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Abstract

It is well known that at presentéxactaveraging of the equations for flow and transport in
random porous media have been proposed for limited special fields. Mgreppeoximate
averaging methods—for example, the convergence behavior and the acotiriancated
perturbation series—are not well studiadd in addition, calculation of high-order perturbations
is very complicated. These problems have for a long time stietuétempts to find the answer
to the question: Are there in existence som@ct,and sufficiently general forms of averaged
equations? Here, we present an approach for findinggéheral exactlyaveragedsystem of
basicequations for steady flow with sources in unbounded stochastically leommgs fields.
We do this by using (1) the existence and some general proper&gen’s functions for the
appropriate stochastic problem, and (2) some information about the raiettbif tonductivity.
This approach enables us to find the form of the averaged equationetwdifeztly solving the
stochastic equations or using the usual assumption regarding atflypsmaneters. In the
common case of a stochastically homogeneous conductivity fieldpresent the exactly
averaged new basic nonlocal equation with a unique kernel-vectshtethat in the case of
some type of global symmetry (isotropy, transversal isotropgrtbotropy), we can for three-
dimensional and two-dimensional flow in the same way deriveeiaet averaged nonlocal
equations with a unique kernel-tensor. When global symmetry doesxistt the nonlocal
equation with a kernel-tensor involves complications and leads to an ill-pad#dmr
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1. INTRODUCTION

Recently, methods for analyzing flow and transport in random media have tdiag gver-
widening applications. An effective description of flow and transport in irregulauponedia
entails interpreting permeability or conductivity fields as random fanstof spatial
coordinates, and flow velocity as a random function of spatial coordinates anduchea S
description also involves averaging of the stochastic system of flow and traegpatibns
containing these functions (conservation laws, Darcy’s law, and closatgpnsl). The averaging
problem involves finding the relationship between the nonrandom functionals of the unknown
and the given fields—means, variations, distributions, densities, etc.—or a clbe&d se
eguations that contain these functionals. A certain interest attachestjuttens for the
averaged functionals that are the laws of conservation of mass, momentum, and dnengy, w
are invariant with respect to some set of conditions that uniquely determine thes ffoces
example, the initial and boundary conditions). This is fundamentally possible, for exampl
cases where the length scales of heterogeneity are extremaly In physics and mathematical
literature, this phenomenon is sometimes referred selésveragingLifshitz et al., 1998) and
homogenizatiorfZhikov et al., 1994)

It is apparent that (in general) this is impossible, because in pradiiediasis the process
depends on a set of parameters that are usually not small, and thus an averagtidmescri
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used in computing the nonrandom characteristics (functionals) of random flow and transport
processes for estimating the uncertainty of the processes. In s@grét tapossible to find for
averaged fields a closed system of equations.

Usually, the methods of averaging are approximate. Every so often, we caseuiss a
expansion of small parameters, which (for example) specifies the deviationefjsan fields
from their mean values. Although it is possible to achieve results using thssnoita
approach, it should be pointed out that the convergence of the perturbation expansion is
insufficiently studied (Bonita and Cushman, 2001). For this reason, even if we caafulit
perturbation expansion, there still exists the open question: Is a similar iexpéuesexact
solution of an appropriate problem? Unfortunately, the answer to this question is abaatty.

Recently, there have been some studies in which the perturbation technique in frequenc
(Fourier) space was extensively used (King, 1987; Indelman and Abramovich, i@8idn,
1996, 2001). In all these works authors reduce the problem for differential equatiorentb sec
kind integral equations using the Fourier transformation (FT) of random Greeéioifufidng,
1987) or FT of head (Indelman and Abramovich, 1994). Note that these integral equations are
invalid unless the generalized FT had been used, because the classical osfeanations of
head and stochastically homogeneous fluctuation of conductivity do not existhisigxt t
formally apply the Liouville-Neuman iteration method to the integral equatibissclear that
the kernels and the free terms in the corresponding integral equations are reotrdggeable.
Therefore, their iteration (perturbation) series always diverge. N&bess, using the leading
terms of the series (Indelman and Abramovich) or a special partial summirggdsginammatic
series (King) under certain conditions can be valid for finding an approximhtiany case
these approaches do not lead to exact results.

One effective approach is to utilize a distinctive space scale for takatirsg fields as a
small parameter. This approach, a so-called homogenization, was langalypael for
investigating many linear and some nonlinear processes in periodical and ranabunes,
which can be found in many publications (see, for example, books by Bakhvalov and Panasenko,
1984; Zhikov et al., 1994; Hornung, 1997). It should be noted that the exact effective
conductivities formulas for a small number of special fields: stratiffsteens and some two-
dimensional systems with special symmetry are well known (Keller, 1964hektat, 1967;
Dykhne, 1970). The exact formulas of effective conductivity for a three-dioreaisiase are not
known.

It should be pointed out that there exist many problems that do not contain parameters
naturally considered as small. In this general case, it is possibleghificant mutual
correlations of velocity and head (pressure) with the conductivity field eXisitatdistances.

To reflect this phenomenon in the averaged differential equations, there must beotdgher
derivatives of the averaged field; that is, the averaged equations must be nonlocal.

Nonlocal averaged equations of flow have been suggested earlier. In some gases the
more-or-less hypothetical (Saffman, 1971; Dagan, 1979). Approximate nonlocal equat®ns ha
been developed in the framework of perturbation methods (Lomakin, 1970; Shvidler, 1985;
Keller, 2001).

Neuman and Orr (1993) considered steady flow in a bounded domain and found the
averaged exact system of two equations. The first differential equatiorhdsgbie auxiliary
non-random field in a medium with the mean conductivity, and the second, almost-local,
eqguation contains the desired mean field and the integral term with an aulglidryrhus, if the



first local equation is solved and we know the auxiliary field, the second is a Itfeedmtial
eqguation, which is nonhomogeneous.

Here we note the significance of P. Indelman’s contribution in developinggamabri
approach for analyzing flow and transport in random media, specifically, for nbal@raged
equations (some of his publications can be found in the references at the end of this paper

Generally speaking, direct averaging, as well as defining the funciandlthe relationships
between them, is exceptionally complicated. Later in this paper, we will $leoferins for the
exact relations between averaged fields, in some cases without actually sodvatgchastic
equations. We present a method for finding the general form of exactly edterqgations by
using (1) some general properties of existing Green'’s functions for appropoiiastic
problems and (2) some information about the random fields of the conductivity. We present a
new unique general form of tlexactlyaveraged nonlocal equations for steady flow in three-
dimensional stochastically homogeneous random porous media with sources. Weethescus
problem of uniqueness and the properties of the nonlocal averaged equations forthe three
dimensional and two-dimensional fields with some type of global symmebityofisc,
transversally isotropic, and orthotropic). The determination of equations for rekmigi
related to so-called inverse problems, which are often ill-posed. In our eabayerexamples of
uniqueness and non-uniqueness solutions for similar problems. In the present paénewe
develop the approach and some of the results that were presented prigiyidier and
Karasaki (1999, 2001, 2005), where in addition to steady flow we analyzed nonsteadgttransie
flow and nonreactive solute transport.

2.Steady flow with sources and sinks in AN unbounded domain

We consider steady flow with sources and sinks that are locally or continuistsbuted in
a single-connected heterogeneous d-dimensional, porous, unbounded domain. The local
condition of flow continuity and Darcy’s law are given by the following equations:

Vv(x) = f(x), v(x)=6(x)h(x), h(x)=-Vu(x) (1)
Here, x = (x,,...,%; ) is a d-dimensional vectar(x)is the Darcy’s velocity vecto(x) is the
conductivity tensor, the vectdr(x) is hydraulic field intensity, and(x)is reduced pressure (or

hydraulic head)The function f (x) is the given density of sources and sinks, which is an
integrable and compactly supported function or a distribution with bounded support. In this case

T f (x)dx’

vxh(x)=0 )
Whenu(x) is the reduced pressupg,(x) = p(x)— pgx, the conductivity iss (x) =k (x)/ 4 ;

g= is finite. Because thb(x) is a potential vector, we have the relation:

whenu(x) is the headp’(x)/ pg, the conductivity iss(x) =k (x) pg/ x . Here, p(x) is
pressurek (x)is the permeability tensog = const and p are liquid viscosity and density,
respectively, andy is the acceleration of gravity vector.

We assume that conductivity(x) = {o;, (X)} is the second-rank tensor symmetric by
subscripts and is a positive definite and limiteckl tensor. In this case, a unique symmetric and



positive definite limited tensar(x) =67 (x) exists, and we can write the conservative form of
Darcy’s law as a condition for momentum balam¢e) v(x) =h(x).

Note that the above-postulated symmetry of theatens;, (x) andr,, (x) over the
subscripts is natural. Clearly, adding an arbitskgw-symmetric (over the subscripts) tensors to
them does not impact the local dissipation of epe(x)=v(x)h(x)=h(x)e(x)h(x). As
shown by Zhikowt al.(1993), the symmetric tenset, (x) is uniquely defined from an elliptic
second-order operataf[ 6(x)h(x)]. If the given tensoBf, (x) is nonsymmetric, we will
perform a regularization and use its symmetric par{x) = I:&l/%(X)—f- cP/,gl(x)]/Z

We use Equations (1) and the conditions for thetfan f (x) to derive some estimations

for the functionsv(x), h(x) and u(x) for Iargdx|. Of course, the conditions for the solution at

infinity must be consistent with the equations—tisathey must be consistent with the
estimations. In addition, we will later use therestions of random functions by Fourier
transformation of some averaged functions.

For example, ifd =3, the functionsv(x) andh(x) vanish at infinity. The functiom(x) for

|x| — 00 can be an arbitrary constant and without a loggeagrality, this constant can be defined

as zero. These conditions at infinity ensure aumsplution for the system of Equations (1) in
three-dimensional unbounded space.

In the two-dimensional casel & 2), the estimation shows thatdf= 0 and|x| — o, then

v(x) >0 andh(x)— 0, but ‘u(x)‘ — 0. The solution for the system of Equations (1),i$2)

not unique. On the other hand, we can study theesysf the first two equations from Equations
(1) and Equation (2). This system is closed witipeet to the vector-functions(x) andh(x).

These functions vanish at infinity, and the solutad the system is unique.
Note that if f (x) = 0 but q =0, the vector-functions(x), h(x) would tend to zero at

infinity for d =2, 3. In these two cases, without a loss of generalig/can Writeu(x) =0 for

Xx— oo and the system of Equations (1) has a uniqueisolut
Next we consider in detail a three-dimensional flsMe will return to the steady flow in
two-dimensional space in Secti@n

3. STOCHASTIC FORMULATION

Let as assume that the tens((rx) is a stochastically homogeneous random field. ihdbr

any vectorx and for an arbitrary vecta, the finite-dimensional probability distributiofar the
random fields(x+a) does not depend on the arbitrary veetdret f (x) be a given,

nonrandom density function. We introduce a uniguelom Green's scalar functicg(x,y),
unique Green's velocity vector functiopéx,y ) and intensity vectos(x,y), for the problem
described in Equations (1), so that for almosteslizations of the differentiable field(x), the
functionsg(x,y) , v(X,y) vanish at infinity, and satisfy the following edjoas:



Va(xy)=8(x-y), v(xy)=e6(x)s(x.y), s(x.y)=-V,a(x.y) (3)
For the case in which the conductivity tensor congntso,, (x) are piecewise smooth
functions, Green's functiog(x,y) must be a so-called weak solution of Equatiorth{@)
satisfies the integral identit.[/aIm (X)V,g(x,y)Ve(x)dxX =p(y), wherep(x) is any arbitrary

testing function that is infinitely differentiabénd tends to zero at infinity. It is well known €se
for example, Bakhvalov and Panasenko, 1989) tleagiéimeralized solutiog(x,y) vanishes at

infinity and satisfies the Equations (3) at allmeiwherec(x) Is smooth. On the surfaces where
tensorc(x) is disconnected, the functiqm(x,y) and normal component of velocity-vector

v(x,y) are uninterrupted.

Now we can convey the solution for the problem gfi&ions (1) and (2) through density
function f (x) and the random solution of the system of Equat{@hsand write:

u(x)=a(xy)f(y)ay, h(x)=[s(xy) f(y)dy', v(x)=[r(xy) f (y)dy* (4
where the integration is over the entire unbourl&ispace.
Note that although the functiortg(x,y),s(x,y) andy(x,y) are integrable in any bounded

domain inR® and vanish at infinity, they are not integrablaifull three-dimensional space. But
the integrals in Equations (4) make sense, bedhesfeinction f (x) is compactly supported.

We also introduce the averaged fields over therehkeof realizations of the random
6(x): U =(u),V=(_v),H=(h), G=(g),S=(s), I'=(y). As long ass(x) is a stochastically
homogeneous field, the mean Green’s functx,y), the mean Green's velocity(x,y), and
mean hydraulic intensit§5(x,y) are invariant over translation in space, and tbeeedepend
only on the differencec—y . Because the local operat®t [ ¢(x)V,g(x,y)] is self-adjoint,
Green's functiorg(x,y) is symmetric—that is, it satisfies the reciprodaw (Courant, 1962):
g(x,y)=9(y.x) and likewise G(x,y) = G(y,x), G(x-y)=G(y—x). Hence,G(x-y)is a
real, even function, the functioB(x—y) is a real, odd vector.

Averaging the Equations (4) over the ensemble, aweh
U (x):J'G(x—y)f (y)dy, H(x):J'S(x—y) f(y)dy’ =-VU(x) (5)

V(x)= jl“(x—y) f(y)dy’, T(x-y)= <c(x)s(x,y)> = —<c(x)VXg(x,y)>
and after averaging the first equation from (3),find the relationship of compatibility for the
I'(x-y) components:

V. (x-y)=6(x-y) (6)

Thus, the functiond) (x), H (x), andV (x) are presented as convolutions, which makes

sense because the functicbr@x) has bounded support. Finally, after averaginditeeequation

from (1), we have:
VV (x)= f(x) (7)



Equations (5), (6), and (7) make up a sysiéaguations for the averaged fieldgx),
H(x), andV (x). This system contains the kern@¢x—y), S(x-y), andI'(x—y), which
are nonrandom functionals of the random condugtiieid c(x) and the random Green’s

function g(x,y). Of course, explicit definitions of the functiosds , SandI" are very difficult

to obtain. For now, the existence of these funeti®m itself is sufficient. It is possible to
determine some of their features, which help idifig a general form for the averaged
equations, of which Equations (5), (6), are a faater in this paper, we will find them in
different forms.

4. FOURIER ANALYSIS

To analyze equations with convolutions in all spaee consider for absolute integrable in
full space functiony (x) the classical Fourier transforii [yx(x)] =y (k) and inverse Fourier

transformT* [ (k) | =y (X):
g?(k):Iexp[—?zri(x-k)]w(x)dx3 , w(x):jexp[ 2zi (k -x) | (k )dk®, (8)
It easy to show that the functiof(x) andU (x), H(x),T'(x), andV (x) slowly vanish at

infinity, and therefore they are not integrabldut space. The integrals in (8) for these funcsion
diverge, and the so-called generalized Fouriestaamation of similar functions or distributions
should be used—for example, see L. Schwartz (186d)K. Yosida (1978).

The generalized Fourier transformati@n of distribution (functional)y over A-space
testing functionsy is a distribution (functionalyj over B-space functiong =T, [go] So, for

q=T.[gJand q=T;[q], we have the equality for scalar products[q],7)=(d.¢):
[T (<)@(k)dk = d (x)p(x) dx 9)

Here, the star-superscript indicates the complejugate.
It is known that Equation (9) is the definitiong#neralized direct and inverse Fourier
transformations, and i(x)is an absolute integrable function, Equation (¥dsivalent to (8).

The commonly used testing function spagu{sx)are: (1) the so-called testing function of
functional spaces, , which includes all infinitely differentiable futions that decrease more
rapidly at infinity than any power df/|x| ; (2) the functios that belong to K functional space of

infinitely differentiable functions with finite sygort.

A generalized Fourier transformation for arbitrdistribution does not exist. But definition
(9) is valid for some special distributions (foraexple, so-called slow growth or tempered
distributions). Any local integrable function tlggbws more rapidly at infinity than any power
function is tempered. The generalized functiongwitunded support are also tempered
(Schwartz, 1961).

For the scalar function§(x), U(x) and vector function$(x),H (x),I'(x),V(x), in

Section 3 we write a system of equations, partlativcontains convergent convolutions. Now
we apply to all these equations the generalizedi&ouansformation defined by Equation (9).

Taking into account that the functio®(x),U (x), andI'(x) are tempered (they even decrease



at infinity) and that the functioh(x) has bounded support, we can present the genetalize

Fourier transformation of the convolutions as adpia of generalized Fourier transformations of
appropriate functions. As a result, from Equati($)s (6), and (7), we can write the following
system of linear algebraic equationk#space:

U(k)=G(k) f(k), H(k)=S(k) f(k)=27ikuU (k),V(k)=T(k) f (k) (10)
In addition, we can write, foF, (k) andV, (k), the conditions of compatibility:
27ik T (k)=1, 27zikV (k)= f(k) (11)

If the functionsG(k ), T'(k) and f (k) are known, the Equations (10)-(11) are a closetesy
(k) A(k), andV (k).

After eliminating f (k) from the Equation (10) and Equation (11), we finel local
equations that for eadh(k ) bind the scalar fieldJ (k) and the vector field/ (k)

with respect to functionsl

Vi(k)=11, (k)O(k) . 0(k)=T (k)[GK)]" (12)
From (10), (11), and (12) we obtain oK (k ) the condition of compatibility:
27ik T, (k) =[G (k)] (13)

Equations (10), (11), and (12), (13) are also aezldbasic system with respect to functions
U (k) andH(k),S(k),V (k).

It is evident that the vectdi (k) is not dependent offi (k) it is aunique operator that
transforms the scalar field (k) to the corresponding vector fiel (k). If the appropriate
convolution converges, we can write a nonlocal &goawvith the kernel-vectofI(x —y):

:J’H(x—y)u (y)dy’ (14)
The relations between the two vector fiettik ) and V (k) and (respectivelyH (x) and

V(x) will be analyzed later in Section 5 for the caskspecial field symmetry, and in Section

6 for the general case. Here, we will only redadl tvell-known and evident fact that, in general,
the set of operators that transform a given vaat@another noncollinear vector is infinite.

Clearly, the exact averaged Equation (12) is réviersif we know the scalar field) (k ),
from (12) we can directly define the vector fié?o(k) and vice versa. If we know the field
V (k) , from Equations (12) and (13) we can fiddk ) = 27iG (k )kV (k).

Note that in the former analysis, we do not supphbeexistence of any small parameters.
5. GLOBAL SYMMETRY

We continue the analysis of the averaged equaindsassume that the multipoint moments
of the conductivity random field(x) satisfy some symmetry conditions related to thecsaral

properties of the field as a whole. We shall dal type of symmetry global. We will describe
three types of global symmetry and designate th@minitials: i ( isotropy), o (orthotropy), and
t (transversal isotropy). The isotropy case isgméxd in detail below, followed by a brief
discussion of the other two.



Let the random conductivity tensm(x) be a global isotropic field. In this case, the
imaginary vectorﬁ(k) in any orthogonal coordinate system is proporiicmséhe uniquely
defined vector2zik . The real proportionality scalar coefficient dege®entirely ork = |k| and
is invariant for any rotation and reflection on dwordinate planek =0. We can write

" (k)=-B" (k) 2zik (15)
Here B(i)(k) is a scalar and positive function. Then

V (k)=B. (k) H,(k) , Bl (k)=B"(K)d,, H,(k)=—27ik,J (k) (16)
and therefore ix-space, if appropriate convolutions converge, westiae relation:

V(x):—IB(i)(|x—y|)VU (y)dy’ (17)
Here B" (|x|)is aunique real spherical tensor.

It is evident that Equation (16) is reversible avecan write:

=i — — —i — -1

RW ()Y (k)= Ry (k), RI(®=[ B'( 4] 6, (18)

In x- space we have the nonlocal condition of the nmeamentum balance witlmique
kernel -isotropic resistance tensR(|x|) = T-*[ R(Jk|) |:

JRA(x=Y)Vi(y) d¥ = H,(x) (19)
Note that nonlocal equations (17) and (19) are g only when appropriate convolutions
converge. Here, we describe the case of globabisiatporous media and use the information

on the asymptotic behavior of functi®(|x|) for large and sma|b<| . Inserting into Equation

(13) the expressiolll (k) =—27 jR™(k )k , we find R, (k) = 47* KX G K&, or we have

R, (X)=-V2G( X, . Installing the last formula in Equation (19) yis

H.(x)= IVG(y)V Va(x—y)dy'. If the field V (x—y) is differentiable, the convergence of the
convolution in (19) depends on the behavior ofithegrand aty =0 and|y| — . An
investigation of the asymptotic behaviors of thediion G( y) (Shvidler, 1966; 1985) showed
that if scale heterogeneity is finite andis very small, the principal part of the Greenisdtion

is G(y)~1/4ro,y. Hereo, = <a’1>_1 is the mean harmonic conductivity. For very layget

was also shown tha®(y) ~1/4zc" y, wheres™ is a finite effective conductivity. It easy to din

the estimate for gradients of flow velocity and &res function for very large and small We

can find that the integral convergesya0 and at infinity which means that convolution like the
one in Equation (19) does exist.

If the field (x) is globally orthotropic, then there exists somaagonal coordinate

system such that all the stochastic multipoint masef the random field are invariant to the
reflection on the planeg =0. In this coordinate system, the veclbfx)is the product of the

diagonal tensor that depends|eg, |,/ and|x;| and the vectox . Therefore,I'(x) is an odd,



real function andl'(k)and II (k) are odd and imaginary vector functions. In genvey are
noncollinear with the vectdk . In this case, the componerits (k) can be written:

" (k)=-B" (k)2zik , (summation ovefris not implied!) (20)
The three function®® (k) are positive, even, and depend|k|k,|,| ki -

If the field c(x) is globally transversal isotropic, then we cant@vri
" (k)=8"(k)2zik , (no summation ovet) (21)
The three functionﬁ(t) (k )are invariant relative to the rotation around oo axis of the
coordinate system (for example,) and reflection on any planés=0. They are positive, even,
and depend ofk; + k22)1/2 and |k, .

Thus, in all three basic cases of symmdtry=i,t,0) with a suitable orientation of the
coordinate axes, (bear in mind that in each otdses, the diagonal tensdBY’ (k) remain
invariant in relation to superscript), the averaged equation is

V(k)=B“(k)H(k), B (k)=46,B% (k), (no summations oven) (22)
Equation (22) is reversible, and for anywe have
R (K)V(K)=F(k), Ry (k)=8,[B (k)] (23)

In x-space in a corresponding coordinate system, irfcmmiate convolutions converge, we
have the nonlocal equations withiquekernels-diagonal tensoB'” ( —y) and R (x—y),

that are invariant relativge ) -kind transformation:
jB (x-y)WVU (y)dy, jR WV (y)dy* =-VU(x) (24)
Now we consider the diagonal tens@$’ (k (k ) andB'“ (x) with real and even components and

write the componenEf“) (k) in the following form:
B (k) =B R (R (25)
Here B(*) = lim B (519/9 where a positive dimensionless numbes 0. The variables

k,/°— Ak and functlonsFII (12/9 are dimensionless as well (are linear scales of the random

field c(x), for example, the correlation scales). Howeverthaylimit tendency for the
homothetic transformation, the ratios between ta¢es of heterogeneity should be remain in the
limit. Assuming the existence offaylor’'s expansion of the functioﬁu(“) (l@’? around the point

o= 0, we can write:
< 10"F" ( )

8@ (k)= 5@
P R

Substituting (26) into (22) and taking into accotirat all the odd derivatives (F_f”(“) (l@’? at

klnlkznzK;A”"AnzA% (26)

Rb=0 are zero, we can write the expansions for the mel-m:ity\/,(“) (x) in x-space:



B AAZEAZT) (nyn,ny) 02U (X)
VI (X) - BII z | n n, ng
heny -t =0 (2n)! OX0X™0%™0 %
Here 1\ (n,n,, n,) =j %" 9 98 ) (¥p d¥f is the power moment of the dimensionless
function F"(“) (%zTF’l[E(“) (lg/ﬂ of the dimensionless variabldg= x / A, . It is clear that from

Equation (25), we ha\ﬁ(“)(o) =1and thenI,(l"f(),(0,0,0) = 1; the first term in the sum in (27)

(27)

ouU (x
does not depend of, and is%. We assume that for adyand m the ratio

A, I A, = const, which conserves the homothety by passage the vanishing limit. In the
limiting caseA, — 0, all other terms in the summation (27) tend t@zehich corresponds with
the theory of homogenization. In this limiting cage have the averaged equation:

V(x) =-B“H (x) , H(x)=-VU(x) (28)

Here B®) = const is the diagonal effective conductivity tensor.

Now we discuss under what conditions we can consiokealled homogenization in full
space. We should compare the scales, for exampielation scales of conductivity field, with
other macro scales of the field and consider tmelitions that describe flow in this field.

In the problem studied thus far, we have only omaenm structure that have some finite
length scale-it is the source densiythat is a compactly supported and square integrable

function, f (x) If this function is sufficiently complicated & natural to select plenty of scales.

In particular, we must compare them against theesad heterogeneity. It is prudent to
formalize a procedure for finding small macro ssaléthe density function.

For example, let us expand the functib(nx) in the Fourier integraf_(k). Having given
some level of significance 860, we introduce functiorf, (k) = T (k),if | ¥ (k)[> &, and
f(k)=0, if ‘f_(k)‘ < &. Thus the functionf,(k ) is the contribution in the expansion of the
oscillations that are at lea8tsignificant. Now, select some largest “zero-bo’rcﬂmquency|kg],

we assume that,,: 1/|k | is least length scale of the density functib(x) . Finally we assume

that in homogenization limit the scales of hetermggy A, should beA, /A= 1.

Notice that according to the theory of homogenargtihe tensor of the effective
conductivity exists and is constant in all Euclid&paceR®. This is true if, for example, in any
limited domainQ+ c R, the source densilfy(x) is a square integrable function. Furthermore, if

in any orthogonal coordinate system, the tensdinefocal random conductivity is symmetric
and positive definite, the tensor of the effecteaductivity is also symmetric and positive
definite, so-called elliptic (Zhikoet al, 1993). Thus, the principal part of the expansion in
Equation (27) corresponds with the theory of honnagion limit and can be used for

computing the effective conductivity. Clearly, tencipal axes for all the tensoB“ (k) and

R (k) for anyk , for eacha , are identical to the respective coordinate axes.

Here we point out that the Indelman and Abramoyi®94) paper contains equations—(15)
and (16) in their paper—that resemble the firstatign in (28) of our paper. However, they are
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not equivalent; in fact they are dissimilar. In fhist place, as we discussed in Section 1, the
variant of the perturbation method developed belmén and Abramovich (1994) is unusable
for finding the exact solution. Next, the definriof effective conductivity used by them—the
conductivity of stochastically homogeneous medratie mean flow, which is uniform in full
space—cannot work for any dimensional unboundedanedcause the uniform flow in such
media does not exist.

Up to this point, we have studied the fields witim®& symmetry in special orthogonal

coordinate systems. If the orthogonal coordinatesax and k| are oriented arbitrarily, ang,
is the cosine of the angle between the axeand x,,, the effective conductivity tensor in the
new coordinate system B =p B B . This tensor is symmetric and positive definite
(elliptic). The averaged equations in the arbitresgrdinate systenf have the
formsV'(x')=-B"“'VU’'(x'), RV’ (x)=-VU'(x'), and in thek’-space we have
V' (K')=—B“27ik 0'(k') and RV (k') =—27iK,T'(k"). Evidently for [T“) (k') we have
the linear expressiofl; (k') = am )27k, or in x-spacdl’ (x'~y') :—é'(“)vx,ﬁ[x'—y'].

But what if the diagonal tens®'“ is unknown? Or to put it more precisely, what if we

know that there exists some symmetry, but the tatemn of the principal axes is unknown and
the parameterr is unknown? In this case, we return to Equati@),(&hich is valid for any

stochastically homogeneous, positive definite, oaimdieldSG(x), and study the odd vector
1] (k') , along with its formal Taylor expansion abddt= 0

— - 1 oM -
m)=_2 (),awé;@kﬁkw (29)

Inserting linear part of expansion (29) in (12), ea® write

— = o - 1 oI} (0)
V/'(k')=-B 2zik UK'), B =——————= 30
(k) =-Bp2rik U6) By =—5 =0 (30)
In this case, we have the averaged equation:
—, ou’(x
vi(x) =, 1K) &y
Xn

and in the general case, we hafg- the constant real tensor of the effective corigitgt
that is symmetric and positive definite. Thus, & know the componentd’ (k’) , we can find

from Equation (30) the effective conductivity ten® and, by using the standard method, we
can find its real eigenvalues and orthogonal eigetors. Transition to a new orthogonal system
associated with the eigenvectors and transformatidine tensoB’to the new coordinates lead
to a diagonal tensdB , whose components are the eigenvalues for thertdis For eache ,

the tensoB (k) is unique and reversible, and its componentsiyék ) = -1, (k )/ 2rik

B, (k)=0, if | #m (no summation ovelt)

11



Even if there is or not any types of global symméke the one discussed above, the fact
remains that if the stochastically homogeneous félthe local random conductivity tensor

o (X) is symmetric and elliptic, the constant tensathef effective conductivityB;, is

symmetric and elliptic as well. In this generalesabe “principal” orthogonal coordinate system

exists in which the tensa is diagonal.
As we showed in Section 5, in the cases of gloyainsetry, we find the exact, unique, and
reversible solution - the diagonal tensor. Theedéhce here lies in the fact that in the case of

global symmetry, the components of the diagon&ldeﬁ(k) are dependent on some invariants

related to the type of symmetry. It is evident tihaisetensors are not necessarily elliptic for any
K.

6. ALTERNATIVE APPROACH

Most of the publications related to the presenjestithave used a different approach from
that discussed in this paper. From the outset, nrargstigators have attempted to find a basic
flow law like relations (algebraic or, more generglerator-related) between the averaged flow
velocity vector and the gradient of mean presshead). It is pertinent to note again that in
general, the transformation of some vector intdffarént noncollinear vector is non-unique and
can be realized with an unbounded set of mappihgs;Tthe approach generally leads to an ill-
posed inverse problem. We showed in Section 4hfogeneral case of a stochastically
homogeneous conductivity field, that a more singpld unique exact relation between mean
velocity field and mean pressure (head) exists. @@, in some cases of global symmetry this
relation can be transformed into equations whititegahe flow velocity and the gradient of
pressure (head). Nevertheless, we will more cloaelyze the alternative approach and return

to the exactly averaged Equation (12), where tmaoveﬁ(k) satisfies Equation (13). Now we
will analyze the real vectdF (x) as a sum of unique even and odd pdrtst) =T, (x)+I"(x),
whereT, (x)=[T'(x)+I'(-x)]/2 is a real, even function aritf (x) =| I'(x)-T'(—x)]/2 is a
real, odd function. In the general caqu) is a unique complex vector function. Because
G(k) is areal, even function in the same way, we Isaein generall (k) =TI, (k )+ 11" (k) is
a unique complex vector function, whelle (k) =T, (k)/G(k) is real and even and

" (k)=T"(k)/G(k) imaginary and odd.

Now substituting the complex vectﬁ(k) in Equation (13) and comparing the real and
imaginary parts from both sides of the equation hawee 27iKkII, (k) = 0. This equation is valid
if I, (k) =0, which is equivalent tdI (k) being an imaginary odd vector, orlf, (k)0 ,
which means that this vector is orthogonal to tbetor k , which, of course, does not mean that
the vectorl* (k) is collinear tck. In both cases the vectét, (k) does not affect the operator

27ikII (k). Thus, for describing/ (k) or V (x) from Equations (12) or (14), we need to use the
vector-functionsII (k) or II(x) respectively. On the other hand, for finding
U (k)= f(k)/2zikI" (k) , we use the vectdl (k).

12



Now we introduce the real and even tenBbfk ) and imaginary and odd tensBr (k) that
satisfies the equations:

1T (k) =-By, (k)27zikm , I, (k) =-Bun (k)272’ikm (32)
If we insertIl, (k) andII* (k) from Equation (32) into (13), we obtain the coiuitof
compatibility for B*(k )and B, (k):
47°G(k)kB" (k)k =1, k B, (k)k =0 (33)
Substitutell, (k) and " (k) from Equation (32) into (12), and if the convotuticonverges,
we have:
V(k)=—[B(k)+B, (k) ]|27ikU (k), V(x)=—[[B" (x-y)+B.(x=y) U (y)dy’  (34)
Here real tensorB’ (x)and B, (x) are even and odd respectively.

Let the tensoB’ (k) and B, (k) be symmetric over subscripts, because addingeto tmy
skew-symmetric tensor does not affect the quadfatios in Equation (33).

The definition of the Fourier transformati@i(k ) and B, (k ) with the systems of Equations
(32) leads to two systems of three linear algelegications for eack, with each equation
containing three from six unknown componesfg (k) or B, (k) respectively. In the-
space, this problem amounts to two systems contathree differential equations each with six
unknown functions - componerig§,, (x) .

Both systems of Equation (32) are underdetermimeldrageneral have unlimited sets of
solutions. It is well known th&, (k) the general solution (all infinite sets of sabuis) for a
singular non-uniform system of linear algebraicagns, can be presented for e&chs a sum
of §O(k) , any particular solution of the system, a@‘d(k) , an infinite set of solutions for the

uniform systemB¢ (k)k_=0. (The geometric sense of the uniform system isahahree
vector-rows for the tensd*® (k) are orthogonal to the vecthr) For this reason, as indicated
by Indelman and Abramovick1994), adding any of the solutio® (k) to B, (k) in Equation

(34) withthe known2zikU (k) does not affect the computation 8f(k ).

The analyses presented thus far show that the bexlel (see Equations (12) and (14))—
which realized the relation between the mean flefogity V (k) or V(x) and the mean
pressure (head) in the general case of a stocatgtiomogeneous conductivity field—is exact
and unique. The relationship between the averaghfis prescribed with exact and unique
operators, vector§l (k )orII(x). On the other hand in some cases of global synyrttet
model as well lead to linear nonlocal relation ke#w mean flow velocity and gradient of mean
pressure (head) prescribed with exact and unigueekéensor.

In addition, we examined the more complicatkernative model, which in general case of
stochastically homogeneous conductivity randondfreblized the linear connection between the

mean flow velocity and gradient of head. In thisegormally the vectoH, (k) the real and
even part offI (k), is a product of some imaginary and odd symmérisoB, (k ) and vector
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2rik . We also write the imaginary and odd vecfb*r(k)as the product of some real tensor

B* (k) and vector2zik . We showed that problem of deriving tensBi{k ) andB, (k) in
general case is ill-posed. Thus, we see that oreafisimilar complicated models is inefficient.

7. TWO-DIMENSIONAL STEADY-STATE FLOW IN AN UNBOUNDED DOMAIN

In Section 2, we briefly discussed the case of thvoensional flow. Now we will examine
this case in more detail. We consider a systenyoétons that does not explicitly contaitix) :

Vv(x)=f(x),v(x)=6(x)h(x), Vxh(x)=0 (35)
In two-dimensional space, this system includes smatar independent equations for four scalar
functions and is closed. We assume that in an urdenidomainh (x) andyv, (x) vanish at

infinity. It is evident that if the functiom (x) is integrable and has bounded support, the system

has a unique solution.
Now we introduce an auxiliary system for Green o ity y(x,y) and the intensity

s(x,y)that vanish at infinity:

Va(xy)=6(x-y), v(x.y)=6(x)s(x,y) ,V,xs(x,y)=0 (36)
and write the solution of the system in (35)
h(x):.[s(x,y) f(y)dy* , v(x):jy(x,y) f(y)dy (37)

Taking into account that the tensor-fid@x) is stochastically homogeneous, we have, after
averaging the equations in (37), the averagedisalof system (35):
H(x)sz(x—y)f(y)dyz,V(x)zj'l“(x—y) f(y)dy (38)
Although the fieldsS(x) and F(x) vanish at infinity, they are not absolute intedeah all

space. Nevertheless, the convolutions in EquaB8honverge because the functicbl(nx) has
bounded support. Now, using the generalized Fotnaesform (9) for Equations (38), we have
two relations
H(k)=S(k)f(k),V(k)=T(k)f (k) (39)

It should be noted that from Equations (38)det# the conditiork ><§(k) =0; that is, the
vector S(k) is collinear to the vectok and is odd and imaginary.
So, if the mean Green'’s velocity and the intensggtor are known, we have a closed system
(38), (39) and can for anj‘/(x) solve the direct problem and find the mean vejoaiitd the

intensity inx andk-spaces.

Global symmetric two-dimensional systems

When the system is globally isotropic, the vectB(k ) andT (k) are odd and imaginary and
mutually collinear. In this case, we have:

r'(k)=2"(k)S(k), A" (k)=T(k)/S(k) (40)
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Here A1) (k) is areal positive scalar functionlofThen, similarly, we have:

Vi (k) =B ( ), Ba(R=2"(Ks, (41)
and if the convolutlon eX|sts,
= [ B (x=y) Hy(y) dy or [RY) (x=y)V(y) dy = H,(x) (42)

Whenf (k)=1, we haved (k) =S(k ), and from the first averaged equation in (41) we
obtain for the isotropic tensoR® (k) andR (x): R, (K)=27ik S(k)&,, Ry (X)=VS(X) 5y, -
If an appropriate convolution exists, we can witite averaged nonlocal equation
'[Vm(x—y)VS(y)dyz = H,(X) (43)
Now we rewrite the tensdR , (k) asR, (k) =27iS (k)d,, kd,,, and receive the convolution
that matches Equation (43):
-[vVv, S(y)dy? = H,(x) (44)
Taking into account the estimati&(y) : y, /270, y* for smally and the differentiability of
the flow velocityv (x—y) , we see that the integral convergeg-a0. For very largey we use
the estimate§ (y) ~ y/2zo" ¥ andV,,(x-y)~ ay,/ 2z ¥ for finite x. Thus, we have the
estimate for very large: § (y)V, V., (X—y) ~ ¥,/ 27 yo~. The integral converges at infinity.
The convolutions in Equations (44), (43), and @)ly.
If the field o(x) is globally orthotropic, for the orthotropicallyiented coordinate system,

the vectorl_“(k) is the product of the diagonal tensor, whose corapts are invariant ttk1| ,
and|k2| to the vectok. In this casel_“( )is an odd imaginary vector that is in general non-

collinear with the vectok, and we can write§ (k) =4°( k|| k|) k.T, (k)=4"(| .| &) k (no

summation over | !)
Combining again with the latter equation in (39§ fmd the relationship between the
velocity vector and the hydraulic field intensity the global orthotropic system:

Vi (k) =B (k) Hy (k) , BY (k)= 2 ([k]|K|)Sim» 4@ =4"14° (45)
(No summation ovet)
And if the convolutions exist, we can Write

= [ B (x=y) H, () dy* or H,(x)=[RE (x=y)Vi(y) dy (46)
Thus, if the two-dimensional system is glabahmetric (isotropic or orthotropic), the
tensorsB'” (k), R (k) ink-space and'” (x), R (x) in x-space in the appropriate
coordinate systems are diagonal, and theretorigue In the homogenization limit, we have the
effective conductivity diagonal tensglf”) = 7' (0)4,,, and hence in any orthogonal coordinate

system, the local equations afgx) = B H, (x) orH,,(x) = RV;(x), where the constant

ml

tensor8'®, R are symmetric and elliptic.
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As we noted in Section 2, if = I x)dx =0, the function u(x) vanishes at infinity and
is unique. Therefore, we can rewrite equations @&e form:

J.B x—y)VU (y)dy?, VU(x jR (y) dy? (47)
Itis easy to see that in the general case (Wlthnytsymmetry) the linear relations between
complex vectors-field' (k) andS(k), asV (k) and H (k ), respectively, can be realized with

some tensoé(k) . As in the three-dimensional case, the systermeét algebraic equations for

finding B,, (k) is underdetermined, because for each védctoe have a system of two

equations for three (in the case of indices synyherr, in the general case, four components.
Thus the problem is ill-posed. On the other hamdife general case without any global
symmetry, we can use the averaged equations (88)3a).

9. Summary

We have described the general form fordkactlyaveraged system of basic equations of
flow in a stochastically homogeneous unbounded figth sources. We examined the validity of
the averaged descriptions and the generalizeddagoime nonlocal models. The approach
described in the present paper does not requirashigmption of existence of any small
parameters, for example, small scales of heteragiyssresmall perturbation of conductivity
field.

For the common case of a three-dimensional stachligthomogeneous conductivity field,
a new exactly averaged basic nonlocal equation wvithue kernel-vector was presented. We
showed the uniqueness and analyzed the propeftiee averaged nonlocal equation with
kernel-tensor for three types of global symmetsptfiopy, transversal isotropy and orthotropy)
in the three-dimensional conductivity field and ttypes (isotropy and orthotropy) in the two-
dimensional field.

We analyzed the structure of nonlocal basic eqnatwath a kernel-tensor, for the case in
which a global symmetry of the conductivity fielde$ not exist, and showed that this more
complicated model leads to an ill-posed inversélgm, and is inefficient.

The intention of the approach presented here ferdiit from other usual approaches. The
intention of “other approaches” is to solve thealogtochastic equations directly and to find
some tensor-operator, that describes the relatietveeen mean flow velocity vector and the
gradient of mean head. This approach is very dilifiand is inaccurate as we explained in the
present paper. In contrast, our intention is totheeexistence of appropriate random Green's
functions , find the averaged fields, and thetiehs between the fields that are independent
from the density of sources. This approach leagx&at forms of the averaged unique nonlocal
equations.
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