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Abstract

Modeling the mechanical deformations of porous and fractured rogksese a
stress-strain relationship. Experience with inherently hetewmus earth materials
suggests that different varieties of Hook’s law should be applidfdnwiegions of the
rock having significantly different stress-strain behaveg,, such as solid phase and
various void geometries. We apply this idea by dividing a rock bodgeptually into
two distinct parts. The natural strain (volume change dividedobk volume at the
current stress state), rather than the engineering strain (vahbhamge divided by the
unstressed rock volume), should be used in Hooke’s law for accuratdingoafethe
elastic deformation of that part of the pore volume subject &tativiely large degree of
relative deformationife., cracks or fractures). This approach permits the derivation of
constitutive relations between stress and a variety of mechamd&br hydraulic rock
properties. We show that the theoretical predictions of this me#inedgenerally
consistent with empirical expressions (from field data) and #boratory rock

experimental data.
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1. Introduction

Mechanical deformation processes in porous and fractured rockeainataoupling
with thermal and hydrological processes are important forymegplications [1],
including geothermal energy development [2,3], oil and gas extradfjonyclear waste
disposal [5,6], geological sequestration of carbon dioxide [7], and ddemjeetion of
liquid and solid wastes [8,9]. With the significant advancement of canpechnology
in recent decades, numerical models have been increasingly yeohdflar evaluating
coupled mechanical, hydrological, and thermal processes associated th&se
applications [10].

The stress-strain relationship is fundamental for modeling meeha@formation
and the associated coupled processes in porous and fractured rock. Haokels lzeen
generally used to describe this stress-strain relationshipldstic mechanical processes.
Hooke’s law, an approximation, states that the amount by which exriatge.g., rock)
body is deformed (the strain) is linearly related to the faoisteess) causing the
deformation. However, the current application of the Hooke’s law to porous and fdacture
rock is not without questions. Strictly speaking, the proportionatityhe observed
stress-strain relationship should be constant if the current applicgt Hooke’s law is
perfectly valid. However, some studies indicate that the proporitipnalnot always
constant, but rather stress-dependent in many cases [11,12]. A nundjtartsf have
been made to relate this stress-dependent behavior to the michass of “cracks” in
porous rock [13,14,15]. An excellent review of these efforts is providea chapter
entitled Micromechanical Models in Jaeger et al. [16]. Because it is generally difficult to

characterize small-scale structures accurately and #late rtheir properties to large-



scale mechanical properties that are of practical inteiriess, desirable to have a
macroscopic-scale theory that does not rely on the detailed mtescrof small-scale
structures, and that can physically incorporate the strggsident behavior of relevant
mechanical properties. The first objective of this study geteelop a theory of this kind
within the framework of Hooke’s law.

For a stress-sensitive rock, the stress-strain relationshgplyladetermines the
relationships between stress and other rock mechanical/hydpaoperties, and these
relationships control the degree of coupling between mechanicalhwmalogical
processes [7,17]. However, the commonly used relationships betwess sind
hydraulic properties (such as porosity and fracture aperturegearerally empirical
[7,18]. The second objective of this study is to derive mathemdtoalulations for
these constitutive relationships based on our newly proposed stress-straingiaiat

This paper is organized as follows. We first present the devetbmha stress-strain
relationship, and then derive constitutive relationships between steesb
hydraulic/mechanic properties. Comparisons are then made betwe=enrelationships
and the corresponding empirical expressions and experimental dagaalt@ate the

validity of our theoretical approach.

2. Theory
This section presents a new stress-strain relationship for panduBaatured rock
based on Hooke’s law. For simplicity, we mainly consider the ogiship here for the

volumetric strain, although our results can be easily extended to other typesnst str



Assume that a uniformly distributed force is imposed on the surface of a homogeneous
and isotropic material body subject to elastic deformation. fndase, Hooke’s law can
be expressed as

do = Kde,, (1)

where o is the hydrostatic stress (the compressive direction is w®si is bulk

modulus, ance, , is the natural or true volumetric strain defined by [19]
de  =——2 (2

where V is the total volume of the material body under the custate of stress. In Eqs
(1) and (2), a decrease in the volume is considered to be positiveygathesis herein
is that Hooke’s law holds for natural strains in some regiona odck body. In the
literature of material science, Freed [19] provided a historesaéw of the development
of the concept of natural strain and argued that the naturai stnauld be used for
accurately describing material deformation.

In previous studies [16], the following definition of strain (so-dakegineering

strain¢, ) is often used when applying Hooke’s law:

de, -9V 3)
3 Vo

where \§ is the unstressed bulk volume. When the engineering strain is yedpio
Hooke’s law, one can obtain the following relationship by integraigg3) and using

the condition that V = Yfor o = 0:
(o2
V=V, (1_E) 4)

Similarly, the use of natural strain in Hooke’s law [Eqg. (2)] yields



o
V=V, ex;:(— EJ )

It is easily seen that Eqs (4) and (5) are practicallgtidal for small values 01‘% (or

strain).

In the literature of rock mechanicals, the engineering strairbéen exclusively
used considering that the elastic strain is generally smatbuB and fractured rock,
however, differs from purely solid materials in that it is imtly heterogeneous and
includes both solid phase and pores (and/or fractures) with a vafriggpmetric shapes.
While the elastic strain is indeed small in most of the roclsti@ss changes of practical
interest, the strain can be considerably large within some podifoasock body. For
example, some pores (or fractures) in a rock can be subjegnificsint deformation,
and even completely closed under a certain range of stress chamgmstered in
practice. For these pores, the strain is not small (on the ofdene). An accurate
description of the deformation of this portion of the rock is importantctarpled
mechanical and hydrological processes, because fluid flow occurs in pores amégract

To deal with this issue, we conceptualize the heterogeneous rbekiag two
parts, and hypothesize that one part (a portion of pore volume or fracture apetigyss)
natural-strain-based Hooke’s law, and the other part follows esrgugestrain-based
Hooke’s law. For simplicity, the first part is called “softart and the other called “hard”
part. This conceptualization can be represented by a hypothesip@gosite spring
system shown in Fig 1. These two springs are subject to the s@ass, but follow
different varieties of Hooke’s law. Berryman [20] also divided a dasbie medium into

“hard” and “soft” portions for the similar purpose in studyingsatropy of pore-fluid



enhanced shear modulus. In this study, we use subscripts 0, e, @mtkriote the
unstressed state, the hard part (where engineering-stised-bboke’s law applies) and
the soft part [where natural (or true)-strain-based Hooke’s law appbksgkctively, for a

rock body. Then we have

Vo =Voe + Vo, (6)
and
dv =dVv, +dv, (7)

Applying Eqgs (4) and (5) to rock volumeg &d V, respectively, in Eq (7) yields

dv do o |do
VAR OaRr i vl v 8) (
0 e t t
VOt
= 9
7 v, 9
7e =1-7, (10)

where K and K refer to bulk moduli for the hard and soft parespectively. Eqgs (8)-
(10) together comprise our proposed stress-stegationship.

We should emphasize that our theory is erasgopic-scale approximation that uses
natural-strain-based Hooke’s law to describe nealirdeformation behavior of a fraction
of pore volume (consisting of a collection of povdth a variety of geometry) subject to
considerable deformation. This nonlinear defornmatmpuld result from combining
effects of non-uniform pore size distributions grate geometry heterogeneity [16]. A
rough fracture can also be considered a colleatibpores with different sizes and
geometries for the purpose of deformation calooeti The validity of this

approximation will be evaluated in the followingctens.



3. Constitutive Relationships

In this section, we will use our newly deyedd stress-strain relationship to derive
constitutive relationships between stress and nmechl#hydraulic properties for porous
and fractured rock subject to elastic deformatidbhe derived relationships are also

compared with the corresponding empirical expressand experimental data.

3.1 Bulk rock compressibility

Bulk rock compressibility characterizes tlapability for a rock body to deform when
stress is changed under a constant pore-pressugédion. Mathematically, the bulk rock
compressibility is defined by [16]:

Co=— M (11)
V, 0o

Substituting Eq (8) into (11) yields

C, =2+ texg-Z (12)
Ke Kt Kt

The derived stress-compressibility relatiomsists of two terms. The first term is a
constant; the second term is an exponential functiofact, a number of researchers [12,
16, 21] have already noticed that rock compressildhata can often be empirically fitted
to exponentially decreasing functions of the form:

C,.=C.” +(C. -C.") exp{— %j (13)

where the superscript i denotes the initial (zdress) value, the superscriptdenotes
the value at high stress, and P is considered dmaacteristic stress. Based on certain

assumptions, Jaeger et al. [16] rewrote the abquat®sn as



o | Perack F( O'j
Cp =Cp” + P e - 2 14
bc bc P P ( )

where ¢, refers to the porosity of crack-like voids in argas rock sample. These

voids were considered to be responsible for obsemenlinear deformation [16].
Zimmerman [12] fit measured compressibilities akth consolidated sandstones, Boise,
Berea, and Bandera, to functions of the form of (). We refer the readers to
Zimmerman [12] for details of the curve-fitted résu

Several interesting observations can be mdten comparing our result [Eq (12)]
with Eq (13) or (14). First, the functional form$ Bgs (12) and (14) are identical,
indicating that our theoretical result is consistenth the corresponding empirical
expressions and the related experimental datatosgelvelop these expressions. Second,

the curve-fitted results of Zimmerman [12] indicdkat y, in Eq (12) [oré,.« N EQ

(14)] ranges from 0.2% to 0.5% for the three sast under consideration. It is much
smaller than a typical porosity value for a sandstsock (between 10% to 20%),
suggesting that the so-called soft part of the ooty is only a small percentage of pore
volume. This seems to be confirmed by the resoltbe discussed later in this study.
Third, values for Kfor the three sandstones (4.74 to 8.33 MPa) grefsiantly smaller
(by three orders of magnitude) than those fp(X5 to 12.2 GPa), indicating that the part
where natural strain should be used is signifigdisibfter” than the rest of the rock body.
This is consistent with our theoretical argumeratt ttifferent varieties of Hooke’s law
should be used for different parts of porous aadttired rock. Note that the second term
on the right hand side of Eq (12) is not necessarihaller than the first one, especially

for low stress states, although is generally small, as demonstrated in Fig 2.



3.2 Por e compressibility
The pore compressibility represents the changpore volume per unit of stress
change under a condition of constant pore presMamehematically, this compressibility

can be expressed by

1 0V?
pc — NP (15)
V,? oo

where superscript p refers to pores. (The aboveategu holds for constant pore

pressures.) Using similar notions from Section @ have

V," :VO’ep +Vo, (16)

VP =V 4V, (17)

Note that in the above two equations, we consideo e a portion of pore volume in a
rock body. Following the same procedure to derigs ) and (4), we can obtain

dv,” = -CV,. do (18)

V
av, = —ﬂexp{—ijda (19)
K K

where G is the compressibility for the hard fraction ofr@pavolume where engineering
strain is applicable. This treatment is based on angument that all the soft part
corresponds to a fraction of pore volume.
Combining Eqgs (15) to (19) yields
o Vi o
C,.=C,. +——exp—-—— (20)
et )

where
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(21)

VOp
_ Yo 22
Po v, §

Eq (20) is used to fit one set of compresigthiata (Fig 3) presented in Jaeger et al.
[16]. This data set was derived from a measureatiogiship between pore strain and
confining stress for a Frio sandstone from Eas@a$gafter Carpenter and Spencer [22]).
The match between Eq (20) and the data pointdisfazory, indicating that our derived

result is able to capture key features of the ewpmrtal observations. The fitted

parameter values areC,” =  33310° psi' = 4.83 x 10° MPa", K; = 1.1 x 16 psi =

7.6 MPa, and’t =0.011. For typical porosityg) values of 10-20% for a sandstone, the

0
7, value from pore compressibility data ranges frofrl@o 0.22%, which again suggests
that the so-called “soft” part is only a small partage of pore volume. These parameter
values are reasonably close to those obtained foak compressibility data provided in

the previous subsection.

3.3 Rock porosity

The rock porosityg) is a critical parameter for fluid flow in porousck. Accurate

descriptions of stress-dependent behavior for piyromre especially important for
modeling coupled hydrological and mechanical preegsin this subsection, we derive a

theoretical relationship between rock porosity atrdss.
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Using the same notations as in the preveulssection and by definition of rock

porosity, we have

_avP?  dv,”+adv,

d
/ \Y, \Y,

(23)

where V is the bulk volume of porous rock. (Notattthe above equation ignores the
effect of V change with stress on porosity chang®) most practical applications of

rock mechanicals, V can be approximated by theresstd volume/, for calculating

rock porosity. Using this approximation and Eqs) @&d (19), we obtain

7t o
dgp=—¢ C do—-"Lexp—-——|d 24
P A x
where
¢e:¢0_7/t (25)

Integrating Eq (24) and using) = ¢, for o = 0gives

#=4.0-C0)+7, ex{%] (26)

t
When the term ofC,o is much smaller than unity, the above equation ban

approximately reduced to
b=+, ex;{— %j (27)

Based on laboratory experiments on sanddtgridavis and Davis [23], Rutqvist et
al. [7] proposed an empirical stress-porosity esgian that is identical in form to Eq
(27). Similar empirical expressions were originalgported by Athy [24] and further

discussed in Neuzil [18]. In this study, the moemgyal stress-porosity relation [Eq (26)]

12



is evaluated using data sets of Coyner [25]. H@nted measured porosity-confining

pressure (effective stress) relations for sevefaég of rock. We select his laboratory
measurements for Berea sandstone and Weber samdstorples, because these rock
samples exhibit a relatively large degree of strdspendence. Note that confining

pressure is used here to approximate the effestress, since Biot coefficients are close
to one for the two sandstones under consideratiéh [

There are four parameters in Eq (26);, G, y, and K. To avoid the non-uniqueness
of parameter values determined from curve fittiwg,use a simple procedure to estimate
parameter values from porosity vs. confining presslata. As shown in Figs 4 and 5,
measured relations between porosity and confinreggure are very well represented by
a straight line for relatively high pressures (stes). The slope of the straight line is used
to determineg,C, because the second term on the right hand sitlg ¢26) is negligible
for high stress values. The porosity value at titersection between the straight line and
the vertical axis in Fig 4 or 5 gives, value, considering that the straight line repréesen
the first term on the right hand side of Eq (26heTmeasured porosity value at zero
pressure is equal t@, +y,, as implied from Eq (26). The above procedurevaidor
direct determination of values faf, , G and y,. The remaining parameter; ikan be

estimated using porosity data at relatively lowsptges. In this study, a; Kalue is

simply calculated from Eq (26) using measured gtyeslue at a pressure of 10 MPa.
Satisfactory matches between results calaildtem Eq (26) (with determined

parameter values) and porosity data are showngs 4#iand 5. The estimated parameter

values for Berea sandstone ae= 17.52%, G= 3.04 x 10' (MP&"), 7, = 0.28% and K

13



= 9.97 MPa. The parameter values for Weber sanesimy, = 9.00 %, G = 2.96 x 1d
(MPa?), 7, = 0.48 % and K= 10.60 MPa. Note that the values fgr and K are

generally consistent with those reported in thevipies sections where the values for
these parameters are estimated from different tgpeata. This indicates that these two
parameters (introduced in this study) are very defined and experimentally robust.

To further validate our theory, we use p@eter values estimated from porosity data
to calculate relations between the bulk-modulus pressure (stress) and check if the
calculated results can match the measured bulk lmgdlata for the same rock samples
used for measuring porosity values [25]. From drgss-strain relationship [Eq (8)], the
bulk modulus K can be given by

K = 1 (28)

Ve Voo
Ke Kt Kt

. . K
The above equation can also be derived from Eqg (&ues for—= correspond to K

e

values for high stresses (pressures) and musttbendeed from measured K data. (They

cannot be determined from porosity data.) Basedata shown in Figs 6 and 7, the value

of &is set to 13.5 GPa for Berea sandstone and 17.5f@P&eber sandstone. As
Ve

shown in Figs 6 and 7, the calculated results mr@ good agreement with data. This is
encouraging (considering that a curve-fitting phae is not used in these two figures)

and also supports the robustness of our theory.
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3.4 Fracture aperture

Fracture aperture is an important parameter bioth mechanical and hydraulic
processes within a fractured rock. For examplectdre@ permeability is largely
determined by fracture aperture. A number of erogirexpressions exist in the literature
for describing observed relations between normiasstand fracture closure (that is
linearly related to the average fracture apert[#€)27]. In this subsection, we develop a
relationship for the dependence of fracture apertur the normal stress based on the
proposed stress-strain relationship.

Consider a fracture to be embedded into a sachple subject to a normal stress.
We again divide fracture space into “hard” and t’sphrts along the direction normal to
the fracture plane. Then, the volumetrically avedafyacture aperture (b) is given by
by =y + by, (29)
under unstressed conditions, and
b=b, +b, (30)
under stressed conditions. Similar to previousieest superscripts e and t refer to the

“hard” and “soft” parts in a fracture. Hooke’s ldar the two parts can be expressed by

dO-nz_KF e% (31)
’ bO,e
do =—KH% (32)

where subscript F refers to fracture. (For converee the volumetric strain will not be
used here.) Note that the stress in the aboveewuations refers to far-field normal

stress, rather than local stress.

15



Combining Egs (30) to (32) gives

db=db, +db, = —boye%—bt do,
KF,e KF,I

(33)

Integrating the above equation and using Eq (28)the following relationship obtained

from Eq (32):

Gn
bt = bo,t ex;{— KF’J (34)

one can obtain

b=by, (- K“—“) +hy, ex;{— K“ J (35)

F.e F.t

In the above equation, the stress-depéntiehavior of fracture aperture is
controlled by the second term at low stress anditsieterm at high stress. BecausgK
is much larger than [, aperture change with stress will be much morelgakat high
stress. This result is consistent with the obsewmatof Pyrak-Nolte et al. [28], that the
increase of fracture closure (or decreasing oftdir@caperture) with increasing normal
stress becomes more gradual, but does not reaoh aed even at considerably high
stresses, a number of voids remain open. Nevesthdieere is a considerable amount of
laboratory data indicating that fracture closureftacture aperture) remains practically
unchanged at high stress [26,27]. This is equitdteraying that the following condition

holds in practice:

~1 (36)

In this case, we can reduce Eq (35) to

16



b=y, +hb, ex;{— In J (37)

F
This equation is identical to the empiricapeession of Rutqvist et al. [7] for the
stress-fracture aperture relationship. The expradsas been used successfully to match
laboratory measurements. For example, Fig 8 shdwsntatch of Eq (37) to the
measurements of the third loading-unloading cyoleaf fracture [29]. Some hysteresis

exists. Barton et al. [27] suggested that the Ingsie was a laboratory artifact and thrat
situ fractures probably also behave in a manner sirtoléinat observed from the third or
fourth loading cycles.

The consistency of our Eq (36) with the empiriexpression of Rutqvist et al. [7] is
encouraging. Fig 8 shows that unlike the “soft”tperporous rock, the “soft” part in a
fracture corresponds to a relatively large portbfracture voids. This may result from a
geometric difference between fractures and rockgdPrevious studies [30] demonstrate
that a rock “crack” with a smaller aspect ratidi¢raf thickness to length) is more easily
deformed than that with a smaller ratio. Obviousigiues for the ratio are much larger
for fractures than those for most pores in a porogk. Fig 8 also shows the modulus
for the fracture (K is in the range of 2-4 MPa, and smaller thanpiteviously reported
modulus values for the soft part of the porous rddkis is consistent with an intuitive

expectation that a fracture is “softer” than paregorous rock.

4. Concluding Remarks
This study develops a general stress-sted@tionship for porous and fractured rock
subject to elastic mechanical deformation, basethernypothesis that different varieties

of Hooke’s law need to be employed for differenttpaf a rock body, for describing the

17



elastic mechanical deformation. The stress-streiationship developed here allows for
the derivation of constitutive relationships betweestress and a number of
mechanical/hydraulic properties. The remarkablesisdency between these relationships
and a variety of the corresponding empirical exgices and/or laboratory experimental
data supports the validity of our theoretical depebent. The parameter values estimated
from different kinds of measurements are also closesimilar rocks, indicating that
newly introduced parameters are well defined abdigbfor the applications considered.
The focus of this paper has been on the ptaen of a theoretical framework. Our
preliminary evaluation produced encouraging resulBirther work is still needed to
validate our theory using more comprehensive corspas between our results and those
of different types of mechanical data. Also, ibith desirable and of practical interest to
explore possible correlations among parametersacteizing the soft part of a rock,
rock type, and the other associated rock properii@portant examples of related
properties are electrical resistivity/conductivithata for fluid-saturated porous rocks

[31,32,33] and also permeability data [34].
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Figures

Fig. 1. A composite spring system consisting of spoings. The hard and soft springs
follow engineering-strain-based and natural-sttzsed Hooke’s law, respectively.

Fig. 2. Bulk compressibility as a function of sgesalculated from Eq (14) using the
fitted parameter values {€ = 0.082 GP3, P=8.33 MPa andj,.. =0.0044) reported by

Zimmerman [12].

crack
Fig. 3. Match of Eq (20) to the data points of peoenpressibility (18/psi) as a function
of confining pressure (or stress) (psi) presemetheger et al. [16].

Fig. 4. Match between porosity values (as a functb confining pressure) calculated
from Eq (26) and the measured data for Berea Samel§25].

Fig. 5. Match between porosity values (as a functd confining pressure) calculated
from Eq (26) and the measured data for Weber Sanel$25].

Fig. 6. A comparison between bulk modulus valussa(&nction of confining pressure)
calculated from Eq (26) and the measured data éoed&8Sandstone [25].

Fig. 7. A comparison between bulk modulus valussa(dunction of confining pressure)
calculated from Eq (26) and the measured data felbél/Sandstone [25].

Fig. 8. Matches of Eq (36) to the observed strpsestare data points for a fracture. The

fitted parameter values arg@ &3 um, bp=23 um, and Kk = 3.3 MPa and 2.2 MPa,
respectively, for the loading and unloading data{gso
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Fig. L A composite spring system consisting of two springs. The hard and sofissfoilow
engineering-strain-based and natural-strain-based Hooke's |psctiesly.
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Fig. 2. Bulk compressibility as a function of stress calculated from Eq (1% the fitted
parameter values (€ = 0.082 GP3, P=8.33 MPa andj,., =0.0044) reported by

Zimmerman [12]
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Fig. 3. Match of Eq (20) to the data points of pore compressibilit§/$0 as a function of
confining pressure (or stress) (psi) presented in Jaeger et al. [16].
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Fig. 4. Match between porosity values (as a function of confining pressurelatadl from Eq
(26) and the measured data for Berea Sandstone [25].
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Fig. 5. Match between porosity values (as a function of confining pressurejatad! from Eq
(26) and the measured data for Weber Sandstone [25].

28



40

Bulk Modulus (GPa)
N w
o o

[EEN
o

Berea Sandstone

20 40 60 80 00
Confining Pressure (MPa)

Fig. 6. A comparison between bulk modulus values (as a function of confining pyessure

calculated from Eq (26) and the measured data for Berea Sandstone [25].
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Fig. 7. A comparison between bulk modulus values (as a function of confining pyessure
calculated from Eq (26) and the measured data for Weber Sandstone [25].
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Fig. 8. Matches of Eq (36) to the observed stress-aperture data pointsafduee. The fitted
parameter values arg &3 um, Iy =23 um, and k= 3.3 MPa and 2.2 MPa, respectively, for
the loading and unloading data points.
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