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SUPERSYMMETRY AND SUPERSTRING PHENOMENOLOGY

Mary K. Gaillard and Bruno Zumino
University of California at Berkeley

1 Introduction

This paper is dedicated to the memory of Julius Wess, one of the inventors of supersymmetry
(SUSY), who passed away in August 2007. Julius participated in the conference SUSY 07, that
took place in Karlsruhe, and gave an invited lecture there, just a few weeks before his death. In
his lecture he detailed a brief history of the discovery of SUSY quantum field theories in four
space-time dimensions, and expressed his hope that the superparticles predicted by SUSY will be
found in experiments at the Large Hadron Collider (LHC) at CERN that are expected to begin
this summer.

In this paper we will briefly cover the early history of SUSY, describe the relation of SUSY quantum
field theories to superstring theories and explain why they are considered a likely tool to describe the
phenomenology of high energy particle theory beyond the Standard Model (SM). More extensive
descriptions of SUSY and its applications to physics can be found in the now standard text by
Wess and Bagger [?] as well as in several recently published books [?].

2 The beginning of supersymmetry

Four dimensional SUSY was discovered independently three times in the early 1970’s: first in
Moscow by Golfand and Likhtman, then in Kharkov, by Volkov and Akulov, and Volkov and
Soroka, and finally by Julius Wess and one of us (BZ), who collaborated at CERN in Geneva and
in Karlsruhe, and were totally unaware of the previous work. It is remarkable that Volkov and
his collaborators did not know about the work of Golfand and Likhtman, since all of them were
publishing papers in Russian in Soviet Journals. For information on the life and work of Golfand
and Likhtman, we refer to the Yuri Golfand Memorial Seminar Volume [?]. This book contains
an interesting graph on page 43 that shows the remarkably fast increase in the number of papers
on SUSY as a function of time after the first three preprints that carried the names of Wess and
Zumino. For information on Volkov’s life and work, we refer to the Proceedings of the 1997 Volkov
Memorial Seminar in Kharkov [?].
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Supersymmetry is a symmetry that relates the properties of integral-spin bosons to those of half-
integral spin fermions. The generators of the symmetry form what has come to be called a super-
algebra, which is a super extension of the Poincaré Lie algebra of quantum field theory (Lorentz
transformations and space-time translations) by fermionic generators. In a superalgebra both com-
mutators and anticommutators occur. The early physics papers on SUSY also gave rise to renewed
interest by mathematicians in the theory of superalgebras. Eventually a complete classification
of simple and semisimple superalgebras was obtained, analogous to Cartan’s classification of Lie
algebras, and even the prefix super was adopted in mathematics. Unfortunately the Poincaré su-
peralgebra is not semisimple, although it can be obtained by a suitable contraction; the situation
is similar to that for the Poincaré Lie algebra. The general classification of superalgebras does not
appear to be very useful in physics, because, unlike Lie algebras, simple or semisimple superalgebras
cannot be used as internal symmetries, or so it seems.

The early work on supersymmetric field theories considered only one fermionic generator which is a
Majorana spinor. The corresponding superalgebra is therefore called N = 1 SUSY. An important
development was the study of extended (N > 1) SUSY and the construction of quantum field
theories admitting extended SUSY. It turns out that N = 1 SUSY in four space-time dimensions
is still the best choice for a SUSY extension of the Standard Model of elementary particle physics,
because of the chirality properties of physical fermions. We describe in Section ?? a popular version
of such an extension: the Minimal Supersymmetric Standard Model (MSSM).

3 Superspace

The influence of SUSY on mathematics can be seen by the great interest mathematicians have
developed in the study of supermanifolds. From a physicist’s point of view this began with an
important paper by A. Salam and J. Strathdee [?] who introduced the concept of “superspace”, a
space with both commuting and anticommuting coordinates, and showed that N = 1 supersymme-
try can be defined as a set of coordinate transformations in superspace. Ferrara, Wess and Zumino
then wrote some papers using the concept of “superfields” (fields in superspace). Eventually the
technique of superpropagators was developed and shown to be a useful tool for supersymmetric
perturbation theory.

With the discovery of supergravity (SUGRA), it became natural to study the geometry of curved
supermanifolds. Wess and Zumino realized that superRiemannian geometry had to be enlarged by
the introduction of a super-vielbien and a constrained, but nonvanishing, supertorsion. They also
formulated the geometry in terms of exterior superdifferential forms, not unlike those introduced
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independently by Berezin.

Just as in the case of supersymmetric quantum field theories in flat space, SUGRA has remarkable
properties of convergence; however it does not provide a theory that is finite or even renormalizable.
N = 1 SUGRA admits higher N extensions. For various reasons, the highest physically acceptable
value is N = 8, Recently, remarkable properties of N = 8 SUGRA in four dimensions have been
discovered [?]. With clever combinations of diagrams, some of the perturbation theory divergences
cancel; these cancellations do not seem to be understandable from the supersymmetry of the theory.
Are they due to some other symmetry? Is N = 8 SUGRA in 4 dimensions actually finite in
perturbation theory?

4 Successes and problems of the Standard Model

The Standard Model can be briefly summarized as follows:
Spin-1

2 fermions, called quarks q and leptons ` fall into three families with identical interactions
but increasing mass (except for the neutrinos whose masses are all very small):

SU(3) ⇐⇒ ⇐⇒ ⇐⇒(
u1 u2 u3 νe

d1 d2 d3 e

) (
c1 c2 c3 νµ

s1 s2 s3 µ

) (
t1 t2 t3 ντ

b1 b2 b3 τ

)
m SU(2)

The labels u, d, c, s, t, b for quarks q and e, µ, τ for negatively charged leptons `− and their associated
neutrinos ν` distinguish among the fermion “flavors”, and the indices i = 1, 2, 3 for quarks of fixed
flavor distinguish among three “colors”. Interactions among fermions are mediated by spin-1 gauge
bosons Aµ:

SU(3) ⇐⇒

g1, . . . , g8

W1

W2

W3

 m SU(2) B

where the eight gluons g couple quarks of different color but the same flavor, and the three W ’s
couple fermions of different flavor . The laws of physics are invariant under local SU(3)⊗SU(2)⊗
U(1) transformations, with SU(3) acting horizontally on color and SU(2) acting vertically on flavor
as indicated by the arrows. The vacuum configuration is not invariant under the full SU(3) ⊗
SU(2)⊗U(1) group of symmetries; “spontaneous” breaking of the electroweak symmetry down to
gauge invariance of electromagnetism (em)

SU(2)⊗ U(1)→ U(1)em
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is attributed to the vacuum value of the spin-0 “Higgs” field H

v = 〈H〉 ≈ 250GeV

which gives masses to the electrically charged W ’s and one linear combination of the neutral W
and the U(1) gauge boson B:

Z = cos θwW3 − sin θwB, γ = cos θwB + sin θwW3,

mγ = 0, mW1,2 =
g

2
v = mZ cos θw,

where g is the SU(2) coupling constant. The fermions also acquire masses through their coupling
to the Higgs field which also induces a small mixing among fermions of the same electric charge
but different flavors, with mixing amplitudes of order:

νe ↔ νµ ↔ ντ � d↔ s↔ b� 1.

The absence of large flavor changing effects is an important property of the Standard Model that
has to be reproduced by the underlying theory.

The SM has been tested to a high degree of accuracy, but it is not without its difficulties. Foremost
among these is the large hierarchy between the electroweak symmetry breaking scale and the
reduced Planck scale mP , known as the “gauge hierarchy”:

mZ ≈ 90GeV� mP =

√
8π

GNewton
≈ 2× 1018GeV,

which is hard to understand within the context of quantum field theory. In addition there is no
understanding of the pattern of quark masses and flavor mixing, nor why the θ-parameter, that
governs CP violation in the QCD vacuum, is so small: θ < 10−10, where QCD, or quantum chro-
modynamics, is the SU(3) gauge theory of the Standard Model. The only potential SM candidate
for dark matter, a neutrino, has been ruled out by the study of galaxy formation. On the other
hand, many extensions of the SM that attempt to address the “θ-problem” require the existence
of a very light pseudoscalar, or axion, that remains a viable dark matter candidate. The issues of
the cosmological constant and dark energy are totally outside the domain of the SM.

5 The particle content of the MSSM

One way to understand the gauge hierarchy alluded to above is through supersymmetry: cancella-
tions among boson and fermion loops remove ultraviolet divergences and stabilize mass hierarchies
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against large quantum corrections. This requires a doubling of the number of particles in the SM.
Spin-1

2 quarks and leptons form chiral supermultiplets with spin-0 squarks q̃ and sleptons ˜̀:

SU(3) ⇐⇒ ⇐⇒ ⇐⇒(
ũ1 ũ2 ũ3 ν̃e

d̃1 d̃2 d̃3 ẽ

) (
c̃1 c̃2 c̃3 ν̃µ

s̃1 s̃2 s̃3 µ̃

) (
t̃1 t̃2 t̃3 ν̃τ

b̃1 b̃2 b̃3 τ̃

)
m SU(2)

and spin-1 gauge bosons Aµ form vector supermultiplets with spin-1
2 gauginos λ:

SU(3) ⇐⇒

g̃1, . . . , g̃8

 W̃1

W̃2

W̃3

 m SU(2) B̃

called gluinos, Winos and Bino, respectively. There is also the Higgsino fermionic superpartner of
the SM Higgs boson, but the supersymmetric extension of the the SM requires two Higgs chiral
supermultiplets in order to avoid gauge anomalies and to generate mass terms for all charged chiral
fermions as well as for all Winos. Thus the spectrum includes(

H+
u H̃+

u H0
d H̃0

d

H0
u H̃0

u H−
d H̃−

d

)
m SU(2)

and their charge conjugates. While there is no experimental evidence for SUSY partners–indeed
there are ever increasing lower bounds on their masses–there is a tantalizing piece of indirect
evidence. In the SM, the three coupling constants of the SU(3) ⊗ SU(2) ⊗ U(1) gauge theory
almost converge at a single point at an energy of about 1015GeV, but present high precision
data excludes exact unification by about 9 standard deviations. In the MSSM the running of the
coupling constants is modified, most importantly by the presence of two Higgs supermultiplets,
which together are equivalent to six ordinary Higgs fields, and their convergence is much closer,
now at an energy of about 1016GeV. The higher scale of unification is welcome in view of strong
limits on the proton lifetime, since theories that unify the SM gauge groups generally predict proton
decay with a Fermi coupling inversely proportional to the square of the unification scale. In addition
it is just two orders of magnitude below the reduced Planck scale, perhaps a hint at unification
with gravity?

However the MSSM is not without problems of its own. As explained in Section ?? supersymmetry
cannot be broken spontaneously, requiring the introduction of a large number of arbitrary complex
parameters and no rationale for suppressing flavor and CP violating terms to the small values
needed to be consistent with observation. In addition one has to impose a discrete symmetry,
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called R-symmetry, to avoid fast proton decay and suppress lepton flavor violating processes such
as µ→ 3e. Thus one assigns R = +1 to the particles of the SM including Hu,Hd, and R = −1 to
their superpartners. As a consequence superpartners must be produced in pairs, and the lightest
one is stable, providing a possible dark matter candidate, as discussed in Section ??.

6 Supersymmetry in string theory

When supersymmetry is combined with general relativity, one gets gauged supersymmetry, or
supergravity, which is the infinite string tension limit of string theory. At present most particle
theorists view superstring theory in 10 dimensions as the most promising candidate that reconciles
general relativity with quantum mechanics. There are five of these theories, and they are related to
one another by two types of dualities: S-duality that relates strong to weak coupling: α→ 1/α, and
T-duality that relates large to small radius of compactification: R→ 1/R, where α = g2

s/4π is the
fine structure constant of the gauge group(s) at the string scale, and R is a radius of compactification
from dimension D to dimension D−1. Figure ?? shows [?] how these dualities relate the various 10-
D superstring theories to one another, and to M-theory, which lives in 11 dimensions and involves
membranes. In Figure ?? the small circles, line, torus and cylinder represent the relevant compact
manifolds in reducing D by one or two. The two O(32) theories are S-dual to one another, while
the E8 ⊗ E8 weakly coupled heterotic string theory (WCHS) is perturbatively invariant [?] under
T-duality when compactified to four dimensions; in this case R is the radius of the compact six
dimensional manifold.

We will be specifically focusing on this theory, and T-duality will play an important role. Another
image of M-theory, the “puddle diagram” of Figure ??, indicates [?] that all the known superstring
theories, as well as D = 11 supergravity, are particular limits of M-theory. Each point in the puddle
has a very large number of possible vacua, and currently there is a lot of activity in trying to count
the number of type IIB vacua; the number is very large. This endeavor is related to an attempt to
address the problem of the cosmological constant as mentioned in Section ?? and discussed in [?].
The Hořava-Witten (HW) scenario [?] and its inspirations have also received considerable attention.
If one compactifies one dimension of the 11-dimensional M-theory, one gets the HW scenario with
two 10-D branes, each having an E8 gauge group. As the radius of this 11th dimension is shrunk
to zero, the weakly coupled heterotic string scenario is recovered; it is this string theory that most
naturally incorporates the standard model. In the limit of infinite string tension, the WCHS reduces
to 10-D supergravity coupled to an E8 ⊗ E8 Yang-Mills gauge supermultiplet. If 6 dimensions are
compactified on, say, three 2-tori, that have a flat geometry, the resulting 4-D theory will have N=4
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supersymmetry because the 8-component spinor that generates supersymmetry transformations in
10 dimensions gives four 2-component supersymmetry generators in four dimensions. As explained
in Section ?? only N=1 supersymmetry can provide a viable framework for observable particle
physics. Therefore we need a curved 6-D manifold that has a nontrivial holonomy group (group
of transformations under parallel transport). Calabi-Yau compactification has an SU(3) ∈ SO(6)
holonomy group that leaves only one 2-component spinor single-valued under parallel transport on
the compact manifold, giving N=1 supersymmetry in four dimensions. The gauge group may be
decomposed as

E′
8 ⊗ E8 3 E′

8 ⊗ E6 ⊗ SU(3),

and the equations of motion require that the space-time background curvature be balanced against
a background gauge field strength in such a way that an SU(3) subgroup of one E8 is identified
with the SU(3) holonomy group of the Calabi-Yau manifold. Then the surviving 4-D gauge group
is E′

8 ⊗ E6. Orbifold compactifications that mimic the Calabi-Yau case have been studied more
extensively because the compact manifold is flat except at singular points with infinite curvature,
and therefore it is easier to extract the low energy theory. In this case the residual gauge group in
four dimensions is

E′
8 ⊗ E6 ⊗ [G′ ∈ SU(3)].

In either case, the outcome is promising because E6 has long been recognized as the largest group
that is a viable candidate for the unification of the strong and electroweak gauge groups of the
Standard Model. The massless spectrum consists of single-valued fields that are invariant under
the diagonal of the two broken SU(3)’s (or, in orbifold compactification, an appropriate subgroup
thereof). The surviving degrees of freedom of the 10-D gauge supermultiplet

(AM , g̃)E′
8⊗E8

, M = 0, . . . , 9,

are the 4-D gauge supermultiplet

(Aµ, g̃)E′
8⊗E6

, µ = 0, . . . , 3,

which is invariant under both SU(3)’s, and matter chiral multiplets

(Am, g̃)E8/[E6⊗SU(3)] = (27 + 27)E6 , m = 4, . . . , 9,

which transform as (3, 3̄) + (3̄, 3). These states decompose under the smaller candidate gauge
unification groups SO(10) and SU(5) as

27E6 = (16 + 10 + 1)SO(10) = (5̄ + 10 + 1 + 5 + 5̄ + 1)SU(5).
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The 5̄ + 10 of SU(5) contains the quarks and leptons of the standard model. These form the 16 of
SO(10) together with a Standard Model singlet that may be responsible for the recently observed
small neutrino masses and mixing. The 5 + 5̄ contained in the 10 of SO(10) includes, among
other things, the two Higgs doublets needed in the supersymmetric extension of the Standard
Model, as discussed in Section ??. What does not appear in the massless spectrum is a chiral
multiplet transforming according to a large representation of the gauge group, such as the adjoint
representation, that could include a Higgs particle whose vacuum value would break E6 to the
Standard Model. Instead this is achieved by what is known as the Hosotani mechanism or Wilson
lines. If the compact manifold is not simply connected, gauge flux can be trapped around a
noncontractible loop: 〈∫

dlmAm

〉
6= 0,

in a manner reminiscent of the Arahonov-Bohm effect. The nonvanishing gauge flux has the same
effect as an adjoint Higgs field, further breaking the symmetry to leave a 4-D gauge group:

(Ghid ∈ E′
8)⊗ [(SM ⊗G′′) ∈ E6]⊗ [G′ ∈ SU(3)]

where the Standard Model gauge group is SM = SU(3)⊗ SU(2)⊗U(1). As mentioned previously,
the class of vacua described here is a tiny subset of the full set of possible vacua, even within the
framework of the WCHS; a recent review of the many facets of string theory and M-theory can be
found in [?]. The attractiveness of Calabi-Yau-like compactification of the WCHS is that the gauge
group and states of the SM emerge naturally. In addition the spectrum includes an axion that
is a candidate for the “QCD axion” mentioned at the end of Section ?? and/or for dark matter.
The presence of a hidden sector is also welcome, as it may provide a mechanism for spontaneous
supersymmetry breaking.

7 Dark matter and dark energy in supersymmetry

Many independent lines of cosmological evidence have led to the conclusion that the vast majority
of matter in the universe is “dark” in the sense that it has evaded observation based on direct
interaction with electromagnetic radiation. Nonbaryonic dark matter out-masses ordinary matter
by a factor of about 8. The dominant class of dark matter candidates are “Weakly Interacting
Massive Particles” (WIMPs). There have been a number of suggestions for dark matter particles,
but it seems that the best candidate is the lightest “neutralino” that is provided by TeV-scale
SUSY.

A particle dark matter candidate must satisfy the following criteria:
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• It must be “stable” in the sense that its lifetime is longer than the age of the universe.

• There must be an effective production mechanism to create the right amount in the early
universe.

• It must be nonrelativistic during structure formation; in other words it must be “cold” dark
matter.

• It must be weakly interacting to have escaped detection, which implies that it must be
electrically neutral and colorless.

These constraints are satisfied by the neutral Higgsinos (H̃u, H̃d). the neutral Wino (W̃ 0) and the
Bino (B̃), four Majorana fermions with the same quantum numbers, that can mix to give four mass
eigenstates: χ0

1, χ
0
2, χ

0
3, χ

0
4, that are called neutralinos. The lightest of these is stable and a good

candidate for dark matter. Other possibilities include the lightest sneutrino, which is apparently
excluded by accelerator experiments, and the superpartner of the graviton, the gravitino, which
would be very hard to detect. A very comprehensive review of cold dark matter can be found in [?].

In addition, it appears to be generally accepted by astrophysicists and cosmologists that the cosmo-
logical constant Λ, long believed to vanish, is actually positive but very small. As a consequence,
the expansion of the universe is accelerating. If we interpret Λ as the energy density of the vacuum,
dimensional arguments, as well as quantum field theory (QFT) calculations would give it a value
of

ΛP =
Planck mass

(Planck length)3
≈ 1094grams/cm3,

while the actual value is Λ ∼ 10−120ΛP .

In SUSY QFT, without supergravity, the vacuum energy vanishes to all order in perturbation
theory. In a generic QFT it diverges quartically, while if SUSY is broken only softly it diverges
logarithmically. Still, for any reasonable cut-off, Λ comes out much larger than the measured value.
The MSSM and other SUSY extension of the SM have nothing to say about this. In supergravity,
the cosmological constant is no longer related to the scale of supersymmetry breaking and can take
any value, but there is no simple understanding of its measured value. As mentioned in Section ??,
there is considerable activity in counting vacua with the notion that there might be a probabilistic
determination of the cosmological constant; this raises a number of philosophical questions that we
do not wish to enter into here.
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8 Breaking supersymmetry: beyond the MSSM

The absence of observed superpartners implies that supersymmetry is broken in the vacuum. Fur-
thermore an analysis of the observed particle spectrum shows that supersymmetry cannot be spon-
taneously broken in the observable sector. This can simply be seen as follows [?]. The squark
squared mass matrices M2

|Q|, are 6×6 matrices in flavor space; Q is the electric charge of the squark
sextuplets (ũL, c̃L, t̃L, ũR, c̃R, t̃R), with Q = 2

3 , and (d̃L, s̃L, d̃L, d̃R, s̃R, b̃R), with Q = −1
3 . The sub-

scripts L,R, denote, respectively, squarks in chiral supermultiplets Φ(q̃L, qL) together with left-
spinning quarks, and squarks in antichiral supermultiplets Φ†(q̃R, qR) together with right-spinning
quarks. If supersymmetry is broken spontaneously and the vacuum conserves electric charge and
color, these matrices satisfy

M2
2
3

=

(
m2

2
3

+ 1
2gD

3
W + 1

6g
′DY ∆

∆† m2
2
3

− 2
3g

′DY

)
, M2

1
3

=

(
m2

1
3

− 1
2gD

3
W + 1

6g
′DY ∆′

∆′† m2
1
3

+ 1
3g

′DY

)
,

where m2
|Q| are the 3 × 3 squared mass matrices of the corresponding quarks, the “D-term” con-

tributions are proportional the appropriate electroweak quantum numbers of the squarks, and the
off-diagonal elements ∆,∆′ do not need to be specified for our purposes. If we define a 12 × 12
squark squared mass matrix M2, and a 6× 6 quark squared mass matrix m2, by

M2 =

(
M2

2
3

0

0 M2
1
3

)
, m2 =

(
m2

2
3

0

0 m2
1
3

)
,

We see immediately that TrM2 = 2Trm2 ≈ 2m2
t ≈ (240GeV)2 =

∑12
i=1M

2
q̃ , while data from the

Tevatron at Fermilab puts a lower limit on the lightest squark mass at about 250GeV. However one
might imagine that there is a fourth family of quarks and leptons and their superpartners (with a
heavy neutrino, since a fourth light neutrino is ruled out by data from the LEP collider at CERN
and by the abundance of light elements). This will not help due to the following argument[?]. Since
the D-terms on the diagonal in M2 sum to zero, either they are all zero, or at least one of them is
≤ 0. Assume this is the case for the first one

1
2
gD3 +

1
6
g′DY = −a2 ≤ 0.

Denote by β the 3-component vector that is the eigenstate of m2
2
3

with the smallest eigenvalue (i.e.

the physical up quark): m2
2
3

β = m2
u. Then

β̄†M2
2
3
β̄ = m2

u − a2 ≤ m2
u, β̄ =

(
β

0

)
.
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But we know from matrix theory that β̄†M2
2
3

β̄ is greater than or equal to the smallest eigenvalue

M2
0 of M2

2
3

: M2
0 ≤ m2

u. If one assumes instead the second D-term −DY ≤ 0, one reaches the same

conclusion, and taking the third or fourth D-term to be ≤ 0, one finds M ′2
0 ≤ m2

d, where M ′2
0 is the

smallest eigenvalue of M2
1
3

. If SUSY is spontaneously broken in the MSSM there must be a squark
lighter then a few MeV, which is clearly ruled out by electron-positron annihilation data.

Therefore the only way to break supersymmetry in a supersymmetric extension of the Standard
Model without reintroducing a gauge hierarchy problem is by introducing “soft” (operators of
dimension three or less in the Lagrangian) supersymmetry breaking. This leads to a plethora of
arbitrary parameters, and therefore to the idea that supersymmetry must be spontaneously broken
in a “hidden sector” of the full theory. For example there could be a sector that interacts with ours
only through gravitational strength couplings. As mentioned in Section ??, this scenario arises
naturally in the context if the weakly coupled heterotic string.

For a gauge group Ga the β-function, which governs the energy-dependence of the coupling “con-
stant” ga(µ), is defined by

µ
∂ga(µ)
∂µ

= β(µ) = −3
2
bag

3
a(µ) +O(g5

a).

Suppose that the hidden sector gauge group Ghid contains a subgroup Gc with β-function coefficient
bc that is larger than the coefficient bQCD of the SM color gauge gauge theory, QCD. In this case
hidden sector confinement and gaugino condensation

〈λλ〉hid 6= 0 (8.1)

will occur at a scale Λc exponentially larger than the scale ΛQCD at which color confinement and
quark condensation take place in QCD. To see how this can provide a source of supersymmetry
breaking in the superstring context, we first note that four dimensional supergravity is specified by
three functions of chiral superfields: the superpotential W (Z) which is a holomorphic function that
determines Yukawa couplings of chiral fermions to scalars, the Kähler potential K(Z, Z̄) which is
a real function that governs the kinetic energy terms for chiral fields and the holomorphic function
f(Z) whose vacuum value gives the gauge coupling and the angle θ that determines the vacuum
configuration of the Yang-Mills fields: 〈f(Z)〉 = g−2 − iθ/8π2. In addition we need to introduce
important chiral supermultiplets, known as moduli supermultiplets, that are remnants of 10-D
supergravity. The 10-D supergravity supermultiplet consists of the 10-D metric gMN , an antisym-
metric tensor BMN , a scalar φ known as the dilaton, and their fermionic superpartners, the 10-D
gravitino ψM , and a spin-1

2 fermion χ. These are all invariant under the gauge SU(3) ∈ E8, so those
that remain in the massless spectrum must also be invariant under the holonomy SU(3) ∈ SO(6),
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leaving the graviton gµν and the gravitino ψµ of 4-D supergravity, and an invariant subset of the
two real scalars gmn and Bmn and the spin-1

2 fermion ψm, the 4-D antisymmetric tensor Bµν , the
dilaton φ and the single valued component of χ. These combine to form chiral supermultiplets,
whose vacuum values determine the size and shape of the compact manifold, the gauge coupling
constant gs at the string scale ms = gsmP, and the θ angle of the 4-D theory. For example, in
compactifications on an orbifold M6 that factorizes into three 2-tori T 2: M6 = (T 2/G)3, where G
is a discrete group of symmetries on the torus, there are three “Kähler moduli” superfields T I with
complex scalar components

tI = φ
3
4 det

1
2 gI

mn + i
bI12√

2
, 〈RetI〉 = RI , I = 1, 2, 3

where gI
mn, m,n = 1, 2 is the 2-D metric on the I’th 2-torus and RI is its radius. For some orbifolds

there are also “complex structure” moduli superfields U I with the scalar vacuum value 〈ReuI〉
determining the ratio of radii on the 2-torus. More generally, there can be a 3 × 3 matrix-valued
modulus superfield T IJ in the low energy theory; however most phenomenological studies assume
that only the three diagonal moduli T I are part of the massless spectrum. All compactifications of
the WCHS have a “ dilaton” chiral supermultiplet S with f(Z) = S; thus the vacuum value of its
scalar component s determines the gauge coupling constant and the θ angle:

〈s〉 = g−2
s − iθ/8π2.

The real part of its scalar component is given by

Res = φ−
3
4 detgmn,

and the imaginary part, known as the “universal axion” is dual to the 2-form:

∂µIms = φ−
3
2 (det gmn)εµνρσ∂

νBρσ.

As a consequence of the dilaton coupling to the Yang-Mills sector, gaugino condensation (??)
generates an effective superpotential for S

W (S) ∝ e−S/bc , (8.2)

which in turn induces a gravitino mass:

m 3
2
∝ 〈W (s)〉 ∝ e−s/bc = e−1/bcg2

c = Λ3
c

thereby breaking local supersymmetry. The form of the superpotential (??) led to what is called
the “runaway dilaton” problem. At the classical level, the scalar potential is proportional to the
square of the superpotential:

V (s) ∝ e−2Res/bc ,
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so the vacuum corresponds to vanishing coupling and no condensation: V (s)→ 0 for
〈
(Res)−1

〉
= g2 → 0.

However, the effective potential for s is constructed by anomaly matching [?]:

δLeff (s)←→ δLhid

under the classical symmetries of the effective QFT that are anomalous at the quantum level.
One of these is T-duality itself, which is not anomalous in the underlying string theory. The
symmetry is restored in the effective QFT by adding a four dimensional counterpart [?] of the Green-
Schwarz counter-term [?] in 10-D supergravity. This modifies the classical dilaton Kähler potential:
K(s + s̄) = − ln(2Res) → K(`) = ln `, where `−1 =

[
2Res+ bGS

∑
I ln(2RetI)

]
, and introduces a

second runaway direction to strong coupling: V (`) → −∞ for 〈`〉 = g2
s/2 → ∞, where the weak

coupling approximation is no longer valid. Including [?] nonperturbative string effects [?] ∼ Ae−c/
√

`

and/or other corrections [?] to the dilaton Kähler potential allows for dilaton stabilization at weak
coupling and very small vacuum energy by adjusting, for example, the parameters A and c in a
parametrization of these effects in the region around the vacuum. This mechanism for stabilizing
the dilaton is known as “Kähler” stabilization. The attractive features of Kähler stabilized, T
self-dual heterotic string models can be summarized as follows [?]

• In contrast with models that stabilize the dilaton using more than one gaugino condensate
(and adjusting their relative β-functions), there is no difficulty in generating a positive semi-
definite potential.

• The Kähler moduli are stabilized at self-dual points [?]: Tsd → Tsd, with supersymmetry
conserving vacuum values 〈Tsd〉. As a consequence, no large flavor mixing is induced by
supersymmetry breaking, which arises only from the condensate and dilaton vacuum values.
In contrast to the Kähler moduli, the dilaton has flavor-independent couplings to observable
matter.

• The condition of (nearly) vanishing vacuum energy leads to mass hierarchies [?]:

m` � mt ∼ (10− 20)m 3
2
∼ m0 � m 1

2

The enhancement of the moduli masses m`,mt relative to the gravitino mass m 3
2

avoids
potential problems [?] with Big Bang nucleosynthesis, and the suppression of gaugino masses
m 1

2
relative to scalar masses m0 results in important quantum corrections to the former. As

a result these models naturally accommodate a dark matter candidate [?].

• One hidden sector condensate is sufficient to break supersymmetry and stabilize the dilaton.
As a result there is a residual R-symmetry (a continuous version of the R-parity introduced
in Section ??) that guarantees a massless axion at the QFT level.
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• In supergravity, this R-symmetry is protected by T-duality, allowing for a possible solution
to the CP problem of QCD [?].

• T-duality provides a possible mechanism for generating R-parity in the MSSM [?].

The phenomenology of Kähler stabilized self-dual heterotic string models is reviewed in [?], which
includes extensive references to, and comparisons with, other models for dilaton stabilization.

Reviews of other models for communicating SUSY breaking from the hidden sector to the observable
sector can be found in summer school and conference proceedings such as SUSY 07. All of these
models predict different patterns of soft SUSY breaking. Typically these patterns appear simple
at some high scale, such as the Planck scale, the scale of gauge coupling unification or the scale of
supersymmetry breaking itself; for example in the case of gaugino condensation described above,
supersymmetry is broken at the condensation scale Λc ∼ 1014GeV. As discussed by Peskin [?], it is
these high energy parameters that inform us about physics at near Planck-scale energies, that we
want to determine, while it is the low energy parameters that we will measure. Just as we were able
to use the renormalization group equations of quantum field theory to determine high energy values
of the couplings and discover near unification in the SM and more accurate unification in the MSSM,
we can use similar QFT tools to probe high energy values of soft parameters. For example, gaugino
masses scale with energy the same way as the fine structure constants αi(µ) = g2

i (µ)/4π2, so if they
have a common mass m at the unification scale, at the scales µ at which the masses are measured
they will be in the ratio m1(µ) : m2(µ) : m3(µ) = α1(µ) : α2(µ) : α3(µ). Relations among squark
and slepton masses are more complicated. Since squarks have strong QCD couplings which increase
their masses as µ decreases, they are expected to be heavier than sleptons if all the sfermions have
the same mass at some high scale. The most massive third family has larger couplings to the Higgs
field, which has the opposite effect, making them lighter than their companions with the same gauge
charges. The gaugino and Higgsino sector is even more complicated with very model-dependent
mixing among the neutralinos discussed in Section ??, and among the “charginos” W̃±,H±

u ,H
±
d .

For more details on the predicted spectra for different models the reader is referred to the reviews [?]
and [?].

9 Concluding remarks

We are very optimistic that the MSSM, or some extension of it, for which there are many proposals
in the literature (the simplest being the nMSSM which postulates an additional scalar super-
field [?]), will correctly describe the particle and superparticle spectrum that will be produced at
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LHC energies. We know that our friend Julius shared this conviction. Clearly the MSSM and its
extensions still have new difficulties of their own, even though they solve problems of the SM as we
have attempted to explain. The history of physics teaches us that this is a situation which often
occurs when an important step forward takes place in our understanding of the basic equations
governing the fundamental processes of our universe.

If the superpartners are not found at the LHC, it could simply be that the accelerator energy is just
not high enough and that their masses are beyond the reach of the LHC. Even if the superpartners
are found at the LHC, it will be very difficult to distinguish among different models, and even
among SUSY and other proposals such as “large extra space-time dimensions” [?]. One will need a
higher precision instrument such as the International Linear Collider (ILC) to resolve these issues.
Will there be the political will to build it? Unfortunately, we are not optimistic about this.

Another possibility is that the beautiful mathematics of supersymmetry will find its application to
physics in a different interpretation than the one assumed so far. To explain what we mean, we
refer to the history of non-Abelian gauge theories, which for a long time were thought to be only
a description of vector resonances. It took the realization of their property of renormalizability as
well as a total paradigm change, due to the development of the quark picture and of the flavor-
color properties of gauge theories, which led to the very successful SM. The analogy is striking for
us. As we explained, SUSY quantum gauge field theories are renormalizable and have even fewer
divergences than generic gauge field theories.

Finally SUSY, through supergravity, provides a unified understanding of all forces of nature, al-
though not a perfect one, neither at the four dimensional quantum field theory level (see how-
ever [?]), nor at the superstring level.
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