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Abstract 

Although electrokinetic effects are not new, only recently have they been investigated for 

possible use in energy conversion devices.  We have recently reported the electrokinetic 

generation of molecular hydrogen from rapidly flowing liquid water microjets [Duffin et al. JPC-

C 2007, 111, 12031].  Here, we describe the use of liquid water microjets for direct conversion 

of electrokinetic energy to electrical power.  Previous studies of electrokinetic power production 

have reported low efficiencies (~3%), limited by back conduction of ions at the surface and in 

the bulk liquid.  Liquid microjets eliminate energy dissipation due to back conduction and, 

measuring only at the jet target, yield conversion efficiencies exceeding 10%.   
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Introduction 

  A central goal of current energy research is to efficiently produce electricity from 

renewable sources.  Recently, the energy conversion properties of micro- and nanofluidic devices 

have received increased attention.1  A number of studies have focused on producing 

electrokinetic currents by forcing water through porous materials.2-4  Others have concentrated 

on the electrical properties of single well-defined channels.5-10  Similarly, in a recent paper, we  

demonstrated intrinsic electrokinetic molecular hydrogen production by flowing pure water 

through metal microchannels.11    

 Whether via multiple pores or a single channel, electrokinetic current generation depends 

on the overlap of a fluid velocity profile and the anisotropic charge distribution existing near a 

solid-liquid interface.  The charge distribution at the surface, or electrical double layer, forms as 

certain ions in solution preferentially adsorb to a neutral or charged solid surface.  This 

preferential interaction of ions with the surface induces counter ions of the opposite charge to 

redistribute near the interface.  When tangential fluid flow overlaps significantly with the 

electrical double layer, unbalanced charges are carried downstream.  More precisely, the 

electrokinetic streaming current can be calculated by equating it with the product of the charge 

density distribution, ρ(r), and the fluid velocity profile, ν(r), integrated over the interface.7-9,11-14  

For example, the streaming current from a circular channel is given by 

∫=
R
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where R is the channel radius and r is the distance from the channel wall.   

 For non-overlapping double layers, the charge density distribution is typically 

represented using a Poisson-Boltzmann description.6  For micro and nanofluidic devices, the 

velocity profile is usually modeled by Poiseuille flow6; however, for short channels dominated 
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by entrance effects, an undeveloped “top hat” model is more appropriate.11  Poiseuille flow leads 

to streaming currents that vary linearly with the fluid velocity, while undeveloped flow leads to 

streaming currents that increase nearly quadratically with flow rate.  For the latter case, the 

streaming current is effectively fit with the equation11 

x
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where v  is the average fluid velocity, δx is a measure of the laminar sublayer thickness 

(δx=116·R·Re
(-7/8)), ε is the permittivity of the medium times the permittivity of free space, and ζ 

is the potential at the shear plane. Re is the Reynolds number. 

To date, efforts at using streaming currents to generate electrical power have employed 

two reservoirs connected by means of a single channel or porous material.  Initially, high 

pressure is applied to one reservoir and charge is moved across the channel, building up in the 

receiving reservoir.  As this polarization evolves, the unbalanced charges in the two reservoirs 

create a streaming potential and the streaming potential drives ions against the fluid flow.  At 

equilibrium, the net current is zero and back conduction exactly equals the streaming current.  A 

low resistance path between the two reservoirs, or between each reservoir and electrical ground, 

short circuits back conduction and can be used to measure the streaming current.  Alternatively, a 

high resistance probe inserted between the reservoirs can be used to measure the streaming 

potential.  The streaming potential, together with the streaming current, ultimately determine the 

electrical power that can be generated from the device.  When a load resistor is placed between 

the reservoirs, it becomes straightforward to calculate the energy conversion efficiency, η, as 

energy output divided by energy input, or in this case, electrical power divided by volumetric 

flow rate and pressure differential, 
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Here Is is the streaming current, RL is the resistance, Q is the volumetric flow rate, and ∆P is the 

pressure drop across the channel.  Notwithstanding calculations predicting efficiencies as high as 

15% ,6,8,15 experiments have thus far yielded efficiencies of only 3.2%7 and 0.80%3 for a single 

nanochannel and a porous glass plug,  respectively. 

 Low energy conversion efficiency in previous experiments is attributed to surface back 

conduction of ions.7,16,17  Electrokinetic current generation, like all electrokinetic effects, relies 

on an anisotropic ion distribution at an interface.  Ions at the solid surface engender surface 

conduction and provide an additional route for dissipating charge, reducing conversion 

efficiency.  Electrokinetic power generation using liquid water microjets eliminates both surface 

and bulk back conduction via creation of a jet of water that breaks up into a droplet train before 

reaching the receiving reservoir.  Under these conditions, accumulated charge can only dissipate 

through the load resistor and efficiency is dramatically increased.  In addition, the thin metal jet 

orifice creates flow conditions wherein entrance effects dominate and, consequently, the 

streaming current increases nearly quadratically with flow rate.   

 

Experimental 

 Liquid water microjets are produced by pressurizing water behind a thin metal orifice.  

Figure 1 presents the experimental design, as well as an enlarged view of the interface, 

illustrating the electrokinetic charge separation process.  The jet orifice is a Pt-Ir electron 

microscope aperture (Ted Pella Inc.) that is pressed between two stainless steel plates. Clean 

water (18.2 MΩ cm, Millipore Milli-Q filtered) is nitrogen-purged and vacuum degassed prior to 

being pressurized and forced through the aperture with a Jasco PU-2089 HPLC pump.  Jet 
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velocity is controlled by changing the volumetric flow rate at the pump (velocity (m/s) = flow 

rate (m3/s) / area (m2)).  The pump also measures the backing pressure and this pressure is used 

in Bernoulli’s equation to calculate the jet velocity.  The diameter of the jet is determined by 

matching the velocities calculated from these two methods. 

 Streaming currents are measured at both the jet nozzle and at a downstream copper plate 

(2-10 cm from nozzle) that serves as the jet target.  At the nozzle, the current, Is, is fed into a 

Keithley 428 current amplifier and the resulting signal is recorded by a computer.  Current at the 

target, IL, is recorded in the same manner, with the addition of a variable resistor, RL (0-200 

Gohms) before the amplifier.  Both the nozzle and target are insulated from all other electrical 

contacts with protective Teflon sheets.  For efficiency calculations, the backing pressure and 

volumetric flow rate from the pump are also recorded as the resistance is stepped from 0 to 200 

Gohms in increments of 10 Gohms.  This process is repeated at a variety of flow rates and for 

three different aperture diameters.     

 

Results and Discussion 

 The apertures used in the experiments were determined to be 5.6, 10.3, and 19.1 µm in 

diameter and were all within the 1 µm diameter tolerance from the manufacturer.  Hereafter, the 

apertures are referred to by their nominal diameters of 5, 10, and 20 µm, respectively.  Figure 2 

gives the streaming current data measured at the nozzle for each aperture.  As a result of the 

undeveloped flow conditions in the aperture, there is a nearly quadratic increase in streaming 

current with increasing fluid velocity.  In addition, there is a clear increase in the magnitude of 

the streaming current as a function of jet diameter.  This increase is proportional to the increase 

in metal-water interfacial surface area, i.e. aperture circumference.   
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The solid lines in the figure are the best fits to the data using Equation 2, with ζ as the 

only adjustable parameter.  Equation 2 yields zeta potentials of -0.108, -0.135, and -0.105 V for 

the 5, 10, and 20 µm jets, respectively.   The accuracy of these measured zeta potentials depends 

not only on the use of correct aperture diameters, but also on the proper application of double-

layer and flow-profile theory.  Even with the simple models used to develop Equation 2, the 

excellent fit to the data offers self consistent evidence for the accuracy of both the aperture sizes 

as well as the zeta potentials themselves.  Accordingly, the average of -0.12 ±0.02 V is a 

reasonable estimate of the potential at the shear plane of the water-Pt interface.   

In traditional streaming current experiments, the conductive nature of metals gives rise to 

Faradaic depolarization currents that can cause inconsistencies when measuring electrokinetic 

properties.18  Oosterman19 found the streaming currents from platinum to give particularly 

irreproducible results and “the tentative explanation correctly referred to the need for controlling 

the discharge of protons and hydroxyl ions…”18   Streaming currents from liquid microjets 

eliminate or minimize Faradaic depolarization currents and give spatial control over the 

discharge of protons and hydroxide ions.   Consequently, liquid microjet techniques may prove 

to offer accurate measurements of electrokinetic properties for conducting materials.   

It should be noted that the signs of the currents imply that negative ions discharge at the 

nozzle interface while positive ions travel downstream and discharge at the target.  Ostensibly 

due to their large inductive interactions, anions are known to specifically absorb to electrode 

surfaces.  When pure water is used as the electrolyte, auto-dissociated hydroxide ions absorb to 

the nozzle interface while the associated hydrated protons form the diffuse portion of the double 

layer.  It should also be noted that although Pt-Ir apertures were used, Molybdenum apertures 

give similar currents and it is unlikely that catalytic effects are responsible for the current 
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generation process. Previous experiments indicate that metals have similar electrokinetic charge 

generation rates.13 Increasing the nozzle temperature as well as adding electrolytes decreased the 

electrokinetic charge generation rate. 

Tangential fluid flow shears the hydrated protons from the surface and leaves unbalanced 

hydroxide ions at the metal-water interface.  Excess, unbalanced charge at the interface induces 

the hydroxide ions to discharge into the metal and the observed current at the nozzle may be 

generated according to the process 

−− ++→ eOOHOH 22
12 22  

Similarly, the liquid jet is enriched in unbalanced hydrated protons that extract electrons 

from the jet target electrode.  We have recently shown that reduction of the protons at the  metal 

target leads to production of molecular hydrogen.11   

222 HeH →+ −+  

When there is no added resistance in the target circuit, the current measured at the target 

is always equal in magnitude and opposite in sign to the current at the nozzle; that is, when RL = 

0, Is = IL.  For a given aperture and flow rate, the nozzle current or the current at the target at zero 

resistance represent the maximum amount of charge available for energy conversion.  Figure 3 is 

a bar plot and a line plot of IL for the 20 µm jet as a function of flow rate and resistance.  The 

sign of the target current has been inverted for clarity.  Is, data shown in Figure 2, was collected 

simultaneously and was invariant to changes in resistance.  The constant current at the nozzle 

suggests that external fields from the target reservoir do not interfere with the charge generation 

process and are not responsible for the decrease in IL with RL.   

 The lower panels of Figure 3 display the calculated voltage across the load resistor.  A 

close inspection of Figure 3 reveals that, for the two lowest flow rates, the current remains 
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constant while the voltage increases linearly as a function RL.  Physically, protons from the 

liquid jet discharge at the target reservoir.  As the resistance to the flow of charge increases, the 

target reservoir collects more hydrated protons and the voltage increases.  In accordance with 

Ohm’s law, the increased voltage compensates for the increased resistance and the current 

remains constant.  For the higher flow rates, the linearity of Ohm’s law breaks down and the 

voltage increases nonlinearly until a maximum of ~23 kV is reached.  At these higher flow rates, 

charge is added to the target reservoir faster than it can dissipate through the load resistor.  Under 

these conditions, the reservoir becomes ‘filled’ with charge and the voltage reaches a maximum.  

When the maximum voltage is reached, the current decreases linearly with increasing resistance.  

The decreasing current at the target in conjunction with the constant current at the nozzle 

necessitates the existence of an alternate charge dissipation path that becomes available at high 

voltages.  That is, when the reservoir becomes ‘filled,’ charge can leak out, possibly by the 

ionization of ambient air or conduction along the surface of the receiving vessel.  Figure 4 shows 

a possible circuit diagram that includes an alternate dissipation path in terms of a system 

resistance, Rsys, and current, Isys.  In other words, as the charge/voltage at the target increases, 

new dissipation pathways become available and/or alternate channels become more favorable. 

Consequently, Rsys is a complicated function of RL.  Moreover, the new dissipation pathways 

seem to limit the maximum voltage to ~23 kV, although it may be possible to increase this value 

with better insulation techniques.  To maintain charge neutrality, the system current and load 

current, IL, must sum to the constant nozzle current, IL + Isys =  Is.   

Despite the power losses in the system, knowledge of IL and RL permit straightforward 

calculations of power generation and conversion efficiency.  Figure 5 shows the plots of both 

power and efficiency for the three jet diameters measured as a function of flow rate and load 
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resistance.  The power scales directly with resistance and with the square of the current. 

Consequently, for the lower flow rates, where the current remains constant, the power increases 

linearly with resistance.   At higher flow rates, the decreasing current competes with the 

increasing resistance and for each flow rate the power reaches a maximum.  Additionally, the 

power production is related to the amount of charge that can be separated in the nozzle and, as a 

result, the peak power should scale with the aperture diameter.   

Figure 6 plots the peak power for the three apertures and confirms not only that the 

highest power is obtained with the largest aperture, but also that there is a linear relationship 

(correlation coefficient, r = 0.999) between peak power production and aperture diameter.  

Despite the fact that the peak values were found at different velocities and resistances, the linear 

relationship suggests that the maximum power obtainable for an aperture is directly related to the 

metal-water interfacial surface area.  

The efficiency plots, lower panels in Figure 5, show the same functional form as the 

power plots, only weighted towards the lower flow rates.  The efficiency is simply the power 

divided by the volumetric flow rate and backing pressure.  At a given flow rate, the pressure 

remains constant and, consequently, the efficiency has the same form as the power, simply 

scaled according to the flow rate and pressure.  As a result, the efficiency involves a competition 

between the increase in power with aperture size and the corresponding increase in flow rate.  

Increases in channel diameter necessitate increases in flow rate that scale with the open aperture 

area (area ∝ diameter2).  Consequently, the larger diameter apertures require inordinately larger 

flow rates to obtain the associated increases in power.  This leads to a decrease in efficiency, as a 

larger fraction of the hydrodynamic driving power is “wasted”.  Figure 6 also plots the peak 

efficiency for the three jet diameters.  The peak efficiency increases along with peak power when 
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going from the 5 µm jet to the 10 µm jet, but decreases upon moving to the 20 µm jet due to the 

associated increase in flow rate.  For the limited number of jet diameters measured in this study, 

a maximum efficiency of 10.7% is obtained from a 10 µm diameter jet.   

The metal aperture yields a current that is always equal in magnitude and opposite in sign 

to the current at the downstream target.  In addition, separate observations have shown that the 

current at the target is independent of whether the nozzle is electrically grounded or floating, i.e. 

voltage can build up on the jet nozzle without affecting the current generation process.   These 

observations imply that resistors placed in the nozzle circuit may be used to create additional 

electrical energy without affecting the conversion process at the target and without requiring 

additional mechanical input energy.   In addition, further increases in efficiency may be realized 

by maximizing surface area at the expense of cross sectional area, i.e. rectangular jets.     

The electronic properties of liquid water microjets create what is essentially a high 

voltage, low current battery.2  Although the corresponding circuit diagram is useful, it should be 

remembered that the current generation technique is unusual.  In a battery or photovoltaic cell, 

open circuit conditions will increase the potential and eventually halt the current generation 

process.  In contrast, an open circuit does not affect the charge separation process in a liquid 

microjet and the maximum voltage should only be limited by the ability of the receiving vessel to 

hold unbalanced charge.  In this way, the voltage that drives the energy conversion process could 

be used separately for the upstream and downstream circuits.  In addition, it may be possible to 

convert the current and employ a simple step-down transformer to obtain more useable voltages 

and currents. 

Conclusions 
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 Liquid microjets, created by forcing water through a small metal orifice, offer marked 

advantages over the use of channels and porous materials for electrokinetic power generation.  

By creating a jet of water that breaks up (via Rayleigh instabilities) before reaching the receiving 

reservoir, both surface conduction and bulk conduction, which otherwise limit conversion 

efficiency, are eliminated.  In addition, the thin metal orifice creates flow conditions wherein 

entrance effects dominate.  Consequently, the streaming current increases nearly quadratically 

with flow rate, whereas the laminar flow conditions obtained in channels and porous plugs affect 

only a linear current increase with flow rate.  Using a liquid microjet, accumulated charge can 

only dissipate through the load resistor, and conversion efficiency is significantly increased with 

respect to channels and porous plugs.  However, at high load resistance, sufficient voltage is 

produced to allow additional dissipation pathways.  Despite these high voltage leakage currents, 

conversion efficiencies above 10% can easily be realized with liquid microjets, and considerable 

higher values should be achievable.  
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Figure Captions 

Figure 1: Experimental design; the expanded view shows details of the electrokinetic charge 

separation process 

 

Figure 2: Data points indicate streaming current measurements, taken at the jet nozzle, for 5 µm 

(▲), 10µm (■), and 20 µm (●) diameter apertures.  The solid lines are the best fits to the data 

using Equation 2, with zeta potentials calculated to be -0.108 V, -0.135 V, and -0.105 V for each 

diameter, respectively.  

 

Figure 3: A) Inverted target currents from a 20 µm diameter jet measured as a function of flow 

rate and resistance. B) Calculated voltage at the jet target from a 20 µm diameter jet as a function 

of IL, RL, and flow rate.  For the low flow rates, voltage changes linearly with RL.  For higher 

flow rates, a maximum voltage is reached and thereafter IL changes linearly with RL. 

 

Figure 4: Equivalent circuit for power generation from an electrokinetic microjet system.  IL and 

RL are the current and resistance through the load resistor used to calculate conversion power and 

efficiency, while Isys and Rsys are the current and resistance associated with system losses. 

 

Figure 5: Plots of power (top panels) and conversion efficiency (bottom panels) for 5, 10, and 20 

µm diameter jets (left to right).  Both power and efficiency are plotted as a function of flow rate 

and resistance. Peak power increases with increasing aperture diameter, noting that the electrical 

power is only generated at the metal-water interface.  Peak efficiency reaches a maximum at the 
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intermediate diameter due to the interplay between increased power production and increased 

volumetric flow rate.  

 

Figure 6: Peak power (●) and energy conversion efficiency (▲) measurements for 5, 10, and 20 

µm diameter jets (Data taken from the complete plots shown in Figure 5). Peak power increases 

linearly with jet diameter while peak efficiency is greatest at 10 µm.   
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