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An algorithm for calculating the partition function of a molecule with the path integral Monte

Carlo method is presented. Staged thermodynamic perturbation with respect to a reference har-

monic potential is utilized to evaluate the ratio of partition functions. Parallel tempering and a new

Monte Carlo estimator for the ratio of partition functions are implemented here to achieve well con-

verged simulations that give an accuracy of 0.04 kcal/mol in the reported free energies. The method

is applied to various test systems, including a catalytic system composed of 18 atoms. Absolute free

energies calculated by this method lead to corrections as large as 2.6 kcal/mol at 300 K for some of

the examples presented.
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I. INTRODUCTION

The thermodynamics of chemical reactions are in principle completely determined by the molecular partition func-

tions of the reactants and products. If the energy states of a molecule are quantized, then the molecular partition

function Z(β) is defined by the equation

Z(β) =
∑

i

exp (−βEi) , (1)

where Ei is the energy of a molecule in state i and at inverse temperature β = 1/kbT . The values of the Born-

Oppenheimer potential V (x) for reactants and products can be determined from ab-initio quantum chemical calcu-

lations. In order to account for the quantum effects associated with the motion of nuclei, the molecules are often

treated as rigid-rotor harmonic oscillators. In this approximation, the molecular potential energy surface (PES) is
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approximated as a quadratic form around the minimum energy configuration x0:

V (x) = V (x0) + (x − x0)
T · K · (x − x0) (2)

where K is the Hessian matrix evaluated at the local minimum x0. The eigenvectors of K correspond to the normal

modes of vibrations and the eigenvalues of K correspond to the square of the vibrational frequencies of the normal

modes.

However, there are many cases where the harmonic approximation fails. For the partition function of a vibrational

mode, the harmonic approximation produces:

Z(β) =

∞
∑

n=0

exp [−(n + 1/2)β~ω] (3)

where ω is the vibrational frequency. For large ω, say a vibrational mode with a frequency of around 3000 cm−1,

which roughly corresponds to a CH bond vibration, only the first term (ground state) in the summation is required to

obtain convergence of Eq. 3. The distance covered by the first vibrational state can be estimated as
√

~/µ/ω=0.1Å,

assuming a mass of µ=1 amu, which corresponds to a hydrogen atom. In this case, the harmonic approximation

gives the correct answer provided that the potential remains harmonic for displacements as large as 0.1Å from the

minimum energy geometry. For a small value of ω, for example, a vibrational frequency of 30 cm−1, the first 20 terms

in the summation must be considered in order for Eq. (3) to converge to within 95% of the actual value of Z(β).

The distance covered by the 20th vibrational state is estimated to be 7Å. The harmonic approximation gives the

correct answer only if the potential remains parabolic for a displacement of 7Å from the minimum energy geometry, a

condition that will not be met for molecular systems. Following these arguments it becomes evident that, for a given

vibrational mode, the harmonic approximation will become increasingly inaccurate as the temperature increases.

The limitations of the harmonic approximation have been discussed previously1–3 and several attempts have been

made to correct for this limitation in calculation of partition functions. In the classical treatment, the summation in

Eq. 1 is replaced by an integral in the phase space. Kolossvary2 introduced a mode-integration algorithm (MINTA)

for calculating the configuration integral over all degrees of freedom of a molecular system. He utilized the harmonic

approximation for effective sampling of the phase space. Chang et al.1 compared the use of different coordinate systems

for MINTA and a mode-scanning algorithm and concluded that such algorithms work better with bond-angle-torsion

coordinates than with Cartesian coordinates.

Lynch and coworkers4 have employed a path integral Monte Carlo technique to calculate the quantum mechanical

partition function (Eq. 1) of hydrogen peroxide (H2O2). They performed importance sampling in the Fourier coefficient
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space and utilized an adaptively-optimized stratified sampling. An interesting feature of the algorithm is the so-

called “path-by-path” extrapolation technique devised by Mielke and Truhlar,5 which reduces the number of Trotter

slices necessary for accurate path integration. These authors have recently6 applied their algorithm to isotopically

substituted variants of H2O2, obtained by exchanging 18O and deuterium for oxygen and hydrogen in H2O2. An

analytical potential energy surface developed by Koput et al.7 was employed in these studies and Jacobi coordinates

were utilized to facilitate convergence of the simulations.

Miller and Clary8,9 introduced a torsional path integral Monte Carlo approach to handle anharmonic PESs. Bond

lengths and angles were kept fixed, and only the torsional degrees were allowed to vary. The authors utilized the

harmonic approximation in the torsional coordinates as the reference state and then made recourse to thermodynamic

perturbation in order to calculate the ratio of the partition functions between the reference state and the real state.

In the current work, we illustrate the advantages of a path integral Monte Carlo approach (PIMC) based on a recently

developed fourth-order short-time approximation10 and the fast sampling algorithm.11 The method presented here

combines the efficiency of the PIMC technique with that of the parallel tempering algorithm and a new estimator for

ratios of partition functions. The end result is a technique capable of providing accurate results despite our choice

to perform the sampling in Cartesian coordinates, rather than to utilize torsional or other Jacobi coordinates. This

feature makes the approach quite general and applicable to any system for which a potential energy surface is available.

In the following sections, we demonstrate the capabilities of the method by applying it to systems which contain up to

18 atoms. As already mentioned, we use parallel tempering to ensure adequate sampling of the configuration space.

In addition we also introduce a new estimator for evaluating the ratio of partition functions from parallel tempering

simulations (see Appendix B). The potential energy of molecules is described using an analytical forcefield expression

which is parameterized to match the Born-Oppenheimer surface. We use thermodynamic perturbation with respect

to a harmonic potential to calculate the absolute free energy of the molecules. The method is described in Section

II and the applications of the method to test cases are given in Section III. Some details of the implementation are

given in the Appendices A-C.
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II. METHODS

A. Path integral Monte Carlo

The path integral Monte Carlo method utilized has been described previously.11–14 This approach only requires

energy evaluations and does not require derivatives. The code for path integral Monte Carlo and free energy evaluation

is available from our website.15

The probability of finding the system at position x is described by the Feynman-Kac formula, which for the diagonal

elements of a one dimensional system is given by

ρ(x, β) =
1√

2πσ2
E exp

[

−β

∫ 1

0

V (x + σB0
u)du

]

, (4)

with E denoting an average, σ = (~2β/m0)
1/2, and B0

u describing a Gaussian stochastic process known as a Brownian

bridge. In short, the Brownian bridge is an ensemble of trajectories which, upon discretization of the one-dimensional

integral in the exponent, transforms into an ensemble of points in the configuration space. The distribution of

the ensemble of points is a certain correlated Gaussian distribution, which, in a Monte Carlo simulation, is further

multiplied by a Boltzmann weight. The averaging implied by E is performed over all possible closed paths that start

and end at x.

From a numerical point of view, we are free to further approximate the Gaussian distribution and to choose the

quadrature technique in an advantageous way, so as to minimize the computational cost. We treat this aspect of the

problem by employing a fourth-order short-time approximation that has the advantage of requiring only calls to the

potential function.10 Forces or higher order derivatives are not required. In order to cope with the aforementioned

correlation of the beads, special sampling techniques must be utilized and our choice, the fast sampling algorithm,

is among the most efficient.11 The justification of the path integral technology employed is not within the scope of

the present paper and can be found in the cited literature. However, some general features relevant to the present

development are reviewed in Appendix A.

B. Potential energy surface

The energy of a molecular system can be evaluated accurately by many quantum chemistry software packages.

Given the coordinates of the nuclei, such algorithms return the energy of the system within the Born-Oppenheimer

approximation at a given level of theory. However, during a Monte Carlo simulation it is not economical to use a
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quantum chemistry package at every iteration of the simulation. Instead, we use a force field approximation where

the energy of the structure is written in terms of bond lengths, angles, and torsions:

V =
∑

bonds

kr

2
(r − r0)

2 +
∑

angles

kθ

2
(θ − θ0)

2 +

∑

torsions

5
∑

n=0

an cos(φ − φ0)
n (5)

Forcefield parameters used for all molecules studied here are given as supplementary information.16 The parameters

of the force field are adjusted to match the Born Oppenheimer PES as closely as possible. B3LYP density functional

theory is used in defining the potential energy surface of all the molecules. All QM calculations were done using

the Gaussian quantum chemical package.17 The 6-311++G** basis set was used for ethanol, dimethyl ether, and

glycine. In the case of palladium containing-complexes the LANL2DZ/6-31G* basis set was used. The equilibrium

bond lengths and bond angles used in the forcefield expressions are taken to be the ones obtained from geometry

optimization using the Gaussian software. The spring constants, namely kr, kθ, and an, in the forcefield expressions

are adjusted to match the eigen values of the Hessian matrix at the minimum energy geometry. The Hessian matrix

was obtained analytically by using the frequency evaluation module within the Gaussian software. In the case of

H2O2 we used the potential energy surface defined by Koput et al.7

C. Thermodynamic perturbation

We will calculate the ratio of partition functions of the real system with a reference system. The real system

is represented by a potential V0 which is parameterized to match the Born Oppenheimer potential as explained

previously. The reference potential, denoted by V1, is created by increasing the spring constants (kr, kθ, an) of all

terms in the forcefield to a large value. The spring constants are made large enough to make all the vibrational modes

of the molecule to have frequencies larger than 200 cm−1. The harmonic approximation is valid for such a potential.

Thus, we will use the harmonic approximation to calculate Z1, the partition function for potential V1. Then, from a

path integral Monte Carlo simulation, the ratio of partition functions is evaluated as

Z1

Z0
=

〈

ρ1(x)

ρ0(x)

〉

0

(6)

where ρ0 and ρ1 refers to the probability distributions with the potentials V1 and V0 respectively. It should be

noted that the reference potential V1 refers to a rigid-rotor for which harmonic approximation is valid. The real

potential V0 does not assume rigidity, and thus the partition function Z0 is calculated without assuming rotational-
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vibrational decoupling. For all the molecules studied here the reference potential V1 is also given in the supplementary

information.16 The original potential V0 may have more than one minimum on its potential energy surface. For

example a rotating CH3 group will give rise to 3 minima spaced 120 degree apart in the rotational angle, leading to

a torsional term of the form 1 − 4 cos3(φ) + 3 cos(φ). In the reference potential V1, all such terms are modified to

1− cos(φ) so that there is only one stationary point on the reference PES. Note that if there are multiple minima on

the PES the harmonic approximation can not be used to calculate the partition function for V1.

D. Replica exchange simulations

The technique of replica exchange18,19 (or parallel tempering) is a crucial aspect of the present development. A

straight forward evaluation of the integral in Eq. 6 from a single simulation may not converge in a reasonable time.

We use a set of parallel Monte Carlo simulations, performed at different potentials characterized by a parameter λ.

λ0 = 0 corresponds to V0 and λM = 1 corresponds to V1. The word replica is used to refer to an individual simulation

and there are a total of M + 1 replicas. For intermediate values of λ the potential energy is defined as

V (λi,x) = V0(x)(1 − λi) + V1(x)λi i = 0, 1, 2 ... M (7)

Thus the ratio between partition functions is calculated in stages as:

Z1

Z0
=

M−1
∏

i=0

Z(i + 1)

Z(i)
(8)

Z(i) refers to the partition function with the potential V (λi). The technique of parallel tempering attempts to swap

configurations among neighboring replicas according to the Metropolis algorithm, so that the Boltzmann distributions

of the individual replicas are preserved. Nevertheless, the mixing involved has the effect of decreasing the correlation

times: a walker moving in a highly confined environment will get a chance of escaping certain local minima by

borrowing from the larger mobility of a neighboring walker.

To further improve the speed of Monte Carlo simulations we added an additional set of replicas with increasing

temperatures, Ti. In the parallel tempering framework, these high temperature replicas jump over the barriers in

phase space much faster than the low temperature replicas. As we have already mentioned, exchange of configura-

tions between the parallel replicas prevents the system from being stuck at a local minimum. Thus, each replica is

characterized by λi and Ti. In a typical calculation we use 32 parallel replicas running at different T and λ. The

first 16 replicas are at constant T (usually 300 K) and varying λ. λ = 1 for the first simulation, and λ decreases
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monotonically to λ = 0 for the 16th replica. The next 16 replicas are run with λ = 0 but T is varied from 300 K to a

large value of Tmax.

The replica simulations are run in parallel on a Linux cluster with MPI parallel programming software. Exchange of

configurations is attempted between adjacent replicas at regular intervals during the Monte Carlo simulation. These

exchanges are accepted with probability:

min

{

1,
ρi(x

′)ρj(x)

ρi(x)ρj(x′)

}

. (9)

where the ith replica contains configuration x, and jth replica contains configuration x
′

The values of λi and Ti are adjusted to make sure that the acceptance rates for an exchange attempt is about 40%.

The tuning algorithm is explained in the Appendix C.

As implied by Eqs. 6 and 8, the ratios of partition functions can be computed in the form (here, j = i ± 1)

Zj

Zi
=

∫

ρi(x)rij(x)dx
∫

ρi(x)dx
=

∫

dx
∫

dx′ρi(x)ρj(x
′)rij(x)

∫

dx
∫

dx′ρi(x)ρj(x′)
, (10)

where,

rij(x) = ρj(x)/ρi(x).

In the context of parallel replica simulations, where we simulate in parallel the distribution ρj(x
′) as well, we have

observed that the following estimator is statistically more robust. Define the function

Sij(x,x′) =
ρi(x

′)ρj(x)

ρi(x)ρj(x′)
(11)

and let ǫ > 0 be a small number. The new estimator is a function of both variables x and x
′ and reads

rij(x,x′) =
ρj(x)

ρi(x)
×































2, if Sij(x,x′) < 1 − ǫ,

0, if Sij(x,x′) > (1 − ǫ)−1,

1, otherwise.

(12)

Notice that the function Sij(x,x′) is also utilized for the acceptance test (Eq. 9). The number ǫ is introduced so that

to deal with certain degenerate cases (e.g., if the distributions are equal). Although the estimator is correct for all

values of ǫ, it is better behaved for small values, such as the square root of the floating precision. The derivation of

the estimator is done in the Appendix B.
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E. Simulation details

The code for conducting the path integral Monte Carlo is available for download from our website.15 The inputs to

the code are the minimum energy structure and a file containing the force field parameters. The number of beads in

the path integral, the number of parallel replicas, and the total number of MC iterations is specified at the beginning

of the run. For data analysis, the total simulation time of each replica is divided into 200 blocks. The first 100 blocks

are used for the equilibration of the simulation and the next 100 blocks constitute the production part of the run.

During the equilibration period the MC displacements experienced by the atoms are adjusted to have an overall 40%

acceptance ratio for the displacement attempts. The values of Ti, and λi are also adjusted during the equilibration

to have 40% acceptance for the exchange of replicas between the parallel simulations. Thermodynamic averages and

ratios of partition functions are accumulated during the production part of the run. The error bar, ǫA, in the estimate

of a quantity A is defined as:

ǫA =
2σA√

Nb

, (13)

where Nb is the number of blocks used in the production part of the simulation (usually 100), and σA is the standard

deviation in the block average values of A. Each block in the MC simulation consists or 1000-100,000 MC iterations

depending on the system size. The largest simulation, which contains 18 atoms, took 3 days of CPU time on with 40

processes running in parallel on a Linux cluster operating with Intel(R) Xeon(TM) CPUs.

III. RESULTS AND DISCUSSION

A. Test Cases: harmonic oscillator and H2O2

For a harmonic oscillator the harmonic expression (Eq. 2) is exact and an analytical expression for Z can be

obtained. However, we apply our methodology to calculate the partition function to make sure that our code is

correct. We consider a hypothetical molecule with two atoms of mass 12.0 and 1.0 amu connected by a 1.0 Å bond

having spring constant kr = 100 kcal/Å2. We define V1 to be the potential where the spring constant is increased

from 100 to 1000 kcal/Å2. The ratio of partition functions, Z1/Z0 for this system can be calculated analytically to

be 5.865. Our path integral simulation code returns a value of 5.853 ± 0.008 with the use of 6 parallel replicas and

40000 iterations per block. These values were obtained with 96 beads for each atom considered in the system. We

also conducted a series of simulations where we varied N, the number of beads in the path integral, keeping everything
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else constant. The calculated ratios of partition functions are plotted in Fig. 1. The case when N=1 corresponds to a

classical simulation and the case of large N corresponds to the quantum mechanical limit. We see that for a value of

N=96 a result very close to the quantum limit is obtained and there is no need to use a larger number of beads. In all

subsequent simulations we have used 96 beads to represent the paths in the path integral, unless otherwise mentioned.

We applied our method to H2O2 molecule as a further test of our code. This system is anharmonic in the O-O bond

rotation and absolute partition functions have been reported in the literature.4 The PES for hydrogen peroxide is well

characterized and is available in the form of a down-loadable subroutine.7,20 Lynch et al.4 used this potential energy

surface and calculated the rotational-vibrational partition function of H2O2 at 300K to be 3.00 × 10−9. Using the

same potential to define V0, our PIMC calculations gave a value of 2.95±0.03 × 10−9 for the partition function. We

used 100000 iterations per block in these simulations. Since the simulation contains 100 blocks the total number of

MC iterations is 107 which is roughly of the same order as reported by Lynch et al.4 However we have used Cartesian

coordinates for sampling, which makes our methodology more general and applicable to more complicated systems

given below. To define the harmonic reference potential V1, we used the simple forcefield of the form given in Eq. 5.

The parameters defining V1 are given in the supplementary information.16

B. Ethanol and dimethyl ether

The change in enthalpy for converting ethanol to dimethyl ether, both of which have the generic formula C2H6O,

is +12.2 kcal/mol based on the heats of formation given in the CRC handbook.21 A calculation using B3LYP density

functional theory with 6-311++G** gives a value of +11.1 kcal/mol. This error arises from the inherent error in

the electronic structure theory used. If a higher level theory and a larger basis set is used the electronic energy

calculation can be made more accurate. For example, calculations with G3 theory22 predicts enthalpy difference to

be +11.7 kcal/mol (using the G3B3 keyword in Gaussian17). However, in this paper, our focus is on the entropic

contribution to free energy as given by the vibrational partition function. The experimentally measured change in

entropy for converting ethanol to dimethyl ether at 300K is -3.6 cal/mol/K. However a harmonic approximation with

the Hessian calculated at the B3LYP/6-311++G** level of theory predicts an entropy change of +0.09 cal/mol/K. We

used our PIMC method to calculate the partition functions for ethanol and dimethyl ether more accurately. In order

to do this, we defined a forcefield which is parameterized to match the B3LYP/6-311++G** potential energy surface.

The parameterized forcefield is given in the supplementary information.16 The partition functions, free energies and

entropies obtained by different methods are given in Table I. The difference between free energy estimated by harmonic
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approximation and path integral Monte Carlo is significant (2.56 kcal/mol) in the case of ethanol. The change in

entropy for converting ethanol to dimethyl ether as evaluated by PIMC is -3.7 cal/mol/K which is very close to

the experimental value of -3.6 cal/mol/K. By contrast, the harmonic approximation predicted a change of +0.09

kcal/mol/K. Both ethanol and dimethyl ether have torsional angles which lead to multiple minima on their PES.

Fig. 2 shows the distribution in C-O torsional angle of dimethyl ether as obtained from our path integral Monte Carlo

with 96 beads. The fact that the distribution in the C-O torsion angle has three equal peaks when λ = 0 shows that

the simulation is accessing all areas of phase space without getting stuck in the local minima. The potential energy

corresponding to the C-O torsion angle φ in dimethyl ether is V0 = 1.32[1 − cos(3φ)]. For the reference potential

V1, this function changes to V1 = 200[1 − cos(φ)]. Fig. 2 also shows the distribution in the C-O angle for λ = 1 as

obtained from the simulations. When λ = 0.01 an intermediate distribution is obtained.

As mentioned previously, the error in determining partition functions using the harmonic approximation increases

with increasing temperature. This is because at higher temperatures more vibrational levels are populated and the

molecules explore a greater number of configurations far from the equilibrium geometry. Since our simulations contain

parallel replicas which were run at higher temperatures it is straight forward to calculate the partition functions at

higher temperatures. At 603 K, the free energies of ethanol, obtained using the path integral Monte Carlo and

harmonic approximation differ by 7.4 kcal/mol.

C. Glycine conformers

Glycine is the smallest amino acid and it has many stable minima on its Born-Oppenheimer potential energy

surface. Miller and Clary9 calculated the free energies of these different conformations using torsional path integral

Monte Carlo. They separated torsional degrees of freedom from the rest and mapped the PES of glycine in terms

of the three torsional angles. Path integral Monte Carlo was done in the reduced space and the contribution from

the rest of the degrees of freedom were estimated using the regular harmonic approximation. This approach works

well when torsional degrees of freedom are separable from the rest. Our aim was to check whether an all-atom path

integral Monte Carlo will converge for such a system with 10 atoms. We consider two of the conformers shown in

Fig. 3. Miller and Clary used a single forcefield in terms of torsional angles which is valid for the entire phase space

of Glycine. They defined different conformers of glycine based on the value of torsional angles. For example the

value of C-C torsion angle is between 100 and 260 degrees for conformer-I. In our calculations we define two different

forcefields for these two different conformers. We treat the different conformers as different molecules and optimize
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separate forcefields for each conformer. The geometries of conformer-I and conformer-III were optimized using the

B3LYP/6-311++G** level of theory and the forcefield terms were optimized to match the Hessian calculated with

this level of theory. The forcefield terms are given in the supplementary information.16 The results are summarized

in Table II. These simulations used 100000 blocks to get an accuracy of 0.02 kcal/mol in the reported free energies.

Our calculations which allows all degrees of freedom to fluctuate gives values slightly different from Miller and

Clary’s results. The entropy difference between the conformers obtained from our calculations is 3.7 cal/mol/K

whereas Miller and Clary reports 1.1 cal/mol/K. A possible explanation is that Miller and Clary used a forcefield

with 1729 coefficients which maps out the PES in the torsional space very accurately. The forcefield that we used

(see Eq. 5) is an all atom forcefield, which allows bond angles and bond lengths to vary, but it contains many fewer

coefficients. A more accurate forcefield expression would allow us to improve upon the current results. However,

here we have demonstrated that the absolute free energies of glycine can be obtained with 0.02 kcal/mol statistical

accuracy for a given PES.

D. CH4 activation by palladium catalyst

Palladium dissolved in sulfuric acid is found to be an active catalyst for converting methane to acetic acid and the

reaction pathway for this system has been studied recently.23 Palladium exists in the form of Pd(HSO4)2 where the

bisulfate anions form bidentate ligands as shown in Fig. 4. One of the principal steps is the methane activation step

where a methane molecules looses a proton and forms a Pd-CH3 bond. This reaction can be written as:

Pd(HSO4)2 + CH4 → Pd(CH3)(HSO4)(H2SO4)

The structure of the resulting species is shown in Fig. 4. The free energy change for this reaction as obtained by

harmonic approximation is 15.31 kcal/mol/K. This includes the change in electronic energy which is 4.90 kcal/mol.

However a normal mode analysis of Pd(CH3)(HSO4)(H2SO4) shows that there are eleven vibrational modes with

frequencies smaller than 200 cm−1. The harmonic approximation is not valid along these vibrational modes. The

entropic contribution to the free energy of Pd(CH3)(HSO4)(H2SO4) from these low frequency modes (as estimated

with the harmonic approximation) is 12.74 kcal/mol. We used our path integral Monte Carlo method to calculate the

partition functions and free energies more accurately. The results for Pd(HSO4)2 and Pd(CH3)(HSO4)(H2SO4) are

shown in Table III. We also applied the path integral Monte Carlo method to methane. As expected, in the case of

methane, the calculated partition functions obtained using the path integral Monte Carlo and the harmonic approxi-
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mation agree well with each other. From the table it can be seen that the harmonic approximation overestimates the

entropy in case of Pd(HSO4)2 and Pd(CH3)(HSO4)(H2SO4). However these errors cancel out when the free energy

change of the reaction is calculated. The overall change in free energy for the reaction is 15.21 kcal/mol determined

using the path integral Monte Carlo method (after adding 4.9 kcal/mol electronic contribution). This is very close to

the value of 15.31 kcal/mol obtained using the harmonic approximation

IV. CONCLUSIONS

We have demonstrated that, given a potential energy surface, absolute molecular free energies of molecules can be

calculated with error bars of less than 0.04 kcal/mol. The method is designed to work with Cartesian coordinates

and does not require the determination of Jacobi coordinates or the separation of torsional and non-torsional degrees

of freedom. The advantage of using Cartesian coordinates is that it allows the handling of complex molecules (e.g.,

Pd(HSO4)2), for which it is not clear how to define Jacobi Coordinates.

Previous path integral Monte Carlo calculations by Lynch et al.4 have used a free-particles reference state which

makes the perturbation between real and reference system quite large. We have used a harmonic potential as the

reference state, which makes the real and reference systems quite similar. The major perturbations are only along

the low frequency vibrational modes. Since the perturbations are smaller, the path integral Monte Carlo method

converges more rapidly, making it possible to treat large systems (in the range of tens of atoms) with reasonable

computational effort.

Parallel tempering is shown to provide efficient sampling of the configuration space. Also, the new estimator (Eq. 12)

for ratios of partition functions proved to be more accurate than the standard estimator. Although it alleviates the

overlap problem, the new estimator does not eliminate it completely. Our only choice to deal with the remaining

numerical difficulties is to increase the overlap between the distributions of consecutive replicas, especially around

those values of the parallel tempering parameters where a quasi phase-transition happens. If one also takes into

account that the number of replicas increases with the dimensionality of the system, one can see that the technique

presented becomes rather costly for large dimensional systems. Nevertheless, treating systems of up to 100 atoms

appears to be a feasible task on the standard Linux clusters available nowadays to many groups.

In case of ethanol we find that the free energies calculated by the harmonic approximation leads to an error of 2.6

kcal/mol at 300K, and 7.4 kcal/mol at 603 K. The free energies calculated with path integral Monte Carlo correctly

predicts the change in entropy for converting ethanol to dimethyl ether. In case of glycine we have demonstrated that
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the partition functions can be calculated with an accuracy 0.02 kcal/mol for a given forcefield. However, our results

with a simple forcefield which allow all degrees of freedom to fluctuate are different from the results in literature which

uses a forcefield in the torsional space. Thus, there is a need for developing analytical potential energy surfaces which

accurately describe the Born-Oppenheimer PES of molecules. In case of the methane activation by Pd(HSO4)2, our

path integral Monte Carlo simulations lead to a correction of around 1 kcal/mol at 300K in the individual free energies

of reactants and products. However these errors cancel out during the evaluation of overall free energy change in the

reaction.
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APPENDIX A: SHORT DESCRIPTION OF THE PATH INTEGRAL MONTE CARLO TECHNIQUE

In this section, we give a description of those aspects of a path integral Monte Carlo technique that are relevant for

the issue of formulating estimators. To make our point, it is enough to consider a general random series representation

of the Feynman-Kac formula for the diagonal elements of the density matrix.12 We utilize a one-dimensional notation

because the multi-dimensional generalization is rather trivial to spot. We let Ω = R
N be the space of all sequences

ā := {a1, a2, . . .} and define the infinite-dimensional standard normal distribution

dP [ā] =

∞
∏

k=1

1√
2π

e−a2

k/2dak. (A1)

In other words, under the distribution dP [ā], the random variables ā := {a1, a2, . . .} are independent identically

distributed standard normal variables. The Feynman-Kac formula for the diagonal elements of the density matrix

reads12,24

ρ(x; λ, β) =
1√

2πσ2

∫

Ω

dP [ā]

× exp

{

−β

∫ 1

0

Vλ

[

x + σ

∞
∑

k=1

akΛk(u)

]

du

}

. (A2)

For the equality expressed by Eq. (A2) to be true, the functions Λk(u) must be generated according to the following

Ito-Nisio prescription. One considers any arbitrary L2([0, 1]) orthonormal basis {λk(τ)}k≥0 such that λ0(τ) = 1.

Then the functions defined by

Λk(u) =

∫ u

0

λk(τ)dτ, for k ≥ 1,

are safe to use in the Feynman-Kac formula. The quantity σ is defined by the equation σ = (~2β/m0)
1/2, with

β = 1/(kBT ) being the inverse temperature and m0 representing the mass of the particle. The interaction is described

by a linear combination of “soft” and “hard” potentials

Vλ(x) = (1 − λ)V0(x) + λV1(x). (A3)

For a d-dimensional system, one utilizes an independent random series for each additional degree of freedom. The

prefactor (2πσ2)−1/2 must be replaced by (2πσ2)−d/2, assuming that all particles have equal masses. The last

assumption carries no loss of generalization, provided that mass-scaled coordinates are employed.

The interesting property of the random series representation expressed by Eq. (A2) is that the Gaussian distribution

dP [ā] does not depend upon any of the parameters defining the physical system. As emphasized many times in the

context of defining estimators for other thermodynamic quantities,12,25 this rescaling of the kinetic operator part of
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the Feynman-Kac formula is crucial in obtaining well-behaved estimators that have statistical properties quite similar

to their classical analogues. Thus, the ratio Z(λj , βj)/Z(λi, βi) can be computed as the Monte Carlo average

∫

R
dx

∫

Ω
dP [ā]e−βi

R

1

0
Vλi [x+σi

P

k akΛk(u)]durij(x, ā)
∫

R
dx

∫

Ω
dP [ā]e−βi

R

1

0
Vλi [x+σi

P

k
akΛk(u)]du

, (A4)

where

rij(x, ā) = (σj/σi)e
−βj

R

1

0
Vλj [x+σj

P

k
akΛk(u)]du

×eβi

R

1

0
Vλi [x+σi

P

k
akΛk(u)]du (A5)

is an estimating function that mimics almost entirely the statistical properties of the corresponding estimator for

classical distributions. The advantage of such estimators consists in the fact that any possible violent fluctuations of

the quantities depending on the replica exchange parameters are tempered by the degree to which the potential itself

varies.

APPENDIX B: RATIOS OF PARTITION FUNCTIONS BY REPLICA EXCHANGE MONTE CARLO

The technique of replica exchange18,19 (or parallel tempering) is a crucial aspect of the present development. For the

resulting Monte Carlo code to require minimal input from the user and minimal knowledge of the molecular structure,

we do not attempt to isolate the vibrational, rotational, or torsional degrees of freedom or use them as guidance

for the Metropolis sampler. Rather, the basic Metropolis sampler with individual particles subjected to random

displacements is utilized. Due to possible mismatch between the strength of forces to which individual particles or

groups of atoms are subjected, attaining ergodicity during the finite length of the simulation is no trivial task. An

example is the ethane molecule, where the two methyl groups rotate with ease, yet are subjected to strong interactions

along the vibrational degree of freedom. Treating the two degrees of freedom on an equal footing (by utilizing roughly

the same maximal displacements regardless of direction) is, clearly, not an optimal sampling strategy. Indeed, a recent

study of Lynch et al.4 demonstrates that proper use of Jacobi mass-scaled coordinates improves the quality of the

sampling in a non-trivial way.

The parallel tempering technique is capable of compensating for this loss in efficiency by performing exchanges

between two statistically independent replicas of slightly different temperatures. The two replicas may differ through

other parameters, as for instance the λ parameter utilized in the present study to construct intermediate Hamiltonians.

A ladder of temperatures is created, having the form Tmin = T0 < T1 < . . . < Tn−1 = Tmax. By successive
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exchanges between neighboring replicas, a configuration may experience any of the temperatures between Tmin and

Tmax. Because the maximal displacements increase with the temperature, the configuration is randomly subjected to

maximal displacements of various sizes, without incurring a penalty in the acceptance rate. In turn, this increases the

likelihood that, for example, the molecule of ethane rotates with sufficient frequency despite the fact that the maximal

displacements for each given temperature are basically controlled by the vibrational degree of freedom. The same

exchange mechanism helps explain the higher efficiency of the parallel tempering technique in surmounting potential

barriers.19

Because the basic mechanism through which ratios of partition functions are computed is independent of the actual

form of the distribution functions, we shall utilize some generic distributions in the present section, which are denoted

by ρ(λ, T,x) and are defined on a high-dimensional space R
d. The distributions may depend upon several parameters

that are used to differentiate the various parallel tempering replicas. In our case, the parameters are the temperature

T and the scaling factor λ utilized for the definition of intermediate Hamiltonians. The probability distributions are

assumed to be integrable for all T > 0 and λ ≥ 0. In addition, we assume that, by making either T or λ large enough,

the acceptance probabilities for swaps decrease to zero (in other words, the overlap of two distributions can be made

arbitrarily small by increasing any of the aforementioned parameters for one of the replicas). We have divided the

replicas utilized in the simulation in two groups. The distributions from the first group of replicas differ through

the value of the spring constants of the force fields (that is, through λ). However, they have the same temperature

T = Tmin. On the other hand, the replicas in the second group differ through the value of the temperature, but they

have the same λ, namely λmin = 0, which corresponds to the normal values of the spring constants. A typical plot

denoting the replicas in the space (λ, T ) is shown in Fig. 5

For definiteness, let







λq λq−1 · · · λ1 λ0 λ0 · · · λ0

T0 T0 · · · T0 T0 T1 · · · Tp






(B1)

be the schedule of parallel tempering parameters. There are n = p + q + 1 replicas, which can be uniquely identified

according to their position in the list by an index i ranging from −q to p. For ease of notation, we let ρi(x) denote the

distribution probability ρ(λ, T,x) for the parameters (λ, T ) corresponding to the index i. In the parallel tempering

algorithm, swaps involving two neighboring indexes, say i and j with j = i ± 1, are attempted periodically and

accepted with the conditional probability18,19

min

{

1,
ρi(x

′)ρj(x)

ρi(x)ρj(x′)

}

. (B2)
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The replica of index i = 0 is characterized by the parameters T = T0 and λ = λ0, parameters that set the temperature

and the spring constants of the system of interest. This replica is involved in alternative swaps either with the replica

characterized by (λ1, T0) or with the replica characterized by (λ0, T1). It serves as a pivot linking the two groups

of parameters. Because the replicas with large spring constants are unlikely to equilibrate by themselves during the

finite time of the simulation, it is important that the acceptance probabilities for replicas of neighboring parameters

are carefully tuned to some optimal value. The initialization and tuning of the schedule of parameters is discussed in

the Appendix C. We mention that the parameters for the replica of index i = 0 are kept unchanged during the tuning

process.

From Eq. (B2), one quickly infers that all quantities necessary for the evaluation of ratios of partition functions

are, in fact, already computed for the purpose of implementing the parallel tempering technique. Let

Zi =

∫

Rd

ρi(x)dx (B3)

denote the partition function and let

〈f(x)〉i =

∫

Rd ρi(x)f(x)dx
∫

Rd ρi(x)dx
. (B4)

We may compute both

Zj

Zi
=

〈

ρj(x)

ρi(x)

〉

i

and
Zi

Zj
=

〈

ρi(x)

ρj(x)

〉

j

, (B5)

by accumulating the respective ratios of probability densities before each swapping attempt involving the replicas i

and j = i ± 1. Because the correlation times for realistic simulations are larger than the number of sweeps after

which a swap of configurations is attempted, there is little statistical penalty associated with the fact that we collect

averages before each swapping attempt, rather than after each complete sweep or individual Monte Carlo step. The

more relevant problem is the fact that the ratios described by Eq. (B5) suffer from the so-called overlap problem if

the distributions ρi(x) and ρj(x) are not sufficiently close to each other. That is, due to poor statistics in the region

of maximal overlap, the rate at which the estimators attain the normal distribution predicted by the central limit

theorem might be very low. As such, the statistical error bars might not be representative of the actual errors.

Let us focus our attention on the computation of the ratio Zj/Zi as the average shown by Eq. (B5) and ask the

question of whether or not it is possible to construct estimators that are better behaved than the implicit ones. The

answer is affirmative and the remainder of the section is concerned with developing an example. We start with some
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preparatory observations. Clearly,

Zj

Zi
=

∫

Rd

∫

Rd ρj(x)ρj(x
′)dxdx′

∫

Rd

∫

Rd ρi(x)ρj(x′)dxdx′
. (B6)

Define the set

D =

{

(x,x′) ∈ R
d × R

d :
ρj(x)

ρi(x)
≤ ρj(x

′)

ρi(x′)

}

, (B7)

let Dc be its complement, and let ID(x,x′) be the indicator function of the set D (the function that takes the value

1 for all the points in D and 0 elsewhere). Notice that

ID(x′,x) = IDc(x,x′), (B8)

perhaps with the exception of the points on the frontier of D, which, nonetheless, carry zero statistical weight.

Now, let π(x,x′) be some integrable and symmetric probability distribution. By interchanging the coordinates x

and x
′ and by using the symmetry of π(x,x′) as well as Eq. (B8), we obtain

∫

Rd

∫

Rd

π(x,x′)ID(x,x′)dxdx′

=

∫

Rd

∫

Rd

π(x,x′)IDc(x,x′)dxdx′. (B9)

On the other hand, since

ID(x′,x) + IDc(x,x′) = 1,

it follows that

∫

Rd

∫

Rd

π(x,x′)dxdx′

= 2

∫

Rd

∫

Rd

π(x,x′)ID(x,x′)dxdx′ (B10)

= 2

∫

Rd

∫

Rd

π(x,x′)IDc (x,x′)dxdx′.

We are now ready to construct two uncorrelated estimating functions for the quantity Zj/Zi, to be averaged against

the distribution ρi(x)ρj(x
′), as prescribed by Eq. (B6). They are defined by the equations

rij(x,x′) = 2
ρj(x)

ρi(x)
ID(x,x′) (B11)

and

rc
ij(x,x′) = 2

ρj(x)

ρi(x)
IDc(x,x′), (B12)
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respectively. Their correctness follows from the symmetry of the product ρj(x)ρj(x
′) together with Eqs. (B10) and

(B6). Their lack of correlation follows from the trivial equality ID(x,x′) · IDc(x,x′) = 0.

The first estimating function has a smaller variance than the second one. Since the expected values of the estimators

are the same, it is enough to prove the inequality for their second order moments. We have

∫

Rd

∫

Rd ρi(x)ρj(x
′)rij(x,x′)2dxdx′

∫

Rd

∫

Rd ρi(x)ρj(x′)dxdx′

= 4

∫

Rd

∫

Rd ρj(x)ρj(x
′)[ρj(x)/ρi(x)]ID(x,x′)dxdx′

∫

Rd

∫

Rd ρi(x)ρj(x′)dxdx′

≤ 4

∫

Rd

∫

Rd ρj(x)ρj(x
′)[ρj(x

′)/ρi(x
′)]ID(x,x′)dxdx′

∫

Rd

∫

Rd ρi(x)ρj(x′)dxdx′
,

where we have utilized that ρj(x)/ρi(x) ≤ ρj(x
′)/ρi(x

′) on the set D. However, again by interchanging the variables

x and x
′ and utilizing Eq. (B8), we obtain that the last term in the preceding equation is

4

∫

Rd

∫

Rd ρj(x)ρj(x
′)[ρj(x)/ρi(x)]IDc(x,x′)dxdx′

∫

Rd

∫

Rd ρi(x)ρj(x′)dxdx′

=

∫

Rd

∫

Rd ρi(x)ρj(x
′)rc

ij(x,x′)2dxdx′

∫

Rd

∫

Rd ρi(x)ρj(x′)dxdx′
,

thus proving our claim.

Certain numerical issues appear if the frontier of the set D does not have zero statistical weight (for example, if

the distributions are equal). Taking into consideration this issue as well, one ends up with the estimator given by

Eq. (12) in the text, where a parameter ǫ > 0 is introduced. We leave it for the reader to show that the estimator is

correct for any value of ǫ > 0.

To summarize in our simpler picture, a replica exchange simulation is conducted. Before any swapping attempt

involving replicas i and j = i ± 1, one verifies whether or not

ρj(x)

ρi(x)
≤ ρj(x

′)

ρi(x′)
.

If the answer is positive, one accumulates the quantity 2ρj(x)/ρi(x), which constitutes an estimator, to be denoted by

Zj/Zi, for the ratio Zj/Zi. If the answer is negative, one accumulates 2ρi(x
′)/ρj(x

′), which constitutes the estimator

Zi/Zj for the inverse ratio Zi/Zj . For each ratio, one also computes the relative statistical error bars, defined as

twice the standard deviation divided by the value of the ratio. The ratio between the partition functions for the

distributions characterized by the parameters (λq , T0) and (λ0, T0), corresponding to indexes i = −q and i = 0

respectively, is evaluated as the product

Z0/Z−q =

1
∏

i=−q

Zi+1/Zi, (B13)
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whereas the inverse ratio is given by

Z−q/Z0 =
1

∏

i=−q

Zi/Zi+1. (B14)

Because the ratios Zi+1/Zi for i = −q,−q + 1, . . . 1 are statistically independent, the relative error bars for Z0/Z−q

are obtained by computing the square root of the sum of the square of the individual relative error bars. The relative

error bars for the inverse ratio Z−q/Z0 are evaluated in a similar fashion. These relative errors become absolute errors

for the free energies, if divided by β0 = 1/(kBT0).

The agreement between Z0/Z−q and the inverse of Z−q/Z0 within the computed relative error bars is a measure

of the degree to which the overlap problem has been overcome. In principle, there are two ways of converging the

simulation if agreement is not obtained. The first one is the brute-force approach, whereby the simulation is run

until agreement is obtained. The second one is to insert more replicas between the end points i = −q and i = 0.

Research of Lu and Kofke26 has demonstrated that increasing the number of intermediate states between the two end

distributions, so that to improve the overlap between successive states, is the computationally more efficient approach.

We have utilized this second technique and have increased the acceptance probability for swaps between the replicas

i = −q,−q + 1, . . . 0 until a good agreement between the direct and the inverse estimators has been obtained. We

notice that, although the acceptance probability for swaps is also a measure of the degree of overlap between two

distributions, in general, ensuring a constant acceptance probability does not automatically ensure uniform quality

for partition functions. An adaptive algorithm that attempts to improve the overlap with a minimalist number of

intermediate replicas can, in principle, be designed. As such, one could verify the values of Zi+1/Zi and the inverse

of Zi+1/Zi for each pairs of replicas involved in direct exchanges and adjust the replica exchange parameters until

agreement is obtained.

APPENDIX C: TUNING THE SCHEDULE OF REPLICA EXCHANGE PARAMETERS

An important problem in the implementation of the replica exchange technique is the computation of a schedule

of parameters that ensures optimal efficiency for swaps. Thus, the parameters have to be modified so that the accep-

tance probabilities lie in a tight interval about some value that optimizes the number of exchanged replicas per unit

of computational effort. This optimal value depends on many factors related to the specifics of the simulation. Nev-

ertheless, a recent study27 regarding the efficiency of exchange for parallel tempering in a classical canonical ensemble

has revealed that the optimal acceptance probability is about 39% for many systems with continuous distributions.
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It has been pointed out that the efficiency of swaps decreases quite slowly with the acceptance probability. More

precisely, the efficiency remains within one half of the optimal value for all acceptance probabilities situated between

7% and 82%. It appears then reasonable to infer that values of the acceptance probabilities between 35% and 45%

will maintain a high efficiency of exchange even for quantum simulations. In the present Appendix, we shall describe

a simple algorithm for tuning the replica exchange parameters so that the acceptance probabilities lie in the desired

interval [0.35, 0.45].

For the sake of an example, assume that the tuning parameter is the temperature T and that n replicas are utilized.

The n replicas are periodically involved in alternative swaps with the replicas of higher and lower temperatures,

respectively. As an initial guess, one starts the simulation with the temperatures arranged in geometric progression.

Thus, for k = 0, 1, . . . , n − 1, the initial temperatures are

Tk = Tmin

k
∏

i=0

Ri, with Ri = n−1

√

Tmax/Tmin. (C1)

We shall assume that the minimal temperature Tmin is a temperature “of interest” and must be kept fixed. However,

Tmax is allowed to change. Also, we shall assume that the equilibration part of the Monte Carlo simulation is divided

in, say, 50 blocks and that acceptance probabilities are computed for each individual block and each pair of replicas

involved in direct exchanges.

At the following step, one verifies whether or not the acceptance probabilities lie in the desired interval [0.35, 0.45].

Let Aci stand for the acceptance probability between replicas i and i+1. If Aci > 0.45, then the ratio Ri is increased

to the new value R′
i, according to the law

R′
i = 1 + (Ri − 1)αi, (C2)

where αi > 1 is some tuning factor. If Aci < 0.35, then Ri is decreased according to the equation

R′
i = 1 + (Ri − 1)/αi. (C3)

Once the new temperature ratios Ri = Ti+1/Ti are determined, one may compute the temperature for the replica k

by utilizing the fact that Tmin is kept fixed. We thus have

Tk = Tmin

k
∏

i=0

Ri, for k = 0, 1, . . . , n − 1. (C4)

The procedure is then iterated until the schedule of temperatures no longer changes or the number of equilibration

blocks is exhausted.
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The parameters αi > 1 should be chosen low enough that the acceptance probabilities do not jump from values

smaller than 35% to ones larger than 45%, or conversely. Provided that such oscillations do not occur, the values αi

must be kept as large as possible, to speed up the optimization of the schedule. Nevertheless, the maximal values of

αi get closer to 1 for larger dimensional systems, as can been deduced from the incomplete beta function law.28–30

One way to cope with the problem of having values of αi that are too large or too small is to let the αi’s be random

variables uniformly distributed in the interval (1, αmax). That is, if ξi is a random number in the interval (0, 1), then

αi = 1 + (αmax − 1)ξi. (C5)

In the present paper, we have utilized this first approach, with αmax = 1.15. Another way is to decrease the difference

αi − 1 by another fixed factor f > 1, whenever oscillations outside the interval [0.35, 0.45] are noticed. The first

approach seems slightly less efficient, but it is easier to implement. Both algorithms are always convergent. Indeed,

after several steps, the value of T1 remains unchanged because T0 is kept fixed. Once T1 is fixed, again after several

steps, the value of T2 is determined and then kept unchanged. Provided that the number of equilibration blocks is

large enough, the whole list of temperatures will eventually be exhausted. We see that, in the worst case scenario,

the optimization of the schedule will be finished in a time roughly proportional to the number of replicas. In actual

applications, the algorithm is faster.

For those replicas that are characterized by the same temperature T = Tmin but by different Hamiltonians according

to the different values λ, the same procedure is applied. Here, the initial guess is an equally spaced grid of mesh

∆i = (λmax − λmin)/(n − 1), with λmin = 0 and λmax = 1. Thus, we start with the guess

λk = λmin +

k
∑

i=0

∆i. (C6)

Then, the values of the displacements ∆i are decreased or increased by some random factors αi > 1 between 1 and

αmax = 1.15, according to whether the acceptance probabilities Aci are greater then 0.45 or smaller than 0.35. The

remainder of the optimization follows closely the discussion for the case where the parallel tempering parameter is

the temperature. We point out that the construction of the intermediate Hamiltonians must be performed in such a

way that the system is integrable for all λ ≥ 0. Also, if at the end of the simulation some acceptance probabilities

have values larger than 45%, nothing “wrong” happens with the quality of the simulation (which is actually improved,

provided that the largest temperature and value of λ are still sufficiently large). It is only the efficiency that suffers.

The more worrisome scenario with respect to the quality of the simulation is when some acceptance probabilities

become less than 35%. To prevent this, the values Tmax and λmax should be chosen small enough that the initial
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acceptance probabilities are larger than the optimal values.

The stability of the algorithm also depends upon the precision with which the acceptance probabilities for swaps

are computed. To minimize the statistical errors, it is worth computing the acceptance probabilities with the help of

the formula

Aci = 〈aci〉 ≡
∫

dx
∫

dx′ρi(x)ρi+1(x
′)aci(x,x′)

∫

dx
∫

dx′ρi(x)ρi+1(x′)
, (C7)

where

aci(x,x′) = min

{

1,
ρi(x

′)ρi+1(x)

ρi(x)ρi+1(x′)

}

is the conditional acceptance probability. In other words, before each swapping attempt, we accumulate the averages

of the conditional acceptance probability, a quantity that is computed anyway for the purpose of acceptance/rejection

testing. Due to detailed balance, Aci can also be computed as the ratio between the numbers of accepted and

attempted swaps, but the resulting estimator has a larger variance. Indeed, in the second case, we accumulate 1,

if the swap is accepted, or 0, if it is not. By the idempotence of the estimator, the variance is Aci − Ac2
i . On the

other hand, the variance for the estimator appearing in Eq. (C7) is 〈ac2
i 〉 −Ac2

i . The inequality aci(x,x′) ≤ 1 implies

aci(x,x′)2 ≤ aci(x,x′). Therefore, 〈ac2
i 〉 ≤ 〈aci〉 = Aci and the statistical variance of the estimator aci(x,x′) is

smaller.
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TABLE I: Comparison of thermochemical properties calculated from path integral Monte Carlo(PIMC) and harmonic approx-

imation (HAR). The partition function Z includes the rotational and translational contributions calculated using rigid rotor

approximation. The standard free energy G and the entropy S are evaluated at 300 K

dimethyl ether

HAR PIMC

ln(Z) -56.57 -54.18

G0

300, kcal/mol 33.72 32.30

S0

300, cal/mol/K 62.59 67.33

ethanol

HAR PIMC

ln(Z) -56.90 -52.60

G0

300, kcal/mol 33.92 31.36

S0

300, cal/mol/K 62.50 71.03



27

TABLE II: Comparison of thermochemical properties of glycine conformers calculated from path integral Monte Carlo (PIMC)

and harmonic approximation (HAR). The partition function Z includes the rotational and translational contributions calculated

using rigid rotor approximation. The standard free energy G and the entropy S are evaluated at 300 K

Conformer-I

HAR PIMC

ln(Z) -51.05 -50.24

G0

300, kcal/mol 30.43 29.95

S0

300, cal/mol/K 76.22 77.83

Conformer-III

HAR PIMC

ln(Z) -50.59 -49.02

G0

300, kcal/mol 30.16 29.22

S0

300, cal/mol/K 78.34 81.45
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TABLE III: Thermochemical properties of the Pd/methane system calculated from path integral Monte Carlo (PIMC) and

harmonic approximation (HAR). The partition function Z includes the rotational and translational contributions calculated

using rigid rotor approximation. The standard free energy G and the entropy S are evaluated at 300 K

Pd(HSO4)2

HAR PIMC

ln(Z) -10.87 -12.48

G0

300, kcal/mol 6.48 7.44

S0

300, cal/mol/K 124.67 121.46

CH4

HAR PIMC

ln(Z) -26.89 -26.83

G0

300, kcal/mol 16.03 15.99

S0

300, cal/mol/K 49.18 49.31

Pd(CH3)(HSO4)(H2SO4)

HAR PIMC

ln(Z) -55.22 -56.60

G0

300, kcal/mol 32.92 33.74

S0

300, cal/mol/K 143.27 140.53
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FIGURE CAPTIONS

FIG.1 Ratio of partition functions plotted against N, the number of beads used in the path integral Monte Carlo

for harmonic oscillator at 300K.

FIG.2 Normalized probability distribution of the C-O torsion angle of dimethyl ether. λ = 0 corresponds to the

real potential, λ = 1 corresponds to the reference potential, and λ = 0.01 corresponds to an intermediate potential.

y-error bars for the histogram values are less than 0.0004 and, hence, not shown here.

FIG.3 (Color online) Two conformers of glycine which differ by a 180 degree rotation around the C-C bond. Color

Key: Nitrogen(blue), Carbon(gray), Oxygen(red), Hydrogen(white).

FIG.4 (Color online) Structures of the catalyst and the activated methane species. Color Key: Sulfur(yellow),

Carbon(gray), Oxygen(red), Hydrogen(white) Palladium(blue)

FIG.5 Typical schedule of parallel tempering parameters in the (λ, T ) space. The replica (λ0, T0) corresponds to

the physical system of interest. The double-headed arrows denote exchange of configurations between the replicas

they connect.
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FIG. 1: Ratio of partition functions plotted against N, the number of beads used in the path integral Monte Carlo for harmonic

oscillator at 300K.
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FIG. 2: Normalized probability distribution of the C-O torsion angle of dimethyl ether. λ = 0 corresponds to the real potential,

λ = 1 corresponds to the reference potential, and λ = 0.01 corresponds to an intermediate potential. y-error bars for the

histogram values are less than 0.0004 and, hence, not shown here.
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Conformer-I Conformer-III

FIG. 3: (Color online) Two conformers of glycine which differ by a 180 degree rotation around the C-C bond. Color Key:

Nitrogen(blue), Carbon(gray), Oxygen(red), Hydrogen(white).
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Pd(HSO4)2 Pd(CH3)(HSO4)(H2SO4)

FIG. 4: (Color online) Structures of the catalyst and the activated methane species. Color Key: Sulfur(yellow), Carbon(gray),

Oxygen(red), Hydrogen(white) Palladium(blue)
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FIG. 5: Typical schedule of parallel tempering parameters in the (λ, T ) space. The replica (λ0, T0) corresponds to the physical

system of interest. The double-headed arrows denote exchange of configurations between the replicas they connect.


