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Abstract 

       Modeling the mechanical deformations of porous and fractured rocks requires a 

stress-strain relationship.  Experience with inherently heterogeneous earth materials 

suggests that different varieties of Hook’s law should be applied within regions of the 

rock having significantly different stress-strain behavior, e.g., such as solid phase and 

various void geometries.  We apply this idea by dividing a rock body conceptually into 

two distinct parts.  The natural strain (volume change divided by rock volume at the 

current stress state), rather than the engineering strain (volume change divided by the 

unstressed rock volume), should be used in Hooke’s law for accurate modeling of the 

elastic deformation of that part of the pore volume subject to a relatively large degree of 

relative deformation (i.e., cracks or fractures).  This approach permits the derivation of 

constitutive relations between stress and a variety of mechanical and/or hydraulic rock 

properties.  We show that the theoretical predictions of this method are generally 

consistent with empirical expressions (from field data) and also laboratory rock 

experimental data. 
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1. Introduction 

        Mechanical deformation processes in porous and fractured rock and their coupling 

with thermal and hydrological processes are important for many applications [1], 

including geothermal energy development [2,3], oil and gas extraction [4], nuclear waste 

disposal [5,6], geological sequestration of carbon dioxide [7], and deep well injection of 

liquid and solid wastes [8,9]. With the significant advancement of computer technology 

in recent decades, numerical models have been increasingly employed for evaluating 

coupled mechanical, hydrological, and thermal processes associated with these 

applications [10].   

       The stress-strain relationship is fundamental for modeling mechanical deformation 

and the associated coupled processes in porous and fractured rock. Hooke’s law has been 

generally used to describe this stress-strain relationship for elastic mechanical processes. 

Hooke’s law, an approximation, states that the amount by which a material (e.g., rock) 

body is deformed (the strain) is linearly related to the force (stress) causing the 

deformation. However, the current application of the Hooke’s law to porous and fractured 

rock is not without questions.  Strictly speaking, the proportionality in the observed 

stress-strain relationship should be constant if the current application of Hooke’s law is 

perfectly valid. However, some studies indicate that the proportionality is not always 

constant, but rather stress-dependent in many cases [11,12]. A number of efforts have 

been made to relate this stress-dependent behavior to the microstructures of “cracks” in 

porous rock [13,14,15]. An excellent review of these efforts is provided in a chapter 

entitled Micromechanical Models in Jaeger et al. [16]. Because it is generally difficult to 

characterize small-scale structures accurately and then relate their properties to large-
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scale mechanical properties that are of practical interest, it is desirable to have a 

macroscopic-scale theory that does not rely on the detailed description of small-scale 

structures, and that can physically incorporate the stress-dependent behavior of relevant 

mechanical properties. The first objective of this study is to develop a theory of this kind 

within the framework of Hooke’s law.    

     For a stress-sensitive rock, the stress-strain relationship largely determines the 

relationships between stress and other rock mechanical/hydraulic properties, and these 

relationships control the degree of coupling between mechanical and hydrological 

processes [7,17]. However, the commonly used relationships between stress and 

hydraulic properties (such as porosity and fracture aperture) are generally empirical 

[7,18]. The second objective of this study is to derive mathematical formulations for 

these constitutive relationships based on our newly proposed stress-strain relationship. 

    This paper is organized as follows. We first present the development of a stress-strain 

relationship, and then derive constitutive relationships between stress and 

hydraulic/mechanic properties. Comparisons are then made between these relationships 

and the corresponding empirical expressions and experimental data, to evaluate the 

validity of our theoretical approach.          

       

2. Theory 

    This section presents a new stress-strain relationship for porous and fractured rock 

based on Hooke’s law. For simplicity, we mainly consider the relationship here for the 

volumetric strain, although our results can be easily extended to other types of strains.  
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     Assume that a uniformly distributed force is imposed on the surface of a homogeneous 

and isotropic material body subject to elastic deformation. In this case, Hooke’s law can 

be expressed as 

tvKdd ,εσ =                                                                      (1) 

where σ  is the hydrostatic stress (the compressive direction is positive), K is bulk 

modulus, and tv,ε  is the natural or true volumetric strain defined by [19] 

V

dV
d tv −=,ε                                                                       (2) 

where V is the total volume of the material body under the current state of stress. In Eqs 

(1) and (2), a decrease in the volume is considered to be positive. Our hypothesis herein 

is that Hooke’s law holds for natural strains in some regions of a rock body. In the 

literature of material science, Freed [19] provided a historical review of the development 

of the concept of natural strain and argued that the natural strain should be used for 

accurately describing material deformation.  

       In previous studies [16], the following definition of strain (so-called engineering 

strain ev,ε ) is often used when applying Hooke’s law: 

0
, V

dV
d ev −=ε                                                                                     (3) 

where V0 is the unstressed bulk volume. When the engineering strain is employed in 

Hooke’s law, one can obtain the following relationship by integrating Eq (3) and using 

the condition that V = V0 for σ  = 0: 

)1(0 K
VV

σ
−=                                                                                  (4) 

Similarly, the use of natural strain in Hooke’s law [Eq. (2)] yields  
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






−=
K

VV
σ

exp0                                                                           (5) 

It is easily seen that Eqs (4) and (5) are practically identical for small values of 
K

σ
 (or 

strain).  

         In the literature of rock mechanicals, the engineering strain has been exclusively 

used considering that the elastic strain is generally small. Porous and fractured rock, 

however, differs from purely solid materials in that it is inherently heterogeneous and 

includes both solid phase and pores (and/or fractures) with a variety of geometric shapes. 

While the elastic strain is indeed small in most of the rock for stress changes of practical 

interest, the strain can be considerably large within some portions of a rock body. For 

example, some pores (or fractures) in a rock can be subject to significant deformation, 

and even completely closed under a certain range of stress changes encountered in 

practice. For these pores, the strain is not small (on the order of one). An accurate 

description of the deformation of this portion of the rock is important for coupled 

mechanical and hydrological processes, because fluid flow occurs in pores and fractures. 

         To deal with this issue, we conceptualize the heterogeneous rock as having two 

parts, and hypothesize that one part (a portion of pore volume or fracture apertures) obeys 

natural-strain-based Hooke’s law, and the other part follows engineering-strain-based 

Hooke’s law. For simplicity, the first part is called “soft” part and the other called “hard” 

part. This conceptualization can be represented by a hypothesized composite spring 

system shown in Fig 1. These two springs are subject to the same stress, but follow 

different varieties of Hooke’s law. Berryman [20] also divided a poroelastic medium into 

“hard” and “soft” portions for the similar purpose in studying anisotropy of pore-fluid 
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enhanced shear modulus.  In this study, we use subscripts 0, e, and t to denote the 

unstressed state, the hard part (where engineering-strain-based Hooke’s law applies) and 

the soft part [where natural (or true)-strain-based Hooke’s law applies], respectively, for a 

rock body. Then we have  

te VVV ,0,00 +=                                                                                 (6) 

and 

te dVdVdV +=                                                                               (7) 

Applying Eqs (4) and (5) to rock volumes Ve and Vt, respectively, in Eq (7) yields 

tt
t

e
e K

d

KK

d

V

dV σσ
γ

σ
γ 








−+=− exp

0

                                                  (8) 

0

,0

V

V t
t =γ                                                                                            (9) 

te γγ −=1                                                                                         (10) 

where Ke and Kt refer to bulk moduli for the  hard and soft parts, respectively.  Eqs (8)-

(10) together comprise our proposed stress-strain relationship.  

        We should emphasize that our theory is a macroscopic-scale approximation that uses 

natural-strain-based Hooke’s law to describe nonlinear deformation behavior of a fraction 

of pore volume (consisting of a collection of pores with a variety of geometry) subject to 

considerable deformation. This nonlinear deformation could result from combining 

effects of non-uniform pore size distributions and pore geometry heterogeneity [16]. A 

rough fracture can also be considered a collection of pores with different sizes and 

geometries for the purpose of deformation calculations. The validity of this 

approximation will be evaluated in the following sections. 
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3. Constitutive Relationships 

      In this section, we will use our newly developed stress-strain relationship to derive 

constitutive relationships between stress and mechanical/hydraulic properties for porous 

and fractured rock subject to elastic deformation. The derived relationships are also 

compared with the corresponding empirical expressions and experimental data. 

 

3.1 Bulk rock compressibility  

      Bulk rock compressibility characterizes the capability for a rock body to deform when 

stress is changed under a constant pore-pressure condition. Mathematically, the bulk rock 

compressibility is defined by [16]: 

σ∂
∂

−=
V

V
Cbc

0

1
                                                                                    (11) 

    Substituting Eq (8) into (11) yields 









−+=

tt

t

e

e
bc KKK

C
σγγ

exp                                                                   (12) 

      The derived stress-compressibility relation consists of two terms. The first term is a 

constant; the second term is an exponential function. In fact, a number of researchers [12, 

16, 21] have already noticed that rock compressibility data can often be empirically fitted 

to exponentially decreasing functions of the form: 








−−+= ∞∞

P
CCCC bc

i
bcbcbc

σ
exp)(                                                    (13) 

where the superscript i denotes the initial (zero stress) value, the superscript ∞denotes 

the value at high stress, and P is considered as a characteristic stress. Based on certain 

assumptions, Jaeger et al. [16] rewrote the above equation as 
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






−+= ∞

PP
CC crack

bcbc

σφ
exp                                                            (14) 

where crackφ  refers to the porosity of crack-like voids in a porous rock sample. These 

voids were considered to be responsible for observed nonlinear deformation [16].  

Zimmerman [12] fit measured compressibilities of three consolidated sandstones, Boise, 

Berea, and Bandera, to functions of the form of Eq (13). We refer the readers to 

Zimmerman [12] for details of the curve-fitted results.  

       Several interesting observations can be made when comparing our result [Eq (12)] 

with Eq (13) or (14). First, the functional forms of Eqs (12) and (14) are identical, 

indicating that our theoretical result is consistent with the corresponding empirical 

expressions and the related experimental data used to develop these expressions. Second, 

the curve-fitted results of Zimmerman [12] indicate that tγ  in Eq (12) [or crackφ in Eq 

(14)] ranges from 0.2% to 0.5% for the three sandstones under consideration. It is much 

smaller than a typical porosity value for a sandstone rock (between 10% to 20%), 

suggesting that the so-called soft part of the rock body is only a small percentage of pore 

volume. This seems to be confirmed by the results to be discussed later in this study. 

Third, values for Kt for the three sandstones (4.74 to 8.33 MPa) are significantly smaller 

(by three orders of magnitude) than those for Ke (9.5 to 12.2 GPa), indicating that the part 

where natural strain should be used is significantly “softer” than the rest of the rock body. 

This is consistent with our theoretical argument that different varieties of Hooke’s law 

should be used for different parts of porous and fractured rock. Note that the second term 

on the right hand side of Eq (12) is not necessarily smaller than the first one, especially 

for low stress states, although tγ  is generally small, as demonstrated in Fig 2.     
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3.2 Pore compressibility 

     The pore compressibility represents the change in pore volume per unit of stress 

change under a condition of constant pore pressure. Mathematically, this compressibility 

can be expressed by 

 
σ∂

∂
−=

p

ppc

V

V
C

0

1
                                                                           (15) 

where superscript p refers to pores. (The above equation holds for constant pore 

pressures.) Using similar notions from Section 2, we have 

t
p

e
p VVV ,0,00 +=                                                                              (16) 

t
P

e
p VVV +=                                                                                   (17) 

Note that in the above two equations, we consider Vt to be a portion of pore volume in a 

rock body. Following the same procedure to derive Eqs (3) and (4), we can obtain 

σdVCdV p
ee

p
e ,0−=                                                                          (18) 

σ
σ

d
KK

V
dV

tt

t
t 








−−= exp,0                                                                 (19) 

where Ce is the compressibility for the hard fraction of pore volume where engineering 

strain is applicable. This treatment is based on our argument that all the soft part 

corresponds to a fraction of pore volume.  

       Combining Eqs (15) to (19) yields  









−+= ∞

tt

t
pcpc KK

CC
σ

φ
γ

exp
0

                                                           (20) 

where  
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p

p
e

epc
V

V
CC

0

,0=∞                                                                                           (21) 

0

0
0 V

V p

=φ                                                                                                      (22) 

      Eq (20) is used to fit one set of compressibility data (Fig 3) presented in Jaeger et al. 

[16]. This data set was derived from a measured relationship between pore strain and 

confining stress for a Frio sandstone from East Texas (after Carpenter and Spencer [22]). 

The match between Eq (20) and the data points is satisfactory, indicating that our derived 

result is able to capture key features of the experimental observations. The fitted 

parameter values are:  33.3=∞
pcC  x 10-6 psi-1 = 4.83 x 10-4 MPa-1, Kt = 1.1 x 103 psi = 

7.6 MPa, and 
0φ
γ t  =0.011. For typical porosity (0φ ) values of 10-20% for a sandstone, the 

tγ  value from pore compressibility data ranges from 0.11 to 0.22%, which again suggests 

that the so-called “soft” part is only a small percentage of pore volume. These parameter 

values are reasonably close to those obtained from rock compressibility data provided in 

the previous subsection. 

 

3.3 Rock porosity 

       The rock porosity (φ ) is a critical parameter for fluid flow in porous rock. Accurate 

descriptions of stress-dependent behavior for porosity are especially important for 

modeling coupled hydrological and mechanical processes. In this subsection, we derive a 

theoretical relationship between rock porosity and stress. 
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       Using the same notations as in the previous subsection and by definition of rock 

porosity, we have 

V

dVdV

V

dV
d t

p
e

p +
==φ                                                    (23) 

where V is the bulk volume of porous rock. (Note that the above equation ignores the 

effect of V change with stress on porosity change.) For most practical applications of 

rock mechanicals, V can be approximated by the unstressed volume 0V  for calculating 

rock porosity. Using this approximation and Eqs (18) and (19), we obtain 

σ
σγ

σφφ d
KK

dCd
tt

t
ee 








−−−= exp                                              (24) 

where 

te γφφ −= 0                                                                                 (25) 

Integrating Eq (24) and using 0φφ =  for 0=σ gives 









+−=

t
tee K

C
σ

γσφφ exp)1(                                                    (26) 

When the term of σeC  is much smaller than unity, the above equation can be 

approximately reduced to 









−+=

t
te K

σ
γφφ exp                                                                (27) 

      Based on laboratory experiments on sandstone by Davis and Davis [23], Rutqvist et 

al. [7] proposed an empirical stress-porosity expression that is identical in form to Eq 

(27). Similar empirical expressions were originally reported by Athy [24] and further 

discussed in Neuzil [18]. In this study, the more general stress-porosity relation [Eq (26)] 
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is evaluated using data sets of Coyner [25]. He reported measured porosity-confining 

pressure (effective stress) relations for several types of rock. We select his laboratory 

measurements for Berea sandstone and Weber sandstone samples, because these rock 

samples exhibit a relatively large degree of stress dependence. Note that confining 

pressure is used here to approximate the effective stress, since Biot coefficients are close 

to one for the two sandstones under consideration [17].  

     There are four parameters in Eq (26): eφ  , Ce, tγ  and Kt. To avoid the non-uniqueness 

of parameter values determined from curve fitting, we use a simple procedure to estimate 

parameter values from porosity vs. confining pressure data. As shown in Figs 4 and 5, 

measured relations between porosity and confining pressure are very well represented by 

a straight line for relatively high pressures (stresses). The slope of the straight line is used 

to determine eeCφ  because the second term on the right hand side of Eq (26) is negligible 

for high stress values. The porosity value at the intersection between the straight line and 

the vertical axis in Fig 4 or 5 gives eφ  value, considering that the straight line represents 

the first term on the right hand side of Eq (26). The measured porosity value at zero 

pressure is equal to te γφ + , as implied from Eq (26). The above procedure allows for 

direct determination of values for eφ  , Ce and tγ . The remaining parameter Kt can be 

estimated using porosity data at relatively low pressures. In this study, a Kt value is 

simply calculated from Eq (26) using measured porosity value at a pressure of 10 MPa.   

     Satisfactory matches between results calculated from Eq (26) (with determined 

parameter values) and porosity data are shown in Figs 4 and 5. The estimated parameter 

values for Berea sandstone are eφ = 17.52%, Ce = 3.04 x 10-4 (MPa-1), tγ  = 0.28% and  Kt 
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= 9.97 MPa. The parameter values for Weber sandstone are eφ = 9.00 %, Ce = 2.96 x 10-4 

(MPa-1), tγ  = 0.48 % and Kt = 10.60 MPa. Note that the values for tγ  and Kt are 

generally consistent with those reported in the previous sections where the values for 

these parameters are estimated from different types of data. This indicates that these two 

parameters (introduced in this study) are very well defined and experimentally robust.    

        To further validate our theory, we use parameter values estimated from porosity data 

to calculate relations between the bulk-modulus and pressure (stress) and check if the 

calculated results can match the measured bulk modulus data for the same rock samples 

used for measuring porosity values [25]. From our stress-strain relationship [Eq (8)], the 

bulk modulus K can be given by 









−+

=

tt

t

e

e

KKK

K
σγγ

exp

1
                                                        (28) 

The above equation can also be derived from Eq (12). Values for 
e

eK

γ
correspond to K 

values for high stresses (pressures) and must be determined from measured K data. (They 

cannot be determined from porosity data.) Based on data shown in Figs 6 and 7, the value 

of 
e

eK

γ
is set to 13.5 GPa for Berea sandstone and 17.5 GPa for Weber sandstone.  As 

shown in Figs 6 and 7, the calculated results are in a good agreement with data. This is 

encouraging (considering that a curve-fitting procedure is not used in these two figures) 

and also supports the robustness of our theory.   
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3.4 Fracture aperture 

      Fracture aperture is an important parameter for both mechanical and hydraulic 

processes within a fractured rock. For example, fracture permeability is largely 

determined by fracture aperture. A number of empirical expressions exist in the literature 

for describing observed relations between normal stress and fracture closure (that is 

linearly related to the average fracture aperture) [26,27]. In this subsection, we develop a 

relationship for the dependence of fracture aperture on the normal stress based on the 

proposed stress-strain relationship. 

     Consider a fracture to be embedded into a rock sample subject to a normal stress nσ . 

We again divide fracture space into “hard” and “soft” parts along the direction normal to 

the fracture plane. Then, the volumetrically averaged fracture aperture (b) is given by  

te bbb ,0,00 +=                                                                    (29) 

under unstressed conditions, and  

te bbb +=                                                                         (30) 

under stressed conditions. Similar to previous sections, superscripts e and t refer to the 

“hard” and “soft” parts in a fracture.  Hooke’s law for the two parts can be expressed by 

e

e
eFn b

db
Kd

,0
,−=σ                                                                (31) 

t

t
tFn b

db
Kd ,−=σ                                                                 (32) 

where subscript F refers to fracture. (For convenience, the volumetric strain will not be 

used here.)  Note that the stress in the above two equations refers to far-field normal 

stress, rather than local stress. 
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        Combining Eqs (30) to (32) gives 

tF

n
t

eF

n
ete K

d
b

K

d
bdbdbdb

,,
,0

σσ
−−=+=                                   (33) 

Integrating the above equation and using Eq (29) and the following relationship obtained 

from Eq (32): 











−=

tF

n
tt K

bb
,

,0 exp
σ

                                                        (34) 

one can obtain 











−+−=

tF

n
t

eF

n
e K

b
K

bb
,

,0
,

,0 exp)1(
σσ

                                  (35)  

         In the above equation, the stress-dependent behavior of fracture aperture is 

controlled by the second term at low stress and the first term at high stress. Because KF,e 

is much larger than KF,t, aperture change with stress will be much more gradual at high 

stress. This result is consistent with the observations of Pyrak-Nolte et al. [28], that the 

increase of fracture closure (or decreasing of fracture aperture) with increasing normal 

stress becomes more gradual, but does not reach zero, and even at considerably high 

stresses, a number of voids remain open. Nevertheless, there is a considerable amount of 

laboratory data indicating that fracture closure (or fracture aperture) remains practically 

unchanged at high stress [26,27]. This is equivalent to saying that the following condition 

holds in practice: 

  11
,

≈−
eF

n

K

σ
                                                                                   (36) 

In this case, we can reduce Eq (35) to  
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









−+=

tF

n
te K

bbb
,

,0,0 exp
σ

                                                                (37) 

     This equation is identical to the empirical expression of Rutqvist et al. [7] for the 

stress-fracture aperture relationship. The expression has been used successfully to match 

laboratory measurements. For example, Fig 8 shows the match of Eq (37) to the 

measurements of the third loading-unloading cycle for a fracture [29].  Some hysteresis 

exists. Barton et al. [27] suggested that the hysteresis was a laboratory artifact and that in 

situ fractures probably also behave in a manner similar to that observed from the third or 

fourth loading cycles.  

    The consistency of our Eq (36) with the empirical expression of Rutqvist et al. [7] is 

encouraging. Fig 8 shows that unlike the “soft” part of porous rock, the “soft” part in a 

fracture corresponds to a relatively large portion of fracture voids. This may result from a 

geometric difference between fractures and rock pores. Previous studies [30] demonstrate 

that a rock “crack” with a smaller aspect ratio (ratio of thickness to length) is more easily 

deformed than that with a smaller ratio. Obviously, values for the ratio are much larger 

for fractures than those for most pores in a porous rock.  Fig 8 also shows the modulus 

for the fracture (KF,t) is in the range of 2-4 MPa, and smaller than the previously reported 

modulus values for the soft part of the porous rock. This is consistent with an intuitive 

expectation that a fracture is “softer” than pores in porous rock.   

 

4. Concluding Remarks 

        This study develops a general stress-strain relationship for porous and fractured rock 

subject to elastic mechanical deformation, based on the hypothesis that different varieties 

of Hooke’s law need to be employed for different parts of a rock body, for describing the 
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elastic mechanical deformation. The stress-strain relationship developed here allows for 

the derivation of constitutive relationships between stress and a number of 

mechanical/hydraulic properties. The remarkable consistency between these relationships 

and a variety of the corresponding empirical expressions and/or laboratory experimental 

data supports the validity of our theoretical development. The parameter values estimated 

from different kinds of measurements are also close for similar rocks, indicating that 

newly introduced parameters are well defined and robust for the applications considered. 

      The focus of this paper has been on the presentation of a theoretical framework. Our 

preliminary evaluation produced encouraging results.  Further work is still needed to 

validate our theory using more comprehensive comparisons between our results and those 

of different types of mechanical data. Also, it is both desirable and of practical interest to 

explore possible correlations among parameters characterizing the soft part of a rock, 

rock type, and the other associated rock properties. Important examples of related 

properties are electrical resistivity/conductivity data for fluid-saturated porous rocks 

[31,32,33] and also permeability data [34]. 
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Figures  

Fig. 1. A composite spring system consisting of two springs. The hard and soft springs 
follow engineering-strain-based and natural-strain-based Hooke’s law, respectively. 

Fig. 2. Bulk compressibility as a function of stress calculated from Eq (14) using the 
fitted parameter values  (Cbc

∞ = 0.082 GPa-1, P=8.33 MPa and  crackφ =0.0044) reported by 

Zimmerman [12].   
 
Fig. 3. Match of Eq (20) to the data points of pore compressibility (10-6/psi) as a function 
of confining pressure (or stress) (psi) presented in Jaeger et al. [16]. 
 
Fig. 4. Match between porosity values (as a function of confining pressure) calculated 
from Eq (26) and the measured data for Berea Sandstone [25]. 
 
Fig. 5. Match between porosity values (as a function of confining pressure) calculated 
from Eq (26) and the measured data for Weber Sandstone [25]. 
 
Fig. 6. A comparison between bulk modulus values (as a function of confining pressure) 
calculated from Eq (26) and the measured data for Berea Sandstone [25]. 
 
Fig. 7. A comparison between bulk modulus values (as a function of confining pressure) 
calculated from Eq (26) and the measured data for Weber Sandstone [25]. 
 
Fig. 8. Matches of Eq (36) to the observed stress-aperture data points for a fracture. The 
fitted parameter values are b0,e=3 µm, b0,t=23  µm, and KF,t = 3.3 MPa and 2.2 MPa, 
respectively, for the loading and unloading data points. 
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Fig. 1. A composite spring system consisting of two springs. The hard and soft springs follow 
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Fig. 2. Bulk compressibility as a function of stress calculated from Eq (14) using the fitted 
parameter values  (Cbc

∞ = 0.082 GPa-1, P=8.33 MPa and  crackφ =0.0044) reported by 
Zimmerman [12]   
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Fig. 3. Match of Eq (20) to the data points of pore compressibility (10-6/psi) as a function of 

confining pressure (or stress) (psi) presented in Jaeger et al. [16].  
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Fig. 4. Match between porosity values (as a function of confining pressure) calculated from Eq 
(26) and the measured data for Berea Sandstone [25]. 
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Fig. 5. Match between porosity values (as a function of confining pressure) calculated from Eq 
(26) and the measured data for Weber Sandstone [25]. 
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Fig. 6. A comparison between bulk modulus values (as a function of confining pressure) 

calculated from Eq (26) and the measured data for Berea Sandstone [25]. 



 30 

Confining Pressure (MPa)

B
ul

k
M

od
ul

u
s

(G
P

a)

0 20 40 60 80 100
0

5

10

15

20

25

30

35

40

Weber Sandstone

 
Fig. 7. A comparison between bulk modulus values (as a function of confining pressure) 

calculated from Eq (26) and the measured data for Weber Sandstone [25]. 
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Fig. 8. Matches of Eq (36) to the observed stress-aperture data points for a fracture. The fitted 
parameter values are b0,e=3 µm, b0,t=23  µm, and KF,t = 3.3 MPa and 2.2 MPa, respectively, for 

the loading and unloading data points. 
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