
torization.However, all our assumptions will be demonstrated tohold expli
itly in an operator formalism at leading logand leading twist in the subsequent se
tions.We 
onsider the following semi-in
lusive pro
esse+ + e� ! 
� ! h1 + h2 +Xof e+e� annihilation. We 
onsider two-jet events whereboth the identi�ed hadrons h1 and h2 emanate from thesame jet. At leading order in the strong 
oupling thiso

urs from the 
onversion of the virtual photon into aba
k-to-ba
k quark and antiquark pair whi
h fragmentinto two jets of hadrons.In this s
enario, at a large Q2 of the rea
tion, onemay fa
torize the 
ross se
tion of single in
lusive hadronprodu
tion as [18℄d�dz = Xq �q�q0 �Dhq (z) +Dh�q (z)� : (1)with Dhq (z) and Dh�q (z) as the single in
lusive quark frag-mentation fun
tions. The total 
ross se
tion for the an-nihilation of an ele
tron positron pair to a quark and ananti-quark, �q�q0 at leading order is�q�q0 = e2qN
 4��23s : (2)Here, eq is the fra
tional 
harge of the quark in units of anele
tron 
harge, s is the square of 
enter of mass energyof the e+e� pair, and N
 = 3 is the number of 
olors inthe fundamental representation of QCD. The fra
tionalmomentum z represents the the light-
one momentumfra
tion of the hadrons to the parent partons, i.e.,z = ph � np � n ;where we use the notation of bold fa
e letters rep-resenting four-ve
tors. The lightlike four-ve
tor n �[n+; n�; n?℄ = [0; 1; 0℄ is taken 
onjugate to a given mo-mentum, as yet unspe
i�ed.



3Similarly, one 
an expe
t to obtain the two-hadron in-
lusive 
ross se
tion from Eq. (1) by repla
ing the singlein
lusive fragmentation fun
tions Dhq (z1) with the doublein
lusive fun
tions Dh1h2q (z1; z2),d2�dz1dz2 =Xq �q�q0 hDh1h2q (z1; z2) +Dh1h2�q (z1; z2)i : (3)We will not dis
uss 
ases in whi
h ea
h of the two hadronsemerges independently from ea
h of the ba
k-to-ba
kquark and antiquark jets.In the parton model [18℄, at NLO with a single gluonradiative 
orre
tion, the two hadron in
lusive 
ross se
-tion in e+e� annihilation 
an be expressed as a 
onvolu-tion of the fragmentation fun
tions with the di�erentialpartoni
 
ross se
tions (see Se
. 3.3 of Ref. [18℄),d2�(z1; z2; Q2) = �d�qdy � dyDh1 ;h2q (x1; x2)dx1dx2+ �d��qdy � dyDh1 ;h2�q (x1; x2)dx1dx2+ �d�gdy � dyDh1;h2g (x1; x2)dx1dx2+ �d�gqdy �dy �Dh1g (x1)Dh2q (x2)+(h1; z1)! (h2; z2)℄ dx1dx2+ �d�g�qdy �dy hDh1g (x1)Dh2�q (x2)+(h1; z1)! (h2; z2)℄ dx1dx2: (4)There are two distin
t types of 
ontributions in theabove equation. The �rst one is determined by thetwo-hadron fragmentation fun
tions of single partonsthat have the pQCD di�erential 
ross se
tions, d�q=dy,d��q=dy, d�g=dy, and momentum fra
tion y. The se
ond
ontribution 
orresponds to two, almost 
ollinear, par-tons (a gluon and a quark or antiquark with pQCD 
rossse
tions d�gq=dy and d�g�q=dy) splitting from the sameparent parton and then fragmenting independently intohadrons. In this 
ase, the quark (antiquark) 
arries mo-mentum fra
tion y and the gluon 
arries 1 � y. One ofthe identi�ed hadrons 
omes from ea
h of these partons.The two hadrons h1 and h2 have momentum fra
tionsx1 and x2 of their immediate parent parton whi
h itself isendowed with a momemtum fra
tion y or 1�y. Relatingthe inside parton variables x1; x2; y to the outside hadronvariables we obtainx1 = z1=y; x2 = z2=yfor the �rst three terms andx1 = z1=y; x2 = z2=(1� y)for the last two terms. Using the pQCD partoni
 
rossse
tions in the massive gluon s
heme [18℄, one 
an obtain

the double di�erential 
ross se
tion for the produ
tion oftwo hadrons with momentum fra
tions z1; z2 as,d2�dz1dz2 = Xq �q�q0 "Z 1z1+z2 dyy2(�1 + �s� �Æ(1� y)+ �s2�Pq!qg(y) log(Q2=m2g) + �sfe+e�q (y))� nDh1 ;h2q (z1=y; z2=y) +Dh1 ;h2�q (z1=y; z2=y)o+ 2(�s2�Pq!gq(y) log(Q2=m2g) + �sfe+e�g (y))� Dh1;h2g (z1=y; z2=y) + Z 1�z2z1 dyy(1 � y)� �s2� P̂q!qg(y) log(Q2=m2g)� nDh1q (z1=y)Dh2g (z2=(1� y))+ Dh1�q (z1=y)Dh2g (z2=(1� y))o#+ 1! 2: (5)Here the swit
h between the indi
es 1! 2 is only meantfor the last y integration. The P (y) fun
tions are theregular splitting fun
tions whi
h 
ontain both the realand virtual 
ontributions and thus have no infrared di-vergen
es. The P̂ (y) fun
tions 
ontain no 
ontributionsfrom virtual diagrams. The f(y)'s are the s
heme de-pendent fun
tions obtained in the massive gluon s
heme,where mg is the �
titious gluon mass introdu
ed to regu-late the 
ollinear divergen
es. In the subsequent dis
us-sion we will fo
us on the leading log (LL) pie
e of theabove expression. Thus one 
an drop the s
heme depen-dent f fun
tions.Note that up to this point we have simply retra
ed thesequen
e of steps in the evaluation of the radiative 
or-re
tions to the single in
lusive fragmentation fun
tionsin the parton model. What is new in the 
ase of twohadron in
lusive 
ross se
tion is the 
ontribution fromthe splitting into a quark and gluon followed by indepen-dent fragmentation. The log(Q2=m2g) in this 
ontributionoriginates from an integration over the transverse mo-mentum q? of the quark and gluon emanating from thesplit. For very small values of q?, other higher order andnonperturbative pro
esses be
ome important that will in-validate the pi
ture of independent fragmentation of thetwo partons. For q? >> �QCD, however, the higherorder 
orre
tions will be suppressed and the quark andgluon will fragment in
oherently in LL approximation(this was �rst pointed out in Ref. [15℄). A simple proofof this statement has been in
luded in the Appendix. Inthis paper, we introdu
e a 
ut-o� s
ale �? that separatestwo regimes of two-parton fragmentation a

ording to thevalue of q?: independent fragmentation for q? > �? and
oherent fragmentation for q? < �?. Unlike the fa
tor-ization s
ales that we will dis
uss shortly, �? is not intro-du
ed to renormalize the fragmentation fun
tions but to



4de�ne the perturbative (or non-perturbative) part of thedihadron fragmentation fun
tions. It is quite analogousto the 
one-size of jet de�nitions [19℄.To simplify the dis
ussion in this paper, we will 
on-
entrate on the non-singlet fragmentation fun
tions:Dh1;h2NS (z1; z2) = Dh1 ;h2q (z1; z2)�Dh1 ;h2�q (z1; z2): (6)We also use the following 
onvolution notations,A �B��ba = Z ba dyy2A(z1=y; z2=y)B(y)A��B��ba = Z ba dyy(1 � y)A(z1=y; z2=(1� y))B(y):The bare fragmentation fun
tions Dq;�q;g(z1; z2) inEqs. (4) and (5) are not as yet physi
al, measurable quan-tities and are s
heme dependent, sin
e the 
ross se
tionsexpressed in terms of them 
ontain 
ollinear divergen
es.One 
an however introdu
e renormalized fragmentationfun
tions su
h that the double in
lusive 
ross se
tion 
anbe fa
torized in the form of Eq. (3) and is free of 
ollineardivergen
es.Fa
toring out the e+e� annihilation 
ross se
tion inEq. (5), we are left with the s
ale dependent physi
alfragmentation fun
tions whi
h should be free of 
ollineardivergen
es. The \non-singlet" physi
al fragmentationfun
tions are,Dh1;h2NS (z1; z2; Q2) = Dh1 ;h2NS (7)+Dh1 ;h2NS � �s2�Pq!qg����1z1+z2 log(Q2=m2g)+�Dh1NSDh2g ����s2� P̂q!qg����1�z2z1 log(Q2=�2?)+�Dh1NSDh2g ����s2� P̂q!qg����1�z2z1 log(�2?=m2g)+1! 2Here the swit
h 1! 2 is meant solely for the se
ond andthird term. Su
h ex
hange will be made impli
it in therest of this paper. We will also drop the limits of the
onvolutions in the notation for brevity. In the 
ase ofindependent fragmentation, we have also split the expres-sions into a term that solely in
ludes 
ontributions withq? above the s
ale �?. The se
ond pie
e 
ontains 
on-tributions below �? and thus re
eives large 
orre
tionsfrom higher order and non-perturbative pro
esses. Thispie
e will have to be absorbed into a rede�nition of thebare dihadron fragmentation fun
tion.We now have to introdu
e the fa
torization s
ale �and rede�ne the bare dihadron fragmentation fun
tion interms of a renormalized one and the single fragmentation

fun
tions, Dh1 ;h2NS = (8)�Dh1 ;h2NS (�; �?) � 1 + �s2�Pq!qg log(m2g=�2) + :::!+Dh1NSDh2g �� �s2�Pq!qg log(m2g=�2?) + :::!:Note that the log in the se
ond term 
an be separatedinto two pie
eslog(m2g=�2?) = log(m2g=�2) + log(�2=�2?); (9)with the �rst one 
ontaining the 
ollinear divergen
e andthe se
ond pie
e de�ning the independent fragmentationof two 
ollinear partons. In the 
ase where � < �?, weessentially have a fun
tion that depends on two s
ales:the 
ollinear divergen
es that are extra
ted from the se
-ond term in Eq. (8) 
annot be fa
torized out at a s
alebelow �?. However, we may 
hose to have � > �?, inwhi
h 
ase the se
ond pie
e in Eq. (9) is a �nite 
onstantthat may be simply reabsorbed into the de�nition of therenormalized fragmentation fun
tion. With the fa
tor-ization s
ale � 
hosen above the physi
al s
ale �?, wemay now express Eq. (8) asDh1 ;h2NS = (10)�Dh1 ;h2NS (�) � 1 + �s2�Pq!qg log(m2g=�2) + :::!+Dh1NSDh2g �� �s2�Pq!qg log(m2g=�2) + :::!:In what follows we will always 
ompute in the regionwhere � > �?.We may now substitute Eq. (10) into Eq. (7) and 
on-
entrate on the leading order and leading log (LL) se
torof the fragmentation fun
tions (i.e. we only keep termsto order �s(Q2) log(Q2)) to getDh1 ;h2NS (z1; z2; Q2) = (11)�Dh1 ;h2NS (�) � 1 + �s2�Pq!qg log(Q2=�2) + :::!+Dh1NSDh2g �� �s2�Pq!qg log(Q2=�2) + :::!:The above dihadron fragmentation fun
tion in the NLOstill 
ontains the bare single fragmentation fun
tions inthe 
ontribution from two independent parton fragmen-tation.



5

FIG. 1: Diagrams to be resummed iteratively to obtain the evolution of the fragmentation fun
tions.If we 
onsider higher order pro
esses in whi
h an ad-ditional gluon radiation takes pla
e after the split butbefore independent fragmentation, as shown in Fig. 1,another 
ollinear divergen
e will arise. This is exa
tlythe same as in the NLO 
orre
tion to the single in
lusivefragmentation fun
tions. One has to introdu
e renormal-ized single hadron fragmentation fun
tions at a fa
toriza-tion s
ale �1Dh1NS = �Dh1NS(�1)
�1+�s2�Pq!qg log(m2g=�21) + :::�;(12)where, the 
 indi
ates the regular 
onvolution notation,i.e. A 
 B = R dyy A(z=y)B(y). In addition, the renor-malized gluon fragmentation fun
tion is de�ned as,
Dh1g = �Dh1g (�21)
 �1 + �s2�Pg!gg log(m2g=�21) + :::�+ Pq �Dh1q=�q(�21)
 �s2��Pq!qg log(m2g=�21) + :::�;(13)where �Dh1q=�q represents the quark or antiquark fragmen-tation fun
tion and the sum in
ludes all 
avours. Thefa
torization s
ale �1 for the single fragmentation fun
-tions needs not be the same as the fa
torization s
ale fordouble fragmentation fun
tions.With both the renormalized single and double hadronfragmentation fun
tions, we obtain the leading log andNLO expressions of the double hadron fragmentation



6fun
tionsDh1 ;h2NS (z1; z2; Q2) = (14)�Dh1 ;h2NS (�) � 1 + �s2�Pq!qg log(Q2=�2) + :::!+ �Dh1NS(�1) �Dh2g (�1)�� �s2�Pq!qg log(Q2=�2) + :::!:In the above dis
ussion we have set Q2 to be large su
hthat there exists a hierar
hy of s
ales �2QCD << �2? <<Q2. The above fa
torization is valid in the regime inwhi
h the fragmentation fun
tions are measured at as
ale � su
h that �? < � << Q. In this limit we mayalso set �1 = � to de�ne both single and double frag-mentation fun
tions at the same s
ale. Note that thesingle fragmentation fun
tions at the new s
ale � di�erfrom those at �1 at higher order in �s and thus the 
or-re
tion due to these may be ignored in the leading logexpressions for large enough Q2.The remaining task in our parton model evaluation ofthe double hadron fragmentation fun
tion is to iteratethe radiative pro
ess as shown in Fig. 1. Ea
h of the
ir
ular blobs represents a fragmentation fun
tion at thes
ale �. Di�erentiating the series with respe
t to log(Q2)followed by a reorganization of the various terms leads tothe evolution equation:�Dh1h2NS (Q2)� logQ2 = �s2�"Pq!qg �Dh1h2NS (Q2)+ P̂q!qg��Dh1NS (Q2)Dh2g (Q2) + 1! 2#(15)Within the framework of the parton model we 
an pi
-ture the pro
ess as the free propagation of a parton fol-lowed by its fragmentation into hadrons of whi
h twoare identi�ed. Fragmentation may be pre
eded by theradiation of multiple soft gluons (this is the top line inFig. 1). O

asionally the parent parton undergoes a semi-hard split into two o�spring partons whi
h then propa-gate freely of ea
h other and then fragment independentlyinto hadrons and one hadron from ea
h of these o�springis identi�ed. Prior to their fragmentation, the o�springmay radiate multiple soft gluons as well.The ex
er
ise in this se
tion is based on the validity ofour assumptions about the nature of the fragmentationpro
ess, espe
ially on the validity of Eqs. (3,5). It wasassumed that in progressing from single in
lusive to dou-ble in
lusive 
ross se
tions the parton model dynami
swould remain the single leading behaviour and more im-portantly would lead to Eq. (5). Su
h a proof exists forthe single in
lusive fragmentation fun
tions that requiresan exa
t operator de�nition of the single fragmentationfun
tions. One 
an demonstrate both the fa
torized formof Eq. (1) and the evolution equations of the single in
lu-sive fragmentation fun
tions, exa
tly, as the leading log

behaviour at large Q2 in an operator formalism(see Refs.[8, 9, 20℄ and Ref. [23℄). Mounting su
h a proof for thedihadron fragmentation fun
tions will require us to pro-vide a de�nition of the dihadron fragmentation fun
tionin the operator formalism. This will be the subje
t of thenext se
tion. We will extend the 
ut-vertex formalism ofMueller [9, 20℄ to dihadron fragmentation in this paper.The fa
torization of the NLO expressions at leading twistand leading log will be demonstrated in Se
. IV.III. THE SINGLE AND DOUBLEFRAGMENTION FUNCTIONSIn the previous se
tion, we made use of the partonmodel [7℄ to motivate a double in
lusive fragmentationfun
tion and assumed a fa
torized form as the leadingbehaviour of the two hadron in
lusive 
ross se
tions. Toprove the fa
torized behaviour we need to �rst obtain a
onsistent de�nition of the dihadron fragmentation fun
-tion.We begin with the matrix element for the ele
tronpositron annihilation into a given state of hadrons in thesingle photon approximation,Me+e�!Shad = e2 Z d4yhShad jJ�(y)j0i� �ig��(k1 + k2)2 e�i(k1+k2)�y �v(k2)
�u(k1): (16)In the above equation, J�(y) =Pq eq � q(y)
� q(y) is thehadroni
 eletromagneti
 
urrent and k1;k2 are the mo-mentum four-ve
tors of the ele
tron and positron. Herethe sum over the number of 
olors in the fundamentalrepresentation of QCD is implied. Squaring the matrixelement, summing over all �nal states of hadrons and av-eraging over all initial spins of hadrons, one obtains thetotal 
ross se
tion for e+e�annihilation into hadrons,� = 12s XShad Z d3pf2Ef (2�)3 (2�)4Æ(k1 + k2 � PShad )� e44(q2)2L��h0jJ�(0)jShadihShad jJ�(0)j0i= e42sq4 L��W ��4 ; (17)where L�� is the leptoni
 tensor andW �� is the hadroni
tensor. The four-momentum of the virtual photon is q =k1 + k2 � (Q; 0; 0; 0) and the Mandelstam variable s =q2 = Q2. The sum over Shad in
ludes both the sum ofthe 
omplete set of states and the phase spa
e integrationQf2Shad d3pf=2Ef(2�)3.One 
an evaluate the single in
lusive 
ross se
tion bysumming over all possible hadroni
 �nal states that 
on-tain the identi�ed hadron h. In the leading order andleading twist in a 
ollinear approximation, one 
an obtain



7Eq. (1). In a light-
one gauge (n �A = 0), the operatorexpression for the single in
lusive fragmentation fun
tionat leading twist is obtained as [9, 20, 21℄,Dhq(�q)(zh) = z3h2 Tq(�q)(zh)= z3h4 Z d4p(2�)4 Æ�zh � ph � np � n �� Tr� 
 � nph �n T̂q(�q)(p;ph)�; (18)where the the Dira
 operators T̂q(�q)(p;ph) are given by(T̂q)�;�(p;ph) = Z d4x XShad�1h0j �(0)jph; Shad � 1i� hph; S � 1j � �(x)j0ieip�x (19)(T̂�q)�;�(p;ph) = Z d4x XShad�1h0j � �(0)jph; Shad � 1i� hph; Shad � 1j �(x)j0ieip�x: (20)Here, the sums are taken over all physi
al �nal statesof hadrons, whi
h always 
ontain, at least, the singlehadroni
 state with momentum ph. In this 
ase n is
hosen su
h that its spatial 
omponents are antiparallelto the spatial 
omponents of the observed hadron. Thisimplies n � ph = p+h = (p0h + j~phj)=2. In our 
hoi
e oflight-
one momenta p� = p0 � pz. The gauge links re-quired to make this expression gauge invariant have beensuppressed as they do not 
ontribute to the leading twistfragmentation fun
tions in light-
one gauge.The fragmentation fun
tions 
an also be reexpressedin the 
ut-vertex te
hnique of Mueller. These representa powerful 
omputational tool that may be used to 
al
u-late in
lusive 
ross se
tions and the s
ale dependen
e ofthese fun
tions in perturbation theory in a diagramati
languange. The Feynman diagrams illustrating the lead-ing order expressions for the single in
lusive fragmen-tation fun
tions are shown in Fig. 2. In this Feynmandiagram the rule for the bare quark 
ut-vertex is
 � n2ph �nÆ�zh � ph � np �n �: (21)The derivation of operator de�nitions for dihadron frag-metation fun
tions and the extension of the 
ut-vertexte
hnique to in
orporate these fun
tions is the fo
us ofthis se
tion.We will 
on
entrate on the two-jet events ine+e�annihilation and are interested only in two hadronprodu
tion o� one single jet. The fate of the \ba
k-side"jet will not be dwelled over here. We assume that thesum over all hadroni
 states in W �� 
an be simpli�edinto two 
omplete sets of states and that ea
h overlapsindependently with the quark and antiquark jet. This as-sumption negle
ts the interferen
e between the two jetsand is valid in leading log and leading twist. We also as-sume the duality between the 
omplete hadroni
 states
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γ+

2p+
h
δ



z −
p+
h

p+





p p

ph ph

FIG. 2: 
ut-vertex for quark fragmention fun
tion at LO.and partoni
 states. Thus the sum over hadroni
 statesin the \ba
k-side" jet will be repla
ed by partoni
 states.Under this assumption, we evaluate the hadroni
 
urrentoperator, order by order in �s, by expanding the QCDintera
tion Hamiltonian in the intera
tion pi
ture. In theleading order (LO), one obtains,W�� = XShad�2Xq e2q Z d3p1d3p24E1E2(2�)6Z d3k2Ek(2�)3 (2�)4Æ4(q� p1 � p2 � k�Xf2Shad�2pf )� h0j � q(0)
� q(0)jk; p1; p2; Shad � 2i� hk; p1; p2; Shad � 2j � q(0)
� q(0)j0i: (22)In the above equation, Shad is a 
omplete set of hadroni
states. In the remaining dis
ussion we will drop the sub-s
ript (had). We have extra
ted two parti
ular hadroni
state sums, labeled as p1; p2, from the full sum over statesS. The hadroni
 tensor may be represented by the Feyn-man diagram in Fig. 3.On Fourier de
omposition of one of the quark or an-tiquark operators, followed by a sum over all spins ofthe outgoing antiquark (quark) state k, we obtain the
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q

k

p

p1

p2

FIG. 3: The leading order Feynman diagram 
ontributing tothe double in
lusive fragmentation fun
tion.hadroni
 tensor as,W�� = Xq;S�2 e2q Z d3p1d3p24E1E2(2�)6 (23)Z d4k(2�)42�Æ+(k2)(2�)4Æ4(q � p1 � p2 � k � pS�2)"nh0j � q(0)jp1; p2; S � 2i
� 6k
�hp1; p2; S � 2j q(0)j0io+n
�h0j (0)jp1; p2; S � 2ihp1; p2; S � 2j � (0)j0i
� 6ko#:One may rewrite the Æ�fun
tion as a four-spa
e inte-gration of an exponent exp(�ip � x) that in turn 
anbe used to transform the quark wavefun
tion operator (0) !  (x). A shift in the d4k integration 
an be per-formed i.e. k � q � p. Summing over the spins (and
olors) of all the �nal (parton) states we obtain the gen-eral form of the hadroni
 tensor asW�� = N
Xq e2q Z d3p1d3p24E1E2(2�)6 Z d4p(2�)4 (24)2�Æ+((q � p)2)"TrnT̂�q(p; p1; p2)
�(6q� 6p)
�o+ TrnT̂q(p; p1; p2)
�(6q� 6p)
�o#;

where the parton-double-hadron overlap matri
es aregiven similarly as for single fragmentation fun
tions ashT̂�q(p; p1; p2)i�� = Z d4xeip�xXS�2h0j � �q (x)jp1p2S � 2ihp1p2S � 2j �q (0)j0i (25)and hT̂q(p; p1; p2)i�� = Z d4xeip�xXS�2h0j �q (x)jp1p2S � 2ihp1p2S � 2j � �q (0)j0i; (26)where the two quark �eld operators have the same 
olorindex and average over 
olors is expli
itly implied.Up to this point the derivation of the fa
torized dou-ble in
lusive fragmentation fun
tion has followed a pathnot entirely dissimilar to that of a single fragmentationfun
tion. At this point one may introdu
e the light-
onevariables and their ratios,z1 = p+1 =p+ , z2 = p+2 =p+ ,and z = z1 + z2 = (p+1 + p+2 )=p+ � p+h =p+. Where phis the total momentum of the pair of hadrons that areidenti�ed. We now take the 
ollinear approximation thatthe hadron momenta p1; p2; ph are almost 
ollinear withrespe
t to the quark (antiquark) momentum at high en-ergies and are thus dominated by their + 
omponentsfor light-
one ve
tor n 
hosen in the dire
tion of the out-going quark or antiquark. Essentially, p+1 >> p�1 ; p1?and the same is true for p2 and ph. The overlap ma-tri
es T̂�q; T̂q have a Dira
 matrix stru
ture and hen
e
an be de
omposed in a basis of produ
ts of 
 matri-
es (1; 
�; ���; 
5
�; 
5). The only term of this basis tosurvive is 
�: even 
ombinations are set to zero in thetra
e and 
ombinations 
ontaining 
5 vanish under a spinsum. As T̂�q ; T̂q are s
alers and only depend on the threealmost 
ollinear momenta, we obtain at leading twist thefollowing de
omposition of the overlap matri
es:T̂q(p; p1; p2) = 6ph2 Tq(p; p1; p2) orTq(p; p1; p2) = Tr[6nT̂q(p; p1; p2)℄2n � ph ; (27)where Tq(p; p1; p2) is a s
alar fun
tion. The entire Dira
stru
ture has been extra
ted into the 
 matrix.With the aid of Æ�fun
tions, we 
an introdu
e thede�nition of the fra
tional momenta z1 and z2 into the



9hadroni
 tensor:W�� = N
 Z 10 dz1dz2�(1 � z1 � z2) Z d3p1d3p24E1E2(2�)6(28)2�Æ+(q2 � 2q � phz )Xq e2q"Trn 6ph2 
�� 6q � 6phz �
�o� Z d4p(2�)4T�q(p; ; p1; p2)Æ(z1 � p+1p+ )Æ(z2 � p+2p+ )+ Trn 6ph2 
�� 6q � 6phz �
�oZ d4p(2�)4Tq(p; ; p1; p2)� Æ(z1 � p+1p+ )Æ(z2 � p+2p+ )#:In 
ollinear approximation, we expand the hard partH0�� = Trh 6ph2 
�� 6q� 6p�
�iÆ+((q � p)2): (29)in the transverse momentumof the hadrons ph? and takeonly the leading term H0��(p+) ' H0��(p+ = p+h =z)+ :::.This approximation allows us to fa
tor out the hardpart from the d4p integral. This is the �rst step in thefa
torization of the double hadron in
lusive 
ross se
-tion. Based on the 
ollinear approximation we have alsodropped the term p2 or p2h=z2 from the argument of theÆ+ fun
tion (i.e. q2 � 2q � p >> p2). Given the light-
one stru
ture of the four-ve
tor p a further simpli
ationof the argument of the Æ�fun
tion may be obtained:q2 � 2q � p = q+q� � (q+p� + q�p+ � q? � p?)= Q2 � �Q2 p� + Qp+� ; as q? = 0= Q2 �Qp+ = Q2 � Qp+hz ; as p� << p+ = p+h =z' q2 � 2q � phz (30)With the above simpli�
ations and reorganization ofarguments in the two internal Æ fun
tions, the hadroni
tensor 
an be written asW��q = N
 Z 10 dz1dz2�(1 � z1 � z2) Z d~p1d~p2 (31)2�Æ+(Q2 � 2Qp+hz )H��� Xq e2q Z d4p(2�)4 �Tq(p; ; p1; p2) + T�q(p; ; p1; p2)�� p+2z1z2 Æ(p+ � p+1z1 )Æ(p+ � p+2z2 );where we have introdu
ed the shorthand notation d~p =d3p=(2�)32Ep. The variable p+ is overdetermined andthus one of the Æ fun
tions a
ts really on the integrationsexternal to d4p. These may be extra
ted and further

reorganized as follows,::: 1z1z2 Z d4p(2�)4 p+2Æ(p+ � p+1z1 )Æ(p+ � p+2z2 ):::= ::: 1z1z2 Æ(p+1z1 � p+2z2 ) Z d4p(2�)4p+2Æ(p+ � p+1z1 ):::= ::: 1z1z2 Æ(p+1z1 � p+h � p+1z2 ) Z d4p(2�)4 p+2Æ(p+ � p+1z1 ):::= ::: 1z1 + z2 Æ(p+1 � p+h z1z1 + z2 ) Z d4p(2�)4p+2Æ(p+ � p+1z1 ):::= :::1z Æ(p+1 � (p+1 + p+2 )z1z ) Z d4p(2�)4 p+2Æ(p+ � p+hz ):::= :::p+h Æ(z2p+1 � z1p+2 ) Z d4p(2�)4 Æ(z � p+hp+ ):::; (32)where z = z1+ z2. Substitution of these expressions intothe hadroni
 tensor W �� followed by a substitution ofW�� ba
k into Eq. (17) leads to the following expressionfor the total 
ross se
tion for e+e�annihilation,� = e4N
Xq e2q Z dz1dz2�(1 � z1 � z2)L��H��(Q)8Q6 z2�Z d~p1d~p22� z2QÆ+(ph � zQ=2)p+h Æ(z2p+1 � z1p+2 )�Z d4p(2�)4 Æ(z � p+hp+ )�Tq(p; p1; p2) + T�q(p; p1; p2)�; (33)where the external Æ�fun
tion has been used to setH0��(ph; Q) � z2QÆ+(ph � zQ=2)H��(Q):The dependen
e of the hard part on hadroni
 variablesis repla
ed with the appropriate partoni
 variables. Dif-ferentiating the above equation with respe
t to z1; z2leads to the double di�erential 
ross se
tion outlined inEq. (3)). Before the extra
tion of the double in
lusivefragmentation fun
tion, some simpli�
ation of the aboveequation is in order. In 
ontrast to the de�nition of thesingle fragmentation fun
tion, there are double hadroni
integrals d3p1; d3p2 and two sets of Æ�fun
tions as op-posed to one. The 
autious reader will note that the over-lap matri
es T̂q(p; p1; p2); T̂�q(p; ; p1; p2) [see Eqs. (25,26)℄are dimensionally di�erent from the overlap matri
esin the de�nition of the single in
lusive fun
tions (seeRef. [21℄).To simplify, we begin with a variable trans-formation. One essentially 
hanges fromthe set [p1x; p1y; p1z; p2x; p2y; p2z℄ to the set[p1; p2; q?; �
m; �
m; �?℄ as illustrated in Fig. 4. This
hoi
e is not entirely arbitrary. The dis
ussion of theNLO in the previous se
tion required us to in
orporatetransverse momenta q? up to a semihard s
ale �? intothe bare fragmentation fun
tion. This parti
ular variabletransformation allows us to isolate the q? integration.The new ve
tor ~ph = ~p1+~p2 has the three 
omponentsof mostly massless four-ve
tors. The requirement that
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eFIG. 4: The variable transform from[p1x; p1y; p1z; p2x; p2y; p2z℄ to [p1; p2; q?; �
m; �
m; �?℄.p+h = p+1 + p+2 is trivially ful�lled. The new \body-�xed"variable q? quanti�es the 
omponent of ~p1 � ~p2 that lieson the plane perpendi
ular to ~ph and �? is the azimuthalangle of ~q? on this plane. The angles �
m and �
m quan-tify the dire
tion of ~ph with respe
t to the e+e�beamdire
tion as the z axis. The Ja
obian for this tranforma-tion is simply J = q?4 (p1 + p2)2;at leading twist. With these new variables one may eas-ily relate the partoni
 variable in the hard part withthe hadroni
 variable ~ph as ~p=z, i.e. the sum of the 3-momenta of the dete
ted hadrons is 
ollinear with the3-momenta of the fragmenting quark or antiquark. Itmay be demonstrated that the 
orre
tions to this state-ment 
ontribute at higher twist. It should be pointedout, in passing, that this is a more a

urate statementthan the assumption of 
ollinearity between the leadinghadron and the fragmenting quark (antiquark) in the 
aseof single fragmentation, as in most 
ases a dominant partof the jet's momenta is 
ontained in the momenta of theleading hadrons.With these new variables we 
an evaluate the innerprodu
t of the leptoni
 tensor and the hard part of thehadroni
 tensor,L��H�� = 4Q4(1 + 
os2 �
m) (34)

and obtain the double di�erential 
ross se
tion asd�dz1dz2 = �(1� z1 � z2)Xq e4e2qN
2s Z dp1dp2(2�)54p1p2d 
os �
md�
mdq?d�? q?4 (p1 + p2)2� z2QÆ+ �ph � zQ2 � p+hz1z2 Æ�p+1z1 � p+2z2 � z2� (1 + 
os2 �
m) Z d4p(2�)4 Æ�z � p+hp+�� �T�q(p; p1; p2) + Tq(p; p1; p2)�: (35)Assuming that the overlap matri
es, T�q(p; p1; p2) andTq(p; p1; p2), are independent of the angles, �
m, �
m and�?, one 
an 
arry out the integrations over these vari-ables. It may on
e again be stipulated that the followingfa
torization is being performed and expe
ted to su

eedonly at high energies and momenta (large Q2 limit). Inthis limit we notep+ ' p �1�O�q2?p2 �� :Hen
e, in the 
ollinear limit p; p+ >> q?, one may sub-stitute p! p+ in the entire integrand. Regardless of thepresen
e of Æ fun
tions it may be demonstrated that the
orre
tion to this approximation is suppressed by at leasta power of Q2. The two remaining Æ�fun
tions externalto the d4p integration, i.e.Æ+�p1 + p2 � zQ2 � Æ�p+1z1 � p+2z2 � ;may be used to evaluate the p1 and p2 integrals. Fa
tor-ing out the LO total e+e�annihilation 
ross se
tion �q�q0 ,we obtain the fa
torized double di�erential 
ross se
tionin a form similar to the stru
ture of Eq. (3) as,d�dz1dz2 = Xq �q�q0 Z q?dq?4(2�)2 z44z1z2 Z d4p(2�)4 (36)� �T�q(p; p1; p2) + Tq(p; p1; p2)�Æ�z � p+hp+� :We thus arrive at the de�nition of the leading orderdouble in
lusive fragmentation fun
tion asDh1;h2q (z1; z2) = Z dq2?8(2�)2 z44z1z2 Z d4p(2�)4 (37)� Tq(p; z1p; z2p)Æ�z � p+hp+� :In 
ut-vertex notation, the dihadron fragmentation fun
-tion may also be expressed by the following equationDh1h2q (z1; z2) = z44z1z2 ~Tq(z1; z2);



11where ~T (z1; z2) is given by the diagram in Fig. 5. Notethat the bare 
ut-vertex has undergone no 
hange as 
om-pared to the single hadron fragmentation fun
tion, ex-
ept it takes as input the sum of the fra
tional momentaz = z1 + z2. The soft hadroni
 se
tor is slightly modi�edby the ex
lusion of two hadroni
 momenta (instead ofone) and the integration of the transverse momenta q?.
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γ+

2p+
h

δ

(
z1 + z2 −

p+
1 +p+

2
p+

)

p p

p1
q⊥

p2

∫ dq2
⊥

4(2π)2
T̂q(p; p1, p2)FIG. 5: The 
ut-vertex representation of the dihadron frag-mentation fun
tion.Note that the de�nition of the dihadron fragmentationfun
tions in their fa
torized form as in Eq. (3) seemsto depend on our 
hoi
e of variable transformation (see.Fig. 4). It may indeed be possible to use a di�erent vari-able transformation and obtain a similar fa
torization.The sole 
onstraint on the 
hoi
e of transformation to beused is based on the fa
torization of the NLO expressionsinto a form similar to that of Eq. (5), with the same def-inition of the double fragmentation fun
tions. We willdemonstrate this in the next se
tion. A se
ond motiva-tion for this 
hoi
e of variables is the ability to isolatethe transverse momentum q?, whi
h is integrated over.In the operator de�nition of the dihadron fragmentationfun
tions, q? is generated non-perturbatively. So we will
all it intrinsi
. The upper limit of integration of thisintrinsi
 q? has not been spe
i�ed in Eq. (37). From ourdis
ussion in the previous se
tion of the parton modeland of the NLO pro
esses in the next se
tion, the up-per limit may be set as �?. We will assume that hadronpairs with the relative transverse momentum q? > �?are generated only perturbatively.

IV. CROSS SECTION AT NLO AND DGLAPEVOLUTIONWith the de�nition of the dihadron fragmentationfun
tions in the operator formalism, whi
h is shown tofa
torize from the hard parton 
ross se
tion in the LO, weare ready to study the DGLAP evolution of the dihadronfragmentation fun
tions by 
omputing the double in
lu-sive 
ross se
tion at next to leading order (NLO). The
al
ulation will also justify the fa
torized form of Eq.(5) and our LO de�nition of the dihadron fragmentationfun
tions.The NLO matrix element of e+e�annihilation pro
ess
an be obtained from the perturbative expansion of theS-matrix with an intera
tion Hamiltonian whi
h in
ludesan intera
tion potential 
orresponding to a quark of 
olorj intera
ting with an antiquark of 
olor i (or visa versa)and a gluon of 
olor a:Hs = igtai;j � i
� jAa� : (38)The tai;j's represent the Gell-Mann matri
es.The DGLAP evolution arises from 
ollinear gluonbremstrahlung in the �nal state of two jet events. Asin the 
ase at LO in the previous se
tion, we 
an againnegle
t the interferen
e between the two jets in eitherthe partoni
 or the hadroni
 level in the leading log andleading twist approximation. Therefore, the sum overall hadroni
 states is de
omposed into the sum over two
omplete sets of hadroni
 states, ea
h overlapping withone of the opposite-moving jets. Invoking the parton-hadron duality, the sum over the hadroni
 states in the\ba
k-side" jet 
an be repla
ed by a sum over partoni
states. Therefore, partoni
 pro
esses within the \ba
k-side" jet will not 
ontribute to the evolution of the frag-mentation fun
tion in the opposite side whi
h has beende�ned within a rather stri
t 
ollinear approximation. Asin the 
ase of single fragmentation fun
tion, we will alsoassume, in addition, that there is no interferen
e betweenthe fragmentation of the leading parton and the radiatedgluon that has a minimum transverse momentum set bythe fa
torization s
ale �.Hen
e, in NLO, the sum over all states may be ex-pressed as jSi = jkq(�q)i � jS � 2;p1p2i: (39)Depending on how di�erent operators are 
ontra
tedwith the outgoing hadroni
 state jS�2i, we may identifythree di�erent 
ases:jS � 2;p1p2i = jS � 2;p1p2i � j(p� l)gi+ jS � 2;p1p2i � j(p� l)�q(q)i+ jS � 1;p1i � jS � 1;p2i: (40)These 
ases di�er in the partoni
 operator that 
ontra
tswith the hadroni
 state. In the above, the parton withmomentum k whi
h pro
eeds in a dire
tion opposite tothat of the identi�ed hadrons alternates between a quark



12and an antiquark. In the rest of this paper, we will al-ways take it as an antiquark in order to fo
us on the quarkfragmentation fun
tion. The 
ase for the antiquark frag-mentation fun
tion will be formally identi
al to that ofthe quark.In the following subse
tions, we will evaluate 
ontri-butions from these di�erent 
ases in detail. Roughlyspeaking, the �rst line of Eq. (40) represents 
ontribu-tions where the fragmenting quark undergoes a split intoa quark and a gluon and the two identi�ed hadrons em-anate from the quark o�spring. The se
ond 
ontributionrepresents the 
ase where both identi�ed hadrons em-anate from the gluon. The last 
ontribution representsthe 
ase where one hadron emanates from ea
h of thequark and gluon o�spring.A. NLO 
ontribution from quark fragmentationPro
eeding with the evaluation of the double di�er-ential 
ross se
tion at next-to-leading order, the fo
usin this subse
tion will be on isolating 
ontributions tothe 
ross se
tion that 
ontain an expli
it expression fora dihadron fragmentation fun
tion of a quark. The out-state in this subse
tion will solely be restri
ted to the�rst line of Eq. (40). The instate is simply that of anin
oming e+e�pair. Insertion of the intera
tion operatordensity T [He+e�
Hq�q
Hq�qg℄, followed by a 
ontra
tionof the outgoing antiquark operator with the states jk�qiand gluon operator with j(p� l)gi, leads to the followingmatrix element:Mi = iXq eqe2gta�vk2
�uk1 g��q2 + i�� hp1p2S � 2j � q(0)j0i(
�(� 6q+ 6 l)
�(q � l)2 + i�+ 
�(6q� 6k)
�(q � k)2 + i�)vs(k)"�a��(p � l)� (2�)4Æ4(q� k� p� l): (41)In the above equation there are two terms with di�er-ernt momentum dependen
es within the 
urly bra
kets.The reader will readily note that the se
ond term is theFeynman rule for the pro
ess indi
ated in the upper panelof Fig. 6, while the other term 
onsists of the Feynmandiagram where the gluon is radiated from the antiquarkline, as shown in the lower panel of Fig. 6.In 
omputing the NLO 
ross se
tion, one may on
eagain fa
torize the 
ross se
tion into a leptoni
 and ahadroni
 pie
e [see Eq. (17)℄. Summing over all �nalstates of the outgoing antiquark, gluon and hadrons fromthe fragmenting quark (besides h1 and h2) followed byan in
orporation of minor simpli�
ations, the hadroni
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k

p1

p2

p1

p2
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p

FIG. 6: The leading log 
ontribution to the NLO modi�
ationof the quark fragmentation fun
tion.tensor may be expressed asW�� = Z d3p1d3p2(2�)64E1E2 Z d4l(2�)4 Z d4p(2�)4 (42)� 2�Æ+((p� l)2)2�Æ+((q � p)2)g2N
CFd��(p� l)� Tr"(6q� 6p)(
� 6p
�p2 � i� + 
�(6 l� 6q)
�(l� q)2 � i�)� T̂q(l;p1;p2)(
� 6p
�p2 + i� + 
�(6 l� 6q)
�(l� q)2 + i�)#:In the above equation the 
olor fa
tor N
CF 
omes fromthe fa
tor Tr[tatb℄Æab. For brevity, we have omitted in theabove the sum over quark 
avors weighted with fra
tional
harge, Pq e2q . The sum over polarizations of the gluonleads to the fa
tor d��. In light-
one gauge d�� is givenas d��(p� l) = g�� � (p � l)�n� + (p� l)�n�(p� l) � n (43)The overlap matrix element T̂q(l;p1;p2) is the same asde�ned in the previous se
tion, with the �nal fragmenting



13quark momentum redu
ed to l. The remaining portion ofEq. (42) is also easy to tra
e. The two Æ fun
tions essen-tially stipulate that the gluon and antiquark be releasedonshell. The �rst set of terms in the 
urly bra
kets repre-sents the pro
ess indi
ated by upper panel of Fig. 6. These
ond set of terms indi
ates the 
ase where the gluon isemitted from the outgoing antiquark, with all other fea-tures remaining un
hanged, e.g., the fragmenting quarkhas momentum l, the gluon still has a momentumof p�l.Within the 
ollinear approximation, we again assumethat l+; p+h >> l�; p�h ; l?; q?. As a result, the overlapmatrix element may be fa
torized via the following ap-proximation:T̂q(l;p1;p2) = Z d4xeil�xXS�2� h0j q(x)jp1;p2; S � 2ihp1;p2; S � 2j q(0)j0i' 6ph2 Tq(l;p1;p2): (44)Within the 
ollinear approximation, we assume that themomentum of the �nal fragmenting quark is 
ollinearwith that of the hadrons emerging from the parton frag-mentation. We thus de�ne a new fra
tional momentum,z0 = p+h =l+. This allows the partoni
 four-momentumve
tor l to be repla
ed with the hadroni
 four-ve
tor:i.e. l = ph=z0.As a result the fa
tor (l� q)2 is approximated as:(l� q)2 ' Q2 � 2Ql+ ' Q2 � 2Qp+h =z0: (45)Unlike the 
ase of the LO pro
ess, the transverse mo-mentum of the quark whi
h emanates from the ele
tro-magneti
 vertex is non-vanishing, p? 6= 0 (this is also thetransverse momentum
arried by the gluon). As a result,the negative longitudinal momentum p� is 
onstrainedby one of the Æ+ fun
tions as,(p� ph=z0)2 ' 2p+p� � p2? � 2p�p+h =z0 = 0) p� = p2?2(p+ � p+h =z0) : (46)The hadron fra
tional forward light-
one momentumisstill de�ned as z = p+h =p+ as in the LO 
ase. At leadingtwist one may repla
e all o

uren
es of ph with z0l. The
orre
tions to this approximation are down by powersof Q2. In
orporating the above approximations into the

expression for the hadroni
 tensor, we obtain:W�� = Z dz1dz2dz0 Z d3p1d3p2(2�)64E1E2 Z d4p(2�)4 (47)� g2N
CF Æ(z1 � p+1 =p+)Æ(z2 � p+2 =p+)d��(p � l)� 2�Æ+(2p�(p+ � l+)� p2?)2�Æ+(Q2 � 2Qp+)�Tr"(6q� 6p)( 
� 6p
�p2?l+=(p+ � l+) + 
�(6 l� 6q)
�Q2 � 2Ql+ )� 6 lz02 ( 
� 6p
�p2?l+=(p+ � l+) + 
�(6 l� 6q)
�Q2 � 2Ql+ )#l=ph=z0� Z d4l(2�)4 Æ�z0 � p+hl+ �Tq(l;p1;p2):A 
areful study of Eq. (47) reveals that the leading log
ontributions are dominated by the region where p? ! 0.As a result, the part of W�� whi
h represents the squareof the pro
ess in the lower panel of Fig. 6 has no lead-ing log 
ontribution. The leading log 
ontribution 
omesfrom the square of the �rst term 
orresponding to thesquare of the pro
ess in the upper panel of Fig. 6. In thelight-
one gauge, the interferen
e terms have no 
ontri-bution at leading log as in the 
ase of single fragmenta-tion fun
tions (see 
hapter 3 of Ref. [18℄). This 
an bedemonstrated to hold at leading twist merely by 
om-pleting the tra
e as indi
ated in Eq. (47) and extra
tingthe p2? dependen
e from the numerators.The remaining fa
torization into the hard and softpie
e pro
eeds as in the LO 
ase, leading to the hadroni
tensor at NLO at leading log and leading twist,W�� = Z dz1dz2dz0 Z d3p1d3p2(2�)64E1E2 Z d4p(2�)4 (48)� g2N
CF Æ(z1 � p+1 =p+)Æ(z2 � p+2 =p+)� 2�Æ+ �p� � p2?2(p+�l+)�2(p+ � l+) 2�Æ+�Q2 � 2Qp+hz �� Tr"d��(p � l)(6q� 6p)
� 6p
� 6 l(z0=2)
� 6p
�[p2?l+=(p+ � l+)℄2 #l=ph=z0� Z d4l(2�)4 Æ�z0 � p+hl+ �Tq(l;p1;p2):The tra
e of the Dira
 matri
es 
an be 
arried out bybrute for
e. The leading-twist part 
an be obtained ina more straightforward way by rewriting the matri
eswithin the tra
e symboli
ally as(6q� 6p)
�Ĉ
� :The leading twist portion of the matrix Ĉ, may be writ-ten as Ĉ = 6ph2 C;



14with the fa
tor C expressed as a tra
e:C = Tr"d�� 
+2p+h 6pp2
� 6 lz02 
� 6pp2#l=ph=z0 ; (49)where p2 = p2?l+=(p+ � l+). This pro
edure is very sim-ilar to the one used to 
onstru
t the 
ollinear approx-imation to the overlap matri
es T̂q(p; p1; p2). One 
an
omplete the above tra
e and obtain the regular splittingfun
tion (1 + y2)=(1 � y), where y = z0=z. It representsthe probability for the radiation of a gluon from a quarkprior to its fragmentation.Using the above approximation one may extra
t thesame hard part as in Eq. (29),H0�� = Tr"(6q� 6p)
� p�h2 
�#Æ((q � ph=z)2)= H��Æ((q � ph=z)2): (50)Extra
ting this hard part and 
omparing withEqs. (28,31) and the resulting 
ut-vertex diagramin Fig. 5 we note that the soft part of Eq. (48) begins todisplay a stru
ture as illustrated in Fig. 7.To 
omplete the 
al
ulation and obtain a fa
torizedform of the NLO 
ontribution to the double in
lusive
ross se
tion, the integration over the tranverse momen-tum of the identi�ed hadrons will have to be fa
toredinto the fragmentation fun
tion. Similarly as in the 
aseof LO 
al
ulation, one has to transform the basis of themomentum integrations of the two identi�ed hadrons tothe basis indi
ated in Fig. 4.In the steps leading to Eq. (48), the approximationthat the momenta of the hadrons and the fragmentingparton are 
ollinear has been made. Parti
ular amongthese are the approximations that l+ >> l?,l�. Theseessentially indi
ate that the invariant mass of the �nalfragmenting quark is negligible 
ompared to its forwardlight-
one momentum. This is identi
al to the approxi-mation made on the momentum p in the LO 
al
ulation(see Fig. 3). Sin
e the NLO pro
ess has a 
ollinear di-vergen
e when p2? ! 0, we will only 
onsider the leadinglog 
ontribution.We thus obtain the following fa
torized form for thehadroni
 tensor:W�� = Z dz1dz2 Z dp1dp2(2�)44p1p2 d 
os �
md�
md�?� g2N
CF Z 1z dyy2 z Z dp+dp�dp2?(2�)4 2�H��Æ((p� l2)� Cp+2Æ(p+1 � z1p+)Æ(p+2 � z2p+) z2y� Z dq2?4(2�)2 Z d4l(2�)4 Æ(z0 � p+hl+ )Tq(l;p1;p2): (51)Further fa
torization of H�� from the d4p integrationleads to the fa
torized form for the NLO 
orre
tion to thedihadron fragmentation fun
tion as illustrated in Fig. 7 in
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=

γ+

2p+
h

δ

(
z1 + z2 −

p+
1 +p+

2
p+

)

p

lp1 ∫ dq2
⊥

4(2π)2
T̂q(l; p1, p2)

p2

γ+

2p+

h

δ
(
z1 + z2 −

p+
1

+p+
2

p+

)
γ+

2p+

h

δ
(
z′1 + z′2 −

p+
1

+p+
2

l+

)

p l

lFIG. 7: Next-to-Leading order 
ut-vertex for quark fragmen-tation and its fa
torization.terms of 
ut verti
es. Inserting the hadroni
 tensor intothe expression for the double di�erential 
ross se
tionwith minor simpli�
ations, we obtain the fa
torized NLO
ontribution to the double in
lusive 
ross se
tion,d2�dz1dz2 = Xq 4�3 �2e2qN
Q2 (52)� �s2� Z Q2�2 dp2?p2? Z 1z dyy2 CF 1 + y21� y(z=y)44(z1=y)(z2=y) Z dq2?8(2�)2 Z d4l(2�)4 Æ�zy � p+hl+ �Tq(l; p1; p2):The last line of the above equation may be easily iden-ti�ed as D(z1=y; z2=y; �2), the dihadron fragmentationfun
tions s
aled up by the momentum fra
tion y, 
arriedby the quark emanating from the split. Physi
ally thisrepresents the 
ontribution to the fragmentation fun
-tions at a higher order brought about by gluon radiation
arrying away with it a momentum fra
tion 1 � y. Byitself this pro
ess displays both an infrared divergen
e asy ! 1 and a 
ollinear divergen
e as p? ! 0. The in-frared divergen
e will be 
an
eled by the virtual diagram
ontribution as shown in the next se
tion. The 
ollineardivergent part will be 
ombined with the 
ollinear diver-



15gent part of gluon fragmentation and absorbed into therenormalized fragmentation fun
tion.B. NLO 
ontribution from gluon fragmentationWe now pro
eed with the 
ontribution from gluon frag-mentation in the NLO pro
esses. Essentially the out-going hadroni
 state is repla
ed with the se
ond line ofEq. (40). Insertion of the intera
tion operator densityfollowed by the 
ontra
tion of the quark and antiquarkoperator with the out-going states jk�qi and j(p � l)qi ,leads to the following matrix element:Mii = iXq eqe2gta�vk2
�uk1 g��q2 + i� (53)� hp1p2S � 2jAa�(0)j0i�ur(p� l)(
� 6p
�p2 + i�+ 
�(� 6k� 6 l)(k+ l)2 + i�)vs(k)(2�)4Æ(q� k� p� l):As in the previous subse
tion, the approximation ofvery high energies is made, allowing the isolation of theleading twist and leading log 
ontribution of the 
orre-sponding hadroni
 tensor. This is obtained asW�� = Z dp1dp2d 
os �
md�
md�?(2�)44p1p2 Z d4p(2�)4 d4l(2�)42�Æ((q � p)2)2�Æ((p� l)2)g2N
CF T̂g(l; p1; p2)� d��Tr"(6p� 6 l)
� 6 l
�l2 + i� (6q� 6p)
� 6 l
�l2 � i� #; (54)where the gluon overlap matrix element Tg(l; p1; p2) isde�ned asT̂g(l; p1; p2) = Z d4xeil�xXS�2Z dq2?8(2�)2 � h0jAa�(x)jp1; p2; S � 2i� hp1; p2; S � 2jAb�(0)j0iÆabd��16 : (55)A diagrammati
al representation of this gluon frag-mentation pro
ess 
an be illustrated as Fig. 8. The pro-
edure leading to the extra
tion of the leading log andleading twist is rather similar to the 
ase for the singlefragmentation fun
tion and to the 
ase of NLO pro
essof quark fragmentation in the last subse
tion. Contra
t-ing the hadroni
 tensor with its leptoni
 
ounterpart weobtain the gluon 
ontribution to the NLO double di�er-

p1

p2

k

p
l

qFIG. 8: The leading log gluon fragmentation 
ontribution tothe NLO modi�
ation of the quark fragmentation fun
tion.ential 
ross se
tion:d2�dz1dz2 = Xq 4�3 �2e2qN
Q2 (56)�s2� Z Q2�2 dp2?p2? Z 1z dyy2CF 1 + (1� y)2y(z=y)32(z1=y)(z2=y) Z dq2?8(2�)2 Z d4l(2�)4�Æ�zy � p+hl+ � T̂g(l; p1; p2):It may 
ome as no surprise that the above equationmay also be derived from a set of Feynman rules involving
ut-verti
es. The 
ut-vertex diagrams are illustrated inFig. 9. The rules are indi
ated in the �gure. As a resultof this 
omputation we may now present the 
ut-vertexexpression for the gluon dihadron fragmentation fun
tion(indi
ated in the lower right hand 
orner of Fig. 9):Dg(z1; z2) = z32z1z2 Z dq2?8(2�)2 Z d4l(2�)4� Æ�z � p+hl+ � T̂g(l; p1; p2); (57)where the fa
tor T̂g(l; p1; p2) is given in Eq. (55).
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⊥
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lFIG. 9: Next-to-Leading order 
ut-vertex representation ofthe gluon fragmentation 
ontribution.C. NLO 
ontribution from quark and gluon singlefragmentationIn the previous subse
tions, we have evaluated twoseparate 
ontributions to the NLO double fragmentationfun
tions. In both of these we have assumed that the rel-ative transverse momentum of the two dete
ted hadronsis intrinsi
 and is limited by a s
ale �?. In the de�ni-tion of the dihadron fragmentation fun
tions, the hadronsare dete
ted with given fra
tions of forward longitudinalmomentum but the transverse momenta are integratedover. Thus, all allowed transverse momenta between thedete
ted hadrons must be in
luded. In this paper, wewill assume that all hadron pairs with relative transversemomentum larger than � & �? are generated perturba-tively. In the next-to-leading order, su
h hadron pairs
an be produ
ed from the independent fragmentation ofthe quark and gluon after their split, as illustrated inFig. 10. Su
h a s
enario has been 
onsidered in Refs.[13, 14, 15℄ where the double in
lusive 
ross se
tion withtwo dete
ted hadrons in e+e�
ollisions with a �xed trans-verse momemtum between them was 
omputed. The au-thors argued that in the 
ase that the transverse momen-tum lies in a semihard region �QCD << q? << Q, thedominant 
ontribution to the 
ross se
tion 
omes from

the pro
ess where the fragmenting parton undergoes asemihard split into two independent partons whi
h thenfragment independently.Under the 
ondition that q? << Q these hadrons 
anstill be 
onsidered to belong to the same jet. Moreover,when �QCD << q?, the higher order 
ontributions frommultiple gluon vertex 
orre
tions to the semihard vertexare non-leading and thus the fragmentation of the twopartons emanating from the split may be 
onsidered asindependent. In Ref. [15℄, the authors demonstrated thatthe Sudakov double logarithms from the higher order ver-tex 
orre
tions are absent in the region �QCD << q?. Inthe interest of 
ompleteness we will repeat this derivationin a slightly di�erent language in the Appendix.We will evaluate the leading log and leading twist 
on-tribution in whi
h the hadron pair 
omes from the in-dependent fragmentation of the quark and gluon after asemi-hard split. We start again with the matrix elementfor this pro
ess,Miii = iXq e2eqgta g��q2 + i��vk1
�uk2� hp1; S1 � 1j � q(0)j0ihp2; S2 � 1jAa�(0)j0i� " 
�(6q� 6k)
�(q � k)2 + i� + 
� (6pS1� 6q)
�(pS1 � q)2 + i��v(k)� (2�)4Æ4(q� pS1 � pS2 � k): (58)The se
ond term inside the square bra
ket 
orrespondsto gluon emission from the antiquark in the quark dire
-tion and will not 
ontribute in the leading log approxi-mation. The out-state in this 
ase is 
hosen to be thelast line of Eq. (40). In this 
ase, the sum over all �nalstates of hadrons from the initial quark has been bro-ken into two identi
al 
omplete sets. In ea
h of the sets,S1 and S2, a single hadron will be identi�ed. Unlikein the previous two subse
tions, where one of the quarkor gluon operators is 
ontra
ted with a partoni
 state;both the quark and the gluon operators will be 
ontra
tedwith hadroni
 states in this 
ase. The 
ross se
tion 
on-stru
ted from this matrix element 
ontains two separatesums over hadroni
 states; one of whi
h has an overlapwith a quark state, the other with a gluon state. Thehadroni
 basis of states moving in the \away-side" jetwill be repla
ed as before with the sum over all momen-tum states of a single antiquark:XS = d3p1(2�)32E1 d3p2(2�)32E2 d3k(2�)32k XS1�1 XS2�1 : (59)In the last two subse
tions, the quark atta
hed tothe ele
tromagneti
 vertex is assigned the momentum p,while the quark or gluon whi
h materializes from the splitis assigned the momentum l. In this subse
tion, the mo-mentum of the fragmenting gluon and quark will be setto be l and p. The quark atta
hed to the ele
tromag-neti
 vertex will thus have a momentum of p + l. This
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osmeti
 reshu�ing is solely to ease the extra
tion of thesingle fragmentation fun
tions.
p1

p2

k
p

l

qFIG. 10: The leading log mixed 
ontribution to the NLOmodi�
ation of the quark dihadron fragmentation fun
tion.Again, we fo
us on the leading log portion of the ma-trix elements. This essentially restri
ts our attention tothe square of the matrix element for the pro
ess depi
tedin Fig. 10. The integrated 
ross se
tion for this pro
essmay be expressed as:�iii = 12sXq Z d4yeiy�le4e2qg2 L��4(q2)2N
CF (60)Z d3p1d3p2(2�)64p1p2 d4kd4l(2�)8 Æ+(k2) Z d4xex�(q�l�k�p)eix�pXS1�1 XS2�1Tr" 6k 
�(6q� 6k)
�(q � k)2 � i��h0j q(x)jp1; S1 � 1ihS1 � 1; p1j � q(0)j0i 
�(6q� 6k)
�(q � k)2 + i�#�Æab2 h0jAb�(x)jp2; S2 � 1ihS2 � 1; p2jAa�j0i;where two identities of unity1 = Z d4l Z d4x(2�)4 eil�x;are inserted. As in the pre
eding subse
tions the stan-dard shift of partoni
 variables is introdu
ed i.e. k !q�p� l and R d4k ! R d4p. The squares of the overlap

matrix elements between the partoni
 operators  ;Aa�and the hadroni
 states will result in the single fragmen-tation fun
tions. Absorbing the integrals over undete
tedhadron states and the Fourier integrals, the T̂ matrix el-ements may be written as (see Se
. II or Ref. [21℄):[T̂g℄ba�� = Z d4yey�l XS2�1h0jAb�(y)jS2 � 1; p2ihp2; S2 � 1jAa�(0)j0i; (61)whi
h leads to the de�nition of the gluon fragmentationfun
tion at leading twist. The same extra
tion may alsobe performed for the quark overlap matrix operator:[T̂q℄�
 = Z d4xex�p XS1�1h0j �q (x)jS1 � 1; p1ihp1; S2 � 1j 
q (0)j0i; (62)whi
h leads to the de�nition of the quark fragmentationfun
tion at leading order. Within the 
ollinear approx-imation applied to the above two matrix elements, theymay be approximated at leading twist as[T̂g℄ba��(l; p2) ' Æabd��(l)Tg(l; p2); (63)T̂q(p; p1) ' 6p12 Tq(p; p1): (64)With the de�nition of the single fragmentation fun
tionsand the 
ollinear approximation, the 
ross se
tion for in-dependent fragmentation may be expressed in a simpli-�ed form as�iii = 12sXq e4e2qN
4Q4 L��g2CF Z d3p1d3p2(2�)64E1E2Z d4ld4p(2�)8 2�Æ+((q � l� p)2)Tg(l; p2)Tq(p; p1)d��(l)� Tr"(6q� 6 l� 6p)
�( 6 l+ 6p(l+ p)2
� 6p12 
� 6 l+ 6p(l+ p)2)
�#: (65)This is the leading log 
ontribution to the in
lusive 
rossse
tion for the produ
tion of two identi�ed hadrons atnext-to-leading-order where ea
h hadron emanates fromthe independent fragmentation of a parton. The over-lap matrix elements whi
h lead to the de�nition of thefragmentation fun
tions, Tg and Tq have already beenfa
tored out. This represents a NLO 
ontribution to thedouble fragmentation of the quark emanating from theele
tromagneti
 vertex.Again, we use a 
ollinear approximation to isolate theleading twist part of the terms inside the 
urly bra
kets:6 l+ 6p(l+ p)2
� 6p12 
� 6 l+ 6p(l+ p)2d��(l)' 6ph2 Tr" 
+2p+h 6 l+ 6p(l+ p)2
� 6p12 
� 6 l+ 6p(l+ p)2 d��(l)#: (66)



18After introdu
ing two momentum fra
tions z01 and z02through a multipli
ative fa
tor of unity,1 = Z 10 dz01dz02Æ z01 � p+1p+!Æ z02 � p+2l+ !; (67)and a rearrangement of the integrals we have the follow-ing fa
torized from of the 
ross se
tion at leading twist,�iii = 12sXq e4e2qN
4Q4 L��g2CF Z dz01dz02d3p1d3p2(2�)64E1E2�Tr"(6q� 6 l� 6p)
� 6ph2 
�#2�Æ+((q � l� p)2)�����l=p2=z02p=p1=z01� "d��(l)Tr( 
+2p+h 6 l+ 6p(l+ p)2
� 6p12 
� 6 l+ 6p(l+ p)2)#l=p2=z02p=p1=z01� Z d4l(2�)4 Æ z02 � p+2l+ !Tg(l; p2)� Z d4p(2�)4 Æ z01 � p+1p+!Tq(p; p1): (68)It is apparent that the se
ond line of the above equation
orresponds to the hard 
ross se
tion of an e+e�pair an-nihilating via a single virtual photon to a q�q pair. Thethird line 
orresponds to the splitting of the quark intoa quark and gluon. Note the absen
e of any Æ�fun
tionmaintaining an on-shell 
ondition. This indi
ates thatneither the quark nor gluon is being 
ut. The fourthand �fth line indi
ate the independent fragmentation ofthe quark and gluon into hadrons with the identi�
ationof a single hadron from ea
h of these sour
es. The 
ut-vertex stru
ture of this pro
ess resembles that of Fig. 11.The tra
e over the Dira
 matrix stru
ture of the thirdline may be performed, followed by a 
ontra
tion of theLorentz indi
es to obtain:z018(p+1 =z01 + p+2 =z02)4p+h (p1=z01 + p2=z02)2 1 + y21� y ;where the variable y is introdu
ed on
e again as the in-tegral over a Æ�fun
tionZ 10 dyÆ y � p+1 =z01p+1 =z01 + p+2 =z02!: (69)One notes that the variable y is essentially the ratio ofthe forward light-
one momentum of the o�spring quarkto that of the parent. This leads to the same splittingfun
tion as that of a quark splitting to a quark and agluon. We may have 
hosen y to represent the ratio ofthe energy of the gluon to that of the parent quark. Thiswould have resulted in a splitting fun
tion similar to that

of the pre
eding subse
tion. Changing the order of inte-gration between the various ratios y; z01; z02, we de�ne thequantities z1 = z01=y and z2 = z02=(1� y). Note that thedouble di�erential 
ross se
tion d2�=dz1dz2 involves theratios z1; z2 of the hadroni
 forward light-
one momen-tum to that of the parent quark emanating from the ele
-tromagneti
 vertex. Following this we may again swit
hthe order of integration,Z 10 dz01 Z 10 dz02 Z 10 dy= Z 10 dy Z 10 dz01 Z 10 dz02= Z 10 dy Z 1=y0 dz1y Z 1=(1�y)0 dz2(1� y)= Z 10 dz1 Z 10 dz2 Z 1�z2z1 dyy(1 � y) : (70)The integration over the hadroni
 momenta may nowbe subje
ted to the same variable transformation asdemonstrated in Fig. 4. Within the 
ollinear approxi-mation it may be easily demonstrated that(l+ p)2 = q2?p+h 2y(1 � y)4p+1 p+2 z1z2 : (71)The Æ�fun
tion introdu
ed in Eq. (69) may also be sim-ilarly simpli�ed to obtain,Æ y � p+1 =z01p+1 =z01 + p+2 =z02! = Æ"y(1 � y)p+ + l+  p+2z2 � p+1z1 !#= p+ + l+y(1 � y) Æ p+2z2 � p+1z1 !;(72)where the quantities p+ and l+ are subje
ted to the
ondition of 
onstraint introdu
ed in Eq. (68). TheÆ�fun
tion is now similar to the se
ond Æ�fun
tion inEq. (35), and may be used to extra
t the hard 
ross se
-tion �q�q0 [see Eq. (2)℄.In the last two subse
tions, there is an integration overthe transverse momentum of the parent quark emanat-ing from the EM vertex. This integration has a 
ollineardivergen
e that must be absorbed into the renormalizedfragmentation fun
tions. The light-like null ve
tor n wasalligned in a dire
tion su
h that its three-
omponentsremained opposite to those of ph, the sum of the mo-menta of the dete
ted hadrons. By de�nition n has notransverse 
omponent. As both hadrons originated fromthe same parton, the pre
eding 
ondition along with theassumption of 
ollinearity of the �nal hadrons with thefragmenting parton, 
onstrained the transverse 
ompo-nent of the fragmenting parton to be near vanishing. Inthis 
ase we have again 
hosen the three 
omponents of n
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l

γ+

2p+
h

δ

(
z1 + z2 −

p+
1 +p+

2
p+

)

p1 l p

p2

γ+

2p+
h

δ

(
z1 + z2 −

p+
1 +p+

2
p+

)

p
p l

p1

p2FIG. 11: Next-to-Leading order 
ut-vertex representation ofthe mixed 
ontribution.to be opposite to those of ph. However, the two dete
tedhadrons in this subse
tion emerge from two di�erent par-tons whi
h 
ome from a split of the parent quark. As aresult, whereas both fragmenting partons have a trans-verse 
omponent (l?; p?) proportional to the transverse
omponent of the dete
ted hadrons q?, the parent quarkis restri
ted to near vanishing values of a transverse 
om-ponent. In 
onformity with the previous subse
tions andwith the DGLAP evolution of the single fragmentationfun
tion, the integration over a transverse 
omponentwill remain that of a partoni
 momentum. The hadroni
transverse 
omponent q? may be trivially related to itspartoni
 
ounterpart thus:q? = 2l? z1z2y(1 � y)(z1 + z2) : (73)With these approximations, it may be easily demon-strated that the double di�erential 
ross se
tion of inde-pendent fragmentation assumes the form as sket
hed in

the 
on
luding lines of Eq. (5), i.e.,d2�iiidz1dz2 = Xq �q�q0 �s2� Z dl2?l2? Z 1�z2z1 dyy(1 � y)CF 1 + y21� y Dq �z1y �Dg � z21� y� : (74)Where Dq and Dg are the single fragmentation fun
tionsof a quark and a gluon [8℄ (see also Se
t. II).The 
areful reader will have noted that the order ofintegration between y and l? has been swit
hed; whereasfromEq. (73) we see that if q? is independent of y then l?is a fun
tion of y. There are two ways to resolve this. Wemay as
ribe a multipli
ative y dependen
e to the max-imum value of q?. Indeed this would be an arti�
ialdependen
e, and would physi
ally mean the in
lusion ofan extra pie
e of phase spa
e in the l? integration. Anysu
h multipli
ative fa
tor would have no in
uen
e on theDGLAP evolution equations as these would involve a dif-ferentiation with respe
t to Q2 i.e.��Q2 Z Æ2Q2 dl2?l2? = ��Q2 Z Q2 dl2?l2? : (75)Yet another approa
h may be to view the order of inte-grals in Eq. (74) as merely symboli
, the di�erentiationwith respe
t to Q2 leads to the same evolution equations.There remains one last 
ontribution to the in
lusive
ross se
tion for the produ
tion of two hadrons from aparent quark: this is obtained trivially by swit
hing z1and z2 in Eq. (74), i.e. the hadron with momentum fra
-tion z1 originates from the fragmentation of the gluonrather than the quark. With the addition of the abovementioned 
ontribution, we 
omplete the dis
ussion ofthe real radiative 
orre
tions to the in
lusive 
ross se
tionof same-side dihadron produ
tion. The 
ontributions dis-
ussed in this subse
tion possess no infrared divergen
eas the y integration is terminated at 1�z2 or 1�z1, 
on-trary to dihadron fragmentation from the single quarkwhose infrared divergen
e is 
an
elled by the virtual 
or-re
tion.V. RENORMALIZED FRAGMENTATIONFUNCTIONS AND DGLAP EVOLUTIONSo far we have 
al
ulated the real radiative 
orre
tionsto the dihadron fragmentation fun
tions. One noti
esthat the 
ontribution from quark fragmentation after agluon radiation in Eq. (52) 
ontains an infrared diver-gen
e. Su
h an infrared divergen
e will be 
an
eled byvirtual 
ontributions from interferen
e diagrams su
h asthose of Fig. 12. It is well known that in gauge theo-ries, in light-
one gauge, the leading log 
ontribution is
ontained solely within the self-energy diagram and notshared between the self-energy and the vertex 
orre
tion,



20as is the 
ase in the Feynman gauge[8℄. The hadroni
tensor for su
h a virtual 
orre
tion isW�� = XS�2 Z d3p1d3p2(2�)64E1E2 d4p(2�)4 2�Æ((q � p)2)�Tr"bTq(p; p1; p2)f�i�(p)g i6p
�(6q� 6p)
�#; (76)where, �i�(p) respresents the one-loop quark self-energyof a quark with four-momentum p.
p1

p2

l

q

kFIG. 12: The leading log self-energy 
ontribution to the NLOmodi�
ation of the quark fragmentation fun
tion.The hadroni
 tensor may again be fa
torized at lead-ing twist following mu
h the same pro
edure as those ofthe last se
tion. There remains the integration over theinternal gluon momentum l. The leading behaviour ofthis integral, as in the 
ase of single fragmentation, inthe part of phase spa
e that in
ludes a pin
h singularityon the l� 
ontour, and endpoint singularities on the l?and l+ 
ontours. The pin
h singlularity may o

ur onlyin the region where0 < l+ < p+ and 0 < l2? < p2 � Q2:The derivation of the leading behaviour, whi
h mostlymirrors the 
al
ulation for single fragmentation fun
-tions, will not be presented in full detail here. We referthe reader to Ref. [24℄, for details. The �nal result of theself-energy 
orre
tion to the partial double di�erential


ross se
tion isd2�dz1dz2 = �Xq �q�q0 �s2� Z Q2 dl2?l2?� Z 10 1 + y21� y Dh1h2q (z1; z2): (77)Note that the transverse integration is over l? and notthe parent quark momenta. The variable y is de�ned asy = l+=p+. The overall negative sign should not be a
ause for alarm, as this is only a part of the total 
rossse
tion. Combining the above equation with Eq. (52)leads to the 
an
ellation of the infrared singularity asy ! 1. One 
an e�e
tively 
ombine the virtual and real
orre
tions with a \+"-fun
tion,Pq!qg(y) = Cf� 1 + y2(1� y)�+= Cf� 1 + y2(1� y)+ + 32Æ(1� y)�; (78)where the \+"-fun
tion is de�ned asZ 10 dy F (y)(1� y)+ � Z 10 dyF (y) � F (1)1� y (79)with F (y) being any fun
tion that is suÆ
iently smoothat y = 1.In the remaining, we will fo
us on the non-singlet (NS)fragmentation fun
tions for simpli
ity. In this 
ase, the
ontribution from dihadron gluon fragmentation dropsout. Summing all three types of 
ontributions from thelast se
tion, we obtain the NLO 
ontribution to the NSdihadron fragmentation fun
tion,Dh1 ;h2NS (z1; z2; Q2) = Dh1;h2NS (z1; z2)+ �s2� Z Q2 dp2?p2? Z 1z dyy2 CF 1 + y21� y !+Dh1 ;h2NS (z1y ; z2y )+ �s2� Z Q2 dl2?l2? Z 1�z2z1 dyy(1 � y)� CF 1 + y21� y Dh1NS �z1y �Dh2g � z21� y� ; (80)where the leading order fragmentation fun
tions are de-�ned as matrix elements of �eld operators in Eq. (37)and (18). This has exa
tly the same stru
ture as we haveoutlined in the parton model in Eq. (7). Therefore, thede�nition of renormalized fragmentation fun
tions andthe derivation of the DGLAP evolution 
an be similarlyapplied here.The renormalized dihadron fragmentation fun
tion isde�ned as



21Dh1 ;h2NS (z1; z2; �2) � Dh1 ;h2NS (z1; z2)+ �s2� Z �2 dp2?p2? Pq!qg �Dh1h2NS+ �s2� Z �2 dl2?l2? P̂q!qg���Dh1NSDh2g �; (81)We point out, on
e again, that the s
ale � at whi
h therenormalized fun
tions are de�ned is 
hosen above thesemihard s
ale �?. At this s
ale, 
orre
tions to the renor-malized quantities may be evaluated perturbatively. Interms of the renormalized dihadron fragmentation fun
-tion, the dihadron fragmentation fun
tion at NLO 
anbe expressed asDh1 ;h2NS (z1; z2; Q2) � Dh1 ;h2NS (z1; z2; �2)+ �s2� log(Q2�2 )Pq!qg �Dh1h2NS (�2)+�s2� log(Q2�2 )P̂q!qg���Dh1NS (�2)Dh2g (�2)�; (82)where we have also used the renormalized form of thesingle fragmentation fun
tions.Note that we have introdu
ed a minimum limit to thes
ale � & �? in the de�nition of the renormalized di-hadron fragmentation fun
tion. If one insisted in 
hoos-ing � < �?, then the 
ontribution from independentquark and gluon fragmentation after a semi-hard splitwould have to be fa
torized o� at the s
ale �?. In otherwords the minimum of the se
ond logarithm in Eq. (82)would be set at �2? and would only 
ontribute in theevent that Q2 is 
hosen greater than �2?. In this way,we have assumed that only hadron pairs with relativetransverse momentum q? > �? are generated pertur-batively from independent fragmentation of two sepa-rate partons in the pro
ess of a perturbative 
as
ade.For two partons whose relative transverse momentum issmaller than �?, nonperturbative pro
esses be
ome im-portant and their fragmentation 
annot be independentanymore. We in
lude this part, whi
h also 
ontains a
ollinear divergen
e, in the renormalized dihadron frag-mentation fun
tion. This non-perturbative s
ale 
an alsobe 
onsidered as the intrinsi
 relative transverse momen-tum of the dihadron fragmentation fun
tion and it shouldset the limit of the integration over q? in the matrix el-ement de�nition of the dihadron fragmentation fun
tionin Eq. (37). If one wants to 
onsider the unintegrated(over q?) dihadron fragmentation fun
tion, �? 
ould setthe initial 
ondition for the q? distribution and 
an beused to study the evolution equation of the angular dis-tribution inside a jet. For now, this s
ale will only set alimit of the physi
al s
ale Q2 >> �2 > �2? >> �2QCD forthe DGLAP evolution and will not enter the equation. Inthe ensuing 
al
ulation of the evolution of the fragmenta-tion fun
tions we will not enter into su
h subtleties andalways 
hose the starting s
ale � & �?.

To in
lude the entire leading log modi�
ation, 
ontri-butions from all the diagrams outlined in Fig. 1 haveto be resummed into the s
ale dependent fragmentationfun
tions. These are then di�erentiated to obtain theevolution equation whi
h is given exa
tly as in Eq. (15)for NS dihadron fragmentation fun
tion.VI. NUMERICAL RESULTS OF NON-SINGLETEVOLUTION

FIG. 13: Results of the evolution of the non-singlet quarkdihadron fragmention fun
tion Dh1h2q (z1; z2), where z1 = 2z2,from Q2 = 2GeV2 to 109GeV2. See text for details.In this se
tion we will study numeri
ally the DGLAPevolution of the non-singlet dihadron fragmentation. Asin many other 
ases of DGLAP evolution, the solutionsrequire an initial 
ondition of the fragmentation fun
tionsat an initial s
ale. Su
h initial 
onditions, as in the 
aseof single fragmentation fun
tions, are non-perturbativeand are usually 
onstru
ted from the experimental mea-surement of the single in
lusive di�erential 
ross se
tiond�=dz, a

ording to Eq. (1) at LO. The evolution of thefragmentation fun
tions with the energy s
ale of the rea
-tion 
an then be 
al
ulated from the DGLAP equations.The absen
e of any experimental data for two parti
le
orrelation in e+e�annihilation for
es us to formulate anansatz of the initial 
ondition. We simply use it as a toymodel to illustrate the DGLAP evolution of the dihadronfragmentation fun
tions. We take the LO produ
t of two
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FIG. 14: Same as Fig. 13 ex
ept z1 = 3z2.single fragmentation fun
tions as the initial 
ondition forthe evolution of the fragmentation fun
tion, i.e.,Dh1h2q (z1; z2; �2) = Dh1q (z1; �2)Dh2q (z2; �2)� �(1 � z1 � z2): (83)We set the initial 
ondition at Q2 = 2GeV2. This 
or-responds to logQ2 = 0:693. While it may be argued thatthe initial energy is somewhat low for the appli
abilityof pQCD in e+e�annihilation, we 
onsider it as just thes
ale of the momentum transfer while the a
tual jet en-ergy 
ould be suÆ
iently high. The di�erential equation
orresponding to Eq. (15) is then solved by the simplemethods of a se
ond order Runge-Kutta numeri
al esti-mation. Results are presented in Figs. 13-20 at intervalsof � logQ2 = 1:0 The initial 
ondition is represented bythe solid bla
k line in all plots. We stop the evolution atlogQ2 = 4:693, whi
h 
orresponds to Q2 ' 109GeV2.We present results where the leading parti
le possessesa multiple of the momentum fra
tion of the next-to-leading parti
le. We begin with plots of just the evo-lution of the non-singlet dihadron fragmentation fun
-tion at z1 = 2z2 in Fig. 13 and z1 = 3z2 in Fig. 14. Inthese and all other plots the results are always presentedas a fun
tion of z2. The results of the evolution are notqualitatively di�erent from those of the single fragmenta-tion fun
tion. Sin
e the sum of the momentum fra
tionsare 
onstrained to unity i.e. z1 + z2 � 1, we �nd that

FIG. 15: Results of the ratio of the non-singlet quark dihadronfragmention fun
tion Dh1h2q (z1; z2;Q2) to the single leadingfragmentation fun
tion Dh1q (z1;Q2). In this 
ase z1 = 2z2and Q2 = 2GeV2 to 109GeV2. See text for details.the fragmentation fun
tions terminate at z2 = 1=(1 + r)as appropriate. The intial 
ondition, whi
h is merelythe produ
t of two single fragmentation fun
tions and isnot subje
ted to this 
onstraint, does not show this be-haviour. It is imposed by hand, in the initial 
ondition,that they vanish at and above this value.In experiments, one 
an �rst identify a hadron as theleading hadron inside a jet and use it as a trigger withgiven momentum z1. Then, the asso
iated or the \next-leading" hadron distribution inside the same jet 
orre-sponds to the ratio of dihadron and single hadron frag-mentation fun
tions, Dh1;h2 (z1; z2)=Dh1 (z1). We presentresults for this ratio at z1 = 2z2 in Fig. 15, at z1 = 3z2in Fig. 16 and in the extreme 
ases of z1 = z2 in Fig. 17and z1 = 4z2 in Fig. 18. It should be pointed out thatthe y-axis in all these plots is linear and not logarithmi
.Thus, one 
on
ludes that the ratio demonstrates littlequalitative 
hange for a variation of Q2 by almost twoorders of magnitude. In making su
h an observation, onemust ignore the di�eren
e between the solid line (initial
ondition) and the remaining lines (evolved fun
tions) es-pe
ially at large z2. This is due to the fa
t that the initial
ondition is not subje
ted to the kinemati
 
onstraint asz2 ! 1=(1 + r). However, the four plots are visuallyquite di�erent from ea
h other: the ratios of the evolvedfun
tions display a steady drop as 
ompared to the ini-
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FIG. 16: Same as Fig. 15 ex
ept z1 = 3z2.tial 
ondition as we progress from z1 = z2 to z1 = 4z2.The reader will also note that the maximumof the y-axisdrops with in
reasing r.As the energy of the e+e�annihilation is raised themultipli
ity must also in
rease. The 
ause for this isnothing other than the ex
ess energy available for par-ti
le produ
tion. Following the physi
al pi
ture of frag-mentation proposed in Ref. [22℄, one notes that at higherenergies it be
omes more probable that the two hadronsemanate from two 
ausally dis
onne
ted se
tors of thefragmenting jet. If this were the 
ase, then at veryhigh energies, the ratio of the double fragmentation fun
-tion to the produ
t of the single fragmentation fun
tions(Dh1h2q (z1; z2; Q2)=Dh1q (z1; Q2)Dh1q (z2; Q2)) should rea
hunity, espe
ially for small values of z1, z2. This has notturned out to be the 
ase as eviden
ed by the plots of thisratio in Fig. 19 for z1 = 2z2 and in Fig. 20 for z1 = 3z2.In these plots the ratio deviates from unity at small mo-mentum fra
tions. Whether this is a fa
et of the 
hoi
eof our initial 
onditions is as yet un
lear.VII. DISCUSSIONS AND CONCLUSIONSIn this paper, we have studied dihadron fragmentationfun
tions within the framework of 
ollinear fa
torizationin the high-energy e+e� annihilation pro
esses, startingwith the operator de�nition. Using the 
ut-vertex te
h-

FIG. 17: Same as Fig. 15 ex
ept z1 = z2.nique, we also derived the DGLAP evolution equation forthe non-singlet dihadron quark fragmentation fun
tion.We solved the DGLAP evolution equation numeri
ally,with a simple ansatz for the initial 
ondition.Both the de�nition in operator formalism and the re-sultant DGLAP evolution equations for the dihadronfragmentation fun
tions have remarkable similarities tothe single fragmentation fun
tions. The �rst type of 
on-tribution to the evolution equations, that from gluon ra-diation before the fragmentation of the o�spring quark(or gluon) into a pair of hadrons, is very similar to the
orresponding pro
ess in single fragmentation fun
tions.The se
ond type, unique to the dihadron fragmentationfun
tions, 
omes from independent fragmentation of thetwo o�spring partons into two single hadrons of the ob-served pair. Sin
e this pie
e represents the in
oherentfragmentation of the quark and the gluon, it is well de-�ned only when the transverse momentum between thedete
ted hadrons is large.The relative transverse momentum between the twohadrons is integrated over in the de�nition of the di-hadron fragmentation fun
tion. Hen
e, we have assumedthat its non-perturbative 
ontribution, whi
h resides inthe operator de�nition, is restri
ted to an intrinsi
 trans-verse momentum s
ale, q? < �?. Hadron pairs withq? > �? are assumed to be generated only perturba-tively. For this assumption to be justi�ed, the semihards
ale �? is 
hosen to be mu
h larger than �QCD. One has
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FIG. 18: Same as Fig. 15 ex
ept z1 = 4z2.then to assume that the energy s
ales of the pro
esses inquestion i.e. Q2 be mu
h larger than the semihard s
ale�?, su
h that a hierar
hy of s
ales, �2QCD << �2? <<Q2, is satis�ed.This study is motivated by the observation [4℄ that thesame side 
orrelations of two high pT hadrons in 
entralAu + Au 
ollisions remain approximately un
hanged as
ompared with that in p+p and d+Au 
ollisions. Spe
i�-
ally in this experiment, one measures the distribution, inazimuthal angle, of the se
ondary (or asso
iated) hadron1Ntrig dNd� with respe
t to the triggered high pT hadron.Negle
ting the di�eren
es in produ
tion 
ross se
tion andfragmentation fun
tions for di�erent parton spe
ies, theintegrated yield of the 
orrelation around the peak at� = 0 should be the ratio of dihadron and single hadronfragmentation fun
tions, Dh1h2a (z1; z2; Q2)=Dh1a (z1; Q2),with z1 and z2 being the momentum fra
tions of thetriggered hadron and asso
iated hadrons, respe
tively.To understand the observation in the framework of jetquen
hing, one has to study the medium modi�
ationto a dihadron fragmentation fun
tion due to parton en-ergy loss. Sin
e it has been shown in the 
ase of singlefragmentation fun
tions that medium modi�
ation dueto multiple s
attering and indu
ed gluon radiation 
loselyresemble that of radiative 
orre
tions due to evolution inva
uum [17℄, the DGLAP evolution is expe
ted to yield
lues regarding the mediummodi�
ation of the dihadronfragmentation fun
tions.

FIG. 19: Results of the ratio of the non-singlet quark di-hadron fragmention fun
tion Dh1h2q (z1; z2;Q2) to the produ
tof the single fragmentation fun
tions Dh1q (z1;Q2)Dh1q (z2;Q2).In this 
ase z1 = 2z2 and Q2 = 2GeV2 to 109GeV2. See textfor details.Our numeri
al results indeed show little 
hange of theratio Dh1h2q (z1; z2; Q2)=Dh1q (z1; Q2) as Q2 is varied ina wide range of values. The evolution is shown to bestrongly dependent, however, on the ratio of the momen-tum fra
tions of the two hadrons (r = z1=z2). In theresults of Ref. [4℄ the ratio r = z1=z2 is essentially inte-grated over all values � 1. In order to relate to the resultsin this paper one essentially must average the e�e
ts ofevolution shown in Figs. (15-18). One will immediatelynote that summing over di�erent values of the ratio z1=z2will lead to the observation of minimal 
hange in the ra-tio of the fragmentation fun
tions as a fun
tion of the Q2of the rea
tion.No doubt, this study is but the �rst step in this ef-fort. In the interest of simpli
ity, results for the 
om-putationally simpler non-singlet fragmentation fun
tionswere presented. The results for the evolution of the morephysi
ally relavant singlet fragmentation fun
tions willbe presented in a future e�ort. The DGLAP evolutionequations for su
h fun
tions will involve, in addition, thesplitting of one gluon to two gluons and the 
oupled dif-ferential equations.In the above, we have demonstrated the fa
torizationof the double di�erential 
ross se
tion into a LO hard partand a soft pie
e whi
h en
oded the nonperturbative infor-



25

FIG. 20: Same as Fig. 19 ex
ept z1 = 3z2mation of 
onverting partons into hadrons. A 
ompleteproof of fa
torization requires the extension of the 
al
u-lation to all orders. There also remains the evaluation ofthe mediummodi�
ations to the dihadron fragmentationfun
tions. We will address ea
h of these issues, in turn,in future publi
ations.A
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t No.DE-AC03-76SF00098.APPENDIX A: SUDAKOV DOUBLELOGARITHMS IN LIGHT-CONE GAUGEIn Subse
t. 
 of Se
t. IV we argued that one of theNLO 
ontributions to the dihadron fragmentation fun
-tions would result from the 
onvolution of two single frag-mentation fun
tions. The justi�
ation for the in
lusion

of this pro
ess rests on the assumption that the higherorder diagrams that have gluon lines 
onne
ting the out-going quark and gluon 
an be ignored in a leading loganalysis. The simplest higher order 
orre
tion of thistype emanates from the presen
e of a single gluon line
onne
ting the outgoing quark and gluon as illustratedin Fig. 21.The presen
e of a Sudakov double logarithm in this di-agram signals a leading log 
ontribution to the infraredand 
ollinear divergen
es of diagrams of the same order.Su
h a 
ontribution will 
all into question our derivationof the se
ond pie
e of the evolution equation [Eq. (74)℄.Derivation of this pie
e of the evolution equations re-quired the identi�
ation of the leading log 
ontributionsfrom infrared and 
ollinear divergen
es followed by fa
-torization and a resummation of these into the singlefragmention fun
tions. Su
h a pro
edure may only be
arried out if the leading log portions in higher order di-agrams are 
ontained solely in the selfenergy 
orre
tionsof the outgoing gluon and quark lines and in real gluon orquark emmissions o� these lines. A leading log 
ontribu-tion from the infrared or 
ollinear se
tor of the diagramof Fig. 21 will 
all this pro
edure into question. In thisappendix, we demonstrate that in the 
ollinear se
tor ofthis diagram, evaluated in light-
one gauge, the Sudakovdouble log is absent.
p1

p2

p

k

l

qFIG. 21: A next-to-next-to-leading order 
orre
tion.In this endevour we follow the te
hniques outlined inRef. [8℄ for the evaluation of the photon vertex. Theleading 
ontributions from the diagram of Fig. 21 may beevaluated as in [8℄ by the solution of the Landau equa-tions. This leads to the presen
e of two regions of phasespa
e where a double logarithm may arise:



26p� + k� = �1k� ; k2 = p � kl� � k� = �2k� ; k2 = p � k (A1)In the above, �1; �2 are mere real numbers. These 
on-ditions essentially outline the 
ases where the gluon k�a
hieves 
ollinearity with the outgoing quark with mo-mentum p� or with the outgoing gluon with momentuml�. Either 
ase produ
es a double log 
ontribution in theFeynman gauge.The expression for a quark with momentump+l split-ting into an outgoing onshell quark with momentum pand gluon with momentum l with the splitting vertex
orre
ted by a single gluon with momentum k may beexpressed as�ui(p)�a�i;juj(p+ l)"�a(l) = �ui(p) Z d4k(2�)4 itdg
�� i(6p+ 6k)(p+ k)2 + i� it
g
� id��(l� k)(l+ k)2 + i�gfa
d� �g��(k � 2l)� + g��(l � 2k)� + g��(k + l)��� id��(k)k2 + i� "a��(l): (A2)It may be argued (see Ref. [8℄), that the double log-arithm behaviour in vertex diagrams originates on the
ollinear pin
h surfa
es outlined above in Eq. (A1). Thebehaviour of this above vertex 
orre
tion in the regionwhere the internal gluon momentum k be
omes 
ollinearto the the outgoing gluon momentum l will now beanalysed. This 
orresponds to the se
ond 
ondition inEq. (A1). The d4k integration is de
omposed into thelight-
one variables dk+dk�d2k?. The fo
us is on thepin
h sigularity whi
h results from the two denominators1k2 + i� ; 1(l� k)2 + i� :The pin
h between the two denominators arises in thek� integration solely in the region 0 < k+ < l+. Evalu-ating the pole at k� = k2?=2k+. We obtain a pin
h fromthe 1(l� k)2 + i�propagator in the region where ~k? � ~l? = k?l?, i.e. kbe
omes 
ollinear with l. To regulate the 
ollinear diver-gen
e we introdu
e the variables x; Æ~k?:k+ = xl+~k? = x~l? + Æ~k?: (A3)

Evaluating the integrand of Eq. (A2) at the residueof the pole k� = k2?=2k+ followed by the substitutionsoutlined in Eq. (A3) we obtain the split vertex 
orre
tionas �ui(p)�a�i;juj(p + l)"�a(l) = Sa Z dxx Z d2Æk?Æk2?� �u(p)
� (6p+ x 6 l)p+l+l2?(p+ + l+)2 
�u(p+ l)� �� g�� + (1� x)(l�n� + l�n�)(1� x)l �n �� �g��(x� 2)l� + g��(1� 2x)l� + g��(x + 1)l��� d��(l)"a��(l): (A4)In the above equation all fa
tors of 
olor together withmultipli
ative 
onstants have been absorbed into the fa
-tor S�. The sum over polarizations of the gluon withmomentum l � k [i.e. the fa
tor d��(l � k)℄ and theexpression for the glue vertex have been simpli�ed. Inthese and in the rest of the numerator, fa
tors of Æ~k?have been negle
ted, as the fo
us is on the region whereÆk? ! 0. If the numerator, under this approximation,turned out to be vanishing, then this would indi
ate theleading 
ontribution to be proportional to Æk? ! 0 andas a result no double logarithm and no leading 
ontri-bution from this loop would result. Under the relationsa�orded by the polarizations of the light-
one gauge:l� � d�� = 0; l� � "a��(l) = 0;it may be easily demonstrated that a 
ontra
tion of theLorentz indi
es �; �; � lead to the numerator of the r.h.s.of Eq. (A4) to be
ome vanishing. This result is a propertyof the light-
one gauge.It may also be demonstrated, following similar meth-ods, that the double logarithm emanating from the re-gion of phase spa
e where the gluon k� be
omes 
ollinearwith the outgoing quark line is also suppressed due thevanishing of its 
oeÆ
ient as above. We leave the proofof this property to the reader. The above argumentsdemonstrate the vanishing of the leading 
ontributionsform higher order 
orre
tions to the split vertex. Thisproperty validates our pi
ture of independent fragmen-tation.
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