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Dihadron fragmentation functions and their evolution are studied in the process of et e™ annihi-
lation. Under the collinear factorization approximation and facilitated by the cut-vertex technique,
the two hadron inclusive cross section at leading order (LO) is shown to factorize into a short dis-
tance parton cross section and a long distance dihadron fragmentation function. We provide the
definition of such a dihadron fragmentation function in terms of parton matrix elements and derive
its DGLAP evolution equation at leading log. The evolution equation for the non-singlet quark frag-
mentation function is solved numerically with a simple ansatz for the initial condition and results

are presented for cases of physical interest.

PACS numbers: 13.66.Bc, 25.75.Gz, 11.15.Bt

I. INTRODUCTION

Lattice QCD calculations M] predict a phase transition
from a hadronic gas to a quark gluon plasma (QGP) at
very high energy densities in which quarks and gluons are
no longer confined to the size of individual hadrons. To
create such a dense and hot matter, heavy ions are ac-
celerated to extremely high energies to collide with each
other. If formed in such heavy-ion collisions, the QGP is
rather short lived and hadronizes quickly into a plethora
of mesons and baryons. Hence, the existence of such
a state in the history of a given collision must be sur-
mised through a variety of indirect probes. One of the
most promising signatures has been that of jet quenching
M], which leads to the suppression of high pr particles
emanating from such collisions. Such jet quenching phe-
nomena have been among the most striking experimen-
tal discoveries from the Relativistic Heavy Ion Collider
(RHIC) at Brookhaven National Laboratory. Not only
has the suppression of single inclusive high pr hadron
spectra been observed ﬂ], but also the disappearance of
back-to-back correlations of high pr hadrons has been
noted M] Both phenomena and the observed azimuthal
anisotropy of high pr hadron spectra are qualitatively
consistent with the picture of parton energy loss that
leads to jet quenching. This is indicative of the forma-
tion of a hot medium which 1s opaque to energetic partons
and has a parton density about 30 times higher than in
a cold heavy nucleus.

In the investigation of jet suppression, correlations be-
tween two high pr hadrons in azimuthal angle are used to
study the change of jet structure M] While the back-to-
back correlations are suppressed in central Au + Au col-
lisions, indicating parton energy loss, the same-side cor-
relations remain approximately the same as in p 4+ p and
d+ Au collisions. Given the experimental kinematics, this
i1s considered as an indication of parton hadronization
outside the medium. However, since the same-side cor-
relation corresponds to two-hadron distribution within a
single jet, the observed phenomenon is highly nontriv-

1al. To answer the question as to why a parton with a
reduced energy would give the same two-hadron distri-
bution, one has to take a closer look at the single and
double hadron fragmentation functions and their modi-
fication in medium. In this paper we take the first step
by studying the dihadron fragmentation functions in the
process of ete™ annihilations.

Inclusive hadron production cross sections in ete™ col-
lisions have turned out to be one of the many success-
ful predictions of perturbative QCD M, n, n] For re-
actions at an energy scale much above Agcp one can
factorize the cross section into a short-distance par-
ton cross section which is computable order by order
as a series in a4(Q?); and a long-distance phenomeno-
logical object (the single hadron inclusive fragmenta-
tion function) which contains the non-perturbative in-
formation of parton hadronization ﬂ] These fragmen-
tation functions can be defined in an operator formal-
ism M] and hence are valid beyond the perturbative
theory. They, however, cannot be calculated pertur-
batively and have to be, instead, inferred from experi-
ments. The definition of these functions affords them the
mantle of being universal or process-independent. Once
measured in one process, e.g. eTe” annihilation, they
can be applied to another, e.g. deep inelastic scatter-
ing or p 4+ p collisions, and therein lies the predictive
power. Another contribution of pQCD rests in the fact
that once these functions are measured at a given en-
ergy scale, they can be predicted for all other energy
scales via the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
(DGLAP) evolution equations m, [ § n]

The single inclusive fragmentation function Dg(z, Q?)
can be interpreted as a multiplicity distribution for
hadrons of type h with a longitudinal momentum fraction
z that materialize from a fragmenting parton of flavour
g. Omne can have, in principle, an n-hadron fragmen-
tation function DPvh2hu (2 20 2, Q%) which counts
the number of hadrons of type hy,hs,...h, with mo-
mentum fractions z1, zs, ...z, materializing from a frag-
menting parton ¢. In this article, we will be con-
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cerned with the double inclusive fragmentation function
Dgl’“(zl,zz,Qz) or the dihadron fragmentation func-
tion. The operator definition of this function is not
merely a trivial extension of the single hadron case; there
are no straightforward sum rules connecting it to sin-
gle inclusive fragmentation functions. Similar functions
have been considered previously [, ILd, [LX]. However,
such formulations considered the double fragmentation
function with a fixed angle § (or a fixed tranverse mo-
mentum difference ¢gr) between the two hadrons. For a
large enough choice of § (or ¢r) the dominant contribu-
tion to Dgl’“(zl,zz,é, Q?) was postulated to emanate
from a process where the fragmenting parton had un-
dergone a split into two partons which then fragmented
independently. This formulation, however, requires ¢ (or
qr) to be large enough that the splitting process may be
calculated in perturbation theory. In our formulation,
the internal angle § (or relative momentum ¢7) will be
explicitly integrated over. In this regard, our calcula-
tions are similar in spirit to those of Ref. [Ild]. In that
effort, general evolution equations for n-hadron fragmen-
tation functions were motivated, and an algebraic solu-
tion of the moments of the fragmentation functions was
obtained. In none of the previous studies, however, has
an attempt been made to generalize the operator defini-
tion of the fragmentation function from one hadron to
many hadrons. Evaluation of the n-hadron production
cross section at leading order (LO) and leading twist al-
lows one to analytically define such a function. Evalua-
tion of corrections to the same cross section at leading log
(LL) and leading twist allows one to derive the evolution
equations for such functions. This is the objective of the
current study. To the knowledge of the authors, no such
calculation has hitherto been attempted.

Our eventual goal is to derive the medium modification
to the dihadron fragmentation function as the fragment-
ing parton propagates through the medium. As shown
in the case of single hadron fragmentation functions [IL1],
the medium modification of the fragmentation function
due to multiple scattering and induced gluon radiation
resembles very much that of radiative corrections due to
gluon bremsstrahlung in vacuum. Therefore, the study of
DGLAP evolution of dihadron fragmentation functions in
this paper can already provide us hints of what one may
expect for medium modifications.

The remaining sections are organized as follows: in
Sec. II we present a general discussion of the double
fragmentation function. We outline how such a function
may be 1solated in the expression for a double differential
inclusive cross section and discuss the possible nature of
its evolution equations. In Sec. III we begin with the
S-matrix expression for the double differential cross sec-
tion for the production of two hadrons in ete™ collisions
at leading order (LO); we then factorize the expression
at leading twist into the conventional hard part and the
double fragmentation function. We also derive the rules
for such an object in the cut-vertex technique of Mueller.
In Sec. IV we write down the double differential cross

section at next-to-leading order (NLO) and once again
factorize it at leading twist into the conventional hard
part and NLO correction to the fragmentation function.
Using these we derive the DGLAP [l [LY, [Lf] evolution
equations for the double fragmentation functions. In Sec.
V we focus on the evolution equation for the non-singlet
(NS) quark fragmentation function and solve its evolu-
tion equation numerically. Finally in Sec. VI we discuss
the results of our calculation and present our conclusions.

II. THE PARTON MODEL

In this section, we present a general discussion of the
properties of a dihadron fragmentation function within
a parton-model-like picture with collinear factorization.
However, all our assumptions will be demonstrated to
hold explicitly in an operator formalism at leading log
and leading twist in the subsequent sections.

We consider the following semi-inclusive process

et 4+e” 5y 5 hy +ho+ X

of ete™ annihilation. We consider two-jet events where
both the identified hadrons h; and hs emanate from the
same jet. At leading order in the strong coupling this
occurs from the conversion of the virtual photon into a
back-to-back quark and antiquark pair which fragment
into two jets of hadrons.

In this scenario, at a large Q2 of the reaction, one
may factorize the cross section of single inclusive hadron
production as [[LA]

A S B R -1) )

with Dg(z) and Dg(z) as the single inclusive quark frag-
mentation functions. The total cross section for the an-
nihilation of an electron positron pair to a quark and an
anti-quark, of? at leading order is

7 Ara?

qu = 63]\763—8. (2)
Here, e, is the fractional charge of the quark in units of an
electron charge, s is the square of center of mass energy
of the ete™ pair, and N, = 3 is the number of colors in
the fundamental representation of QCD. The fractional
momentum z represents the the light-cone momentum
fraction of the hadrons to the parent partons, ¢.e.,

Pr-n
)

p-n

z =

where we use the notation of bold face letters rep-
resenting four-vectors. The lightlike four-vector n =
[nT,n=,n1] =[0,1,0] is taken conjugate to a given mo-
mentum, as yet unspecified.



Similarly, one can expect to obtain the two-hadron in-
clusive cross section from Eq. (ll) by replacing the single
inclusive fragmentation functions Dg (z1) with the double

inclusive functions D(;“’”(zl, Za),

99 hq h2 hiho
led,Zz Z 70 |:D 21,22) + Dq (Zl, 2'2) . (3)

We will not discuss cases in which each of the two hadrons
emerges independently from each of the back-to-back
quark and antiquark jets.

In the parton model [L&], at NLO with a single gluon
radiative correction, the two hadron inclusive cross sec-
tion in et e~ annihilation can be expressed as a convolu-
tion of the fragmentation functions with the differential
partonic cross sections (see Sec. 3.3 of Ref. [L&]),

d
dza(zl,zz,Qz) = (di) dthl’hQ(xl,xz)dxldxz
Y
dO' hy b
+ d— dyDg" " (x1, vo)dr dy
doyg i,k
+ dyDyg 2(xy, we)dwydas
y
+ (%) ay (D o) o)+
(hl,Zl) (hz,Zz)] dl‘ldl‘z
do gz
T d;’q) dy [ D (1) DJ ()4
(hl,Zl) — (hz,Zz)] dl‘ldl‘z. (4)

There are two distinct types of contributions in the
above equation. The first one i1s determined by the
two-hadron fragmentation functions of single partons
that have the pQCD differential cross sections, do,/dy,
dog/dy, do,/dy, and momentum fraction y. The second
contribution corresponds to two, almost collinear, par-
tons (a gluon and a quark or antiquark with pQCD cross
sections dog/dy and dogz/dy) splitting from the same
parent parton and then fragmenting independently into
hadrons. In this case, the quark (antiquark) carries mo-
mentum fraction y and the gluon carries 1 — y. One of
the identified hadrons comes from each of these partons.

The two hadrons h; and hs have momentum fractions
x1 and x5 of their immediate parent parton which itself is
endowed with a momemtum fraction y or 1 —y. Relating
the inside parton variables x1, 29, y to the outside hadron
variables we obtain

r1 = Zl/y, Ty = Zz/y
for the first three terms and
r1 = Zl/y, Ty = 22/(1 - y)

for the last two terms. Using the pQCD partonic cross
sections in the massive gluon scheme [[L4], one can obtain

the double differential cross section for the production of
two hadrons with momentum fractions z1, z5 as,
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Here the switch between the indices 1 — 2 is only meant
for the last y integration. The P(y) functions are the
regular splitting functions which contain both the real
and virtual contributions and thus have no infrared di-
vergences. The P(y) functions contain no contributions
from virtual diagrams. The f(y)’s are the scheme de-
pendent functions obtained in the massive gluon scheme,
where my is the fictitious gluon mass introduced to regu-
late the collinear divergences. In the subsequent discus-
sion we will focus on the leading log (LL) piece of the
above expression. Thus one can drop the scheme depen-
dent f functions.

Note that up to this point we have simply retraced the
sequence of steps in the evaluation of the radiative cor-
rections to the single inclusive fragmentation functions
in the parton model. What is new in the case of two
hadron inclusive cross section is the contribution from
the splitting into a quark and gluon followed by indepen-
dent fragmentation. The log(@Q?/m}) in this contribution
originates from an integration over the transverse mo-
mentum ¢, of the quark and gluon emanating from the
split. For very small values of ¢ , other higher order and
nonperturbative processes become important that will in-
validate the picture of independent fragmentation of the
two partons. For ¢ >> Agcp, however, the higher
order corrections will be suppressed and the quark and
gluon will fragment incoherently in LL approximation
(this was first pointed out in Ref. [L4]). A simple proof
of this statement has been included in the Appendix. In
this paper, we introduce a cut-off scale 1| that separates
two regimes of two-parton fragmentation according to the
value of ¢ : independent fragmentation for ¢; > p; and
coherent fragmentation for ¢ < gy . Unlike the factor-
ization scales that we will discuss shortly, p 1s not intro-
duced to renormalize the fragmentation functions but to



define the perturbative (or non-perturbative) part of the
dihadron fragmentation functions. It is quite analogous
to the cone-size of jet definitions [[L].

To simplify the discussion in this paper, we will con-
centrate on the non-singlet fragmentation functions:

Dt (21, 20) = D (2, 20) — DI (2, 20).  (6)

We also use the following convolution notations,

b
d
A*B|Z:/ y—gA(zl/y,zz/y)B(y)

o [0 dy o /(] —
A*B|a_/a T A v (=) B,

The bare fragmentation functions D, z,(21,22) In
Eqgs. (@) and (@) are not as yet physical, measurable quan-
tities and are scheme dependent, since the cross sections
expressed in terms of them contain collinear divergences.
One can however introduce renormalized fragmentation
functions such that the double inclusive cross section can
be factorized in the form of Eq. (@) and is free of collinear
divergences.

Factoring out the eTe™ annihilation cross section in
Eq. (@), we are left with the scale dependent physical
fragmentation functions which should be free of collinear
divergences. The “non-singlet” physical fragmentation
functions are,

DN (21,20, Q%) = DR (7)
1
hi1,ha [
+Dyg *ﬁpq—wg log(Q?/m)
Z1+22
h1 ks \ 3 % B e 2/ 2
+<DNSD9 )*ﬁpq—ﬂzg log(Q~/p1)
h1 ks \ 3 % B e 2 4 2
+| Dys Dy *ﬁpq—wg log(py /my)

+1 — 2

Here the switch 1 — 2 is meant solely for the second and
third term. Such exchange will be made implicit in the
rest of this paper. We will also drop the limits of the
convolutions in the notation for brevity. In the case of
independent fragmentation, we have also split the expres-
sions into a term that solely includes contributions with
g1 above the scale p; . The second piece contains con-
tributions below p; and thus receives large corrections
from higher order and non-perturbative processes. This
piece will have to be absorbed into a redefinition of the
bare dihadron fragmentation function.

We now have to introduce the factorization scale pu
and redefine the bare dihadron fragmentation function in
terms of a renormalized one and the single fragmentation

functions,
hiha
Dyg™ = (8)
_ o,
Djll\fléh2(ﬂaﬂL) * (1 + ﬁPq_,qg log(mg/ﬂz) + )
o
+ Djfirlng”*( ﬁPq_,qg log(mg/ui) + )

Note that the log in the second term can be separated
into two pieces

log(m /p7) = log(mg /u®) +log(u? /7)), (9)

with the first one containing the collinear divergence and
the second piece defining the independent fragmentation
of two collinear partons. In the case where p <y, we
essentially have a function that depends on two scales:
the collinear divergences that are extracted from the sec-
ond term in Eq. (@) cannot be factorized out at a scale
below ;. However, we may chose to have g > pj, in
which case the second piece in Eq. () is a finite constant
that may be simply reabsorbed into the definition of the
renormalized fragmentation function. With the factor-
ization scale p chosen above the physical scale p), we
may now express Eq. (@) as

hiha
Dl = (10)

s

Djll\fléh2(ﬂ) * (1 + ﬁPq_,qg log(m?/uz) + )

_ Qg
+ DR D% ( 5 Pamsag log(my /i) + )

In what follows we will always compute in the region
where g > ptg .

We may now substitute Eq. (El) into Eq. (@ and con-
centrate on the leading order and leading log (L.L) sector
of the fragmentation functions (i.e. we only keep terms

to order a(Q?)log(Q?)) to get

D§" (21,2,Q%) = (11)

s

DJthS’M(N) i (1 + ﬁpq—ﬂzg log(Q*/1?) + )

|«
+ DJthSDgQ*( ﬁpq—ﬂzg log(Q*/1*) + )

The above dihadron fragmentation function in the NLO
still contains the bare single fragmentation functions in
the contribution from two independent parton fragmen-
tation.
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FIG. 1: Diagrams to be resummed iteratively to obtain the evolution of the fragmentation functions.

If we consider higher order processes in which an ad-
ditional gluon radiation takes place after the split but
before independent fragmentation, as shown in Fig. l
another collinear divergence will arise. This is exactly
the same as in the NLO correction to the single inclusive
fragmentation functions. One has to introduce renormal-
ized single hadron fragmentation functions at a factoriza-
tion scale g

[0

Dl = D) 1452 Py ol 1)+ . ) (12

where, the ® indicates the regular convolution notation,
ie. Ao B={ C;—yA(z/y)B(y). In addition, the renor-
malized gluon fragmentation function is defined as,

_ g
Div = Di(pi) @ (1 + 5 Poag log(my/p7) + )

_ o
q

where Dg/lq represents the quark or antiquark fragmen-
tation function and the sum includes all flavours. The
factorization scale p; for the single fragmentation func-
tions needs not be the same as the factorization scale for
double fragmentation functions.

With both the renormalized single and double hadron
fragmentation functions, we obtain the leading log and
NLO expressions of the double hadron fragmentation



functions
DY (21,2,Q%) = (14)

Pyrqglog(Q* /%) + )

as

~h1,ho
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_ _ s
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In the above discussion we have set Q2 to be large such
that there exists a hierarchy of scales AéCD << p? <<

Q?. The above factorization is valid in the regime in
which the fragmentation functions are measured at a
scale p such that ) < p << @. In this limit we may
also set iy = p to define both single and double frag-
mentation functions at the same scale. Note that the
single fragmentation functions at the new scale p differ
from those at py at higher order in a and thus the cor-
rection due to these may be ignored in the leading log
expressions for large enough Q2.

The remaining task in our parton model evaluation of
the double hadron fragmentation function is to iterate
the radiative process as shown in Fig. B Each of the
circular blobs represents a fragmentation function at the
scale p. Differentiating the series with respect to log(Q?)
followed by a reorganization of the various terms leads to
the evolution equation:

DN QY a
aNIOSngz = 9 Pyvgg * DR (Q7)

+ PqugiDJ'?s(QZ)DSZ(QZ) +1—2|(15)

Within the framework of the parton model we can pic-
ture the process as the free propagation of a parton fol-
lowed by its fragmentation into hadrons of which two
are identified. Fragmentation may be preceded by the
radiation of multiple soft gluons (this is the top line in
Fig.l). Occasionally the parent parton undergoes a semi-
hard split into two offspring partons which then propa-
gate freely of each other and then fragment independently
into hadrons and one hadron from each of these offspring
is identified. Prior to their fragmentation, the offspring
may radiate multiple soft gluons as well.

The excercise in this section is based on the validity of
our assumptions about the nature of the fragmentation
process, especially on the validity of Eqs. (@E). Tt was
assumed that in progressing from single inclusive to dou-
ble inclusive cross sections the parton model dynamics
would remain the single leading behaviour and more im-
portantly would lead to Eq. (). Such a proof exists for
the single inclusive fragmentation functions that requires
an exact operator definition of the single fragmentation
functions. One can demonstrate both the factorized form
of Eq. (ll) and the evolution equations of the single inclu-
sive fragmentation functions, exactly, as the leading log

behaviour at large  in an operator formalism (see Refs.
[, &, R0] and Ref. [21]). Mounting such a proof for the
dihadron fragmentation functions will require us to pro-
vide a definition of the dihadron fragmentation function
in the operator formalism. This will be the subject of the
next section. We will extend the cut-vertex formalism of
Mueller [, Rf] to dihadron fragmentation in this paper.
The factorization of the NLO expressions at leading twist
and leading log will be demonstrated in Sec. IV.

III. THE SINGLE AND DOUBLE
FRAGMENTION FUNCTIONS

In the previous section, we made use of the parton
model [f] to motivate a double inclusive fragmentation
function and assumed a factorized form as the leading
behaviour of the two hadron inclusive cross sections. To
prove the factorized behaviour we need to first obtain a
consistent definition of the dihadron fragmentation func-
tion.

We begin with the matrix element for the electron
positron annihilation into a given state of hadrons in the
single photon approximation,

M€+€_—>Shad

E / Ay (Shaal J* (4)]0)

—igvu —ilktke) Y Gk, )vRu(ky).  (16)

(k1 +ko)?

In the above equation, J* (y) = Zq eqUq (Y)Y Yq(y) is the
hadronic eletromagnetic current and ki, ks are the mo-
mentum four-vectors of the electron and positron. Here
the sum over the number of colors in the fundamental
representation of QCD is implied. Squaring the matrix
element, summing over all final states of hadrons and av-
eraging over all initial spins of hadrons, one obtains the
total cross section for ete~annihilation into hadrons,

= ? L 4
T Z / 27, (2 2V ok + ke = P, )
4
—e v
x 4(q2)2[’l“’<0|‘]u(0)|5had><5had|a] (0)]0)
et Ly, We
T o2sqt 4 (17)

where £, is the leptonic tensor and W#¥ is the hadronic
tensor. The four-momentum of the virtual photon is q =
ki + ks = (@,0,0,0) and the Mandelstam variable s =
q”> = Q2. The sum over Spaq includes both the sum of
the complete set of states and the phase space integration
[es,.. @°ps /2B (27)°.

One can evaluate the single inclusive cross section by
summing over all possible hadronic final states that con-
tain the identified hadron h. In the leading order and
leading twist in a collinear approximation, one can obtain



Eq. @M. In a light-cone gauge (n - A = 0), the operator
expression for the single inclusive fragmentation function

at leading twist is obtained as M, , ﬂ],

z
Dyg(en) = FTu ()

4 (2m)4 pn
yon
x Tr Toor(ppn) |, 18
[Ph n q(q)(P Ph)] ( )

where the the Dirac operators Tq(q) (p,ph) are given by

(Tq)aﬁ(PaPh) = /d4 Z OW)O( |Ph,5had—1>

Shaa—1

X (pn, S — 1|iha(x)[0)eP™ (19)

(T9)as(P,PA) = /d4 > {01¥s(0)[phs Shaa — 1)
Shaa—1

X (P, Shaa — Ltha(@)|0)e®>. (20)

Here, the sums are taken over all physical final states
of hadrons, which always contain, at least, the single
hadronic state with momentum pj;. In this case n is
chosen such that its spatial components are antiparallel
to the spatial components of the observed hadron. This
implies n - py = pf = (p} + [Ph])/2. In our choice of
light-cone momenta p~ = p® — p,. The gauge links re-
quired to make this expression gauge invariant have been
suppressed as they do not contribute to the leading twist
fragmentation functions in light-cone gauge.

The fragmentation functions can also be reexpressed
in the cut-vertex technique of Mueller. These represent
a powerful computational tool that may be used to calcu-
late inclusive cross sections and the scale dependence of
these functions in perturbation theory in a diagramatic
languange. The Feynman diagrams illustrating the lead-
ing order expressions for the single inclusive fragmen-
tation functions are shown in Fig. Bl In this Feynman
diagram the rule for the bare quark cut-vertex is

7-n Pr-D
2ph .n(5<zh — ) (21)

p-n
The derivation of operator definitions for dihadron frag-
metation functions and the extension of the cut-vertex
technique to incorporate these functions is the focus of
this section.

We will concentrate on the two-jet events 1in
ete~annihilation and are interested only in two hadron
production off one single jet. The fate of the “back-side”
jet will not be dwelled over here. We assume that the
sum over all hadronic states in W#*” can be simplified
into two complete sets of states and that each overlaps
independently with the quark and antiquark jet. This as-
sumption neglects the interference between the two jets
and is valid in leading log and leading twist. We also as-
sume the duality between the complete hadronic states

Ph

FIG. 2: cut-vertex for quark fragmention function at L.O.

and partonic states. Thus the sum over hadronic states
in the “back-side” jet will be replaced by partonic states.
Under this assumption, we evaluate the hadronic current
operator, order by order in ay, by expanding the QCD
interaction Hamiltonian in the interaction picture. In the
leading order (L.O), one obtains,

dPp1d®py
Z Z /4E1E2 271'

Shada—2 ¢
/dgik(%)%‘*(q—pl —p:—k->_ py)
2Ek(2ﬂ-)3 fE€EShaa—2 !
% (0[9g(0)v*44(0) |k, p1, P2, Shaa — 2)
% (k,p1,p2, Shad — 2]1hg(0)7" 14 (0)]0). (22)

In the above equation, Shqq 1s a complete set of hadronic
states. In the remaining discussion we will drop the sub-
script (pqq). We have extracted two particular hadronic
state sums, labeled as p1, po, from the full sum over states
S. The hadronic tensor may be represented by the Feyn-
man diagram in Fig. B

On Fourier decomposition of one of the quark or an-
tiquark operators, followed by a sum over all spins of
the outgoing antiquark (quark) state k, we obtain the
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FIG. 3: The leading order Feynman diagram contributing to
the double inclusive fragmentation function.

hadronic tensor as,
d3pyd3
Z / p1a7p2 (23)
4E1E2 271'
q,5=2

/ (;ﬂj 206* (K2) (27) 0" (q ~ p1 — P2 — k — ps_2)

{0124 (0) 1, 72, 5 = 29" Jo (1, b2, S = 2010, (0)]0) }

+{’Y“<0|1/’(0)|P1,p2, S = 2){(p1, p2, S — 2[¢(0)[0)” k}] :

One may rewrite the J—function as a four-space inte-
gration of an exponent exp(—ip - x) that in turn can
be used to transform the quark wavefunction operator
¥(0) — ¢ (x). A shift in the d*k integration can be per-
formed i.e. k = q — p. Summing over the spins (and
colors) of all the final (parton) states we obtain the gen-
eral form of the hadronic tensor as

Pp1d>ps d*p
W = N, 924
Z /4E1E2 270 /(%)4 (24)
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where the parton-double-hadron overlap matrices are
given similarly as for single fragmentation functions as

[%(P;phpz)rﬁ = /d4xeip.xz

(0142 (2)|p1p2S — 2)(p1p2S — 2|5 (0)[0)  (25)

and

{Tq(p;pl,pz)rﬁ = /d‘*xeip"‘z

(0[8 (x) [p1p=S — 2)(p1p2S — 2[5 (0)]0), (26)

where the two quark field operators have the same color
index and average over colors is explicitly implied.

Up to this point the derivation of the factorized dou-
ble inclusive fragmentation function has followed a path
not entirely dissimilar to that of a single fragmentation
function. At this point one may introduce the light-cone
variables and their ratios,

o =pt/pt, 2 =pd /ot

and z = 21 + 22 = (pf +pT)/p* = pf/pt. Where py
is the total momentum of the pair of hadrons that are
identified. We now take the collinear approximation that
the hadron momenta p1, pa, pp are almost collinear with
respect to the quark (antiquark) momentum at high en-
ergies and are thus dominated by their + components
for light-cone vector n chosen in the direction of the out-
going quark or antiquark. Essentially, pi" >> plL,piy
and the same is true for ps and p,. The overlap ma-
trices Tq,Tq have a Dirac matrix structure and hence
can be decomposed in a basis of products of 5y matri-
ces (1,4, 0" ~°y# 45). The only term of this basis to
survive is y*: even combinations are set to zero in the
trace and combinations containing ~° vanish under a spin
sum. As Ty, T, are scalers and only depend on the three
almost collinear momenta, we obtain at leading twist the
following decomposition of the overlap matrices:

- h
Ty(psp1,p2) = %Tq(p;pl,pz) or
T[T, (p; 1, p
Ty(pip1,p2) = Wzi(.p,f 2l (27)

where T, (p; p1, p2) is a scalar function. The entire Dirac
structure has been extracted into the v matrix.

With the aid of d—functions, we can introduce the
definition of the fractional momenta z; and 25 into the



hadronic tensor:

1
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In collinear approximation, we expand the hard part

W =[P (- ]t (a-p)) (29
in the transverse momentum of the hadrons p,; and take
only the leading term H'*" (p*) ~ H'*" (p* = p} /2)+....
This approximation allows us to factor out the hard
part from the d*p integral. This is the first step in the
factorization of the double hadron inclusive cross sec-
tion. Based on the collinear approximation we have also
dropped the term p? or p7/z* from the argument of the
§t function (i.e. q? —2q - p >> p?). Given the light-
cone structure of the four-vector p a further simplication
of the argument of the d—function may be obtained:

@ —2q-p =q¢ —(¢tp" +qpt —qLp1)
Q° — (Qp‘ + Qp+) ,as gL =0

2

+
p _
=Q-Qpt = QZ—th, as p~ << pt =pi/z
~ = 2q- 20 (30)
z

With the above simplifications and reorganization of
arguments in the two internal § functions, the hadronic
tensor can be written as

1
W — Nc/ dzldzzﬁ(l—m—zz)/dﬁldﬁz (31)
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276+ (Q7 — 2Q PR yHm
z

d*p
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where we have introduced the shorthand notation dp =
d®p/(27)?2E,. The variable pT is overdetermined and
thus one of the § functions acts really on the integrations
external to d*p. These may be extracted and further

reorganized as follows,

1 d*p 1o P 2
— S(pt —2)a(pt — 2.
2129 / (27T)4p (v 1 Jolp Z9 )
1 + e +
- 1 p_l_p_z)/ Poptis(r =y
Z1z2 Z1 %2 (2m) A1
_ v _ vl _pir)/ d'p st — ]i)
iz 2 Z9 (2m)% 2
1 plz d*p 2 pt
= . s(pt — 22 )/ Tt - o)
21 + 29 21 + 29 (2m) 21
1 P+, [ d'p 1o Py
= .Z6(pF - 2 / E5(pt — 22
P (pl P ) (27T)4p (p )
d4p p-l-
= ..pfd(zpt —zlp;)/Wé(z — p—i), (32)

where z = z1 + z9. Substitution of these expressions into
the hadronic tensor W*” followed by a substitution of
W back into Eq. (&) leads to the following expression
for the total cross section for et e~ annihilation,

L H*
o = 64chq:6§/d21d229(1—21_ZZ)NTJ@

TN

- - zZ
x / Aprdi2e 58" oy = 2Q/2)pto(eart - 21p)

d'p py
x (271.)45(2 - p_"') Tq(P;Plapz) + Tq(p;pl,pz) , (33)
where the external J—function has been used to set

H (0, Q) = 558% (1 — 2Q/2DH™ (@),

The dependence of the hard part on hadronic variables
is replaced with the appropriate partonic variables. Dif-
ferentiating the above equation with respect to z1, 2z
leads to the double differential cross section outlined in
Eq. (@). Before the extraction of the double inclusive
fragmentation function, some simplification of the above
equation is in order. In contrast to the definition of the
single fragmentation function, there are double hadronic
integrals d®pi, d®p, and two sets of §—functions as op-
posed to one. The cautious reader will note that the over-
lap matrices 1y (p; p1, p2), T5(p; , p1, p2) [see Eqs. (EAED)]
are dimensionally different from the overlap matrices
in the definition of the single inclusive functions (see

Ref. [21]).

To simplify, we begin with a variable trans-
formation. One  essentially  changes  from
the set  [pi,,P1y,P1.,P2,,P2y,P2,] to the set

[p1, P2, 91, 0cm, Pem, 1] as illustrated in Fig. B This
choice is not entirely arbitrary. The discussion of the
NLO in the previous section required us to incorporate
transverse momenta ¢; up to a semihard scale p; into
the bare fragmentation function. This particular variable
transformation allows us to isolate the ¢, integration.
The new vector pj, = p1 + P has the three components
of mostly massless four-vectors. The requirement that
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FIG. 4: The

transform from

variable
[levplyvplzvp2m7p2y7p2z] to [P17p27qJ-766m7 ¢cm7¢J_]~

p;'; = pi" —|—p§|' is trivially fulfilled. The new “body-fixed”
variable ¢ quantifies the component of p; — p that lies
on the plane perpendicular to g and ¢, is the azimuthal
angle of ¢’; on this plane. The angles 8., and ¢.,, quan-
tify the direction of pj, with respect to the eTe~beam
direction as the z axis. The Jacobian for this tranforma-
tion 1s simply

J = _J_ P1 +p2)2a

2

at leading twist. With these new variables one may eas-
ily relate the partonic variable in the hard part with
the hadronic variable pj as §/z, i.e. the sum of the 3-
momenta of the detected hadrons is collinear with the
3-momenta of the fragmenting quark or antiquark. It
may be demonstrated that the corrections to this state-
ment contribute at higher twist. It should be pointed
out, in passing, that this is a more accurate statement
than the assumption of collinearity between the leading
hadron and the fragmenting quark (antiquark) in the case
of single fragmentation, as in most cases a dominant part
of the jet’s momenta is contained in the momenta of the
leading hadrons.

With these new variables we can evaluate the inner
product of the leptonic tensor and the hard part of the
hadronic tensor,

LuMH"™ = 4Q*(1 + cos” e (34)
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and obtain the double differential cross section as

do eteZ N, dpydps
= (1 — 2z — d
dzidzs ( “ 22) Zq: 2s / (277)54]91]72
d cos gcm d¢cmqud¢J_ (pl + Pz)

QN p p Py \ 2
_5+ LX) th s £2 )z
8 2Q) (h 22)2122 (Zl )2
d*p p
2 ap _Pn
x (14 cos Hcm)/(%_)[lé(z p"’)
X [Tq(p;pl,pz)+Tq(p;p1,pz)]. (35)

Assuming that the overlap matrices, Ty (p;p1,p2) and
T, (p; p1,p2), are independent of the angles, 0.y, ¢em and
@1, one can carry out the integrations over these vari-
ables. It may once again be stipulated that the following
factorization 1s being performed and expected to succeed
only at high energies and momenta (large @? limit). In
this limit we note

serfoo(d)]

Hence, in the collinear limit p, pt >> ¢1, one may sub-
stitute p — p* in the entire integrand. Regardless of the
presence of § functions it may be demonstrated that the
correction to this approximation is suppressed by at least
a power of 2. The two remaining d —functions external
to the d*p integration, i.e.

+ +
a* (Pl +p2—2Q)5<p—1—p—2),
2 Z1 Z9

may be used to evaluate the p; and ps integrals. Factor-
ing out the LO total eT e~ annihilation cross section ¢,
we obtain the factorized double differential cross section

in a form similar to the structure of Eq. (l) as,

d 4 d*
Z qq/ qrLaqr = / 14 (36)
402m)? 42129 ) (2m)2

X [Tq(p;p1,pz) +Tq(p;p1,pz)]6 (z - z—i) .

d21d22

We thus arrive at the definition of the leading order
double inclusive fragmentation function as

dq? z4 d*p
Djrh = x / 37
a7 (2 2) / 8(2m)% 42120 ) (2m)2 (37)

P

X Ty(p; 21p, 22p)d (z - p—i)

In cut-vertex notation, the dihadron fragmentation func-
tion may also be expressed by the following equation

24

Tq(zla ZZ)a

Dhihe —
q (ZlaZZ) 42’12’2



where T'(z1, 22) is given by the diagram in Fig. B Note
that the bare cut-vertex has undergone no change as com-
pared to the single hadron fragmentation function, ex-
cept 1t takes as input the sum of the fractional momenta
z = z1 + z2. The soft hadronic sector is slightly modified
by the exclusion of two hadronic momenta (instead of
one) and the integration of the transverse momenta ¢ .

QP;; 1 2 pT

dqi
/ WTq(P; P1,D2)

FIG. 5: The cut-vertex representation of the dihadron frag-
mentation function.

Note that the definition of the dihadron fragmentation
functions in their factorized form as in Eq. (H) seems
to depend on our choice of variable transformation (see.
Fig. . Tt may indeed be possible to use a different vari-
able transformation and obtain a similar factorization.
The sole constraint on the choice of transformation to be
used is based on the factorization of the NLO expressions
into a form similar to that of Eq. (ll), with the same def-
inition of the double fragmentation functions. We will
demonstrate this in the next section. A second motiva-
tion for this choice of variables is the ability to isolate
the transverse momentum ¢, , which is integrated over.
In the operator definition of the dihadron fragmentation
functions, ¢, is generated non-perturbatively. So we will
call it intrinsic. The upper limit of integration of this
intrinsic ¢; has not been specified in Eq. (E8). From our
discussion in the previous section of the parton model
and of the NLO processes in the next section, the up-
per limit may be set as p; . We will assume that hadron
pairs with the relative transverse momentum ¢q; > puj
are generated only perturbatively.
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IV. CROSS SECTION AT NLO AND DGLAP
EVOLUTION

With the definition of the dihadron fragmentation
functions in the operator formalism, which is shown to
factorize from the hard parton cross section in the LO, we
are ready to study the DGLAP evolution of the dihadron
fragmentation functions by computing the double inclu-
sive cross section at next to leading order (NLO). The
calculation will also justify the factorized form of Eq.
@ and our LO definition of the dihadron fragmentation
functions.

The NLO matrix element of et e~ annihilation process
can be obtained from the perturbative expansion of the
S-matrix with an interaction Hamiltonian which includes
an interaction potential corresponding to a quark of color
J interacting with an antiquark of color ¢ (or visa versa)
and a gluon of color a:

Ho = igt] ;i 1 AS. (38)

The ] ;’s represent the Gell-Mann matrices.

The DGLAP evolution arises from collinear gluon
bremstrahlung in the final state of two jet events. As
in the case at LO in the previous section, we can again
neglect the interference between the two jets in either
the partonic or the hadronic level in the leading log and
leading twist approximation. Therefore, the sum over
all hadronic states 1s decomposed into the sum over two
complete sets of hadronic states, each overlapping with
one of the opposite-moving jets. Invoking the parton-
hadron duality, the sum over the hadronic states in the
“back-side” jet can be replaced by a sum over partonic
states. Therefore, partonic processes within the “back-
side” jet will not contribute to the evolution of the frag-
mentation function in the opposite side which has been
defined within a rather strict collinear approximation. As
in the case of single fragmentation function, we will also
assume, in addition, that there is no interference between
the fragmentation of the leading parton and the radiated
gluon that has a minimum transverse momentum set by
the factorization scale p.

Hence, in NLO, the sum over all states may be ex-
pressed as

19) = lkg(@)) * |5 = 2, p1p2). (39)

Depending on how different operators are contracted
with the outgoing hadronic state |S —2), we may identify
three different cases:

IS —2,p1p2) = |5 —2,p1p2) x |(p—1)g)
+ [S =2,p1p2) X |(p = Dg(q))
+ |S_ 1ap1> X |S_ 1ap2>' (40)

These cases differ in the partonic operator that contracts
with the hadronic state. In the above, the parton with
momentum k which proceeds in a direction opposite to
that of the identified hadrons alternates between a quark



and an antiquark. In the rest of this paper, we will al-
ways take it as an antiquark in order to focus on the quark
fragmentation function. The case for the antiquark frag-
mentation function will be formally identical to that of
the quark.

In the following subsections, we will evaluate contri-
butions from these different cases in detail. Roughly
speaking, the first line of Eq. (El) represents contribu-
tions where the fragmenting quark undergoes a split into
a quark and a gluon and the two identified hadrons em-
anate from the quark offspring. The second contribution
represents the case where both identified hadrons em-
anate from the gluon. The last contribution represents
the case where one hadron emanates from each of the
quark and gluon offspring.

A. NLO contribution from quark fragmentation

Proceeding with the evaluation of the double differ-
ential cross section at next-to-leading order, the focus
in this subsection will be on isolating contributions to
the cross section that contain an explicit expression for
a dihadron fragmentation function of a quark. The out-
state 1n this subsection will solely be restricted to the
first line of Eq. (). The instate is simply that of an
incoming et e~ pair. Insertion of the interaction operator
density T[Ho+c-~HqgyHqeqq), Tollowed by a contraction
of the outgoing antiquark operator with the states |kg)
and gluon operator with |(p —{),), leads to the following
matrix element:

; . _ Juv
MY =1 e e qtun. P u -
Zq: q g k27 k1 q2—|—l€

<p1p25 _ 2|¢q(0)|0>{w

X

(a—1)? +ie
e
< r)'ta—k-p-1). "

In the above equation there are two terms with differ-
ernt momentum dependences within the curly brackets.
The reader will readily note that the second term is the
Feynman rule for the process indicated in the upper panel
of Fig. B while the other term consists of the Feynman
diagram where the gluon is radiated from the antiquark
line, as shown in the lower panel of Fig. B

In computing the NLO cross section, one may once
again factorize the cross section into a leptonic and a
hadronic piece [see Eq. [E0)]. Summing over all final
states of the outgoing antiquark, gluon and hadrons from
the fragmenting quark (besides Ay and hs) followed by
an incorporation of minor simplifications, the hadronic
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P1

p2

q

FIG. 6: The leading log contribution to the NLO modification
of the quark fragmentation function.

tensor may be expressed as

av d®p1d’ps d*l dp
W = / (2m)64FE By / (27m)4 / (27) (42)
226 ((p = 1)2) 276 ((q — p)2) g NeCrd o (p — 1)

Tr[(ﬁ_ p){'y“ Py v (= d)v” }

X

X

p?—ic  (1—q)? —ie

7 By = )y
p?+ic  (1—q)? +ie

X Tq(l;p1,pz){

In the above equation the color factor N.Cr comes from
the factor Tr[t%t*]6%°. For brevity, we have omitted in the
above the sum over quark flavors weighted with fractional
charge, Zq eg. The sum over polarizations of the gluon
leads to the factor d,,. In light-cone gauge d,, is given

as
(p=pno+ (p—1)on,

(P—1)mn

dpo(P—1) = gpo — (43)

The overlap matrix element Tq(l;pl,pz) i1s the same as
defined in the previous section, with the final fragmenting



quark momentum reduced to 1. The remaining portion of
Eq. (B3 is also easy to trace. The two § functions essen-
tially stipulate that the gluon and antiquark be released
onshell. The first set of terms in the curly brackets repre-
sents the process indicated by upper panel of Fig. B The
second set of terms indicates the case where the gluon is
emitted from the outgoing antiquark, with all other fea-
tures remaining unchanged, e.g., the fragmenting quark
has momentum 1, the gluon still has a momentum of p—1.

Within the collinear approximation, we again assume
that l"’,pz >> 17 ,p,,l1,91. As a result, the overlap
matrix element may be factorized via the following ap-
proximation:

T,(;p1,p2) = /d‘*xe“"‘z

S—2
X <0|1/)q($)|p1ap2a5 - 2><p1,p2,5— 2|1/)q(0)|0>
~ %Tq(l,phpz) (44)

Within the collinear approximation, we assume that the
momentum of the final fragmenting quark is collinear
with that of the hadrons emerging from the parton frag-
mentation. We thus define a new fractional momentum,
2/ = pf/I*. This allows the partonic four-momentum

vector 1 to be replaced with the hadronic four-vector:
ie. l=pp/7.

As a result the factor (1 — q)? is approximated as:

1-q)? ~Q* —2QIT ~ Q* —2Qp} /. (45)

Unlike the case of the LO process, the transverse mo-
mentum of the quark which emanates from the electro-
magnetic vertex is non-vanishing, p; # 0 (this is also the
transverse momentum carried by the gluon). As a result,
the negative longitudinal momentum p~ is constrained
by one of the §T functions as,

(p—pn/z)? ~ 2ptp™ —pt —2p7pf /2 =0
_ pi

MG T

The hadron fractional forward light-cone momentum is
still defined as z = pZ/p"’ as in the LO case. At leading
twist one may replace all occurences of p;, with z'1. The
corrections to this approximation are down by powers
of @%. Incorporating the above approximations into the
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expression for the hadronic tensor, we obtain:

d®p1d3ps d*p
or — d d d !
W / Frae2az / (2w)64E1E2/(2w)4
% g*NCrpé(z1 — pt [pT)6(z2 — pd [pT)dpo (p — 1)
x 2md* (2p~ (p* — %) - p1)278F(Q7 — 2Qp™)

7Y Py’ (= 4y
X ﬁ[(ﬁ_ p){pil‘l'/(p"' —l+) + Q2_2Ql+ }

7 77 By 7 (V= d)v”
! {pil+/(p+ —) T Hl:ph/z'

d* pt
e (4= ) env

A careful study of Eq. (&) reveals that the leading log
contributions are dominated by the region where p; — 0.
As a result, the part of W which represents the square
of the process in the lower panel of Fig. H has no lead-
ing log contribution. The leading log contribution comes
from the square of the first term corresponding to the
square of the process in the upper panel of Fig. Bl In the
light-cone gauge, the interference terms have no contri-
bution at leading log as in the case of single fragmenta-
tion functions (see chapter 3 of Ref. [LA]). This can be
demonstrated to hold at leading twist merely by com-
pleting the trace as indicated in Eq. (E&) and extracting
the p? dependence from the numerators.

The remaining factorization into the hard and soft
piece proceeds as in the LO case, leading to the hadronic
tensor at NLO at leading log and leading twist,

3. 13 4
= /dzleQdZ// d pld b2 / d P
(2m)54E1 Ey (2m)4
X g*NCpd(z1 — pf /pT)d(z2 — pd /pT)

(- _ P
27 (p 2(p+_l+)) o5+ <Q2 B QQp;IL')

z

(47)

WO{V

X

X

Tl‘[dpo(p—l)(ﬂi— p)

d*l
/ L
(2m)*
The trace of the Dirac matrices can be carried out by
brute force. The leading-twist part can be obtained in

a more straightforward way by rewriting the matrices
within the trace symbolically as

(4— B Cy".

il /(pt = )P

/ p;lb_
(z - F) T,(1;p1,p2).

X

The leading twist portion of the matrix C, may be writ-
ten as

(48)

¢ Py W= /2)y° 157”]
l=pn /2’



with the factor €' expressed as a trace:

+ /
A SR
C=Tr dpg—2p+ meRUR ety ;

. (49
l=pn/z'

where p? = p? {7 /(p* —IT). This procedure is very sim-
ilar to the one used to construct the collinear approx-
imation to the overlap matrices T,(p;p1,p2). One can
complete the above trace and obtain the regular splitting
function (1+ y?)/(1 — y), where y = z’/z. It represents
the probability for the radiation of a gluon from a quark
prior to its fragmentation.

Using the above approximation one may extract the
same hard part as in Eq. (B3,

(o974 O(p v
W = [(ﬂi p)y 2’17] ((a—pn/2)?)
= H*3((a—pn/2)). (50)
Extracting this hard part and comparing with

Eqs. (E3EW) and the resulting cut-vertex diagram
in Fig. @ we note that the soft part of Eq. (&) begins to
display a structure as illustrated in Fig.

To complete the calculation and obtain a factorized
form of the NLO contribution to the double inclusive
cross section, the integration over the tranverse momen-
tum of the identified hadrons will have to be factored
into the fragmentation function. Similarly as in the case
of LO calculation, one has to transform the basis of the
momentum integrations of the two identified hadrons to
the basis indicated in Fig.

In the steps leading to Eq. (B3, the approximation
that the momenta of the hadrons and the fragmenting
parton are collinear has been made. Particular among
these are the approximations that [T >> [ 7. These
essentially indicate that the invariant mass of the final
fragmenting quark is negligible compared to its forward
light-cone momentum. This is identical to the approxi-
mation made on the momentum p in the LO calculation
(see Fig. @). Since the NLO process has a collinear di-
vergence when p? — 0, we will only consider the leading
log contribution.

We thus obtain the following factorized form for the
hadronic tensor:

/dzleQ/
dy [ dp*dp~dpi
2Nc / -J / 7J_2 avg _ 12
R ARl e
z
Cp*?(pf — =ip)a(py — Zzp+)@
dq? d*l
/ 91 / (5(2/ ph )
42m)? ) (2m)t I+
Further factorization of H* from the d*p integration

leads to the factorized form for the NLO correction to the
dihadron fragmentation function as illustrated in Fig. Bin

dp1dp>

WO{V
2m)*4p1p2

——————dcos gcm d¢cm d¢J.

X

X

q(l;Pl,P2)~ (51)
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FIG. 7. Next-to-Leading order cut-vertex for quark fragmen-
tation and its factorization.

terms of cut vertices. Inserting the hadronic tensor into
the expression for the double differential cross section
with minor simplifications, we obtain the factorized NLO
contribution to the double inclusive cross section,

2,2
41 ae; N,

_ an q

P @’ dpi ! dy 1442
oo | | =CF
2 w 1Sy 1—y

d’c
d21d22

(52)

dg?

(z/y)*
A(z1/y)(22/y) /

d* z p
S Z =) T, .
/(%)4 (y l+) allipr, i)

The last line of the above equation may be easily iden-
tified as D(z1/y, 22/y, u?), the dihadron fragmentation
functions scaled up by the momentum fraction y, carried
by the quark emanating from the split. Physically this
represents the contribution to the fragmentation func-
tions at a higher order brought about by gluon radiation
carrying away with it a momentum fraction 1 — y. By
itself this process displays both an infrared divergence as
y — 1 and a collinear divergence as p; — 0. The in-
frared divergence will be canceled by the virtual diagram
contribution as shown in the next section. The collinear
divergent part will be combined with the collinear diver-

8(2m)?



gent part of gluon fragmentation and absorbed into the
renormalized fragmentation function.

B. NLO contribution from gluon fragmentation

We now proceed with the contribution from gluon frag-
mentation in the NLO processes. Essentially the out-
going hadronic state is replaced with the second line of
Eq. (El). Tnsertion of the interaction operator density
followed by the contraction of the quark and antiquark
operator with the out-going states |k7) and |(p — {)4) ,
leads to the following matrix element:

T 2 a- Yuv
MY = zzq:eqe gtavk2'yuuk1q2+i6 (53)

(p1p2S — 2| AL(0)[0)u” (p — 1){ gl i

p2+ ic

X

+ 7&:1_1)1: 1?6 }vs (k)(27) 5 (a =k —p —1).

As in the previous subsection, the approximation of
very high energies is made, allowing the isolation of the
leading twist and leading log contribution of the corre-
sponding hadronic tensor. This is obtained as

W — / dpldPZd Ccos gcmd¢cmd¢L / d4p d4l
o (2m)44p1po (2m)* (2m)4
278((a — p)*)278((p — 1)*) g NeCpTy (L p1, p2)

. dpaTr[(IS— N (i p 52

4
12 + e ’ (54)

where the gluon overlap matrix element T, (l;p1, p2) is

defined as

Ty(l;p1,p2) = /d‘*xe“"‘z

5-2

o a
8(271')2 x <0|Au(l‘)|p1,p2,5— 2>

6abduu

(55)

A diagrammatical representation of this gluon frag-
mentation process can be illustrated as Fig. Bl The pro-
cedure leading to the extraction of the leading log and
leading twist is rather similar to the case for the single
fragmentation function and to the case of NLO process
of quark fragmentation in the last subsection. Contract-
ing the hadronic tensor with its leptonic counterpart we
obtain the gluon contribution to the NLO double differ-
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FIG. 8: The leading log gluon fragmentation contribution to
the NLO modification of the quark fragmentation function.

ential cross section:

d? A1 o?e2 N,
— =Y T (56)
d21d22 7 3 Q2
a @ dp* Ydy 14 (1—y)?
G B e
2r J2 p1L J2 Y Yy

(z/y)? dg? d*
2(»21/3/)(22/3/)/8(27T)2 / (2m)*
z N -
x4 (; - i)_i) Ty(l; p1,p2)-

It may come as no surprise that the above equation
may also be derived from a set of Feynman rules involving
cut-vertices. The cut-vertex diagrams are illustrated in
Fig. B The rules are indicated in the figure. As a result
of this computation we may now present the cut-vertex
expression for the gluon dihadron fragmentation function
(indicated in the lower right hand corner of Fig. B):

23 / dq? / d*l
22122 ) 8(2m)% ) (2m)?

PN -
X 6<z—l—i) Ty(l; p1,p2), (57)

Dy(z1,22) =

where the factor Tg(l;pl,pz) is given in Eq. (B2).
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FIG. 9: Next-to-Leading order cut-vertex representation of
the gluon fragmentation contribution.

C. NLO contribution from quark and gluon single
fragmentation

In the previous subsections, we have evaluated two
separate contributions to the NLO double fragmentation
functions. In both of these we have assumed that the rel-
ative transverse momentum of the two detected hadrons
is intrinsic and is limited by a scale gy . In the defini-
tion of the dihadron fragmentation functions, the hadrons
are detected with given fractions of forward longitudinal
momentum but the transverse momenta are integrated
over. Thus, all allowed transverse momenta between the
detected hadrons must be included. In this paper, we
will assume that all hadron pairs with relative transverse
momentum larger than p > uy are generated perturba-
tively. In the next-to-leading order, such hadron pairs
can be produced from the independent fragmentation of
the quark and gluon after their split, as illustrated in
Fig. Bl Such a scenario has been considered in Refs.
[, i, ILZ] where the double inclusive cross section with
two detected hadrons in et e~ collisions with a fixed trans-
verse momemtum between them was computed. The au-
thors argued that in the case that the transverse momen-
tum lies in a semihard region Agep << ¢ << @, the
dominant contribution to the cross section comes from
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the process where the fragmenting parton undergoes a
semihard split into two independent partons which then
fragment independently.

Under the condition that ¢; << @ these hadrons can
still be considered to belong to the same jet. Moreover,
when Agep << ¢, the higher order contributions from
multiple gluon vertex corrections to the semihard vertex
are non-leading and thus the fragmentation of the two
partons emanating from the split may be considered as
independent. In Ref. [LZ], the authors demonstrated that
the Sudakov double logarithms from the higher order ver-
tex corrections are absent in the region Agep << ¢1. In
the interest of completeness we will repeat this derivation
in a slightly different language in the Appendix.

We will evaluate the leading log and leading twist con-
tribution in which the hadron pair comes from the in-
dependent fragmentation of the quark and gluon after a
semi-hard split. We start again with the matrix element
for this process,

M — Zezquta Uk g,
X <P1’ S = 1tbg(0)[0)(pa, Sa — 1| A5(0)]0)
7 (d— K" | (Bsi— )’
8 [(q—k)z—l—ie (ps, — q)? +ic v(k)
x (2m)*6*(q — ps, — ps, — k). (58)

The second term inside the square bracket corresponds
to gluon emission from the antiquark in the quark direc-
tion and will not contribute in the leading log approxi-
mation. The out-state in this case i1s chosen to be the
last line of Eq. (E). In this case, the sum over all final
states of hadrons from the initial quark has been bro-
ken into two identical complete sets. In each of the sets,
S1 and Sy, a single hadron will be identified. Unlike
in the previous two subsections, where one of the quark
or gluon operators is contracted with a partonic state;
both the quark and the gluon operators will be contracted
with hadronic states in this case. The cross section con-
structed from this matrix element contains two separate
sums over hadronic states; one of which has an overlap
with a quark state, the other with a gluon state. The
hadronic basis of states moving in the “away-side” jet
will be replaced as before with the sum over all momen-
tum states of a single antiquark:

Z _ d3p1 d3p2 Z Z (59)
3 (271')32E1 (271')32E2 271' 32/<7

S1—15,-1

In the last two subsections, the quark attached to
the electromagnetic vertex is assigned the momentum p,
while the quark or gluon which materializes from the split
1s assigned the momentum 1. In this subsection, the mo-
mentum of the fragmenting gluon and quark will be set
to be 1 and p. The quark attached to the electromag-
netic vertex will thus have a momentum of p + 1. This



cosmetic reshuffling is solely to ease the extraction of the
single fragmentation functions.

FIG. 10: The leading log mixed contribution to the NLO
modification of the quark dihadron fragmentation function.

Again, we focus on the leading log portion of the ma-
trix elements. This essentially restricts our attention to
the square of the matrix element for the process depicted
in Fig. @l The integrated cross section for this process
may be expressed as:

i1 1 4 gyl 4.2 2 ﬁuﬁ
ol = gzq:/d ye'¥letely 4(q2)2NCCF (60)

/(d?)]))éd?)pz Ci‘*kc;:lé_l_(kz)/d4xex,(q_1_k_p)eix.p
2m)%4p1ps (27

IPIERPET

S1—15,-1

(4= k)

— 1, p1|tg(0 )|0>m

x(0[trg () |p1, S1 = 1)(S1

6(16
><7<0|Ag(l‘)|1?2, Sz — 1)(S2 — 1, p2|A7]0),

where two identities of unity

1= /d41/‘l4—xei1'x
@2m* 7

are inserted. As in the preceding subsections the stan-
dard shift of partonic variables is introduced iz.e. k —
q—-p-land [ d*k — fd4p. The squares of the overlap
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matrix elements between the partonic operators ¢, A7
and the hadronic states will result in the single fragmen-
tation functions. Absorbing the integrals over undetected
hadron states and the Fourier integrals, the 7" matrix el-
ements may be written as (see Sec. 1T or Ref. [21]):

1) = [ aert Y
Sy—1
(0145 (118> = 1, p2){p2, S2 = 1[A5(0) 0}, (61)
which leads to the definition of the gluon fragmentation

function at leading twist. The same extraction may also
be performed for the quark overlap matrix operator:

[T,]*7 = / Y

O] (2)1S1 = 1, p1){p1, Sz — 1|17 (0)]0), (62)

which leads to the definition of the quark fragmentation
function at leading order. Within the collinear approx-
imation applied to the above two matrix elements, they
may be approximated at leading twist as

[Tg]g(;)(hm) = 6abd0p(1)Tg(13p2)a (63)
Ty(p;p1) =~ %Tq(p;pl). (64)

With the definition of the single fragmentation functions
and the collinear approximation, the cross section for in-
dependent fragmentation may be expressed in a simpli-
fied form as

L~ leghe dpy dps
i e . ZC
7 25 4Q4 pvd F/(%)64E1E2

/d4ld4 2787 (= 1= D)) Ty (1 2) Ty (pi p1)dior (1)

(2m)®
+p b, WP |,
[(ﬂi V- p)v {( o 27 (1+p)2}7]'(65)

This is the leading log contribution to the inclusive cross
section for the production of two identified hadrons at
next-to-leading-order where each hadron emanates from
the independent fragmentation of a parton. The over-
lap matrix elements which lead to the definition of the
fragmentation functions, 7y and 7, have already been
factored out. This represents a NLO contribution to the
double fragmentation of the quark emanating from the
electromagnetic vertex.

Again, we use a collinear approximation to isolate the
leading twist part of the terms inside the curly brackets:

vt B
1+p)? 2

brp 1 B B,

~ -

2 | 2pf 1+ p)?) 2

oP1_, P
(1+p)? o (1)

I+ p
(1+p)?

doo (D). (66)



After introducing two momentum fractions z] and z}
through a multiplicative factor of unity,

! 12 / / pil— ! p;—
1:/0 dzldzzé Zl_p_-l' 0 ZQ_ZT ) (67)

and a rearrangement of the integrals we have the follow-
ing factorized from of the cross section at leading twist,

1 462 N d2! ddBp, d®
0_”2 - € eq [fﬁugch/ 2102907 p1a P2
25 £ 4Q* (27)54F1 -
p 1:p2/z'2
X Tl‘[(ﬂi— J- 15)7’37'17”] 270% ((q —1-p)?)
p=p1/2}
f o L, e ]
Y 1
% | do(NTed Lt P o PLp 7T P
l" 0 {Qp; i+p2’ 27 (1+p)2}L:pl/z,

4 +
X / (;ZTP;ﬁ (21 - z—i) Ty(p; p1)- (68)

It is apparent that the second line of the above equation
corresponds to the hard cross section of an et e~ pair an-
nihilating via a single virtual photon to a ¢g pair. The
third line corresponds to the splitting of the quark into
a quark and gluon. Note the absence of any d—function
maintaining an on-shell condition. This indicates that
neither the quark nor gluon is being cut. The fourth
and fifth line indicate the independent fragmentation of
the quark and gluon into hadrons with the identification
of a single hadron from each of these sources. The cut-
vertex structure of this process resembles that of Fig. El
The trace over the Dirac matrix structure of the third
line may be performed, followed by a contraction of the
Lorentz indices to obtain:

A8(pf /2 +p3 /%) 1+
pf(p1/#) +p2/25) 1=y

where the variable y is introduced once again as the in-
tegral over a §—function

1 + /
pl/zl
dyd |y — — 22171} 69
/o ( pﬁ/z1+p;/z;) (69)

One notes that the variable y is essentially the ratio of
the forward light-cone momentum of the offspring quark
to that of the parent. This leads to the same splitting
function as that of a quark splitting to a quark and a
gluon. We may have chosen y to represent the ratio of
the energy of the gluon to that of the parent quark. This
would have resulted in a splitting function similar to that
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of the preceding subsection. Changing the order of inte-
gration between the various ratios y, 21, z}, we define the
quantities z; = z1/y and z2 = z4/(1 — y). Note that the
double differential cross section dza/dzl dzs involves the
ratios z1, zo of the hadronic forward light-cone momen-
tum to that of the parent quark emanating from the elec-
tromagnetic vertex. Following this we may again switch
the order of integration,

1 1 1
/ dzi/ dzg/ dy
0 0 0
1 1 1
/ dy/ dzi/ dzh
0 0 0
1 1/ydz1 1/(1-y) dzs
=) 5
0 0 Yy Jo (1-y)
1 1 =22 gy
= dz / dz/ _ 70
/0 Y ML -y (70)

The integration over the hadronic momenta may now
be subjected to the same variable transformation as
demonstrated in Fig. Bl Within the collinear approxi-
mation 1t may be easily demonstrated that

2
g3l Ty(1—y)

1+ P 2 =
( ) 4]71'—1);2122

(71)
The d—function introduced in Eq. (B may also be sim-
ilarly simplified to obtain,
5y pi /4 _ s|v0=w (pE pf
Pt/ + 3/ P+t \ = =
+ 4+ + +
Pt (P_z _ p_1) 72

y(l—y) \ 22 =

where the quantities pt and [T are subjected to the
condition of constraint introduced in Eq. (B&3). The
d—function is now similar to the second J—function in
Eq. (B3), and may be used to extract the hard cross sec-
tion ol? [see Eq. (@]

In the last two subsections, there is an integration over
the transverse momentum of the parent quark emanat-
ing from the EM vertex. This integration has a collinear
divergence that must be absorbed into the renormalized
fragmentation functions. The light-like null vector n was
alligned in a direction such that its three-components
remained opposite to those of pj, the sum of the mo-
menta of the detected hadrons. By definition n has no
transverse component. As both hadrons originated from
the same parton, the preceding condition along with the
assumption of collinearity of the final hadrons with the
fragmenting parton, constrained the transverse compo-
nent of the fragmenting parton to be near vanishing. In
this case we have again chosen the three components of n



FIG. 11: Next-to-Leading order cut-vertex representation of
the mixed contribution.

to be opposite to those of pj,. However, the two detected
hadrons in this subsection emerge from two different par-
tons which come from a split of the parent quark. As a
result, whereas both fragmenting partons have a trans-
verse component (I, py) proportional to the transverse
component of the detected hadrons ¢, , the parent quark
is restricted to near vanishing values of a transverse com-
ponent. In conformity with the previous subsections and
with the DGLAP evolution of the single fragmentation
function, the integration over a transverse component
will remain that of a partonic momentum. The hadronic
transverse component ¢; may be trivially related to its
partonic counterpart thus:

212
y(1 —y)(z1 + 22) .

(JJ_ZQZJ_ (73)

With these approximations, it may be easily demon-
strated that the double differential cross section of inde-
pendent fragmentation assumes the form as sketched in
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the concluding lines of Eq. (@), i.e.,
dZO_iii _ Z O-qq% / ﬁ /1—22 dy
dz1dzs . O 97 = y(1—1y)

2
C'FH——qu (Z_l) D, (Z_Z) . (74)
l—y y l—y
Where D, and D, are the single fragmentation functions
of a quark and a gluon [H] (see also Sect. II).

The careful reader will have noted that the order of
integration between y and [} has been switched; whereas
from Eq. (&) we see that if ¢ is independent of y then [
is a function of y. There are two ways to resolve this. We
may ascribe a multiplicative y dependence to the max-
imum value of ¢;. Indeed this would be an artificial
dependence, and would physically mean the inclusion of
an extra piece of phase space in the [ integration. Any
such multiplicative factor would have no influence on the
DGLAP evolution equations as these would involve a dif-
ferentiation with respect to Q2 i.e.

62Q2 Q2
B R R .
0Q? 2T o 2

Yet another approach may be to view the order of inte-
grals in Eq. (B as merely symbolic, the differentiation
with respect to Q? leads to the same evolution equations.

There remains one last contribution to the inclusive
cross section for the production of two hadrons from a
parent quark: this is obtained trivially by switching z;
and z in Eq. (B, i.e. the hadron with momentum frac-
tion z; originates from the fragmentation of the gluon
rather than the quark. With the addition of the above
mentioned contribution, we complete the discussion of
the real radiative corrections to the inclusive cross section
of same-side dihadron production. The contributions dis-
cussed in this subsection possess no infrared divergence
as the y integration is terminated at 1 —z5 or 1 — 21, con-
trary to dihadron fragmentation from the single quark
whose infrared divergence is cancelled by the virtual cor-
rection.

V. RENORMALIZED FRAGMENTATION
FUNCTIONS AND DGLAP EVOLUTION

So far we have calculated the real radiative corrections
to the dihadron fragmentation functions. One notices
that the contribution from quark fragmentation after a
gluon radiation in Eq. (B contains an infrared diver-
gence. Such an infrared divergence will be canceled by
virtual contributions from interference diagrams such as
those of Fig. & 1t is well known that in gauge theo-
ries, in light-cone gauge, the leading log contribution is
contained solely within the self-energy diagram and not
shared between the self-energy and the vertex correction,



as is the case in the Feynman gauge[]. The hadronic

tensor for such a virtual correction is

Epidp,  d'p

Z/ 2 64E1E2 (271') 27

fq<p;pl,m){—iz(p)}%v”m— Byl (76)

5((a—p)?)

xTr

where, —iX(p) respresents the one-loop quark self-energy
of a quark with four-momentum p.

FIG. 12: The leading log self-energy contribution to the NLO
modification of the quark fragmentation function.

The hadronic tensor may again be factorized at lead-
ing twist following much the same procedure as those of
the last section. There remains the integration over the
internal gluon momentum 1. The leading behaviour of
this integral, as in the case of single fragmentation, in
the part of phase space that includes a pinch singularity
on the [~ contour, and endpoint singularities on the [
and [t contours. The pinch singlularity may occur only
in the region where

0<It <pt and 0<i? <p?<@’

The derivation of the leading behaviour, which mostly
mirrors the calculation for single fragmentation func-
tions, will not be presented in full detail here. We refer
the reader to Ref. [Rd)], for details. The final result of the
self-energy correction to the partial double differential
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cross section 1s

_ —Z qqas/ il

1+
/ —y Dgth(zl,zz). (77)
0o 11—y

d21d22

Note that the transverse integration is over [; and not
the parent quark momenta. The variable y is defined as
y = [T /pt. The overall negative sign should not be a
cause for alarm, as this 1s only a part of the total cross
section. Combining the above equation with Eq. (B
leads to the cancellation of the infrared singularity as
y — 1. One can effectively combine the virtual and real
corrections with a “+”-function,

N LS A Y
= &g e pu-a

Pl = G|

where the “+”-function is defined as

/Ody(FiE/o dyw (79)

1—y)y -y

with F'(y) being any function that is sufficiently smooth
at y=1.

In the remaining, we will focus on the non-singlet (NS)
fragmentation functions for simplicity. In this case, the
contribution from dihadron gluon fragmentation drops
out. Summing all three types of contributions from the
last section, we obtain the NLO contribution to the NS
dihadron fragmentation function,

l)J)LiflSJLL2 (21’ 22, QZ) = l)J)LiflSJLL2 (Zl’ Z2)

Q* 1 2
ag dm/ dy 1+y by hy 41 22
+ — / —CF D1’2—;—
2 )y -y ), NS (y y)
/Q d12

+a5 /1 Z9

2 1—y
e () (%)

x C Dl Dh= , 80
F —y NS y g 1—y ( )

where the leading order fragmentation functions are de-
fined as matrix elements of field operators in Eq. (B
and (E3). This has exactly the same structure as we have
outlined in the parton model in Eq. (l). Therefore, the
definition of renormalized fragmentation functions and
the derivation of the DGLAP evolution can be similarly
applied here.

The renormalized dihadron fragmentation function is

defined as
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Gy ﬁpq—ﬂzg* |:DNSD£7L2:| ) (81)

We point out, once again, that the scale p at which the
renormalized functions are defined is chosen above the
semihard scale p; . At this scale, corrections to the renor-
malized quantities may be evaluated perturbatively. In
terms of the renormalized dihadron fragmentation func-
tion, the dihadron fragmentation function at NLO can
be expressed as

D]@éh2(21a22aQ2) = Dgfléh2(21,22,/,t2)
s Q* hyho
to log(ﬁ)Pq_,qg * DR (%)
Qg Q2 I _ hy ,
o log(ﬁ)Pq—ﬂzg* Dy's (Nz)DS (rH |, (82)

where we have also used the renormalized form of the
single fragmentation functions.

Note that we have introduced a minimum limit to the
scale g > p1 in the definition of the renormalized di-
hadron fragmentation function. If one insisted in choos-
ing p < py, then the contribution from independent
quark and gluon fragmentation after a semi-hard split
would have to be factorized off at the scale p; . In other
words the minimum of the second logarithm in Eq. (EJ)
would be set at p? and would only contribute in the
event that @7 is chosen greater than p3. In this way,
we have assumed that only hadron pairs with relative
transverse momentum ¢; > g are generated pertur-
batively from independent fragmentation of two sepa-
rate partons in the process of a perturbative cascade.
For two partons whose relative transverse momentum is
smaller than g , nonperturbative processes become im-
portant and their fragmentation cannot be independent
anymore. We include this part, which also contains a
collinear divergence, in the renormalized dihadron frag-
mentation function. This non-perturbative scale can also
be considered as the intrinsic relative transverse momen-
tum of the dihadron fragmentation function and it should
set the limit of the integration over ¢, in the matrix el-
ement definition of the dihadron fragmentation function
in Eq. (B@). If one wants to consider the unintegrated
(over ¢ ) dihadron fragmentation function, p; could set
the initial condition for the ¢, distribution and can be
used to study the evolution equation of the angular dis-
tribution inside a jet. For now, this scale will only set a
limit of the physical scale Q% >> p? > pi >> AéCD for
the DGLAP evolution and will not enter the equation. In
the ensuing calculation of the evolution of the fragmenta-
tion functions we will not enter into such subtleties and
always chose the starting scale y > p) .

21

To include the entire leading log modification, contri-
butions from all the diagrams outlined in Fig. ll have
to be resummed into the scale dependent fragmentation
functions. These are then differentiated to obtain the
evolution equation which is given exactly as in Eq. ()
for NS dihadron fragmentation function.

VI. NUMERICAL RESULTS OF NON-SINGLET
EVOLUTION

z,=2z,
1 O T T T T T

log(Q%)=0.693

,,,,,,,,,,,,,,,,,, 1.693

-1 \

1 1 I 1 I 1
0 0.1 0.2 0.3 0.4

FIG. 13: Results of the evolution of the non-singlet quark
dihadron fragmention function Dgth (21,22), where 21 = 22,
from Q? = 2GeV? to 109GeV?. See text for details.

In this section we will study numerically the DGLAP
evolution of the non-singlet dihadron fragmentation. As
in many other cases of DGLAP evolution, the solutions
require an initial condition of the fragmentation functions
at an initial scale. Such initial conditions, as in the case
of single fragmentation functions, are non-perturbative
and are usually constructed from the experimental mea-
surement of the single inclusive differential cross section
do/dz, according to Eq. (ll) at LO. The evolution of the
fragmentation functions with the energy scale of the reac-
tion can then be calculated from the DGLAP equations.

The absence of any experimental data for two particle
correlation in et e~ annihilation forces us to formulate an
ansatz of the initial condition. We simply use it as a toy
model to illustrate the DGLAP evolution of the dihadron
fragmentation functions. We take the LO product of two
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FIG. 14: Same as Fig. Il except z; = 3z22.

single fragmentation functions as the initial condition for
the evolution of the fragmentation function, z.e.,

Dglh2(21a22aﬂ2) = Dgl(zla/'tz)Dg2(22a/'L2)
X 9(1—21—22). (83)

We set the initial condition at Q? = 2GeV?. This cor-
responds to log Q% = 0.693. While it may be argued that
the initial energy is somewhat low for the applicability
of pQCD in ete~annihilation, we consider it as just the
scale of the momentum transfer while the actual jet en-
ergy could be sufficiently high. The differential equation
corresponding to Eq. (E¥) is then solved by the simple
methods of a second order Runge-Kutta numerical esti-
mation. Results are presented in Figs. IENE at intervals
of Alog@? = 1.0 The initial condition is represented by
the solid black line in all plots. We stop the evolution at
log Q? = 4.693, which corresponds to Q? ~ 109GeV?.

We present results where the leading particle possesses
a multiple of the momentum fraction of the next-to-
leading particle. We begin with plots of just the evo-
lution of the non-singlet dihadron fragmentation func-
tion at z1 = 225 in Fig. B and z; = 325 in Fig. B In
these and all other plots the results are always presented
as a function of z5. The results of the evolution are not
qualitatively different from those of the single fragmenta-
tion function. Since the sum of the momentum fractions
are constrained to unity z.e. 23 + z2 < 1, we find that
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FIG. 15: Results of the ratio of the non-singlet quark dihadron
fragmention function D5172(z1, 25, Q%) to the single leading

fragmentation function D21(217Q2). In this case z1 = 22
and Q% = 2GeV? to 109GeV?. See text for details.

the fragmentation functions terminate at zo = 1/(1 4+ 7)
as appropriate. The intial condition, which is merely
the product of two single fragmentation functions and is
not subjected to this constraint, does not show this be-
haviour. It 1s imposed by hand, in the initial condition,
that they vanish at and above this value.

In experiments, one can first identify a hadron as the
leading hadron inside a jet and use it as a trigger with
given momentum z;. Then, the associated or the “next-
leading” hadron distribution inside the same jet corre-
sponds to the ratio of dihadron and single hadron frag-
mentation functions, D142 (2 z9)/ D" (21). We present
results for this ratio at z; = 225 in Fig. B at z; = 329
in Fig. B and in the extreme cases of z1 = 2z in Fig. &1
and z; = 4z in Fig. B 1t should be pointed out that
the y-axis in all these plots is linear and not logarithmic.
Thus, one concludes that the ratio demonstrates little
qualitative change for a variation of Q? by almost two
orders of magnitude. In making such an observation, one
must ignore the difference between the solid line (initial
condition) and the remaining lines (evolved functions) es-
pecially at large zo. This is due to the fact that the initial
condition is not subjected to the kinematic constraint as
zo — 1/(1 4+ r). However, the four plots are visually
quite different from each other: the ratios of the evolved
functions display a steady drop as compared to the ini-
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FIG. 16: Same as Fig. Il except z; = 3z22.

tial condition as we progress from z; = z9 to z1 = 4z».
The reader will also note that the maximum of the y-axis
drops with increasing r.

As the energy of the ete~annihilation is raised the
multiplicity must also increase. The cause for this is
nothing other than the excess energy available for par-
ticle production. Following the physical picture of frag-
mentation proposed in Refl. [21], one notes that at higher
energies 1t becomes more probable that the two hadrons
emanate from two causally disconnected sectors of the
fragmenting jet. If this were the case, then at very
high energies, the ratio of the double fragmentation func-
tion to the product of the single fragmentation functions
(D(';“h2 (21, 22, QZ)/DSL1 (z1, Qz)Dg1 (22, Q?)) should reach
unity, especially for small values of z1, z9. This has not
turned out to be the case as evidenced by the plots of this
ratio in Fig. B for z; = 225 and in Fig. Bl for z; = 32,.
In these plots the ratio deviates from unity at small mo-
mentum fractions. Whether this is a facet of the choice
of our initial conditions is as yet unclear.

VII. DISCUSSIONS AND CONCLUSIONS

In this paper, we have studied dihadron fragmentation
functions within the framework of collinear factorization
in the high-energy ete™ annihilation processes, starting
with the operator definition. Using the cut-vertex tech-
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FIG. 17: Same as Fig. Bl except z1 = 22.

nique, we also derived the DGLAP evolution equation for
the non-singlet dihadron quark fragmentation function.
We solved the DGLAP evolution equation numerically,
with a simple ansatz for the initial condition.

Both the definition in operator formalism and the re-
sultant DGLAP evolution equations for the dihadron
fragmentation functions have remarkable similarities to
the single fragmentation functions. The first type of con-
tribution to the evolution equations, that from gluon ra-
diation before the fragmentation of the offspring quark
(or gluon) into a pair of hadrons, is very similar to the
corresponding process in single fragmentation functions.
The second type, unique to the dihadron fragmentation
functions, comes from independent fragmentation of the
two offspring partons into two single hadrons of the ob-
served pair. Since this piece represents the incoherent
fragmentation of the quark and the gluon, it is well de-
fined only when the transverse momentum between the
detected hadrons is large.

The relative transverse momentum between the two
hadrons is integrated over in the definition of the di-
hadron fragmentation function. Hence, we have assumed
that its non-perturbative contribution, which resides in
the operator definition, is restricted to an intrinsic trans-
verse momentum scale, ¢; < p;. Hadron pairs with
g1 > p are assumed to be generated only perturba-
tively. For this assumption to be justified, the semihard
scale p 1 is chosen to be much larger than Agcp. One has



FIG. 18: Same as Fig. Bl except 21 = 425.

then to assume that the energy scales of the processes in
question 7.e. Q% be much larger than the semihard scale
tt1, such that a hierarchy of scales, AéCD << pd <<

Q?, is satisfied.

This study is motivated by the observation [] that the
same side correlations of two high py hadrons in central
Au + Au collisions remain approximately unchanged as
compared with that in p+p and d+ Au collisions. Specifi-
cally in this experiment, one measures the distribution, in
azimuthal angle, of the secondary (or associated) hadron
ﬁ% with respect to the triggered high pr hadron.
Neglecting the differences in production cross section and
fragmentation functions for different parton species, the
integrated yield of the correlation around the peak at
¢ = 0 should be the ratio of dihadron and single hadron
fragmentation functions, D2 (21, 20, Q%) /D" (2, Q?),
with z; and z; being the momentum fractions of the
triggered hadron and associated hadrons, respectively.
To understand the observation in the framework of jet
quenching, one has to study the medium modification
to a dihadron fragmentation function due to parton en-
ergy loss. Since it has been shown in the case of single
fragmentation functions that medium modification due
to multiple scattering and induced gluon radiation closely
resemble that of radiative corrections due to evolution in
vacuum [LX], the DGLAP evolution is expected to yield
clues regarding the medium modification of the dihadron
fragmentation functions.
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FIG. 19: Results of the ratio of the non-singlet quark di-
hadron fragmention function Dgth (21, 22, Q2) to the product
of the single fragmentation functions Dgl (=1, Q2)D21 (22, Q%).
In this case z1 = 222 and Q2 = 2GeV? to 109GeV?. See text
for details.

Our numerical results indeed show little change of the
ratio D(;“’”(zl, 29, QZ)/DSL1 (21,Q%) as Q? is varied in
a wide range of values. The evolution is shown to be
strongly dependent, however, on the ratio of the momen-
tum fractions of the two hadrons (r = z1/22). In the
results of Ref. [f] the ratio r = z1/z2 is essentially inte-
grated over all values > 1. In order to relate to the results
in this paper one essentially must average the effects of
evolution shown in Figs. ([EHE). One will immediately
note that summing over different values of the ratio z1 /25
will lead to the observation of minimal change in the ra-
tio of the fragmentation functions as a function of the Q?
of the reaction.

No doubt, this study is but the first step in this ef-
fort. In the interest of simplicity, results for the com-
putationally simpler non-singlet fragmentation functions
were presented. The results for the evolution of the more
physically relavant singlet fragmentation functions will
be presented in a future effort. The DGLAP evolution
equations for such functions will involve, in addition, the
splitting of one gluon to two gluons and the coupled dif-
ferential equations.

In the above, we have demonstrated the factorization
of the double differential cross section into a LO hard part
and a soft piece which encoded the nonperturbative infor-



z,=3z,
2 T I T T T T T

log(Q%)=0.693 .
rrrrrrrrrrrrrrrrrr 1.693
------ 2.693 -
3.693
- 4.693 .

1.2 = -

1.6 -

0.8 -

04 -

D(z,,z,,Q°)/D(z,,Q°)D(z,,Q’)

0.1 0.15 0.2
Y4

0.25 0.3
2

FIG. 20: Same as Fig. B except 23 = 322

mation of converting partons into hadrons. A complete
proof of factorization requires the extension of the calcu-
lation to all orders. There also remains the evaluation of
the medium modifications to the dihadron fragmentation
functions. We will address each of these issues, in turn,
in future publications.
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APPENDIX A: SUDAKOV DOUBLE
LOGARITHMS IN LIGHT-CONE GAUGE

In Subsect. ¢ of Sect. IV we argued that one of the
NLO contributions to the dihadron fragmentation func-
tions would result from the convolution of two single frag-
mentation functions. The justification for the inclusion
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of this process rests on the assumption that the higher
order diagrams that have gluon lines connecting the out-
going quark and gluon can be ignored in a leading log
analysis. The simplest higher order correction of this
type emanates from the presence of a single gluon line
connecting the outgoing quark and gluon as illustrated
in Fig. B

The presence of a Sudakov double logarithm in this di-
agram signals a leading log contribution to the infrared
and collinear divergences of diagrams of the same order.
Such a contribution will call into question our derivation
of the second piece of the evolution equation [Eq. (EB)].
Derivation of this piece of the evolution equations re-
quired the identification of the leading log contributions
from infrared and collinear divergences followed by fac-
torization and a resummation of these into the single
fragmention functions. Such a procedure may only be
carried out if the leading log portions in higher order di-
agrams are contained solely in the selfenergy corrections
of the outgoing gluon and quark lines and in real gluon or
quark emmissions off these lines. A leading log contribu-
tion from the infrared or collinear sector of the diagram
of Fig. Bl will call this procedure into question. In this
appendix, we demonstrate that in the collinear sector of
this diagram, evaluated in light-cone gauge, the Sudakov
double log is absent.

D1

FIG. 21: A next-to-next-to-leading order correction.

In this endevour we follow the techniques outlined in
Ref. [] for the evaluation of the photon vertex. The
leading contributions from the diagram of Fig. Ellmay be
evaluated as in [i] by the solution of the Landau equa-
tions. This leads to the presence of two regions of phase
space where a double logarithm may arise:



p“—l—k’“:alk“ s kzzpk
I — kM =ask" | K*=p-k (A1)
In the above, ay, ay are mere real numbers. These con-
ditions essentially outline the cases where the gluon &*
achieves collinearity with the outgoing quark with mo-
mentum p* or with the outgoing gluon with momentum
{#*. Either case produces a double log contribution in the
Feynman gauge.

The expression for a quark with momentum p +1 split-
ting into an outgoing onshell quark with momentum p
and gluon with momentum 1 with the splitting vertex
corrected by a single gluon with momentum k may be
expressed as

o . &k,
W) T, s+ D260 = w(0) [ ity

Z(p—i— k) e P idocu(l ) facd
(p+k)?+ic (1+k)? —|—Z€
o e O LR RN
idg, (k) 4«
x Zkar(ig (1), (A2)

It may be argued (see Ref. [H]), that the double log-
arithm behaviour in vertex diagrams originates on the
collinear pinch surfaces outlined above in Eq. (BJl). The
behaviour of this above vertex correction in the region
where the internal gluon momentum k becomes collinear
to the the outgoing gluon momentum 1 will now be
analysed. This corresponds to the second condition in
Eq. (B8). The d*k integration is decomposed into the
light-cone variables dktdk=d?k;. The focus is on the
pinch sigularity which results from the two denominators

1 1
k? +ic’ (1-k)* + e’

The pinch between the two denominators arises in the
k™ integration solely in the region 0 < kT < [T. Evalu-
ating the pole at k= = k2 /2k*. We obtain a pinch from
the

1
1—K)? +ic

propagator in the region where ng_ ~lj_ = kyly, te k
becomes collinear with 1. To regulate the collinear diver-
gence we introduce the variables @, dk :

kt It

—

ki, = xll—l—él;ﬁ.

xr

(A3)
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Evaluating the integrand of Eq. (B at the residue
of the pole k= = k3 /2k™ followed by the substitutions
outlined in Eq. (B2)) we obtain the split vertex correction
as

(D)L, i (0 + D) J/ da d;igL
r NWoti+
xu(p)y” %7 u(p+1)
(1= 2)(lany + yna)
: [‘%“+ (1—oln ]
<o — gt o 4 e e
< ds (D)2 (1), (A4)

In the above equation all factors of color together with
multiplicative constants have been absorbed into the fac-
tor S¢. The sum over polarizations of the gluon with
momentum 1 — k [i.e. the factor dn,(l — k)] and the
expression for the glue vertex have been simplified. In
these and in the rest of the numerator, factors of (51%_
have been neglected, as the focus is on the region where
ki — 0. If the numerator, under this approximation,
turned out to be vanishing, then this would indicate the
leading contribution to be proportional to dk; — 0 and
as a result no double logarithm and no leading contri-
bution from this loop would result. Under the relations
afforded by the polarizations of the light-cone gauge:

1. d,s =0, % (1) =0,

it may be easily demonstrated that a contraction of the
Lorentz indices «, p, 3 lead to the numerator of the r.h.s.
of Eq. (B to become vanishing. This result is a property
of the light-cone gauge.

It may also be demonstrated, following similar meth-
ods, that the double logarithm emanating from the re-
gion of phase space where the gluon k" becomes collinear
with the outgoing quark line 1s also suppressed due the
vanishing of its coefficient as above. We leave the proof
of this property to the reader. The above arguments
demonstrate the vanishing of the leading contributions
form higher order corrections to the split vertex. This
property validates our picture of independent fragmen-
tation.
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