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ABSTRACT 

Antisense oligodeoxynucleotide (ODN) inhibition emerges as an effective means for 

probing gene function in plant cells. Employing this method we have established the 

importance of the SUSIBA2 transcription factor for regulation of starch synthesis in 

barley endosperm, and arrived at a model for the role of the SUSIBAs in sugar signaling 

and source-sink commutation during cereal endosperm development. In this addendum 

we provide additional data demonstrating the suitability of the antisense ODN technology 

in studies on starch branching enzyme activities in barley leaves. We also comment on 

the mechanism for ODN uptake in plant cells. 

 

Antisense ODNs are short (12-25 nt-long) stretches of single-stranded ODNs that 

hybridize to the cognate mRNA in a sequence-specific manner, thereby inhibiting gene 

expression. They are naturally occurring in both prokaryotes and eukaryotes where they 

partake in gene regulation and defense against viral infection1,2. The mechanisms for 

antisense ODN inhibition are not fully understood but it is generally considered that the 

ODN either sterically interferes with translation or promotes transcript degradation by 

RNase H activation3,4.  

The earliest indication of the usefulness of antisense ODN technology for the purposes 

of molecular biology and medical therapy was the demonstration in 1978 that synthetic 

ODNs complementary to Raos sarcoma virus could inhibit virus replication in tissue 

cultures of chick embryo fibroblasts5. Since then the antisense ODN technology has been 

widely used in animal sciences and as an important emerging therapeutic approach in 

clinical medicine3,4. However, antisense ODN inhibition has been an under-exploited 

strategy for plant tissues, although the prospects for plant cells in suspension cultures to 

take up single-stranded ODNs was reported over a decade ago6. In 2001, two reports 

from Malhó and coworker7,8 demonstrated the use of cationic-complexed antisense ODNs 

to suppress expression of genes encoding pollen-signaling proteins in pollen tubes from 

the lilly Agapanthus umbellatus. For the uptake of DNA pollen tubes represent a unique 

system since the growing tip is surrounded by a loose matrix of hemicellulose and 

pectins, exposing the plasma membrane7 and the first uptake of ODNs by pollen tubes 

was reported as early as 19949. 



A breakthrough in the employment of antisense ODN inhibition as a powerful 

approach in plant biology was recently presented through our work on intact barley 

leaves10. As was illustrated by confocal microscopy and fluorescently labeled ODNs, 

naked ODNs were taken up through the leaf petiole and efficiently imported into the 

plant cell and the nucleus. The work portrayed in that study demonstrate the applicability 

of antisense ODN inhibition in plant biology, e.g. as a rapid antecedent to time-

consuming transgenic studies, and that it operates through RNase H degradation. We 

employed the antisense ODN strategy to demonstrate the importance of the SUSIBA2 

transcription factor11 in regulation of starch synthesis, and to depict a possible mechanism 

for sugar signaling in plants and how it might confer endosperm-specific gene expression 

during seed development10. We also described the employment of the anitsense ODN 

strategy for studies on in vitro spike cultures of barley12,13. 

Here we present further evidence as to the value of the antisense ODN approach in 

plant biology by following the effects on starch branching enzyme (SBE) accumulation in 

barley leaves after suppression of individual SBE genes. In agreement with transcript 

analyses of SBE expression in barley leaves14-16, a zymogram assay (Fig. 1) revealed that 

sucrose treatment of barley leaves increased the number of SBE activity bands as 

compared to sorbitol treatment. In the presence of antisense SBEI or SBEIIA ODNs, 

zymograms of sucrose-treated leaves displayed only a subset of these activities with 

bands in the top portion of the zymogram gel missing or diminished. With antisense 

SBEIIB ODN, all activity bands in the top portion of the gel as well as the lowest band 

were absent. Based on these data we provide a tentative annotation for the various SBE 

activity bands.  

In animal experiments, naked ODNs are usually not taken up by the cells since both 

the ODNs and the outside of the plasma membrane carry a net negative charge. Thus the 

uptake of naked ODNs into barley leaf cells10 was surprising and called for an 

explanation. As demonstrated in our subsequent paper13, the answer seems to be that the 

ODNs slip into the cells through sugar translocators as they are activated in the presence 

of the appropriate sugar (Fig. 2). Whether it is the structural resemblance between the 

sugar (deoxyribose) backbone of the ODNs and the transported sugars that allows for the 

ODNs to be transferred, or if other mechanisms are involved, remains to be elucidated.  
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Figure legends 

 

Figure 1. Zymogram of starch branching enzyme (SBE) activities. Barley leaves were 

incubated in sorbitol or sucrose with sense or antisense SBE ODNs followed by SBE 



zymogram analysis17. Antisense and corresponding sense ODNs10 were constructed as 

follows. SBEI (NCBI Accession number AY304541), nt 15-32; SBEIIA (NCBI Accession 

numberAF064560), nt 1-18; SBEIIB (NCBI Accession number AF064561, nt 116-133. 

 

Figure 2. ODNs “piggyback” on transported sugar molecules. A pictorial representation 

of ODNs utilizing the sucrose translocator (SUT) to enter plant cells. The confocal 

microscope projection image shows uptake of fluorescently labeled ODNs (green) in 

barley leaves after 24 h incubation in 200 mM sucrose10. Autofluorescence from 

chloroplasts is shown in red. Scale bar, 10 µm. The superimposed cartoon shows the 

coupled symport of H+ (white dot), sucrose (blue) and ODN (green) through the SUT 

(red). 

 








