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In case of porous fluid-saturated medium the Biot’s poroelasticity theory predicts a 

movement of the pore fluid relative to the skeleton on seismic wave propagation through 

the medium. This phenomenon opens an opportunity for investigation of the flow 

properties of the hydrocarbon-saturated reservoirs. It is well known that relative fluid 

movement becomes negligible at seismic frequencies if porous material is homogeneous 

and well cemented. In this case the theory predicts an underestimated seismic wave 

velocity dispersion and attenuation. Based on Biot’s theory, Helle et al. (2003) have 

numerically demonstrated the substantial effects on both velocity and attenuation by 

heterogeneous permeability and saturation in the rocks. Besides fluid flow effect, the 

effects of scattering (Gurevich, et al., 1997) play very important role in case of finely 

layered porous rocks and heterogeneous fluid saturation. We have used both fluid flow 

and scattering effects to derive a frequency-dependent seismic attribute which is 

proportional to fluid mobility and applied it for analysis of reservoir permeability.  

 

Reservoir model 

The presence of heterogeneities like high permeable channels has a significant impact on 

the flow properties of reservoir rock. Two or more scales of permeability are usually 

observed. Recent studies suggest that even in a “classical” porous rock, such as 

sandstone, the fluid flows through a very small portion of the pore space, while the most 

part of it is in stagnation. A connected system of highly permeable channels, due to 

relatively simple geometry of the pore space, provides the reservoir fluid flow. The rest 

part of the reservoir, due to the tortuous pores and pore throats, is significantly less 

permeable. At the same time, the total volume of highly permeable channels is usually 

small relatively to whole reservoir volume which contains most of the reservoir fluid. 

This contrast leads to the dual medium model of reservoir rock, which was originally 

proposed by Barenblatt et al. (1960). According to this model, the fluid flow in matrix 
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blocks is local. It only supports the local exchange of fluid between individual blocks and 

the surrounding high permeable channels. In a large scale, fluid flows through the high 

permeable channels only. A combination of the Barenblatt’s approach with Biot’s theory 

of elastic wave propagation in permeable porous media leads to a model, which we call 

Biot-Barenblatt poroelastic model. In such model a compression P-wave is a 

superposition of slow and fast waves. For a permeable boundary one has to take into 

account two coupled incident waves, fast and slow. Each of the two coupled incident 

waves, fast and slow, generates a pair of fast and slow reflected and transmitted waves. 

Although the waves are coupled the superposition principle allows for considering each 

incident wave separately. We denote the respective transmission and reflection 

coefficients by TFF, TFS, RFF, RFS, etc. The first and second subscripts denote the type of 

the incident and transmitted (or reflected) waves respectively. For example, RFS denotes 

the reflection coefficient corresponding to fast incident and slow reflected wave. We can 

write the reflection and transmission coefficients for the fast incident wave in an 

asymptotic form (Goloshubin & Silin, 2006): 
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ρ  is the density of pore fluid, κ  is reservoir rock permeability, η  is fluid 

viscosity, ω  is the angular frequency of the signal and i is the imaginary unity.  

 The reflection and transmission coefficients above suggest that the amplitude of the 

slow wave generated by the incident fast wave is small of the order of ε  relative to the 

fast wave because it contents first order term only. The slow wave attenuates strongly. 

Therefore, in a thick layer, its contribution to the reflected signal is exclusively small. 

However, if the layer under consideration is very thin (h<<λ), the slow wave can reach 
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the other boundary and generate two pairs of slow and fast reflected and transmitted 

waves. Asymptotic analysis of the transformations slow-wave-to-slow-wave and slow-

wave-to-fast-wave suggests that the transmission and reflection coefficients include both 

frequency-independent zero order terms and frequency-dependent first order term: 

RSS = R0
S S+R1

SS√ε;   TSS = T0
SS+T1

SS√ε;   RSF = R0
SF+R1

SF√ε;   TSF = T0
SF+T1

SF√ε. 

It means that in case of very thin porous permeable layer we need to take into account 

slow wave phenomenon. The response of a very thin permeable layer is a low-frequency 

resonance of the first order (Fig. 1) due to the slow waves.  

 

Fig. 1. Amplitude resonance of the first order at 8 Hz due to the slow waves: thickness of 
the permeable layer is 0.5 m, permeability k =1D, and viscosity η = 0.003 Pa-s. 
 
 A complete account for the impact of the layered structure of the reservoir on the 

reflection and transmission coefficients requires superposition of the formulas obtained 

here. In particular, for the reservoir model (Fig.2) we need to calculate the reflection 

coefficient from the reservoir top, reflection coefficients from the permeable lenses, and 

reflection coefficient from the reservoir bottom taking into account both transmission and 

absorption losses.  
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Fig.2. Reservoir model of a porous layer (left) with high-permeability lenses (middle) and 
the model response on incident fast P-wave (right): R0 are zero order amplitudes of the 
reflections from reservoir top and bottom; R1

n are first order response from the lens n; t∆  
is two way time thickness of the reservoir, and t∆ n is time delay of seismic response 
from lens n 
 

 In this case the reflection coefficient from the inhomogeneous reservoir with 

number (N) permeable lenses can be written in the form: 
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where ω=2πf is angular frequency, t∆ /2 is time thickness of the reservoir, α(ω) describes 

both transmission energy loses and absorption for reflected fast P-wave from the bottom, 

∆tn and αn(ω) are time delay and transmission-absorption loses for seismic response from 

lens n, R0
FF is reflection coefficient of the zero order from reservoir surface, and R1

n is 

reflection coefficient of the first order from lens n. The functional structure of the result 

has a similar asymptotic form as the formula for reflection coefficient of the fast P-wave 

in case of single permeable boundary. It includes both zero order and first order terms. 

The figure below shows a behavior of the fluid-saturated reservoir reflectivity as a 

function of frequency for a number of high permeable lenses (Fig.3).  

4



 

Fig.3. Reflection coefficient from a fluid-saturated inhomogeneous reservoir with 
different number (0, 5, 10, 20) of permeable lenses. 
 

We can see the influence of the permeable lenses on reservoir reflectivity. There is 

perceptible shift of the first resonance frequencies to low frequency domain if the number 

of high permeable lenses is increased. It demonstrates a possibility for the investigation 

of the reservoir transport properties. 

 

Attribute analysis 

The model (Eq.1) above suggests seismic attributes which depend on the reservoir fluid 

mobility (permeability). In particular, for sediments with low impedance contrast and 

little lateral variation, the seismic amplitude response from reservoir at fixed low seismic 

frequency can be presented in a form: 
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Where α and bn are some constants. The constant α reflects an impedance contrast on 

reservoir surface and bn defines a wait in mechanism of fluid mobility averaging. In case 

of homogeneous fluid saturation, the amplitude response (Eq. 2) becomes proportional to 

average reservoir permeability. Additional transformations produce a base for calculation 

of the attribute which is proportional to weighted reservoir permeability. 

    2

1

2/2 )(])([ ∑
=

− ≈−
N

n
nn

f
L kbeaR

η
ρ

ω π   (3) 

5



To get this attribute we need to choose narrow frequency band wavelet at low seismic 

frequency and do wavelet transform of the reflection from reservoir zone, and also 

provide the additional transformations in accordance with formula (3). In this case the 

constant α plays role of amplitude discriminator and exponential term prescribes phase 

shift.  

 We have investigated the permeability influence on seismic reservoir response 

based on well and 3D seismic data from Kogalym oil field, Western Siberia. The 

structural map of the top of the reservoir with well locations is presented in Fig. 4. 

Mapping of the reservoir depth is based on both well and 3D seismic data. 
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Fig.4. Structural map of the top of the reservoir with well locations (black points). Color 
bar shows the depth in meters. 
 

 In general the reservoir is inhomogeneous. We have used a probability Pi of 

occurrence of a permeable lens within reservoir to characterize reservoir heterogeneity. In 

our case, Pi is equal to the ratio of cumulative effective thicknesses of the permeable 

lenses to the total thickness of the reservoir: Pi = ΣHeff / Htotal. The analysis of the well 

data shows that the weighted average permeability can be separated for two gradations 

within reservoir at least by probability Pi (Fig. 5). First group of the data is concentrated 

within Pi = 0.1-0.3. And second group has Pi = 0.3-0.6. 
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Fig.5 Average reservoir permeability vs. cumulative effective thickness of the reservoir 
can be separated for two gradations: Pi = 0.1-0.3 and Pi = 0.3-0.6 
 

 Seismic attribute calculation was performed using wavelet transform and its 

transformations according to the formula (3). Figure 6 shows the map of seismic attribute 

along the reservoir surface.  
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Fig.6. Seismic attribute map along reservoir surface 

 

Note that the structural map (Fig. 4) is not in agreement with the attribute map (Fig. 6). 

Thus, the structure only does not control the attribute behavior. A comparison of the 
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average reservoir permeability with seismic attribute shows an influence of the 

permeability to seismic data (Fig. 7). If the probability Pi of occurrence of a permeable 

lens within reservoir is order of 0.1-0.3 (first group gradation) there is no possibility for 

reliable permeability prognosis. There is a tight connection between seismic attribute and 

average permeability within second group gradation (Pi = 0.3-0.6). In this case the 

reliability of a permeability prognosis is equal to 0.9. 

 

Fig.6 Average reservoir permeability vs. seismic attribute for different Pi. 

 

 Based on a poroelasticity model of wave propagation and log and seismic data 

analysis we suggest seismic imaging of the reservoir transport properties, in particular 

lateral permeability variations, is realistic. Vertical reservoir heterogeneity plays 

important role. Taking into account the influence of this type heterogeneity may help to 

achieve the best result for mapping of lateral variations of the reservoir permeability 

based on seismic and log data. 

 

Suggested reading:  
“Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks” by 
Barenblatt et al. (Journal of Applied Mathematics, v. 24, 1960). “Velocity and attenuation 
in partially saturated rocks: poroelastic numerical experiments” by Helle et al. 
(Geophysical Prospecting, 51, 2003). “Seismic attenuation in finely layered porous rocks: 
Effects of fluid flow and scattering” by Gurevich et al. (Geophysics, v. 62, No 1, 1997). 
“Frequency-dependent seismic reflection from a permeable boundary in a fractured 
reservoir” by Goloshubin & Silin (SEG Expanded Abstracts, 2006). 
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