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Abstract

The electronic contribution to friction at semiconductor surfaces was investigated by using a

Pt-coated tip with 50nm radius in an atomic force microscope sliding against an n-type GaAs(100)

substrate. The GaAs surface was covered by an approximately 1 nm thick oxide layer. Charge

accumulation or depletion was induced by the application of forward or reverse bias voltages. We

observed a substantial increase in friction force in accumulation (forward bias) with respect to

depletion (reverse bias). We propose a model based on the force exerted by the trapped charges

that quantitatively explains the experimental observations of excess friction.

PACS numbers: 46.55.+d, 68.37.Ps, 73.40.Qv, 81.40.Pq
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I. INTRODUCTION

Understanding and controlling friction are both scientifically interesting and technolog-

ically important.1–5 Friction is the process of energy dissipation when the surfaces of two

objects slide against each other. Atomic force microscopy (AFM) is an ideal tool in study-

ing friction on the nanometer scale. In the elastic regime, when the AFM tip is brought

into close proximity to a surface, the atoms in the topmost atomic layers are elastically

displaced from their equilibrium positions under the applied load and lateral stress until

a minimum energy configuration is reached. When the tip slides over the substrate, the

inter-atomic distances of the interface atoms are first elastically modified and then relaxed

back to equilibrium positions. One way that energy can be dissipated is by coupling of the

atomic relaxations to phonon modes that propagate away from the contact. In insulators,

this is the most important mechanism (in the elastic regime). In metals and semiconductors,

there is an additional possibility of electronic contributions to the friction, for example by

the creation of electron-hole pairs.6–8

Semiconductors offer an interesting platform to investigate the electronic contribution to

energy dissipation. First of all, it is possible to reversibly the change carrier density near

the surface by many orders of magnitude by applying an electric field across the contact.

In addition, depending on the polarity of an applied bias voltage, the asymmetry in the

potential distribution between accumulation and depletion allows us to test its influence on

the friction. Recently, we studied the friction of silicon pn junctions covered with a thin

oxide layer as a function of bias voltage and demonstrated a contribution to the friction

force that depends on bias polarity: a substantial excess friction was detected in the heavily

doped p region under a forward bias.9,10 In this work, we show that this effect also occurs in

n-type GaAs covered with a thin oxide layer, suggesting that it is, indeed, a general property

of semiconductor materials.

II. EXPERIMENT

The sample was an n-type GaAs(100) substrate doped with tellurium to a concentration

of 1.2× 1018/cm3. After the cleaning procedure described in Ref.11, the sample was etched

in 1M HCl solution for 30 s and dried in a flow of dry nitrogen gas. A fresh oxide was
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formed by subsequently dipping the GaAs sample in ultra pure water for 10 s. The oxide

comprises a mixture of As2O3 and Ga2O3.
12 The presence of the oxide on the GaAs surface is

important because it prevents irreversible tip-surface adhesion between the platinum coated

AFM tip and the GaAs surface, which would otherwise lead to wear.13 AFM topographic

images in contact mode revealed that the oxide surface had a smooth amorphous morphology

with a root-mean-square roughness of 2.3 Å . To determine the oxide layer thickness, the

sample was characterized by x-ray photoelectron spectroscopy (XPS) by using Al Kα x-ray

in a PHI-5400 system before and after etching. Figure 1 shows the As 2p spectral region

before and after the etching procedure. Two peaks can be clearly identified corresponding to

oxidized and non-oxidized arsenic at binding energies of 1325.7 and 1322.6eV, respectively.

These values are approximately 1 eV lower than those reported by Vilar et al.14 for a semi-

insulating GaAs(100) sample (1326.1 and 1323.8 eV, respectively). A possible cause of the

lower binding energies is the high doping level in our GaAs substrate, which brings the Fermi

level closer to the conduction band level. The ratio between the peak areas of the oxidized

and non-oxidized species is significantly reduced by etching, changing from 2.80 to 1.76 after

the etching. The oxide thickness is calculated to be 10 Å according to Ref.14.

After etching, within 10 min of preparation, the sample was transferred to an RHK

STM/AFM system15 in an ultrahigh vacuum chamber with a base pressure in the 10−9 torr

range for the friction experiments.16,17 It is necessary to perform the experiments in vacuum

to prevent electrochemical oxidation at the water meniscus formed around the tip apex in

humid air that can mask other bias-induced effects.18,19

We used cantilevers with nominal spring constants of 3 N/m coated with approximately 5

nm of chromium (adhesion layer) and 15 nm of platinum.20 The normal force was kept con-

stant during imaging, while the current and the friction force were simultaneously recorded.

The sample was mounted on a metallic sample holder and Ohmic contact was established

by gently scratching the back of the sample and applying a thin layer of indium gallium

eutectic between the sample and the holder. The bias was applied to the sample holder.

The values of the applied load used in this study were sufficiently small to prevent wear

of the oxide surface. Although some tip wear was observed, no sample wear traces were

observed in subsequent high-resolution images, and the friction and adhesion measurements

were reproducible.

To determine the forces, the cantilever spring constant was calibrated by using the
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resonance-damping method of Sader et al.,21 while the lateral force was calibrated with

the wedge method of Ogletree et al.22 The radii of the metal-coated tips were 15-30 nm

before contact, as measured by a scanning electron microscope (Zeiss Gemini Ultra-55).

When measured after a contact experiment, the radii were found to be 45-60 nm. Since

the measured friction force did not vary at a constant total load (< 50 nN) and did not

show a time-dependent behavior in the elastic regime, we assumed that the changes in the

tip radius took place soon after the first contact, with minimal changes during subsequent

contact measurements. The fact that we could measure the current during the entire ex-

periment indicates the presence of conductive layers at the tip apex. We suppose that the

Pt layer was partially deformed upon the contact measurement, but a continuous Pt layer

is still present at the tip apex, permitting us to measure a stable current. The total load is

the sum of the applied load and the absolute value of the adhesion force (determined from

force-distance measurements).

III. RESULTS

Figure 2(a) shows a friction map (gray scale: bright, high friction; dark, low friction) as

a function of the applied load at a 0V sample bias. In this experiment, the friction force is

measured while the tip is scanning back and forth along the x axis. During the measurement,

the slow scan in the y direction is disabled. The load is gradually decreased from the top to

the bottom along the y axis until the tip snaps out of contact (marked by a dashed line in the

figure). Figure 2(b) shows the change in the friction force with load from these experiments,

wherein each data point is an average of 256 friction line loops. The continuous lines are fits

to the Derjaguin-Müller-Toporov (DMT) and Johnson-Kendall-Roberts (JKR) continuum

elastic contact models assuming proportionality between friction force and contact area,

F = τ · A, with the shear strength, τ = 46.5 GPa, the only fitting parameter.23,24 As can

be seen from the figure, the agreement of the numerical fit based on the DMT model to

experimental data is excellent.25,26 At the maximum total load of 24 nN, the contact area is

estimated to be 19 nm2 based on the DMT model, corresponding to an average pressure of

1.26 GPa, which is well below the yield strength of bulk GaAs and Pt.27,28 The absence of

irreversible deformation was also confirmed by AFM scanning over the same surface region

after the friction measurement.
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Band bending occurs when a voltage is applied between the AFM tip and GaAs sample.

Figure 3(a) shows the energy band diagram of the tip-oxide-semiconductor junction for

sample biases of +1.5V and -1.5V. At the sample bias of -1.5V, the conduction band edge

moves upward in energy and may cross the Fermi level near the surface.29 Since the carrier

density is exponentially dependent on the energy difference between the Fermi level and

conduction band edge, this band bending causes accumulation of majority carriers (electrons

for an n-type sample) near the semiconducting surface. At the sample bias of +1.5V,

the bands bend downward and carriers are depleted away from the surface or under weak

inversion. This rectifying effect is clearly observed in the current-voltage characteristics,

which are shown in Figure 3(b), wherein the current is due to electrons tunneling through

the thin oxide layer.30

Figure 4 shows (a) current, and (b) friction images when the sample bias was changed

from +2.5V to -2.5V and back to +2.5V on three successive scanning regions. Figure 4(c) is

an averaged line profile of Figs. 4(a) and 4(b). At -2.5V, the sample is forward biased and

in strong accumulation, leading to a high carrier concentration near the surface. At +2.5V,

the sample is reverse biased, causing depletion or weak inversion. As a result, the current

tunneling through the oxide layer was high at the -2.5V bias (4 nA) and low at the +2.5V

bias (0.1 nA), as shown in Fig. 4(c). As can be seen, friction is ∼ 20% higher when the

sample is forward biased.

Besides varying the carrier density, another effect of the bias voltage is that the elec-

trostatic force increases the effective load on the sample, leading to an increased friction

force. This effect can be quantitatively evaluated by measuring the change in the tip-sample

pull-off force as a function of the bias voltage, as shown in Figure 5. Each data point is an

average of 5 independent measurements and the error bar is associated with the standard

deviation of the measurements. As shown in Figure 5, the electrostatic contribution to the

pull-off force approximately follows a parabolic law, i.e., Felec ∝ V 2, with the minimum at

Vc = −0.46V due to the contact potential difference between the tip and the substrate. To

exclude the small effect of the non-zero contact potential difference on friction, we define an

effective sample bias as Ve = Vs − Vc, so that the electrostatic forces at ±Ve are equal.

In the case of GaAs, the electrostatic field from the tip can induce band bending, which

can significantly change the carrier distribution near the surface. One would think that the

asymmetric charge distribution could give rise to the asymmetric behavior of the pull-off
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force between accumulation and depletion. The GaAs substrate reaches inversion at a reverse

bias larger than +1.4V .31 For a semiconductor under inversion, similar to accumulation,

incremental charges are added or subtracted at the GaAs/oxide interface, leading to a similar

electrostatic contribution to the pull-off force. For a bias between 0 and +1.4V , the sample is

in depletion, with a maximum depletion width of 40 nm at a reverse sample bias of +1.4V .32

Experimentally, we do not observe a significant deviation from a quadratic dependence of

the pull-off force changes on bias (Figure 5). For −1.4V < Ve < +1.4V (around the bottom

of the parabola), the variation in the pull-off force is less than 5nN, which only causes little

change to friction force. To quantify the effect of the asymmetric charge distribution when

−1.4V < Ve < +1.4V , a three dimensional model taking into account band bending would be

necessary, which is out of the scope of this paper. In addition, the data we present are either

in the accumulation or inversion regimes, wherein this effect is only a minor contribution.

Figure 6(a) shows a plot of the friction force versus load at the sample biases of Ve = +2V

and −2V . A clear enhancement in the friction force at a forward bias is visible as compared

to that at a reverse bias. The negative loads shown on the x axis reflect the adhesion

contribution that keeps the tip against the surface even when the cantilever applies a tensile

stress to the tip-sample contact. The line through the friction data in Fig. 6 is a DMT fit.

While the agreement with the DMT curve is very good at a reverse bias, at a forward bias, it

shows a significant ”excess” friction. The excess friction is found to be proportional to (total

load)α, where α is approximately 1.5. Figure 6(b) shows a plot of the current versus load at

the sample biases of Ve = +2V and −2V . At the sample bias of Ve = +2V , the sample is

reverse biased, and the current is below 5 pA for the range of load used in the experiment.

When the sample is forward biased at Ve = −2V , the current approximately exponentially

increases with respect to the applied load. The exponential increase in current versus load

suggests a decrease in the oxide tunneling barrier thickness as a result of the pressure exerted

by the tip. The relationship between the current and contact area was addressed earlier on

boron doped hydrogen terminated diamond (111) and on Si surfaces.24,33 These studies reveal

a proportionality between the current and contact area. In our experiment on GaAs, the

elastic deformation of the oxide layer at the tip/sample contact results in a departure from

the previously observed linear relationship between the current and contact area.

Figure 7 shows plots of friction versus effective sample bias Ve at an external load of

+5nN . Each data point is an average of 256 friction loops. As can be seen, excess friction
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is apparent for biases more negative than −1.25V . The continuous line shows the predicted

parabolic increase in friction calculated from the change in the electrostatic force. The

increase in friction with bias in the reverse bias region is purely the result of the increase in

the electrostatic force.

Figure 8 shows the velocity dependence of the friction force. At the reverse bias (+1.5V),

the friction only slightly increases with scanning speed, while under the forward bias (-1.5V),

it shows a larger and approximately linear dependence on velocity.

It should be noted that the data in Figs. 2 and 4-8 were obtained with different tips.

Although an absolute comparison is difficult, the trends in the figures are consistent.

IV. DISCUSSION

We can compare the excess friction observed in our experiments with experimental and

theoretical investigations on electronic contributions to friction in other systems. Persson

and Tosatti1,2 analyzed the electronic dissipation (friction) in many systems. In most sys-

tems, the electronic dissipation is proportional to the velocity, so Fe = Γelv, where v is the

velocity and Γel is a dissipation parameter characteristic of the system.

We observed 0.04nN of additional friction force for tip-sample velocities of 8µm/s at

an effective sample bias of −1.5V and at a load of 1.5nN , as shown in Fig. 8, leading to

an experimental dissipation Γexpt of 5 × 10−6Ns/m. In our earlier study10 on silicon pn

junctions, the p stripes were doped to 5 × 1018/cm3. Excess friction observed in p regions

at a bias of +4V and a load of 8nN leads to a dissipation Γtip of 2× 10−5Ns/m.

Frictional dissipation in metallic and semiconductor surfaces was recently investigated in

experiments by using a lever perpendicular to the surface.34–36 Stipe et al.35 observed dissipa-

tion when a gold tip moved parallel to a gold surface without touching. The dissipation ap-

proximately increased as the inverse of the tip-sample distance and as the square of the bias.

At room temperature and near-zero bias, they observed a dissipation of Γtip ∼ 10−12Ns/m at

2.5 nm from the surface. Such dissipation was interpreted in terms of near-surface fluctuating

electric fields interacting with the static surface charge by using the fluctuation-dissipation

theorem. Dorofeyev et al.34 measured the tip-sample dissipation through observation of

thermal fluctuations for an Al-coated tip moving perpendicular to a gold surface, obtaining

a tip-sample dissipation of Γtip ∼ 4× 10−9Ns/m for a near-zero bias, which they attributed
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to the non-conservative Joule loss of the induced image current due to electromagnetic fields

originated from the thermal fluctuation of the cantilever. Volokitin and Persson36 have

theoretically analyzed dissipation for a metallic tip moving close to a surface. For clean

conductors and a parabolic tip apex, they estimated an upper limit to the electronic friction

of the tip, which is < 10−15Ns/m; however, in the presence of adsorbates that can vibrate

with acoustical modes parallel to the surface, this value increased to 7 × 10−13Ns/m. The

authors attributed such an enhancement to the Van der Waals friction increase in the case of

a resonant photon tunneling between low-frequency surface plasmon modes and adsorbate

vibrational modes. Denk and Pohl37 estimated Joule dissipation associated with dragging

carrier charges to be below 10−11Ns/m. Kuehn et al.38,39 performed experiments measuring

non-contact dissipation on polymer films on Au. The observed dissipation was attributed to

dielectric fluctuations that were modeled by using the fluctuation-dissipation theorem. Ex-

trapolation of the values of Kuehn et al.38,39 to our parameter values (V = 2 ∼ 4V ; d = 1 nm)

by using their finding that Γ approximately varies as V 2/d, leads to Γ of 10−8 ∼ 10−9Ns/m,

which is 3 orders of magnitude smaller than our measured value.

We now estimate Ohmic losses from the charge accumulated under the tip region under

a forward bias in our experiments. From four-point probe measurements, the resistivity

of the GaAs substrate is ρ = 2.1 × 10−3Ωcm. Based on the Drude model, by assuming

that electrons are back-scattered for every period of time equal to the relaxation time t,

the dissipation per electron is Γ2 = Fe/v = (2mv/t)/v = 2m/t. The relaxation time can

be computed for a metal or semiconductor from the expression t = m/(ne2ρ).40 So, the

dissipation per electron is Γe = 2m · ne2ρ/m = 2ne2ρ = 1.3× 10−18Ns/m, where the donor

concentration n = 1.2 × 1018/cm3. By using an oxide thickness of tox = 1nm (determined

by XPS) and the dielectric constant of the GaAs oxide of εox = 10,41 the capacitance per

unit area between the Pt tip and GaAs substrate is Cox = ε0εox/tox = 0.09 F/m2. Under the

forward bias of Ve = −1.5V , the accumulated charge density is Qacc = CoxVe = 0.13 C/m2.

The mechanical contact area at a load of 3.5nN is 5.3 nm2. The number of accumulation

charge in the contact area (at the bias of 1.5V) is then n0 = QaccA/e = 4.4. This gives a

dissipation due to Ohmic loss of Γohmic = n0Γe = 3.8× 10−18Ns/m. This value is 12 orders

of magnitude lower than the experimental result.

The tip-sample force deforms the GaAs lattice. This has two possible effects, which are

strain-induced band bending and stress-induced carrier scattering.42 We estimated the upper
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limit of the stress-induced carrier scattering, Γstress < 6 × 10−20Ns/m.43 This is 14 orders

of magnitude lower than our observed value. The semiconductor band gap can change

under strain in the gigapascal range. It was proposed that the formation of a pressure

induced quantum dot under the tip could enhance electron-hole recombination, with the

energy emitted in the form of phonons or photons.9,10 In contrast to silicon pn junction

experiments,9,10 for GaAs, the conduction band edge moves up in energy under hydrostatic

pressures44,45 leading to repulsion of the electrons away from the tip-sample contact region.

This decreases the effect of the electron-hole pair recombination rate and is inconsistent with

our observation of increasing excess friction versus applied load [Figure 6(a)].

It is clear, therefore, that our observed excess friction in accumulation cannot be due to

any of these mechanisms because it is several orders of magnitude higher.

A possible mechanism is electrostatic effects from trap states in the oxide layer populated

by electrons under the applied electric field. In accumulation the potential drop in GaAs is

negligible. Almost all the sample bias is applied to the oxide, resulting in a linear potential

drop in the oxide. The large field and/or tunneling electrons can populate the trap states.

At the reverse bias, the tunneling current is 40 times smaller and the potential drop in

the depletion region reduces the field in the oxide, making population of the trap states less

likely. As the tip moves across the sample surface, it leaves a ”trail” of charged traps, causing

an additional electrostatic attraction to the tip, which shows up as friction. Based on the

DMT model, the mechanical contact area at a load of 3.5nN is 5.3 nm2. At the GaAs/oxide

interface the trap state areal density (including bulk and interface traps) is on the order of

1× 1013/cm2.29,46 The diameter of the contact area is d =
√

4A/π = 2.6 nm. There are 0.5

traps in the contact area, leading to σ = 0.5/d = 0.2 trap every nanometer along the scan

direction. The lifetime of trap states in GaAs ranges from 10 ms to 1 µs depending on the

energy position inside the gap.47 The lifetime for the trap states in an oxide can be even

longer because of the wider energy band gap. Let us assume that the lifetime of trap states

in GaAs oxide is τ ∼ 1 ms, which is comparable to the lifetime reported in a recent study

on Ga2O3 nanowires.48 With a scanning velocity of v = 8 µm/s, the length of the scanning

pathway with charged (non-relaxed) trap states is of the order of L = vτ = 8 nm. The

total number of nonrelaxed traps is n1 = 1.6. The negative trapped charges induce positive

image charges on the tip, causing an attractive force between the tip and the trapped charges.

In addition, a forward bias (negative sample voltage) also causes the tip to have positive
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charges, which adds to the attraction between the tip and sample. As we calculated in the

case of Ohmic loss, the number of accumulation charge in the contact area (at the bias of

1.5V) is n0 = QaccA/e = 4.4. The total charge on the Pt tip is the sum of the image charge

and the accumulated charge, n = n0 + n1 = 6. By assuming that the trap states are located

in the middle of the oxide, which leads to a vertical distance between the charges on the

tip and the trapped charges in the oxide to be l = 1 nm, the excess friction force needed to

compensate the electrostatic attraction between the charged traps and the charges on the

tip is Ftrap =
∫ L

0
neσe/[4πε0εox(x

2 + l2)]x/
√

x2 + l2 dx = 0.03 nN , which is within a factor

of 2 of the experimental value (Fig. 8).

As the velocity increases, the pathway containing non-relaxed traps and the total image

charges on the tip would increase, which is consistent with our data, as shown in Figure

8. Our model of charged trap states also explains the existence of a threshold bias for the

observation of excess friction. This threshold bias voltage is needed to initiate the population

of trap states, and the population will then increase with bias voltage, resulting in an increase

in the excess friction. This effect is consistent with the experimental observation of an

increase in excess friction as a function of the bias voltage (Fig. 7).

Another interesting experiment is changing the density of charged trap states by varying

the oxide thickness and testing its influences on friction forces.

V. CONCLUSION

In conclusion, by using an n-type GaAs (100) substrate with a net donor concentration

of 1.2× 1018/cm3, we have shown that electronic effects in the nanoscale friction properties

can be significant. By varying the bias between the tip and the sample, charge depletion

or accumulation could be induced, which results in significant differences in the friction

force. The observation of an excess friction at the forward bias on n-GaAs, together with

a previously reported observation on p-Si, suggests that electronic contribution to friction

is a general effect. We have also reviewed many possible sources of electronic contribution

to friction, including electron-hole pair creation, electron wind, charge carrier dragging, and

fluctuation electric fields. In all cases, we have shown that under our conditions, these

contributions are too small to explain our observations. A more likely model was been

proposed based on electrostatic effects arising from charges trapped in near-surface layers
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located either in the semiconductor or in the oxide gap. These states are charged in the

forward bias and produce electrostatic forces on the tip of the correct magnitude. The model

also explains reasonably well the observed velocity dependence. Our observations indicate

that the electric field can be used to control the friction on semiconductors covered with a

thin oxide layer, offering an interesting way of tuning or switching the frictional response in

nanoscale devices.
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FIG. 1: (Color online) XPS 2p spectral region of arsenic (a) before and (b) after etching and

reforming the oxide.
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FIG. 2: (Color online) (a) Friction map as a function of applied load at 0V sample bias (scanning

speed=500nm/s). (b) Plot of the friction force versus load at 0V sample bias.
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FIG. 4: (Color online) (a) 75×75nm2 current, and (b) friction images with sample biases of +2.5V

and -2.5V (scanning speed=1µm/s and total load=8nN). The dashed lines mark the positions where

the changes in the bias voltage are made. (c) Averaged line profiles of the vertical cross sections

in the current image shown in (a) and in the friction image shown in (b).
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FIG. 5: (Color online) Plot of the pull-off force as a function of sample bias. The error scales

represent the standard deviation from five measurements. A fit to a parabolic function is shown

by the continuous line. The center of the parabola is at -0.46 V, reflecting the contact potential

difference between the tip and the surface.
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FIG. 6: (Color online) (a) Plot of the friction force and (b) the current versus load at effective

sample biases of +2V and -2V at a scanning speed of 500nm/s.
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FIG. 7: (Color online) Friction force as a function of sample bias (total load=5nN and scanning

speed= 500nm/s). As the voltage increases, the load increases too due to the electrostatic contri-

bution (∝ V 2
e ) in both polarities.
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FIG. 8: (Color online) Friction force as a function of scanning speed (load =3.5 nN) at sample

biases of Ve = -1.5V (square) and +1.5V (diamond). The lines are drawn to highlight the trends

in the data. The difference or excess friction increases with the sliding velocity (triangles). The

solid curve is calculated based on the electrostatic contribution from the charged trap states in the

oxide.
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