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ABSTRACT

The longitudinal stability of intense particle bunches is investigated
theoretically in the limit of small wall resistivity compared to total
reactance. It is shown that both in the absence of resistivity and to lowest
order in the resistance that an intense bunch is stable aganist longitudinal
collective modes. An expression is derived for the lowest order instability
rate. Application of these results are made to drivers for heavy ion inertial
fusion.

PACS numbers: 41.70 +t, 29.15 Dt, 52.35 Py, 52.60 +h

Heavy ion fusion is envisioned as having for a driver either an rf linac

with storage rings or an induction linac. 1 In the rf linac approach the

major current multiplication, so as to reach the requisite power level, is

done in the storage rings. The induction linac, on the other hand, must

accelerate significant currents directly to the target. Either approach has

difficulties (such as the manipulation of beams in and out of storage rings in

the rf linac approach), but common to both methods is the need for the

stability of intense bunches of particles. Much effort has been devoted to

this subject.1,2

For a bunch in an induction linac an estimate can be obtained by employing

the analysis which has been developed for circular machines and modifying it

for a linear structure. 3 Firstly, one notes that one is "below transition"

or in a positive mass regime so that only in the'presence of resistivity is
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there instability. One finds, for above threshold, that the e-folding length,

A, is given by:

-1
A

[

22M J1/24rr q p • N • r
(1+21n (b/a)) M I p

(1)

where,

Z = R + iX the impedence per unit length

NIL line density of ions

r p classical proton radius

Zo free-space impedence (or 377 ohms)

q degree of ionization of the ions

M/M mass of the ions in units of the proton mass
p

15Putting in R = 200 ohms/meter, q = 2, Mp/M = 1/200, NIL = 10 120

meters, bla 1.5. Eq. (1) yields a length, A, of 300 meters which is

uncomfortably short for a linac of the length required.

For a storage ring a similar method may be employed and yields growth

4times which are also uncomfortably short. The use of unbunched-beam theory

for bunches has been observed to be valid on a variety of storage rings (see

Ref. 4), while theoretical analysis has shown the unbunched-beam theory to be

valid under certain circumstances. 5

It is the purpose of this communication to report on a theoretical

analysis which directly applies to the storage ring or the induction linac of

heavy ion fusion. We show that to lowest order there is, for any finite

bunch, no net resistive instability so that the situation is very much better

than estimated above. We also allow in our formalism for an arbitrary

impedance of the structure which, at least for the induction linac, is an

important effect. Our work is a generalization of that of Kwang Je Kim who
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first showed ~ instability for a finite bunch of uniform charge, with a

step-function distribution in momentum, and the impedance 8f a uniform

structure. 6 Removing the special assumptions of Kim is important for it

allows us to conclude that either in a practical linear induction accelerator

or in a realistic storage ring intense particle bunches will not be subject to

significant longitudinal instability and, hence, from this very important

theoretical point of view heavy ion fusion is a viable and interesting

possibility.

The ions, which are collisionless, are described by the non-relativistic

non-linear Vlasov equation

(_a_+V~+qeE_a_) f( t) 0at az M av z, v, = , (2 )

where z is the longitudinal coordinate, v is the velocity associated with the

z coordinate, e is the proton charge, t is the time and the ion distribution

function is the unknown f. The longitudinal electric field consists of an

applied field, EA, and a functional Es(n) of the line charge density

n(z,t) where

n(z, t) = Jf ( z, v, t) dv .

We may take moments of the Vlasov equation and close the heirarchy by

noting that in our applications the particle thermal velocity is small

(3 )

compared to the collective motion density wave phase velocity. Stoping after

two moments we obtain fluid equations which can be combined to yield:

/ n~ z, t) + qe ! (E n( z, t») = 0
at M az

This equation may be linearized about an equilibrium charge distribution

no (z) which can, in this approximation, be arbitrary; ie, we can choose an
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applied field so as to make any n (z) stationary. Introduce space and time
o

Fourier transforms by means of
00

n1(k,w) J jL/2 "(k -wt) (5 )= dt dzn1(z,t)e' z
- -L/2

where n1
is the pertrubed dens ity. We thus obtain

The self electric field, Es (n) , can be related to n
1

by means of an

impedance function

E
S

(k,w) = -Z (k,w) n1 (k,w).

The entire effect of the storage ring or the induction linac is contained in

the function Z (k,w) which describes the reaction of the structure to a

disturbance of laboratory frequency 00'. The laboratory frequency 00' is

00' : kV b + 00, where vb is the beam velocity and the term i~ 00 is due to

motion of the disturbance in the beam frame. To good approximation the term

(6 )

(7)

in 00 can be neglected, and then Z (k,w) is a function of k alone. We use this

approximation in most of our work, but take the w in to account in Z (k,w) when

we calculate to second order (Eq. (17)).

We combine Eqs. (6) and (7) and the approximation for Z (k,w) to obtain

where clearly n (k) is related to the equilibrium density n
o 0

equation analogous to Eq. (5).

(z) by an

(8 )

It is easy to see that Eq. (8) yields a growth rate as given by Eq. (1)

under the same circumstances. For a long wavelength disturbance, on a beam of

radius b in a structure of radius a, the impedance is

Z (k) = -qe ik (1 + 2ln b/a)-qevbR,

5
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where vb is the beam velocity. For a uniform beam n (z) is a constant
o

and n
1

(z,t) varies sinusoidally in space and time. For a long wavelength

disturbance and for a uniform beam, Eq. (8) and Eq. (9) yield Eq. (1).

For a bunched beam, however, we can show two consequences of Eq. (8);

namely there is no instability if the impedance is purely imaginary (ie,

purely reactive) and furthermore that there is no instability if the

resistance is small. Firstly, consider the case in which there is no

resistance so that we may write

Z (k) = i X (k) (10)

where the reactance, X, is odd. We assume X is negative for positive k, in

order to be in the positive mass regime, and it is under this condition that

there is stability.

Multiplying Eq. (8) by n1*(k) Z*(k)/k, and integrating we obtain

*(x) G (x) dx,

<X>

-w~ In
1

(k) IZ Z: (k) dk +
<X> <X>

~~ ~ _1 dkJ dk1 Z* (k) Z (k1) n1* (k) no (k -k1) n1 (k 1) 0

We use Eq. (10) and the theorem that

~F (k) G{k) dk =
-<X>

with

(11 )

(12 )

-*G (k) * - *Z (k) n
1

(k), (13 )

to write Eq. (11) in the form:
<X>

-,:,J-'n1 (kli
Z I\ (k) I

In this form it is clear that

stabi 1ity.

<X>

dk + ~eJ no(z) IG (z)l 2 dz = O.

w2 is real and positive and, hence, there is

6
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Secondly consider the case in which

Z (k) = i X (k) + R (k), (15)

and R (k) is real and symmetric and small; ie R (k) « X (k). For a

non-relativistic bunch this will generally be true since the self-term in the

reactance is non-negligible. 7 Employing perturbation theory we find that

R (k) creates a frequency shift, oWn' of the n~ mode frequency, w~,

given by
OJ 00

dk In (k)\ 2 X (k)
n k

. JJgel ~oo -00

OWn 0 00

2w n J 2nM

_00

where nn (k) is the eigenfunction of the n~ mode. 8 For a symmetric

(16 )

~nperturbed bunch, and provided the modes, wn' are non-degenerate it is easy

to show that oWn is zero.

With these results we conclude that the growth distance (or time) is

greatly increased over that given by Eq. (1). Explicit calculation must

employ improved equations and a particular model for no (z) (and hence nn (k)

9and w). This work, which will be described elsewhere, yieldsn

(17)

9 (n) is a dimensionless function

(~:) 9 (nJ

by Eq. (1),

-1 - -1A - A
Uniform Beam

-1where A is givenUniform Beam
of mode number, n, and

1/2

[
no (1 + M2in b/a)]vp = qe (18 )

For typical parameters the additional factor in Eq. (17), over Eq. (1),

is :::: 500.
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We have shown that to lowest order there is no instability whereas Wang

and Pellegrini have shown that, under certain circumstances, bunches are

unstable. 5 An important difference between our work and theirs is that

they, working with relativistic particles, take Z (k) to have a broad

resonance and no self-term so that an expansion in R (k)/X (k) would be

invalid. On the other hand, for the non-relativistic particles of heavy ion

fusion an expansion in R/X -- and hence a very different conclusion -- is

valid.

Although we have shown that to lowest order there is neither an absolute

or a convective instability, there is still the possibility of transient

spatial amplification. We have estimated this effect; using uniform beam

theory, the impedance one expects in practice, and the time for a disturbance

to reach a bunch end.? We find that less than one e-folding occurs.

Finally, we have been concerned that our results depend upon reflection of

disturbances at bunch ends, which is exactly where our analysis is invalid

because we have linearized about an unperturbed distribution which is, in

fact, going to zero at the bunch end. We have, consequently, examined a more

realistic model for the impedance than Eq. (9); namely a model in which

(neglecting resistance)

(19)Z (k)
c + k2

2

where c1 , c2 are constants. For small k this model can be matched to Eq.

(9), but for short wavelengths Eq. (19) converts to a plasma oscillation in

which the structure is not important. For an impedance given by Eq. (19) we

are able to reduce Eq. (8) to a second order differential equation and show

that a wave reflects before it reaches a bunch end; ie, before the linear

approximation becomes invalid. This work, which will be described elsewhere,

lays to rest our concern about the validity of the results reported herein.
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