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Abstract5

The dispersion of pollutants from the ground by turbulent winds is diffi-6

cult to model in general. However, for flat homogeneous terrain and steady7

wind conditions, if the wind profile is modeled with a power-law dependence8

on height, the advection-dispersion equation has an exact solution. In this9

paper the analytical solution is compared to a numerical simulation of the10

coupled air-ground system for a leaking underground gas storage, with a11

power-law velocity profile that was fit to the logarithmic velocity profile12

used in the simulation. The two methods produced similar results far from13

the boundaries, but the boundary conditions had a strong effect; the sim-14

ulation imposed boundary conditions at the edge of a finite domain while15

the analytic solution imposes them at infinity. The reverse seepage from16

air to ground was shown in the simulation to be very small, and the sharp17

contrast between time scales suggests that air and ground can be modeled18

separately, with gas emissions from the ground model used as inputs to the19

air model.20

1 Introduction21

Predicting the dispersion of air pollutants from sources on the ground requires22

modeling of turbulent transport. A full description of turbulence is beyond23

either theory or simulation, but approximate results can be derived from an24

analytical model that is relatively simple, while still accounting for the variation25

with height of wind speed and diffusivity.26

Even in the simplified model discussed in this report, few analytical27

solutions are known. Many well-established models used for regulatory purposes28

use Gaussian plumes, which are computationally simple, but assume that wind29

speed and diffusivity are uniform (New Zealand Ministry for the Environment,30

2004). As a result, the plume height and decrease of ground-level concentration31
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are underestimated. If the wind speed and diffusivity are instead assumed to32

follow a power-law dependence on height, there is a more general analytical33

solution which is just as easy to compute and potentially more accurate. The34

power law can be used to approximate the wind profile in stable, unstable or35

neutral atmospheric conditions.36

This report compares two approaches to modeling leakage of a gas from37

an underground reservoir into the surface layer of the atmosphere:38

1. Using a known source distribution at the surface as a boundary condition39

on the differential equation describing admixture transport (Barenblatt,40

2003b); and41

2. Simulating both air and ground transport together in a finite-volume code,42

with a logarithmic wind velocity profile (Oldenburg & Unger, 2004).43

The analytical solution applies to a simplified model that assumes ho-44

mogeneous flat ground and no change of wind conditions with time, as well as45

the power-law dependence of wind speed and diffusivity. More realistic descrip-46

tions would require numerical simulation of turbulence; the approaches discussed47

here do not actually model turbulence, but rather specify the amount of mixing48

that results from it. The purpose of comparing the analytical solution with the49

coupled simulation is in particular to investigate50

• How sensitive is the solution to the velocity profile, and to the exponent51

in the power law?52

• How is the simulation affected by a closed-top boundary condition imposed53

in the numerical model?54

This report first describes the simplest possible model of turbulent dif-55

fusion, then compares the two approaches.56

2 A simple theoretical picture of turbulent diffusion57

Trace gases are passive additives to the air, i.e., they do not affect the already58

existing flow field, if they are sufficiently dilute. Smoke or dust may also be59

passive additives if the particles are small enough (less than about 1 micron60

diameter) that settling due to gravity can be neglected. The concentration of a61

passive additive is governed by the advection-dispersion equation,62

∂tc + ∇ · (uc) = −∇ · F (2.1)
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where c is the concentration, u is wind velocity, and F is the diffusive flux of the63

additive due to turbulent mixing; c, u, and F are functions of the space coordi-64

nates r and time t. Emission of the additive from a source can be represented65

by a boundary condition or source term.66

In reality all these functions experience rapid turbulent fluctuations on67

time scales typically from about 0.1 second to 103 seconds. It is impossible and68

unnecessary to predict the fluctuations accurately; we are only concerned with69

average concentration, wind velocity and flux. Theoretically this average should70

be an ensemble average, based on repeating the experiment. When wind veloc-71

ity or concentration is measured experimentally, replicating the same weather72

conditions is not feasible, and ergodicity is assumed so that time averages can be73

used instead (Monin & Yaglom, 1971, sec. 3), typically over intervals of 30 min-74

utes or 1 hour.75

The following sections will discuss the forms of wind velocity and diffusive76

flux that will be used in equation (2.1).77

2.1 Velocity profile in the surface layer78

The earth’s surface exchanges momentum, heat, and mass with the atmosphere79

through the planetary boundary layer, which has a thickness of the order of80

1 km and responds to changes in the surface over time scales of a few hours. The81

planetary boundary layer is almost always turbulent. In roughly the bottom 10%82

of the planetary boundary layer, the Coriolis force can be neglected compared to83

surface effects; this region is called the surface layer. There are strong vertical84

gradients of wind velocity in the surface layer, as the winds aloft must be reduced85

to zero at the surface by friction, and there are also strong vertical gradients86

of temperature and scalar concentrations due to the fluxes of heat and mass87

emitted or absorbed by the surface.88

We would like to describe the wind velocity profile and the turbulent89

mixing in the surface layer with a minimum of measurable parameters. Our90

simple theoretical model assumes:91

• The ground is flat and homogeneous over an area large enough that edge92

effects can be ignored, and therefore the flow field does not depend on the93

horizontal coordinates, but only on height.94

• The air is incompressible (∇·u = 0), a good approximation in the surface95

layer. Together with the first assumption, this implies that the average96

vertical component of wind is zero.97

• In the conventional coordinate system, z is height above ground and the x98
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axis is chosen along the direction of the average wind. The velocity along99

this axis is the wind profile u(z).100

Turbulence generated by surface friction101

To describe turbulent flow near a rough surface when there is no heat flux, von102

Kármán’s “law of the wall” is widely used (Arya, 1999, section 4.7.1):103

u(z)
u∗

=
1
k

ln
z

z0
(2.2)

where104

• u∗ is called the friction velocity, and is defined from the shear stress at the105

surface, τ , and the air density, ρ, by u∗ =
√

τ/ρ. This shear results from106

the covariance of turbulent fluctuations of velocity:107

τ = −ρu′w′; so u∗ =
√
−u′w′

where u′ and w′ are the fluctuating components of horizontal and vertical108

velocity. Through this covariance a net downward flux of momentum is109

delivered from the wind to the ground. From this definition it can be seen110

that u∗ is of the same order of magnitude as the fluctuations of velocity.111

• k is von Kármán’s constant, which has a value of about 0.4.112

• z0 is a parameter called the roughness length, which depends on the details113

of the surface, and can be interpreted as the size of eddies at the surface;114

for example, z0 is of the order of 10−2 m over grass and 1 m over forests or115

cities (Panofsky & Dutton, 1984, sec. 6.2). The logarithmic profile reaches116

u(z) = 0 at z = z0 if extrapolated downward, but it is valid only above117

the so-called roughness sublayer, extending to about two to five times the118

height of the surface irregularities, where the flow is dynamically influenced119

by the irregularities.120

The parameters u∗ and z0 can be determined by measuring u(z) at different121

heights and fitting a straight line to u vs. ln z.1 The length z0 is a characteristic122

of the surface, so after z0 is determined at a particular site, u∗ can be found in123

other wind conditions from a measurement of u(z) at a single height.124

1u′w′ can be measured directly with a fast-responding, three-dimensional sonic anemometer,
but this is much more expensive than just measuring the mean velocity. Alternately, surface
stress can be measured directly with a drag plate, but results are often unreliable (Kaimal &
Wyngaard, 1990; Kaimal & Finnigan, 1994, section 6.3).
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von Kármán’s law is derived from the assumption that the velocity profile125

becomes independent of Reynolds number in the limit of large Re; Barenblatt126

(1996, 2003a) argues that this assumption is not valid and the profile does depend127

on Re with the form:128

u(z)
u∗

=

(√
3

2α
+

5
2

)(u∗z

ν

)α
, (2.3)

where ν is kinematic viscosity, and α = 3/(2 lnRe). This equation was deduced129

from the assumption of incomplete similarity in the nondimensionalized height130

u∗z/ν and the requirement for the velocity profile to have a well-defined limit as131

the viscosity vanishes; the numbers
√

3
2 , 5

2 and 3
2 were derived from experimental132

data on pipe flow at various Re up to 35×106. For flow across an infinite plane,133

Re is not uniquely defined, and α must be determined by fitting data to the134

curve. Barenblatt does not consider surface roughness, which is significant for135

any terrain rougher than very smooth ice (Sutton, 1953, sec. 3.8, 7.2; Panofsky136

& Dutton, 1984, sec. 6.2); therefore we do not expect (2.3) to hold exactly over137

natural terrain, but it does suggest that wind speed should depend on height138

through a power law.139

Turbulence generated by heat flux140

There is usually a significant temperature gradient in the surface layer. During141

the day, as the sun heats the ground, air near the ground is warmer and less142

dense than air above, so it is unstable to vertical displacements. In this case143

buoyant forces promote turbulence and convert gravitational potential energy144

to turbulent kinetic energy. At night, the temperature gradient is reversed,145

and turbulence is suppressed. Neutral stability is rare, and is only approached146

when the sky is heavily overcast, so the ground is not gaining or losing energy147

by radiation, and in addition there is moderate or high wind so the air is well148

mixed in temperature.149

The velocity profile in thermally stratified turbulent flows is observed150

to deviate from the logarithmic law. Such flows are described by the Monin-151

Obukhov similarity theory (Monin & Yaglom, 1971, chap. 7), in which the gov-152

erning parameters are153

buoyancy parameter g/T0, g = gravity
T0 = absolute temperature at surface

heat flux q/cpρ, q = upward heat flux at surface
cp = specific heat capacity of air
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as well as z, u∗, ρ as defined previously. By dimensional analysis, the velocity154

gradient has the form155

kz

u∗

∂u

∂z
= φm

(
ζ ≡ z

L

)
, where L ≡ − u∗

3

k(g/T0)(q/cpρ)
(2.4)

It can be shown that ζ represents a ratio of buoyant generation of turbulence to156

mechanical shear generation. Thus, at large heights buoyant forces are relatively157

more important than at small heights, because near the ground the larger eddies158

are suppressed.159

The dimensionless function φm(ζ) must be determined empirically, and160

must have φm(0) = 1 so that (2.4) reduces to (2.2) for zero heat flux. Observed161

wind profiles have been fit to various forms for φm(ζ), such as the Businger-Dyer162

formula (Arya, 1999, sec. 4.7.2):163

φm(ζ) = (1 + 16|ζ|)−1/4 , −5 < ζ < 0 (unstable)
φm(ζ) = 1 + 5ζ, 0 ≤ ζ < 1 (stable)

The wind profile u(z) is obtained by integrating (2.4) with the boundary condi-164

tion u(z0) = 0; as before, the profile is only valid above the roughness sublayer.165

Since a direct measurement of heat flux requires expensive instruments2,166

formulas have been worked out to estimate u∗ and L from the mean wind speed167

and temperature measured at two heights (Arya, 1999, sec. 4.8.1; Arya, 1988,168

sec. 11.5.6).169

Power-law profile as approximate description170

If the Monin-Obukhov profile is impractical (for example if it is too complex,171

or if temperature or other parameters are not available), meteorologists and172

engineers have long resorted to a simple form for the wind profile (Panofsky &173

Dutton (1984, sec. 6.3); Sutton (1953, sec. 7.2)),174

u

u1
=
(

z

z1

)α

, (2.5)

where u1 and z1 are a reference velocity and reference height, and α is found by175

fitting the equation to measurements of u at two or more heights. Although the176

form (2.5) lacked theoretical justification until the work of Barenblatt (2003a), it177

2The turbulent heat flux is w′T ′, where T ′ is the fluctuating component of temperature; it
can be measured directly by a sonic anemometer. The heat flux can also be determined from
the energy budget if the radiation input and heat flux into the soil are measured.
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provides a reasonable fit to wind profiles in the surface layer over a wide range of178

surface roughness and stability conditions, and is frequently used in air pollution179

modeling (Arya, 1999, sec. 4.8.3).180

For neutrally stratified boundary layers, the value α = 1
7 is often cited in181

engineering texts, and was suggested by Prandtl based on experiments on pipe182

flow at moderate Reynolds number (Schlichting, 1968). Observed values of α183

in the atmosphere range from nearly 0 in very unstable conditions, representing184

perfect mixing and a uniform velocity profile, to nearly 1 in very stable con-185

ditions, approaching the Couette linear profile of laminar motion over a plane186

surface. The value of α also depends on surface roughness: roughness promotes187

mixing near the surface, which reduces the velocity gradient at small z and thus188

leads to larger α.189

2.2 Turbulent diffusion190

The gradient transport assumption191

To solve (2.1) we need to know F, the diffusive flux due to turbulent mixing,192

which requires further assumptions. The simplest model is an analogy to molec-193

ular diffusion: it is assumed that the flux is linearly proportional to the density194

gradient with some proportionality constant K:195

F = −K∇c(r, t)

K is called a turbulent exchange coefficient, or turbulent diffusivity. In the ide-196

alized conditions described above, with all quantities depending only on height,197

the flux is in the vertical direction:198

Fz = −K
∂c

∂z
(2.6)

Similarly, the shear stress due to turbulence (defined with the opposite sign199

convention) is200

τ = ρKm
∂u

∂z
(2.7)

These K’s represent mixing by turbulent eddies, and are usually several orders201

of magnitude larger than the corresponding molecular viscosity or diffusivity.202

Unlike their molecular counterparts, turbulent exchange coefficients de-203

pend on the particular flow field—rather than molecular properties—and also204

vary from one region to another of the same flow (Arya, 1999, sec. 4.6.1). Ex-205

periments show that they are definitely not uniform in space: if K were spatially206

uniform and the wind speed were also independent of height, mass injected at a207
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steady rate from a point source at the ground would produce a Gaussian plume,208

in which plume height grows with the square root of downstream distance x, and209

ground-level concentration decreases as 1/x. However, the plume height is ob-210

served to grow as a larger power of distance, 0.75 to 1 instead of 0.5 (Panofsky211

& Dutton, 1984, sec. 10.3), and the ground-level concentration also decreases212

faster than 1/x (Sutton, 1953, p. 277). Therefore the exchange coefficient can-213

not be constant, but increases with height; this is because in the atmosphere,214

there are eddies of a wide range of sizes, and at greater heights, larger eddies215

contribute to mixing. A constant K would imply that there is only one length216

scale of mixing, a molecular length scale, which is not true in turbulence.217

It is sometimes assumed (e.g., Barenblatt (2003b)) that the ratio of the218

K’s for momentum and concentration is independent of height:219

K(z) = (constant)Km(z). (2.8)

This assumption implies that the mechanisms of turbulent transfer for the pas-220

sive admixture are the same as for momentum. However, observations suggest221

that this ratio does depend slightly on z/L in unstable conditions, though not222

in stable conditions. The ratio at neutral stability is generally taken to be 1,223

although there is disagreement over this value in the literature (Kaimal & Finni-224

gan (1994, sec. 1.3.5); Brown et al. (1993, sec. 3c); Panofsky & Dutton (1984,225

sec. 6.9)).226

Implications of constant flux227

Fluxes and concentration gradients are expensive to measure directly, and so228

various assumptions are used to estimate K(z). The fluxes of momentum, heat,229

and mass are generally considered to be independent of height within the surface230

layer. If the assumption of constant flux is valid, then u∗ =
√

τ/ρ is independent231

of height. Then (2.7) can be written as232

Km(z) =
u∗

2

∂zu
(2.9)

and using the Monin-Obukhov expression (2.4) for velocity gradient gives (Arya233

(1999, sec. 4.7.2); Panofsky & Dutton (1984, sec. 6.8)):234

Km(z) =
ku∗z

φm(ζ)
(2.10)

If instead the velocity profile follows the power law (2.5), then (2.9) becomes235

Km(z) =
u∗

2

∂zu
=

u∗
2z1

u1α

(
z

z1

)1−α

(2.11)
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Equations (2.5) and (2.11) are known in meteorology as “Schmidt’s conjugate236

power laws.”237

The turbulent diffusivity K could be derived from (2.11) combined with238

(2.8); however, since both these equations are only approximations, K is often239

modeled instead with a separate power law,240

K(z) = K1

(
z

z1

)m

, (2.12)

where m is not necessarily equal to 1 − α. The parameters K1 and m could241

be determined by fitting (2.12) to the more accurate expression (2.10), which242

tends to result in m slightly greater than 1 − α (Arya, 1999, sec. 4.8.5). The243

power m describes how the size of the turbulent eddies increases with height:244

in very unstable conditions, with convective mixing, m approaches 1 and their245

size increases linearly with height; in very stable conditions, where turbulence246

is suppressed, m approaches 0 and their size becomes constant with height.247

Limitations248

The gradient-transport assumptions (2.7, 2.6) state that the flux at a point249

depends only on the local gradient. This assumption fails if the eddies are large250

compared to the scale of curvature of the profile. If there are eddies large enough251

to carry air between regions of significantly different gradient, the actual flux252

can be non-local and even opposite the local gradient (Arya, 1999, sec. 4.6.1;253

Panofsky & Dutton, 1984, sec. 4.7.2; Pasquill & Smith, 1983, sec. 3.1). Such large254

eddies occur most often in very unstable conditions, such as on a clear sunny day255

with light winds, where buoyancy-generated convection is the dominant source256

of turbulence. Under these conditions “looping” plumes are seen, as the large257

eddies move the plume as a whole back and forth, instead of the spreading or258

“coning” plumes predicted by gradient-transport theory (Arya, 1999, sec. 6.8).259

Thus gradient-transport theory is most valid when mechanical shear is dominant,260

with slightly unstable, neutral or stable temperature profiles and strong winds.261

Slender plume approximation262

Turbulent diffusion in the x direction may be neglected when advection dom-263

inates dispersion in the far downwind limit, i.e., x large compared to K/u.264

(Typically K is of the order of 1–10 m2/s and u of the order of 1–10 m/s, so x265

should be large compared to 1 meter.) It is also possible, but more cumbersome,266

to solve the advection-dispersion equation (2.1) including diffusion in the x di-267

rection and then take the limit for x � K/u, which leads to the same result; see,268



10 June 21, 2006

for example, Sutton (1953, sec. 4.6), or Huang (1979). Neglecting such diffusion269

is called the slender plume approximation (Arya, 1999, sec. 6.3.6). With this270

approximation, the concentration will be zero everywhere upwind of the source.271

3 Analytical and numerical solutions of the advection-272

dispersion equation273

Both solutions of equation (2.1) discussed here make two further simplifying274

assumptions:275

• The flow is stationary and the source remains constant in time for long276

enough to establish a steady-state concentration field. For the numerical277

simulation, this assumption was not actually necessary, but was used to278

provide a simple test case.279

• The source is independent of the crosswind direction, y, so the concen-280

tration depends only on x and z; that is, the problem is two-dimensional.281

This assumption is equivalent to considering only the cross-wind integrated282

concentration,283

c̄y ≡
∫ ∞

−∞
c(x, t) dy.

Meteorologists sometimes use this simplification and then assume a Gaus-284

sian distribution in the lateral direction. The lateral diffusivity depends285

on distance from the source and atmospheric stability, and is often es-286

timated using the empirically derived Pasquill-Gifford diagrams (Arya287

(1999, sec. 6.6.4); Pasquill & Smith (1983, sec. 3.2)).288

With these assumptions, the advection-dispersion equation (2.1) has289

been reduced to290

u(z)∂xc(x, z) = ∂z (K(z)∂zc(x, z)) . (3.1)

3.1 Analytical solution and interpretation291

Steady Propagation from Line Source292

(3.1) has an analytical solution when the velocity and diffusivity are given by293

power laws as discussed above, and the additive is injected at a constant rate294

from an infinite straight line on the ground perpendicular to the wind. In other295
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words, end effects are neglected; hence the solution will overestimate the con-296

centration from any finite source. The problem is now297

u(z)∂xc(x, z) = ∂z (K(z)∂zc(x, z)) , for x > 0 and z > 0, with (3.2)

u(z) = u1

(
z

z1

)α

,

K(z) = K1

(
z

z1

)m

.

Solutions are known for boundary conditions specifying concentration at the298

ground, flux at the ground, or a linear combination of the two (Philip, 1959). The299

flux-type boundary condition will be discussed here. Two boundary conditions300

are implied by the physical model. First, no flux crosses the ground for x > 0:301

Kc(z)∂zc → 0 as z → 0 (3.3)

(If the admixture is absorbed or interacts with the ground, this is not valid.)302

Second, there is a known constant source. Integrating (3.2) from z = 0 to ∞303

gives304

∂x

∫ ∞

0
u(z)c(x, z)dz = Kc(z)∂zc

∣∣∞
0

= 0, so∫ ∞

0
u(z)c(x, z)dz = Q, a constant independent of x. (3.4)

Q is the rate of injection by the source at the origin. Since there is no absorption,305

in the steady state the total flux of admixture across any vertical line at x > 0306

is equal to the rate of injection.307

Solution and interpretation308

Equation (3.2) with its boundary conditions (3.3) and (3.4) can be solved by309

the method of similarity, which applies when a function of two variables has a310

symmetry so that it depends only on a single, dimensionless combination of the311

two variables.312

The solution for the concentration can be presented as the product of a313

ground-level concentration cgl(x) and a plume height function cph(x, z):314

c(x, z) = cgl(x)cph(x, z) (3.5)
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Figure 3.1: Contours of plume (3.5) for two values of α, representing different amounts
of mixing: larger α means less mixing. The dashed line shows the height where c(x, z)
is 1/e of its value at the ground: zh = z1(x/x1)1/r.

where315

cgl(x) =
Q

u1z1

r

Γ(β)

(
x

x1

)−β

,

cph(x, z) = exp
{
−(z/z1)r

x/x1

}
,

r = 2−m + α, β =
1 + α

r
, x1 =

u1z1
2

r2K1

Γ(β) is the Gamma function (Abramowitz & Stegun, 1964)

Equation (3.5) is well known in the literature (Deacon, 1949; Calder, 1949; Sut-316

ton, 1953; Monin & Yaglom, 1971; Huang, 1979; Pasquill & Smith, 1983; Panof-317

sky & Dutton, 1984; Arya, 1999). Barenblatt (2003b) explains how the solution318

is obtained.319

Figure 3.1 shows contours of c(x, z). The first plot has α = 1
7 , Prandtl’s320

approximation for neutral stability. The second has α = 0.3149 chosen to fit the321

velocity profile in the simulation, as seen below in Figure 4.1. In both cases the322

conjugate power law, m = 1−α, was used for the diffusivity. In the second plot,323

the larger α and smaller m produce less mixing and less upward transport.324

According to (3.5), the plume height grows as x1/r, and the ground-level325

concentration decreases as x−β. The concentration is inversely proportional to326

the wind speed u1, as usual for advection. Some important limiting cases are:327

• For uniform wind (α = 0) and uniform diffusivity (m = 0), (3.5) reduces328
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to a Gaussian vertical profile:329

c(x, z) =
Q/u1√

πK1x/u1

exp
(
− z2

4K1x/u1

)
However, this equation is not a good fit to observed profiles in field and330

wind tunnel experiments (Brown et al. , 1993).331

• If the conjugate power laws (2.5, 2.11) hold, then m = 1− α, r = 1 + 2α.332

If α = 1
7 for neutral stability, this gives β = 8

9 ; Sutton (1953, p. 281)333

cites observations of the propagation of smoke from a line source over level334

downland in neutral conditions, where the ground-level concentration was335

observed to decrease as x−0.9, corresponding to β = 0.9.336

This solution is the response of the system to mass injected at the line337

(x, z) = (0, 0). If instead the source is spread over the ground with a density of338

S(x), the solution is the convolution339

c(x, z) =
∫ x

−∞
S(x′) cline(x− x′, z) dx′ (3.6)

where cline(x, z) is the solution for a unit line source:340

cline(x, z) =
1

u1z1

r

Γ(β)

(
x

x1

)−β

exp
{
−(z/z1)r

x/x1

}
, x > 0;

= 0, x ≤ 0.

3.2 Coupled simulation of air and subsurface transport341

Oldenburg & Unger (2004) used the integral finite difference code TOUGH2342

(Pruess et al. , 1999; Pruess, 2004) to simulate the transport of CO2 leaking343

from a geologic sequestration site. The CO2 mixes with soil gas and also dis-344

solves in groundwater, eventually seeping out of the ground. The authors eval-345

uated whether it would reach hazardous concentrations above ground. Neutral346

stability was assumed, so the logarithmic wind profile (2.2) was used:347

u =
u∗
k

ln
z

z0
(3.7)

with u∗ chosen to give a desired value of u at a reference height of z = 10348

m, u = 1 m/s or u = 5 m/s representing typical slow and fast wind speeds;349

k = 0.4; and z0 = 0.10 m. TOUGH2 cannot specify the wind velocity profile350

directly; instead, a horizontal pressure gradient was imposed, and an artificial351
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height-dependent “permeability” was specified in the cells above ground such352

that Darcy’s law would yield the desired horizontal flow speed. The resulting353

horizontal wind speed was not quite independent of x, and the vertical wind354

speed of gas above ground was not exactly zero, perhaps due to discretization355

and round-off errors.356

The vertical diffusivity above ground was derived from the constant flux357

assumption (2.10), at neutral stability where φm = 1, together with the assump-358

tion that the turbulent exchange coefficients for momentum and mass are equal359

(2.8), giving360

K(z) = ku∗z. (3.8)

The integral finite difference method produces numerical dispersion in the hor-361

izontal direction on the order of one-half the grid spacing multiplied by the362

horizontal wind velocity. This dispersion could make the plume spread upwind363

unrealistically; as a countermeasure, the vertical diffusivity K was set to zero364

upwind of the source.365

Figure 3.2 shows the computed mass fraction of CO2 in air at a quasi-366

steady state (6 months after injection begins in the simulation). Figure 3.3367

shows the same data zoomed in on an area above the ground and directly above368

the area where CO2 was injected. These figures show selected contour lines369

interpolated from the grid. For clarity of comparison, the background fraction370

of CO2 in the atmosphere was set to zero, instead of its real value of about 380371

ppmv, or about 5.7× 10−4 mass fraction. Also, all other sources of CO2 besides372

the reservoir leak were omitted; in reality there can be a significant concentration373

(thousands of ppmv) in the top 1 m of soil due to respiration by soil bacteria.374

A very small fraction of CO2 has diffused from the air back into the375

ground downwind of the plume, and is slowly diffusing deeper; it also dissolves376

in groundwater which is moving downward.377



June 21, 2006 15

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

mass fraction CO
2

100 200 300 400 500 600 700 800 900

−30

−25

−20

−15

−10

−5

0

5

distance, m

he
ig

ht
, m

wind speed 1 m/s at z = 10 m above ground

10−8

10−7

10−6

10−5

100 200 300 400 500 600 700 800 900

−30

−25

−20

−15

−10

−5

0

5

distance, m

he
ig

ht
, m

wind speed 5 m/s at z = 10 m above ground

10−8

10−7

10−6

10−5

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

mass fraction CO
2

Figure 3.2: Mass fraction CO2 in gas for slow and fast wind speeds. Similar to
Figure 9ab in Oldenburg & Unger (2004); redrawn from data kindly provided by the
authors. CO2 is driven upward by high pressure at the source, displacing soil gas in
the subsurface plume. In the second figure it can be seen that the concentration in the
subsurface, where the time scale of propagation is slower, has not yet reached equilibrium
with the air downwind of the source: see the 10−5 contour.
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Figure 3.3: Mass fraction CO2 in gas for slow and fast wind speeds. Same data as
previous figure, showing a smaller region with different contour levels. As usual for
advection, the concentration is inversely proportional to wind speed (5 times smaller
for the 5 times faster wind speed). Note that contour lines are perpendicular to the top
surface, which is an artifact of using a closed top boundary condition. Also, the spike
at x = 450 m is caused by the artificial suppression of vertical dispersion upwind of the
source.
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4 Comparison and conclusions378

4.1 Comparison of two solutions379

To compare this simulation with the analytic solution, the logarithmic profile was380

approximated by a power law. Figure 4.1 shows the velocity at the grid points381

of the simulation, with fits to u = u1z
α by Matlab’s curve fitting tool; one fit382

is unweighted and the other is weighted by the difference between successive383

values of u. There is no unique criterion to choose the most appropriate fit.384

The unweighted fit was used for the velocity profile. The diffusivity was given385

by (3.8), rather than the conjugate power law (2.11), in order to match the386

diffusivity in the simulation.387

In the simulation, CO2 passes from the ground to the air over an ex-388

tended area. Therefore, it should be compared with the analytical solution389

using the convolution (3.6). Since the flux of CO2 across the ground surface was390

0 1 2 3 4 5 6 7 8 9 10
0
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4

5

height, m

u,
 m

/s

simulation u (fast wind speed)
successive differences of u
  power law: 2.57z0.3149

  power law, weighted: 2.344z0.3791

Figure 4.1: Horizontal wind speed in the simulation, and power-law fits.
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Figure 4.2: Source density of CO2 from ground to air calculated from simula-
tion result. The circles indicate total horizontal flux at gridpoints xi calculated by
fi =

∑
zj>0 XCO2(xi, zj)Fgx(xi, zj) ∆z. The source density is then calculated from

the successive differences, Si+0.5 = (f(xi+1)− f(xi))/∆x. A linear interpolation of this
source density is used in the convolution (3.6). The horizontal flux declines very slightly
downwind of its maximum, due to reverse seepage of CO2 back into the ground; the
loss is about 10−5 of the maximum flux, too small to see on the graph.

not directly available, the source density was inferred by391

S(x) =
d

dx

∫ ∞

0
XCO2(x, z)Fgx(x, z) dz,

XCO2 = mass fraction CO2 in gas, Fgx = horizontal flux of gas

which is shown in Figure 4.2. The reverse seepage flux of CO2 back into the392

ground can also be calculated, since the horizontal flux declines very slightly393

downwind of its maximum at about x = 600 m; the loss is about 10−5 of the394

maximum flux. The source density for the other data set (wind speed 1 m/s)395

was indistinguishable, because the seepage of CO2 was driven by a high pressure396

at 30 m below the surface, and did not depend on the wind speed above the397

ground.398
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Figure 4.3 shows the result of the convolution and compares it with the399

simulation. It is qualitatively similar to the TOUGH2 plume, but does not show400

the artifacts of the closed top boundary condition and the suppression of upwind401

diffusion. Figure 4.4 shows how the concentrations depend on downwind distance402

at z = 0.75, near the ground, and at z = 9.75, the top of the simulation. The403

results are close near the source but differ at the top and side, because different404

boundary conditions were imposed there.405

The aboveground domain has much shorter inherent time scales than the406

underground domain. In the simulation, the permeability changes abruptly from407

1 darcy just below the ground to 2× 109 darcy just above, and from horizontal408

gas speeds of the order of 10−7 m/s below to 1 m/s above. It is difficult for the409

code to maintain accurate calculations at such a boundary. Figure 4.5 illustrates410

how the smooth distribution of vertical gas velocities under the surface suddenly411

becomes irregular and noisy in the air.412
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Figure 4.3: Convolution of line-source kernel for fast wind speeds with source distri-
bution from Figure 4.2 (top). Compare to coupled simulation (bottom). Contours near
the source and far from the side and top boundaries are similar in the two solutions.
The analytical solution does not have the closed top boundary condition and the arti-
ficial barrier to upwind diffusion. The results for the slower wind speed are not shown
because they are the same except for a factor of 5, because of the factor of 1/u1 in
equation (3.5).



June 21, 2006 21

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3
x 10

−5

x, meters

m
as

s 
fr

ac
tio

n 
C

O
2 in

 a
ir

Concentrations at z=0.75 for wind speed 5 m/s

simulation, logarithmic
analytic, power law

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3
x 10

−5

x, meters

m
as

s 
fr

ac
tio

n 
C

O
2 in

 a
ir

Concentrations at z=9.75 for wind speed 5 m/s

simulation, logarithmic
analytic, power law

Figure 4.4: The two solution methods compared at heights of z = 0.75 m and
z = 9.75 m. The concentration in the simulation decays more slowly with down-
wind distance, probably because a zero-gradient side boundary condition was used (i.e.,
∂c/∂x = 0 at x = 1000), which causes the concentration to reach a constant value at
relatively small downwind distances, instead of decaying to zero only asymptotically as
x →∞. Near the top, the concentration in the simulation is more than twice as large,
likely because of the closed top boundary condition. Both these boundary conditions
would lead to accumulating CO2 in the simulation, rather than letting it escape to
infinity in the vertical and horizontal.
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4.2 Conclusions413

Both approaches described here are limited by the highly idealized model of tur-414

bulent diffusion: the gradient-transport model assumes that turbulent transport415

of momentum and mass is local, just like diffusion with a different constant of416

diffusivity, as described in section 2. The velocity profiles described in section 2417

apply only to heights above any surface obstacles and large compared to z0; they418

assume flat ground with short, homogeneous vegetation. Modeling the rough-419

ness sublayer, where there can be significant turbulent transport in cities and420

forests, would be far more complex.421

The concentrations computed from the analytic solution, using a power-422

law profile fit to the logarithmic velocity profile over a limited range of heights,423

are close to the numerical simulation result in the part of the domain far from the424

boundaries. Near the side and top boundaries, the two solutions are significantly425

different. The simulation has no vertical flux at the top (z = 10 m) and ∂c/∂x =426

0 at the side (x = 1000 m). The analytic solution obeys these same conditions427

at z →∞ and x →∞ respectively, instead of finite values. This result suggests428

that the simulation would be more realistic with a larger domain size, but then429

the computational cost would be greater.430

The TOUGH2 coupled simulation can model barometric pumping and431

reverse seepage of air contaminants back into the ground when these phenomena432

could be significant, such as with large soil permeability. But the underground433

and aboveground domains operate on vastly different time and space scales,434

which suggests separating the domains whenever they are not strongly coupled.435

We expect on physical grounds that the air above ground is not usually coupled436

to the subsurface, because the capillary entry pressure for gas into the ground437

is high enough that the ground can be treated as a reflecting boundary. In fact,438

this was a good approximation in the case used for the simulation, as shown by439

getting the same emission rate out of the ground for both wind speeds. If the440

main goal is to predict concentrations in the air, the small reverse seepage (only441

10−5 as great as the total flux of CO2 into the air) could be neglected.442

Each approach has advantages and disadvantages. Some advantages of443

the analytical solution, as opposed to the coupled simulation, are:444

• It is computationally simple and needs no programming, while still allow-445

ing variation of K with height.446

• It does not suffer from the closed-top boundary condition imposed by447

TOUGH2 (although TOUGH2 could work around this limitation by adding448

a very large grid block above the layer of interest to receive the upward449

flux). The solution is independent of where the boundaries of the domain450
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are placed.451

• It does not have the artificial horizontal dispersion which accompanies452

advection in the numerical solution.453

• There is no minimum grid cell size. TOUGH2 cannot make the grid cell454

smaller than the roughness length, z0, while using the logarithmic velocity455

profile.456

• There are no problems of finite precision.457

Disadvantages of the analytical solution:458

• The solution is known only for power-law profiles. It is questionable how459

accurately a logarithmic or Monin-Obukhov profile can be approximated460

by a power law. In particular, the diffusivity will always grow more slowly461

at large heights for power laws than for the logarithmic profile.462

• It cannot describe a time-dependent source profile, which could easily be463

handled in TOUGH2.464

• It assumes homogeneous flat terrain, which is invalid for most natural465

areas.466

• The slender plume approximation fails for wind speeds approaching zero,467

which is also the worst condition for building up high local concentrations468

of contaminants.469

The analytic solution can be used as a simple prediction of pollutant470

plumes when the wind and diffusivity profiles are known and the problem in-471

volves only steady-state conditions. It cannot be generalized to non-uniform or472

non-flat terrain, or three-dimensional or time-dependent problems; such condi-473

tions would require numerical simulation of the air, which can be performed at474

various levels of complexity by off-the-shelf products (New Zealand Ministry for475

the Environment, 2004).476
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