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Abstract

The modeling analysis presented in this paper addresses
the question of how to achieve the highest vector sum gra-
dient for all beam currents when individual cavities operate
at different gradients due to their inherent quenching lim-
itations. The analytical method explained here constitutes
a step forward toward the operability of the International
Linear Collider (ILC), Project X [8], or XFEL [7]. Unlike
previously proposed methods [1, 2], this approach prevents
cavities from quenching should the beam current be lower
than its maximum value.

INTRODUCTION

Ideally, all superconducting cavities of a linear accelera-
tor RF station operate at the target gradient (31.5 MV/m for
the ILC). Practically however, cavities show a certain dis-
parity in their gradient performance. Based on the experi-
ence acquired at DESY XFEL [6], we know that some cav-
ities quench or exhibit a Q drop behavior when operating
above 22 MV/m while others will sustain an accelerating
gradient of 34 MV/m. This disparity among cavities raises
challenging issues related to conditioning and operations
of linear accelerators using one klystron per RF station.
More precisely, this paper presents an analytical solution
to the following question: for N cavities with a given max-
imum gradient distribution (i.e. quenching limits), what is
the highest vector sum gradient that can be maintained for
the entire flat top duration with beam or in the absence of
beam, while ensuring that no cavity quenches? Currently,
one approach has been proposed [1, 2] to address this issue
but it only guaranties maximum gradient operability when
the beam current is maximum. A second approach imple-
mented at DESY for XFEL [7] only guaranties maximum
gradient without beam current. In contrast, the method
presented here predicts the maximum vector sum gradient
that can be reached for a given cavity distribution, indepen-
dently of the beam loading.

QL AND PK SETTINGS

The present model consists of a low level RF (LLRF)
controller driving a single klystron, providing the RF for-
ward power to multiple cavities. The amplitude and phase
of the klystron drive signal can be adjusted from the LLRF
controller, the proportion of forward RF power delivered to
individual cavities can be adjusted at the wave guide level
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by tuning the wave guide couplers, (referred to as Pk set-
ting) and at the cavity level by changing the loaded Q of
each cavity’s input coupler, (referred to as QL settings).
Several techniques have been suggested to adjust the for-
ward power distributed to a pair of cavities: variable tap
off splitters [5], or phase shifters modulators [9]. Either
of these techniques require hardware replacement and in-
terrupting accelerator operations for an extended period of
time. Hence, this tuning is considered to be set once and
not changed again. Setting the external Q at the cavity in-
put coupler is an operation which does not require shutting
down the RF station. It is nonetheless a time consuming
procedure and is not practical for large scale machines. Fi-
nally, the LLRF drive signal can dynamically (i.e. during
the RF pulse) control and adjust the amplitude and phase
of the klystron drive signal. The goal of this study is to find
the optimal configuration of these parameters to achieve
the highest vector sum gradient, while respecting the oper-
ational and security constains listed above.

The approach described in [4] consists of choosing QL

and Pk settings specific to each cavity so as to match ev-
ery cavity with maximum beam loading. One major issue
associated with this scheme is that the individual QL and
Pk need to be readjusted everytime the beam loading is less
than maximum which can become a real operation bottle-
neck for large scale accelerators. Alternatively, lowering
the klystron forward power for less than maximum beam
current operations can prevent cavities from quenching but
will significantly degrade the vector sum gradient. In the
DESY approach [7], unless the vector sum gradient is low-
ered, some cavities will quench when the beam is on. The
approach presented here addresses these issues.

ANALYTICAL INSIGHT

Flat top without beam

The voltage inside a superconducting cavity, on reso-
nance and with on-crest beam loading can be modeled as
follows [3]:

VC(t) = 2RL

[
Ig0(1− e−

t
τ )− Ib0(1− e−

t−t0
τ )

]
(1)

where RL is the loaded resistance of the cavity, Ib0 is the
nominal DC beam current, τ = 2QL

ω0
is the cavity time

constant and t0 is the duration of the fill time of the cavity,
after which the forward power is dropped by four when no
beam is present. Achieving a flat top in the absence of beam
is equivalent to a null time-derivative of the cavity voltage
which is obtained when t0 = τ ln 2. The steady state cavity
voltage is then V nobeam

SS = RLIg0, where Ig0 = 2Ibo is the
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nominal generator current. This flat top condition under
no beam is solely function of τ , (i.e indirectly function of
QL). So, setting all cavities to the same QL, and setting the
fill time t0 = τ ln 2 will guarantee a flat top for all cavities
hence for their vector sum.

Flat top with beam
Setting all cavities to the same QL will result in all RL

and all τ being equal. The vector sum can then be simpli-
fied to the following expression:

VS(t) = 2RL(1− e−
t
τ )

1
N

∑

i

Igi − 2RLIb0(1− e−
t−t0

τ )

(2)
The flat top for the vector sum is achieved by annulling
the time derivative of VS(t), which is equivalent to setting
1
N

∑

i

Igi = 2Ib0. Using the notation Igi = αiIg0, the flat

top condition for the vector sum with beam becomes

1
N

∑

i

αi = 1 (3)

The no-quench guarantee
When the beam is on, a cavity which receives less (more)

than the nominal generator current, αi < 1, (αi > 1) sees
its voltage drop (increase) during beam loading. Compar-
ing the cavity voltage at the beginning (end) of the beam
loading against the cavity quenching gradient can deter-
mine whether the quenching limit has been exceeded, as
illustrated in Fig.1. From Eq.1, and by introducing the fol-

Figure 1: Quenching limits as a function of Igi.

lowing notation for the flat top duration TFT = t1 − t0 =
τ ln β, the cavity voltage at the begining and at the end of
the beam loading are VCi(t0) = 2RLαiIb0 and VCi(t1) =
2RLIb0

[
αi(2− 1

β )− (1− 1
β )

]
. For cavities operating be-

low (above) the vector sum, the no-quenching condition is
equivalent to having VCi(t0) ≤ Vqi, (VCi(t1) ≥ Vqi),
where the Vqi’s are the cavity quenching limits. Introduc-
ing the following notation,

α−i =
Vqi

2RLIb0
(4)

α+
i =

[
Vqi

2RLIb0
+ (1− 1

β
)
]

β

2β − 1
(5)

the maximum gradient corresponding to the critical
quenching case is reached when the cavities operating be-
low (above) the vector sum have αi = α−i (αi = α+

i ). One
can note that α−i and α+

i are monotonous in Vqi and that
for a cavity operating at the vector sum gradient, we have
α−i = α+

i = 1. Hence, choosing αlim
i = min{α−i , α+

i }
for every cavity will guaranty that no cavity quenches. Nor-
malizing all αi’s by ᾱ = 1

N

∑

i

αlim
i will guaranty that

their arithmetic mean is unity. Assuming ᾱ ≥ 1, the nor-
malized αi = αlim

i

ᾱ now verify Eq.3, 4 and 5, resulting in
a flat vector sum and no quench. With this choice of αi’s,
the steady state vector sum with beam is V beam

SS = 2RLIb0,
also equal to the flat top gradient in the absence of beam.
Furthermore, the critical case of ᾱ = 1 corresponds to the
maximum flat vector sum without a cavity quench.

RESULTS

In the ILC baseline design, each RF station comprises of
26 cavities in pairs. Unless specified otherwise, the simu-
lations in this work follow the gradient distribution intro-
duced in [4] consisting of 13 cavities with maximum gradi-
ents uniformly distributed between 22 and 34 MV/m. The
amplitude plot of Fig. 2 is obtained maximum beam cur-
rent (a) and no beam (b). Individual quenching gradients
are indicated with dashed lines, while the vector sum gra-
dient is shown with a thicker trace. As this result illustrates
the critical case of ᾱ = 1, under maximum beam, Fig. 2(a),
the cavities with a gradient below (above) the vector sum
reach their quench limit at the begining (end) of the beam
time. In the no-beam case, Fig. 2(b), the cavities operating
below the vector sum are at their quenching limit while the
cavities above do not reach their own limit. These two plots
illustrate the extreme cases. Any intermediate beam current
would result in all cavities running below their quenching
limits at all time. The maximum vector sum gradient VS

is a function of the cavity gradient distribution and of the
beam time duration. In the example of Fig. 2, a maxium
vector sum of 27.1 MV/m is found. This is approximately
97% of the intrinsic limit gradient of 28 MV/m. A higher
maximum vector sum gradient can be reached as the cavity
spread decreases. A uniform spread of 6 MV/m centered
around 28 MV/m yields a vector sum of 27.6 MV/m (or
98.6% of the limit gradient). The distribution of the cavity
gradients within a given range also has an impact on VS .
A more realistic distribution than that used in the previous
example would be where the larger portion of the cavities
have a quenching limit close to the average of 28 MV/m,
while a few ”extreme” cavities would perform at the lower
or higher end of the distribution. A such ”gaussian-like”
cavity gradient distribution for the same spread yields a
vector sum typically above 98% of the limit gradient. This
is illustrated in the first two rows of Table 1, showing the
maximum vector sum gradient obtained for two cavity gra-
dient distributions, spread between 22 and 34 MV/m.

A significant improvement of this present scheme with
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(a) maximum beam current: 9 mA
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(b) no beam loading

Figure 2: Amplitude plot for 13 cavities with (a) and with-
out (b) beam.

Table 1: Impact of the distribution of cavity gradients

uniform gaussian

VS 27.1 27.5 [MV/m]
VS/Vlim 96.8 98.2 [%]

P ∗fwd 6.65 6.62 [MW]
P ∗ref 0.039 0.020 [MW]
∗power calculated for 26 cavities

respect to [1, 2] is the reduced reflected power during the
beam time. For 26 cavities, the reflected power is reduced
by more than 400 kW compared to that calculated with the
previous scheme. The plot of Fig. 3 shows the variations of
the maximum vector sum gradient as a function of QL. As
QL is increased the vector sum improves until the quench-
ing limit is reached. Setting the cavities to a higher QL is
possible so long the overall forward power is reduced to
avoid a cavity quench. However, this has a negative im-
pact on the vector sum gradient VS which starts to decrease
once the critical QL value is passed. Also shown in Fig. 3
is the total reflected power Pref summed for 13 cavities
and over the duration of the flat top. As can be seen, the
QL value maximizing the vector sum is also the optimal
QL minimizing the reflected power.

CONCLUSION

A method to calibrate N superconducting cavities with
any gradient disparity is proposed in this report. This ap-
proach provides the optimal coupler and power settings and
is applicable for any large scale linear accelerator where a
single-klystron/multiple-cavities scheme is used. The com-
plete analytical derivation for this method is exposed and
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Figure 3: Variations of the vector sum gradient VS and the
total reflected power Pref as a function of QL.

explained in details. For a given distribution of quenching
limits, choosing the optimal QL for all cavities provides
the highest vector sum gradient, guaranties that it will re-
main flat under any beam or no beam condition, and that
no cavity will quench during operation. Depending on the
cavity distribution, accelerating gradients over 98% of the
intrinsic limit can be reached. As a by product, the reflected
power is greatly reduced during the beam time. This con-
stitues a more efficient way of accelerating the beam.
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