

SANDIA REPORT
SAND2008-6172
Unlimited Release
Printed August 2008

Parallel Computing in Enterprise Modeling

 Rob Armstrong, Benjamin Allan, Michael Goldsby, Zachary Heath, Max Shneider, Keith
Vanderveen

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNT Digital Library

https://core.ac.uk/display/71320351?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Issued by Sandia National Laboratories, operated for the United States Department of Energy

by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United

States Government. Neither the United States Government, nor any agency thereof, nor any

of their employees, nor any of their contractors, subcontractors, or their employees, make any

warranty, express or implied, or assume any legal liability or responsibility for the accuracy,

completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-

resent that its use would not infringe privately owned rights. Reference herein to any specific

commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,

does not necessarily constitute or imply its endorsement, recommendation, or favoring by the

United States Government, any agency thereof, or any of their contractors or subcontractors.

The views and opinions expressed herein do not necessarily state or reflect those of the United

States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best

available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy

Office of Scientific and Technical Information

P.O. Box 62

Oak Ridge, TN 37831

Telephone: (865) 576-8401

Facsimile: (865) 576-5728

E-Mail: reports@adonis.osti.gov

Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce

National Technical Information Service

5285 Port Royal Rd

Springfield, VA 22161

Telephone: (800) 553-6847

Facsimile: (703) 605-6900

E-Mail: orders@ntis.fedworld.gov

Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
EP

ARTMENT OF ENERG
Y

• •U
N

IT
ED

STATES OF AM

ER
I C

A

2

SAND2008-6172
Unlimited Release

Printed August 2008

Parallel Computing in Enterprise Modeling

Robert C. Armstrong, 8961,rob@sandia.gov
Benjamin A. Allan, 8961,baallan@sandia.gov
Michael E. Goldsby, 8116,megolds@sandia.gov

Zach Heath, 8964,zheath@sandia.gov
Max Shneider, 8962msshnei@sandia.gov

Jaideep Ray, 8964jaray@sandia.gov
Keith B. Vanderveen, 8116,kbvande@sandia.gov

Abstract

This report presents the results of our efforts to applly high-performance computing to entity-
based simulations with a multi-use plugin for parallel computing. We use the term ‘Entity-based
simulation’ to describe a class of simulaton which includesboth discrete event simulation and
agent based simulation. What simulations of this class share, and what differs from more tradi-
tional models, is that the result sought is emergent from a large number of contributing entities.
Logistic, economic and social simulations are members of this class where things or people are
organized or self-organize to produce a solution. Entity-based problems never have ana priori
ergodic principle that will greatly simplify calculations. Because the results of entity-based simu-
lations can only be realized at scale, scalable computing isde rigueur for large problems. Having
said that, the absence of a spatial organizing principal makes the decomposition of the problem
onto processors problematic. In addition, practitioners in this domain commonly use the Java pro-
gramming language which presents its own problems in a high-performance setting. The plugin
we have developed, called the Parallel Particle Data Model,overcomes both of these obstacles
and is now being used by two Sandia frameworks: the Decision Analysis Center, and the Seldon
social simulation facility. While the ability to engage U.S.-sized problems is now available to the
Decision Analysis Center, this plugin is central to the success of Seldon. Because Seldon relies on
computationally intensive cognitive sub-models, this work is necessary to acheive the scale neces-
sary for realistic results. With the recent upheavals in thefinancial markets, and the inscrutability
of terrorist activity, this simulation domain will likely need a capability with ever greater fidelity.
High-performance computing will play an important part in enabling that greater fidelity..

3

Acknowledgment

Many thanks go to Eric Parker and the Seldon crew for the opportunity to extend this work to social
systems modeling.

4

Contents

Preface 8

Summary 9

1 Introduction 11

2 Related Work 13

3 Architecture 15

3.0.1 Data and Particle Fields 16

3.0.2 Communication implementation 18

4 Example Simulations 21

4.0.3 Spread of disease in a 2-species population 21

4.0.3.1 Disease model 21

4.0.3.2 Movement model 22

4.0.3.3 Disease Model Implementation and Scaling 22

4.0.4 Seldon 24

4.0.5 Parallel Social Forces 27

5 Codebase 31

5.0.6 Build Tool 31

5.0.7 Development Environment 32

5.0.8 Java and Parallel Computing 32

5.0.9 Launching the PPDM 34

5

6 Integration 37

6.0.10 HLA 37

6.0.11 RePast 39

7 Improvements/Limitations 43

8 Conclusion 45

References 46

Appendix

A Publications 51

B Parallel Particle Data Model 53

B.1 Introduction 54

B.2 Related Work 55

B.3 Architecture 56

B.4 Example Simulations 59

B.5 Integration 65

B.6 Conclusion 66

6

List of Figures

3.1 Box Domain Model 16

3.2 Graph Domain Model 17

3.3 Visitor Algorithms 18

3.4 Particle Algorithm Output .. 18

3.5 Particle Movement 19

3.6 Shadow Data Update 19

4.1 Disease Strong Scaling 23

4.2 Disease Weak Scaling (Cell Size) 23

4.3 Disease Weak Scaling (Num Cells) 24

4.4 Disease Performance (Cell Size) 25

4.5 Disease Performance (Cell Size log/log) 25

4.6 Disease Performance (Num Cells) 26

4.7 Disease Performance (Num Cells log/log) 26

4.8 Seldon Strong Scaling 29

4.9 Seldon Weak Scaling 29

4.10 Social Forces Example .. 29

5.1 Launch Diagram 35

6.1 Single Machine 38

6.2 External Machine/Cluster Connection 39

6.3 Cluster 40

7

Preface

The practice of modeling and simulation, or more specifially, enity modeling is as old as digital
computers. Because the most common application is complex systems and emergent behavior
from a large number of contributing entities, scale is naturally a concern. There is no natural limit
for this type of simulation; if a model that tracks every person in a county is relevant, the model that
tracks every person in the state, country or world is also relevant. Because emergent behavior from
complex systems is, absent other information, dependent onall scales, the larger the system the
more accurate the solution. So there is an implicit need for computational methods and algorithms
that provide scalability to entity simulations. The purpose of this work is to create a plugin toolkit
that brings scalable high-performance computing to agent-based modeling.

At this point (September 2008) we have two major consumers ofour technlogy: the Decision
Analysis Center (DAC) framework and the Seldon Social Simulation framework. While the prob-
lems that justify high-performance computing for DAC have yet to materialize, the results of this
work, the Parallel Particle Data Model (PPDM), is nothing less than enabling for Seldon. It is
hard to imagine that entity-based modeling will not requirethe capabilities of high-performance
computing as models require more fidelity and thus become more complex. It is our hope that this
work will put Sandia in a better position to take advantage ofthis future.

8

Summary

We present the design and performance of a parallel entity simulation framework called the Paral-
lel Particle Data Model (PPDM). Based loosely on a Particle-In-Cell algorithm, the PPDM orches-
trates and supports agent-based simulations on a parallel high-performance platform. The PPDM
is targeted at social simulation applications and is designed to be portable to a variety of high-
performance platforms. In this paper we show that the PPDM performs well for two agent-based
simulations on a clustered platform. We hope that this work will form the cornerstone of a reusable
toolkit for modeling and simulation.

9

10

Chapter 1

Introduction

Enterprise modeling, social simulation, system-of-systems war gaming, and related techniques
simulate complex environments and systems (hereafter referred to as Human Dynamical Systems
(HDS)) and compute observables which manifest themselves primarily as emergent phenomena.
To improve fidelity of these HDS systems, increasingly largecomputations are needed and are
accessible only through high-performance computing (HPC).Computer-based simulation of HDS
has long been used within the military for war games, to carryout training, assess new technolo-
gies, and evaluate tactics. Recently, the Department of Homeland Security (DHS) and other federal
agencies charged with disaster preparedness and response have embraced simulation for modeling
a variety of complex phenomena including response to attacks by Weapons of Mass Destruction
(WMD) and natural disasters. Sandia National Laboratories has developed a number of simula-
tion applications to support different programs examiningWMD countermeasures and concepts of
operation, defense applications, terrorist networks, andeconomic consequences from natural dis-
asters or terrorism affecting critical infrastructures. These simulation applications differ in several
respects, yet they share an underlying commonality: all concern themselves with modeling com-
plex ”systems of systems” where the system components are discrete (such as people, autonomous
land vehicles, or companies) and interact in highly complexways with other system components.
Historically, modeling of HDS has not taken advantage of parallel processing hardware or tech-
niques. There are at least two reasons for this:

1. The phenomena in question was not modeled at a fidelity thatwould require the extra com-
plication of parallel computing.

2. The history of simulation of HDS has favored developer friendly environments, use of widely
available computing hardware and software, and incorporation of sophisticated graphical
user interfaces (GUIs) over speed of execution. This emphasis on rapid deliverables portable
to a wide variety of platforms led to the use of virtual machine-based languages such as Java,
Python, and Tcl over C and C++, because most programmers are much more productive in
these languages. Most programming for high performance parallel processor systems has
taken place in languages like C, C++, and (historically) FORTRAN because they give the
programmer fine-grained control over allocation of memory and other processor resources.

Increasingly, however, HDS must reproduce significant phenomena/effects at credible fidelity
while being fast enough to enable human-in-the-loop and timely batch-oriented analysis. Recently

11

developed requirements for the next generation of social simulation applications have shown that
the current capability, based on conventional computing architectures, falls short in both respects,
requiring extension to HPC platforms using parallel processing. Also, improvements to Java and
other virtual machine-based languages have made them more attractive in the domain of high
performance computing.

We have developed components and tools for HDS simulation methods in a parallel HPC set-
ting. In particular, we are addressing the challenges outlined above:

1. Create a portable, scalable, and general software engine for particle simulations. Referred to
as the Parallel Particle Data Model (PPDM), it is a facility for multi-use in agent-based HDS
simulations.

2. Ensure the PPDM will be compatible with the developer friendly Java language for which
Sandia already has a considerable investment. It bridges the gap between this rapid develop-
ment language and traditional HPC languages like C/C++.

3. Develop and demonstrate this new capability by prototyping a large-scale homeland security
simulation (crowd dynamics, disease propagation, etc.). Show the new capability to possible
sponsors and gain visibility in the community.

4. Engage external research community through presentations and publications.

5. Identify synergistic R&D efforts within the laboratory and develop those partnerships. Spe-
cific leveraging opportunities include (1) prototype use ofthe PPDM in existing Decision
Analysis Center (DAC) applications, and (2) demonstrate PPDMin a high performance par-
allel Seldon computation.

The principle research objective of this LDRD was to create a code facility for particle cal-
culations processor/data decomposed using geometry, similar to Particle-In-Cell (PIC) algorithms.
The original research goals are accomplished and a paper wasaccepted and presented to the 2nd
World Congress on Social Simulation. This code facility has also been integrated into a number of
Sandia projects (Seldon, PopulationDAC, DavisDAC, BioDAC andLMSV).

12

Chapter 2

Related Work

Many simulations have been created to study complex Human Dynamical Systems. Two excel-
lent examples originally developed at Los Alamos National Laboratories and now hosted by Vir-
ginia Tech’s Network Dynamics and Simulation Science Laboratory include TRANSIMS[3] and
EpiSims[4]. TRANSIMS uses detailed urban travel data to model transportation networks and can
model the effects that changes to those networks will have ontraffic. EpiSims uses that same travel
data to model disease epidemics and can be used to test publichealth mitigation strategies. An-
other example of work in this arena is Generative Social Science, which uses simulations to help
discover the underlying dynamics of complex social systems[12]. In this work Epstein makes a
hypothesis of the sets of rules that govern a given dynamic social system. An agent-based model
(ABM) implementation of those rules is then created and the results are measured against historical
data. The closeness with which the generated data matches the historical data gives credibility to
the hypothesized rules. During the span of this LDRD Joshua Epstein along with Jon Parker and
fellow colleagues at the Brookings Institution developed the Large-Scale Agent Model [26]. This
a flexible, large-scale, distributed agent based epidemic model that is able to simulate the spread
of a disease on the scale of several hundred million agents using parallel processing. The model is
being further refined to allow the simulation of billions of agents.

As the modeling of HDS has grown in popularity, a number of reusable agent-based modeling
toolkits have emerged to simplify the work of the developer.RePast[9] is arguably the most pop-
ular framework in the ABM community and provides developers with libraries for agent creation,
event scheduling, and data charting and visualization. Mason[22] provides similar functionality but
focuses more on light-weight models meant to be run many times for Monte Carlo-type studies.
While these toolkits can be run in a parallel batch mode on a clustered environment, neither toolkit
lends itself for use developing models that run singularly in parallel across a cluster of computers,
thus limiting the size and complexity of such models.

The PPDM in its present form operates in a time-stepped fashion. Discrete event simulation
(DES) provides a different time management paradigm for simulation. Instead of advancing time
in globally synchronous fixed steps, DES advances the local simulation time to the exact time of
the next local event. DES scheduling delivers events in timestamp order at all nodes allowing it
to achieve performance gains if the simulated events are irregularly spaced in time or space. The
greatest successes of DES to date have been in the areas of network simulation and war gaming.
Several frameworks and systems have been created to supportthis. The High Level Architecture
(HLA) standard[16] specifies an API for distributed DES thathas seen wide use, particularly in

13

work done for the Department of Defense. An example of parallel DES (PDES) used for social
simulation is the SCATTER traffic simulator[28]. PDES scheduling has also provided time man-
agement for an agent-based simulation system[19]. Applications using PDES have scaled to over
1500 nodes[15]. In an exceptional scaling exercise, Perumalla[29] ran a test program on 16384
nodes of a Blue Gene supercomputer. Though the PPDM in its present form makes no use of DES
concepts, we envision future DES extensions. To our knowledge, no agent-based simulation sys-
tem in widespread use provides the distributed synchronization needed for true PDES scheduling.

In a work that highly influenced our design, a more traditional particle-in-cell based, time
stepped model was used for simulating the evacuation of large crowds in a building environment[30].
In this work, the Social Forces algorithm was implemented such that the simulated geometry and
populations were divided up among a cluster of computers. In[31] a similar approach was used
for large crowd simulation but made novel use of the PlayStation 3’s high performance Cell archi-
tecture.

14

Chapter 3

Architecture

In our work modeling various HDS, we identified a great deal offunctional commonality in our
simulation codes. We also observed that future simulationsin the problem domain would be grow-
ing in population size and complexity. This led us to create the Parallel Particle Data Model
(PPDM), a Java-based, reusable programming toolkit that supports HDS simulations and can scale
to a large number of processors.

The HDS simulated by Sandia are generally composed of large populations of agents (people,
vehicles, etc.) spread across a geography of segmented locations such as cities, census tracts, or
even households and businesses. Each location contains a set of agents that are able to interact
with each other as well as with agents in neighboring locations. The agents can move between
locations as time evolves. Various modules of the simulation need to update or gather information
from the agent populations in different ways based on the phenomena they model. Examples
include infection of people due to a biological hazard plumeor detection that a car should trigger
a radiation sensor alarm.

We designed the PPDM to accommodate this method of interacting with the simulated pop-
ulations while operating in a distributed environment. ThePPDM uses a particle-in-cell (PIC)
data structure which divides the simulated geography into cells that contain populations of agents.
The PPDM then distributes these cells across a number of processors. Agents directly affect other
agents residing in the same or neighboring cells. Non-neighboring particles can interact through
special, less efficient mechanisms.

Even though Java is not renowned for its high performance computing capabilities we chose
it as the PPDM’s implementation language. The primary reasons were to support legacy code, to
utilize existing programmer skill sets and to provide ease of development. Evolving improvements
to the JVM’s performance and extensive open source code libraries, including several new high
performance communication libraries, have also increasedits attractiveness. The end result is that
Java tools can provide a portable and easy to use framework for high performance computing.

To make use of the PPDM, the user must first define the geometry of the problem domain.
Currently, we have implemented two types of geometry. A user can specify either an n-d lattice
(Figure 3.1) or a graph of cell locations (Figure 3.2). Alongwith the geometrical structure,
the user must define the number of functional patches into which they would like the geometry
broken. A patch represents a grouping of cell locations thatare guaranteed to be collocated on the
same processor. Each processor is allocated a number of patches to process. Modelers write their

15

Figure 3.1. Box Domain Model

algorithms and agent update code to work on a patch-by-patchor cell-by-cell basis which enables
the PPDM to distribute the user’s program across many processors.

3.0.1 Data and Particle Fields

After specifying the domain geometry, modelers define multiple data and particle fields across this
geometry. A data field holds a single unit of data (such as an int or float) for each cell in the
domain, while a particle field allocates to each cell in the domain a list-like data structure called
a particle set. The particle set data structure allows the modeler to store and organize agents and
provides other useful utility functions. In creating a dataor particle field, the modeler specifies a
locality stencil for that field. This defines each cell’s local data neighborhood within the overall
defined geometry. In the case of 2-d lattices, a modeler will commonly specify a 4 point stencil
in which a cell’s neighbors include adjacent cells to the north, east, south, and west. In a graph
geometry, on the other hand, the graph structure directly determines cell neighborhoods. The local
neighborhood defines a region of shadow data that each patch must make available to the cells
it maintains. Shadow data is a read-only copy of neighboringcell’s data. After doing a shadow
update for a particle field, each patch will have the data for the cells it maintains as well as a read-
only copy of data from its neighboring cells that are maintained by other patches. If a patch has
neighboring cells that are located on another processor, data communication must take place. The
transfer of shadow data enables the simulation to update agents’ state using data from their own
cell as well as neighboring cells. This method is similar to that used in a parallel implementation
of the social forces model [30]. The shadow data construct isoptional. If a particular domain does
not need to have neighbor cell interactions this feature canbe disabled. To summarize, a processors
will be allocated a number of patches. Each patch is composedof a number of cells. Each cell
contains a number of particles or agents.

16

Figure 3.2. Graph Domain Model

While processing the agents, modelers also have the ability to schedule the movement of agents
from cell to cell. This cell movement can span patches and processors. The PPDM takes care of the
actual movement of the agents and transfer of shadow data. Ifthe modeler guarantees that particle
movement only occurs between neighboring cells, the PPDM can make optimizations that reduce
the amount of communications needed between processors, thereby allowing greater speedup. The
PPDM’s capabilities hide a lot of parallel processing complexity from the modeler.

To better enable parallel processing, the PPDM limits the modeler’s interaction to the data
and particle fields by allowing only cell-by-cell or patch-by-patch access to the data. A modeler’s
algorithms have full access to all agents owned by the patch they process, as well as read access
to agents of neighboring cells of that patch. The PPDM’s feature set encourages modelers to build
their algorithms with locality in mind. This allows the algorithms and data to be more easily and
efficiently distributed across multiple processors. From our experience in prior simulations, we
consider this restriction acceptable. We also offer various convenient yet less efficient mechanisms
to handle global communication between processors.

Several patterns for interacting with the particle populations are available. The most common
method of particle access is to submit particle algorithms to the PPDM (Figure 3.3). Particle
algorithms are data structures that implement the visitor pattern. When particle algorithms are
submitted to the PPDM, the PPDM duplicates them across all processors and schedules them to
be executed at regular intervals. The algorithms visit eachcell or patch owned by the processors
on which they are located and perform their needed operations on the contained agents. The
particle algorithms can optionally coordinate with their copies on other processors and send back
aggregated data to their parent modules or other subscribing particle algorithms (Figure 3.4).

In our simulations, various modules work together in a decoupled manner by submitting parti-
cle algorithms that enforce their desired behavior or area of concern on the agents. This deviates
from standard agent-based techniques, which initialize the agents with a given behavior and state
and allow the agents to evolve their state. This difference arises because the PPDM grew out of
our experience with prior simulations composed of separatemodules that ran on their own Java

17

Figure 3.3. Visitor Algorithms

Figure 3.4. Particle Algorithm Output

virtual machine. Each of these modules needed to interact with the population. Rather than mov-
ing the population data to each of the modules, we allowed themodules to move their code to
the population data. This is similar to how distributed systems interact with a common database
through sql or stored procedure calls. One can duplicate themore traditional agent update behavior
in the PPDM through the use of a simple particle algorithm that calls an update method on all or
a selected number of the agents at scheduled intervals. The agents themselves would contain all
of the logic needed to interact with neighboring data and agents and perform all necessary updates
and movement. Another alternative would be to have the various modules inject differing behavior
strategy objects into the agents upon initialization whichwill eventually be called during updates.
Dynamic languages like Ruby would provide an ideal environment for this technique.

We are also looking into incorporating patch-based event queues into the PPDM to allow
for algorithms or agents themselves to make use of the discrete event simulation programming
model[16]. The queues would allow the PPDM to dynamically adapt its updates to the resolu-
tion needed by the particular model being studied and could result in great compute time savings.
However, since the PPDM operates in a distributed fashion such an addition would require some
additions for synchronization.

3.0.2 Communication implementation

The PPDM uses the MPI model for parallel data communication.Communication occurs between
copies of particle algorithms running on differing patches, when agents move between cells owned

18

Figure 3.5. Particle Movement

Figure 3.6. Shadow Data Update

by different processors, and to update shadow data located on neighboring processors.

When necessary, the particle algorithms communicate and coordinate with each other across
patches using standard parallel processing messaging suchas the MPI broadcast and reduction
methods. We have provided modelers with simplified interfaces to these functions. We have also
implemented a messaging service to allow agents to communicate with other agents that are not
located on their patch. The PPDM organizes and sends messages using a regularly occurring batch
update process. The messaging service is optional and when in use it requires additional overhead
because it must track agent locations to enable routing.

The PPDM handles particle movement during a regularly scheduled batch update where all
processors work together to redistribute agents to the correct locations (Figure 3.5). We handle
copying of shadow cell data for neighboring cells in a similar manner. This requires the various
processors to remain synchronized in time (Figure 3.6).

19

Modelers can configure the PPDM to make use of mpiJava [2] or MPJ Express [23] for the
MPI services. Both of these are object-oriented implementations of the MPI protocol using the
Java programming language. They differ in that mpiJava provides a JNI wrapping over a native
MPI environment (such as MPICH or LAM), while MPJ Express is a complete implementation
of the MPI protocol using only Java. We found MPJ Express to befar more portable and easier
to use since it removes the native MPI compilation and integration steps. In Java, serialization of
object data to byte data is a major cpu cost. We hope that custom serialization code will reduce
some of this cost and are looking into the serialization and communication libraries from the Ibis
project[7].

20

Chapter 4

Example Simulations

In this section we demonstrate the use of PPDM in three different examples and conclude with
an illustration of its parallel capabilities. The problemshave been formulated in an agent-based
fashion, but carry a PIC flavor in the sense that agents/particles are collated into “bags”/cells with
in-cell (in-bag/near-field) behavior modeled at a far greater fidelity than the far-field (out-of-bag)
behavior.

4.0.3 Spread of disease in a 2-species population

This example approximates the spread of a disease in two separate species, humans and (non-
human) primates, with primates acting as a reservoir for thepathogen. The pathogen, modeled
loosely on Ebola, is communicable within each of the speciesand is also capable of primate-to-
human jumps. This example models both humans and primates asindividual agents. A number
of primates and humans are collocated into settlements where humans may come in contact with
primates and contract the disease. Both humans and primates may move between cells, though
primates’ movements are significantly more circumscribed than humans.

4.0.3.1 Disease model

In this work we use a compartmental disease propagation model. Both the humans and the primates
go through five compartments/states of health - Susceptible(S), Exposed (E), Mildly Symptomatic
(MS), Severely Symptomatic (SS), and Recovered/Dead (R/D). The residence time in each of these
states of health is a random variable, which follows a distribution (usually log-normal). The process
of infection of humans is governed by their contact with other humans, cadavers and primates, i.e.
it depends on their closeness of contact and the probabilityof meeting an infected individual,
primate or cadaver. Transmission within the primate population is entirely by contact. We will
assume that both the Mildly Symptomatic and Severely Symptomatic stages are contagious, for
both humans and primates.

21

4.0.3.2 Movement model

We assume that there existM human settlements, each containing a number of primates. Inter-
actions between human and primate occur between those present in the same settlement. The
human and primate populations in each settlement are drawn from the log-normal distribution
L (Nmedian,S), whereNmedian is the median andS the standard deviation. In each settlement we
use a median of 1000 and standard deviation of 500 for the human population and a median of 50
and standard deviation of 12.5 for the monkey population.

For each settlement we define a mobility factorMh andMm for the human and monkey pop-
ulations. This mobility factor determines the percentage of each population that will relocate on
a given movement step. The indexing of settlements reflects geographical proximity. Primates
travel to other human settlements primarily because of proximity. Once the connection routes are
determined, a settlement’s mobile population is distributed across its connecting settlements using
the above probabilities as a weighting factor.

The model can be configured with two modes of population movement. In the first, agents are
assigned a fixed day-night routine. In the second mode, agents move randomly several times a day
to connected settlements using the above probabilities andweights, and at night they return to their
home settlement. Mildly symptomatic individuals move, butseverely symptomatic ones do not.

4.0.3.3 Disease Model Implementation and Scaling

The disease model initializes the PPDM with a 2-d lattice geometry. The model represents each
settlement by a cell in the lattice where a cell is given an x and y location to determine its distance
from other cells. We initialize two separate particle fieldsfor the human and monkey populations.
We submit four configurable particle algorithms to the PPDM to evolve the disease agents. These
algorithms create the initial population distributions, initialize the agent movement patterns, per-
form agent movement at a set rate, and evolve the disease state of the agents. The algorithms are
modular and can be replaced with different implementationsof varying complexity to study how
changes to the population or disease dynamics effect the outcome of the epidemic. For this model,
two types of inter processor communication take place. During agent movement some agents will
need to relocate to neighboring processors, and after each disease update the master disease algo-
rithm coordinates with its neighbor algorithms to output the aggregated disease statistics for that
time.

We performed experiments testing both the strong and weak scalability of this model on the
PPDM. In the strong scaling test, we initialized the population with a fixed 2,048 settlements, each
containing an average population size of 1,000 for a total population of 2 million agents. We then
varied the number of processors allocated to the PPDM and ranthe simulation for a simulated 2
months. Figure 4.1 shows the results of the strong scaling test. The results show near-ideal scaling
up to 16 processors, after which the particular problem setup begins to scale poorly. This poor
scaling results because we keep the problem size fixed. As we increase the number of processors,
each processor has less to do and communication and synchronizations costs take over.

22

In the weak scaling test, we initialized the population witha fixed 2,048 settlements. We then
scaled the population size up linearly with the number of processors allocated to the PPDM so
that each processor would maintain a fixed number of agents. We ran the model for a simulated
2 months. The Estimated Single-Node plot line represents the expected time that a single node
would take to perform the problem size if it had infinite memory and did not succumb to non-
linear effects. Under the weak scaling case where the problem size grows with the number of
allocated processors, we achieve fairly good scaling with the 64 node case within twenty-five
percent of the ideal result. We see this good scaling becausethe communication load for each
processor is balanced by the increasing computational load. These results show that we can scale
up our modeled size by increasing the available number of processors. Figure 4.4 shows a further
exploration of the scaling data space. For a given processorallocation we plot the timing response
for problems of increasing scale. The problem size represents a linear scaling of the population
allocated to each cell while the number of cells remains fixed. Missing data points exist when a
problem size is too large for the number of allocated processors.

To further test the weak scaling of the PPDM, the disease model’s problem growth strategy
was modified. In this case as the number of processors was increased the population per cell was
kept constant but the number of total cells allocated was increased linearly. This led to a fixed
number of cells and people allocated per processor. The simulation run time was also increased
to 3 months to mask some additional initialization costs. Figure 4.3 shows the resultant weak
scaling numbers. Figure 4.6 shows additional plots of the cell based scaling of the disease model.
Surprisingly, the scaling results are quite a bit worse for this case. Even though the scaling results
show that the problem complexity does scale linearly for a given processor allocation, the run times
for a given problem size are much greater than ideal between processor allocations. We have yet to
determine the cause for this deviation from the previous weak scaling case as the communication
loads between processors are similar. Despite the worse results, this level of scaling is still useful
because it allows one to run problem sizes much larger than what can be run on a single processor.

 1

 10

 100

 1000

 1 10

T
im

e(
s)

Number of Nodes

Ebola Model
Ideal

Figure 4.1. Disease Strong Scaling

 300

 400

 500

 600

 1 10

T
im

e(
s)

Number of Nodes

Ebola Model
Ideal

Estimated Single-Node

Figure 4.2. Disease Weak Scaling (Cell Size)

23

 700
 800

 1000

 2000

 3000

 4000

 1 10

T
im

e(
s)

Number of Nodes

Ebola Model
Ideal

Estimated Single-Node

Figure 4.3. Disease Weak Scaling (Num Cells)

4.0.4 Seldon

Cognitive Seldon is a software toolkit that combines technology and concepts from a variety of
different research areas, including psychology, social science, cognitive science, and agent-based
modeling and simulation. It has been used to study urban gangrecruitment and terrorist network
recruitment. This second example demonstrates the utilityof Cognitive Seldon and the PPDM in
analyzing the effect of media on populations.

Previous uses of Seldon involved rather few (O(103)) agents, and serial implementations gen-
erally sufficed. However, large agent populations were required to study the effect of media, which
in turn required parallel computing. Further, the individual agent models were enhanced to include
a cognitive model. The cognitive models are essentially semantic graphs of concept activations
and edge weights that allow for realistic processing of media information. They lead to an increase
in the computational intensity of individual agents, further spurring the need for parallelization.

Cognitive Seldon has two types of agents: individuals and abstract. Abstract agents represent
social or institutional concepts that can influence an individual (e.g. schools and mosques). Since
they contain a set of individual agent members, they can be highly-connected nodes in the overall
structure. For this reason, we have distributed the abstract agents across the processors to avoid
bottlenecks. They interact with the local individuals and then communicate across processors to
synchronize their state.

An interaction between two agents involves significant processing. Sets of attributes are ex-
changed and modified according to linear attraction and reinforcement rules. Concept activation
vectors are also exchanged, causing nodes to fire in the semantic graphs, and thereby changing
their cognitive states.

The simulation commences with an unconnected set of agents.Homophily is used as the basis

24

 0

 200

 400

 600

 800

 1000

 10 20 30 40 50 60 70

T
im

e(
s)

Problem Size

1 proc
2 proc

2 proc ideal
4 proc

4 proc ideal
16 proc

16 proc ideal
64 proc

64 proc ideal

Figure 4.4. Disease Performance (Cell Size)

 100

 1000

 10 100

T
im

e(
s)

Problem Size

1 proc
2 proc

2 proc ideal
4 proc

4 proc ideal
16 proc

16 proc ideal
64 proc

64 proc ideal

Figure 4.5. Disease Performance (Cell Size
log/log)

of attraction, and relationships form as interactions proceed. Each agent has a maximum amount
of relationship energy, thus providing a flexible cap for either a large number of weak relationships
or a small number of strong relationships. Agents also have personality factors, which affect their
interactions. For instance, an extroverted agent might interact more than an introverted agent. As
relationships evolve, social networks form, ranging from acquaintances to cliques. These, in turn,
drive subsequent interactions, so that agents are more likely to interact with close friends in cliques
than acquaintances.

Each timestep in the algorithm consists of a couple of steps.First, the individual agents de-
termine their membership with the abstract agents, and thenthe interactions occur between them.
Next, the individual agents identify other individual agents with which to interact. The interac-
tion procedure consists of three parts:send, receive, andrespond. Agent A sends a subset of its
information to Agent B, who thenreceives the information, compares it to its own, andresponds
to Agent A. The procedure is transactional, so both agents change their emotional state, or both
stay the same. Interactions occur between agents through the creation of message objects, and
large numbers of messages are routed and delivered concurrently. Sincereceive messages can
createresponse messages, processing continues until there are no more messages. This barrier
synchronization ensures that each step finishes completelybefore the next step begins.

We parallelized Seldon by decomposing the problem across processors in a load-balanced man-
ner. We also maximized the likelihood of intraprocessor communication by using Zoltan [11], a
load-balancing library, to invoke graph-partitioning algorithms in ParMETIS [21]. Zoltan uses
the social network structure (with relationship strengthsas edge weights) to calculate the opti-
mal agent-to-processor mapping. It also provides a distributed directory capability to track these
mappings for routing. The data migration is performed separately and involves packing and un-
packing agents at the source and target processors, similarto the process of message delivery.

25

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 10 20 30 40 50 60 70

T
im

e(
s)

Problem Size

1 proc
2 proc

2 proc ideal
4 proc

4 proc ideal
16 proc

16 proc ideal
64 proc

64 proc ideal

Figure 4.6. Disease Performance (Num Cells)

 100

 1000

 1 10

T
im

e(
s)

Problem Size

1 proc
2 proc

2 proc ideal
4 proc

4 proc ideal
16 proc

16 proc ideal
64 proc

64 proc ideal

Figure 4.7. Disease Performance (Num Cells
log/log)

When repartitioning, Zoltan exploits the current decomposition to reduce data migration. An ad-
ditional difficulty involved multi-language integration,since Zoltan is implemented in C/C++ and
Seldon is implemented in Java. We created a JNI wrapper around Zoltan using Swig [5], which
then provided access from Seldon.

To study scaling characteristics, we used a cognitive modelwith agents for individuals and
media outlets to simulate the shift in public opinion in Amman, Jordan, after the November, 2005
bombings. The individual agents were provided with cognitive information automatically gener-
ated from Jordanian newspapers published before and aroundthe time of the bombings. The weak
scaling runs held the number of individuals constant at 1000; the strong scaling runs used 1000P
individuals, whereP is the number of processors. There were 40 media agents in allruns.

In Figures 4.8 and 4.9 we plot results from strong and weak scalability studies. It is clear
from the weak scalability analysis (Figure 4.9) that there is little locality in the agent-interaction
pattern - cross-processor communication costs increase asthe processors (and the total problem
size) are increased. The strong scalability run is somewhatmore promising, following a quasi-
ideal convergence till around 10 nodes; thereafter divergence from ideal is abrupt, as the high
communication costs (observed in the weak scalability analysis) overwhelm the steadily decreasing
computational costs. At a point (around 30 nodes), the communication costs dominate and a
follow the trend observed in the weak scalability study (Figure 4.9) where communication costs
are roughly proportional to the number of processors.

26

4.0.5 Parallel Social Forces

A parallel implementation of the social forces algorithm for pedestriam simulation [17] was built
using the PPDM. The social forces algorithm is used for simulated the movement behavior of
crowds. Each person’s movement is directed by the summationof all social forces acting upon
them. Repulsive forces come from nearby people, obstructions such as walls, and dangers such as
fire. Attractive forces come from a person’s desired exit or someone that person wishes to follow.
A person tries to reach their goal while keeping a ’comfortable’ distance from near by people or
obstacles. When properly calibrated using these forces can realistic replicate crowd behavior and
produces emergent behavior observed in real life such as lane formation and exit bottlenecks. This
application space provided an ideal situation for the PPDM since the problem fits nicely with the
particle-in-cell processing paradigm. In fact, parts of the PPDM’s design were inspired by another
parallel implementation of the social forces algorithm which used C and MPI [30].

The test social forces application uses a 2D domain simulating a very large room. This room
is divided into a grid of cell locations. This grid is furthersubdivided horizontally into a series of
patches designating one patch per processor. For our test application we populate the room with a
configured number of people put in random locations. Each person is also randomly assigned one
of four goal locations. When a person reaches a their goal theyare reassigned a new random goal
location. A person is color coded based on their current goallocation.

At each time step the location of each person in the simulation needs to be calculated. All of
the processors first receive the updated location of people in their shadow cells from neighboring
processors. This is necessary because people in a cell are affected by the other people in their cell
as well as people in neighboring cells, which may be managed by external processors. Next the
processor must now update the people in the cells that it manages. For a given cell each person
is updated by calculating all of the forces acting on that person. First the social forces of nearby
people are applied. This is done by iterating through the people in the cell and neighboring cells.
Next the forces of obstructing objects is applied. Finally the goal seeking force is applied. Once
all of the forces have been added the person’s next location may be set. Finally all people must be
relocated to their new cell location. This may require moving the person to a new processor. After
all updates on all processors have been performed a collective location update is performed by all
processors which results in the master processor holding a list of people’s location. This location
list is used to update the display.

Such code could be used as the base of a crowd evacuation simulation tool. By using the
PPDM, such an application could be distributed across a large number of processors and simulate
very large crowds, with complicated behavior, in faster than real-time. This simulation could be
used to launch a batch of jobs to test different evacuation strategies in the face of an impending
emergency and could be used to redirect crowds as emergency conditions changed. However, we
have only a toy implementation of the social forces algorithm and such a crowd evacuation tool
would need significant additions over the current toy implementation. These additions include the
ability to build the simulated crowd environment includingbuilding floor plans and obstructions
as well as the tools necessary to properly load balance the population and geometry across the
allocated processors. It would also need enhanced crowd behaviors such as panic and leadership,

27

and a path search component.

28

 10

 100

 1000

 1 10 100

T
im

e(
s)

Number of Nodes

Seldon
Ideal

Figure 4.8. Seldon Strong Scaling

 1000

 10000

 100000

 1 10 100

T
im

e(
s)

Number of Nodes

Seldon
Ideal

Estimated Single-Node

Figure 4.9. Seldon Weak Scaling

Figure 4.10.Social Forces Example

29

30

Chapter 5

Codebase

The ideas behind, and some of the code for the PPDM came from Sandia’s BioDAC project. Bio-
DAC simulated a biological attack on an urban environment. We wished to refactor BioDAC’s
population simulation code to create a reusable toolkit forlarge agent calculations that could be
used in other projects. We also wanted to extend this code to allow it to run in parallel across
a number of machines. This is the primary reason behind the choice of Java as the implementa-
tion language. Java was also ideal in this case because of thelarge amount of Java developing
experience found in the teams that would be creating and using this tool. Java is also widespread
outside of this community and many code libraries are available for use in creating and extending
the PPDM. The Java community is also rich with many development tools for building, testing,
debugging, and profiling Java code.

5.0.6 Build Tool

At the beginning of the project we experimented with a new Java project management and build
tool named Maven [37]. The key feature of Maven is build automation through convention. It
boasts advantages over the standard Java build tool Ant [13]becuase it provides a standardized
project layout and automates the most common build processes such as compiling, testing, and de-
ploying. This standardization could save developers a lot of time when switching between projects
that all use Maven. Maven also has the advantage of automatically downloading dependency li-
brary jar files from local or remote repositories. This allows for easy library upgrading and allows
different projects to share library files.

However, in practice Maven ended up costing our team more time than it saved and caused
many head-aches when compared to Ant. To be fair, the developers of the project had much
experience with Ant and no experience with Maven. Maven has also made improvements over the
years that may have solved our original problems. The automated build processes were nice but
we found adding additional build tasks to be much more difficult than in Ant. We also did not reap
the benefits of the standardized layout since no other projects were using Maven. The automated
downloading of jar files also caused problems. This requiredsetting up a local Maven repository
for us to host libraries not found on remote repositories. Wewere plagued with proxy problems
and the process for uploading and downloading these libraries proved much more complicated than
the Ant standard of simply keeping all jar files in a lib directory. We eventually switched back to
using Ant for our build process. The Maven project seems to bean excellent idea but in practice it

31

would need to be adopted across an organization and include team training to see its benefits.

5.0.7 Development Environment

The PPDM projects used Subversion [20] for its revision control software and had no troubles.
Developers were free to use any development tools they chosebut most used the Eclipse IDE [14]
for its rich Java development feature set. A powerful component of Eclipse is the many available
plug-ins such as Subclipse [35] which made the functionality of Subversion available from Eclipse.
A DokuWiki [32] based Wiki was set up as a collaboration tool for the development team to
document the build process, project progress, and any common problems. Unfortunately the Wiki
quickly fell out of use. Wiki’s can be very useful to a projectand aid in the documentation and
sharing process. Unfortunately they also require discipline on the development teams part and can
suffer from a drop in momentum. Another important componentof the development environment
was the use of JUnit [6] for unit testing. The JUnit frameworkmakes creating and launching
standardized test cases for Java code very easy. Developersare highly encouraged to write and
run test cases for all functionality. The testing process helps speed up the process of creating
correct code by being able to quickly determine when and where there are errors. It also leads to
the creation of code that is easier to test. Another benefit ofa large suite of tests is that one can
refactor the code base and feel more confident that they did not create any new bugs if all of the
tests pass.

5.0.8 Java and Parallel Computing

On top of working with existing and future Java based Sandia simulation programs, a second re-
quirement of the PPDM was to perform large, complex simulations across a cluster of computers.
Unfortunately, Java has not been the language of choice in the high performance computing com-
munity. This community typically prefers C, C++, and Fortran which offer faster and more direct
access to memory and io devices and consequently has a large body of tools to support parallel
and distributed computation. Fortunately, the stigma of Java being a low performance language
has abated with improvements in its Just In Time compilers and improved garbage collector imple-
mentations, as well as new advanced IO and communication libraries. Java libraries such as Java
Fast Sockets (JFS) [34] also exist to allow users to take advantage of advanced high performance
communication interconnects that were previously unavailable to Java developers. This has lead to
the creation of new parallel communication tools for Java. Some studies are finding that such im-
provements and libraries are making distributed Java basedapplication’s performance comparable
to and in some cases even better than those programmed in C andFortran [1].

We selected the Message Passing Interface (MPI) for Java forthe PPDM’s parallel communi-
cation. MPI is a well established protocol for parallel computation with a long history. We felt
that the maturity of this protocol and the previous experience held by some of the developers made
it the best choice. In the process of building and testing thePPDM two different Java based MPI
libraries were used.

32

mpiJava provides an object-oriented Java interface to the MPI library. It uses the Java Native
Interface to wrap a natively compiled MPI library. In effectall Java calls are forwarded onto the
native MPI library (usually written in C) that was compiled for that machine. With mpiJava, the
user still needs to be able to compile a native version of MPI that will work with their machine.
Their version of Java and mpiJava also need to work correctlywith the native library. Much time
was spent getting such a setup working and difficulties stilloccur when moving the PPDM to new
machines. However, mpiJava’s use of a native MPI library should help boost performance over
alternatives since the native library should be optimized for the machine and have direct access to
the most efficient communication devices. We had the most success in using MPICH2 as the native
MPI library. We were unsuccessful in getting mpiJava on our machines to work with LAM/MPI
and Open MPI. But even with mpich2 we still experienced program freezes and crashes. Most of
these would occur in the native code making debugging incredibly difficult.

Seldon is an agent-based social simulation that uses the PPDM for message passing and agent
migration. Seldon also uses Zoltan, a load-balancing library that is based on MPI as well. Unfor-
tunately, MPI is not set up to run multiple instances at the same time. If more than one library is
statically linked against MPI, the instances wait for each other and the program hangs. To avoid
this, we needed to build MPI with shared libraries so that both Zoltan and the PPDM could dynam-
ically link to them. The following command was used to build MPI (specifically, mpich2 v1.0.5p4)
with shared libraries:

$./configure –prefix=〈MPI install path〉 –enable-sharedlibs=gcc –disable-cxx –with-rsh=ssh

We then added MPI’s shared library directory to LDLIBRARY PATH, and set the MPICHUSE SHLIB
variable to “yes”:

$ export LDLIBRARY PATH=〈MPI install path〉/lib
$ export MPICHUSE SHLIB=yes

Once you set MPICHUSE SHLIB, you can configure mpiJava in the standard way ($./con-
figure –with-MPI=mpich) and it will use the MPI shared libraries. For Zoltan, we first compiled
it with “-fPIC”, and then we pulled it and the MPI shared libraries into the Seldon shared library
with “gcc -shared”.

MPJ Express is the second library we tested. This is a pure Java implementation of the MPI
protocol. Its interfaces also match those of mpiJava allowing us to easily swap between the two li-
braries. The advantage of MPJ Express is that no native MPI implementation needs to be compiled
for the machine. This allowed us to easily run the PPDM on manydifferent architectures. Errors
were also much easier to track down using Java’s exception handling capabilities. This proved to
be a much more stable platform for running the PPDM. Unfortunately because it is a pure Java
implementation it can not make use of the cluster’s high speed interconnects. This provides a
tradeoff of stability and speed. MPJ Express is definitely the choice when prototyping new parallel
applications.

A third Java implementation of MPI that exists is contained within the Ibis project [7]. Unfor-
tunately even through the classes, functions, and overall functionality are the same as the previous

33

two libraries, the Ibis project chose to use a different package structure. Code changes to the
PPDM would be needed in order to utilize Ibis. ProActive [8] is an additional pure Java based
distributed programming environment that is gaining popularity and has advanced features that
could be used by the PPDM. This points out that the PPDM could benefit by abstracting its use of
the underlying communication library. Such an abstractioncould allow users to try out different
communication libraries with the PPDM. A user could use the framework the best matches their
application’s convenience and performance needs.

5.0.9 Launching the PPDM

Much effort was needed in debugging the launch process of thePPDM. This is simple in serial
mode where PPDM can be treated as a normal Java component and adds no requirements to the
program launch process. Difficulty arose when using the PPDMin parallel mode.

1. MPI Libraries require special launch configurations

The two MPI Java implementations provide similar yet different ways of launching programs
that use their library. They are similar in that both providea series of batch scripts and sup-
porting programs. Both require that daemon applications be running on all compute nodes.
A starter program is launched from the master node. This takes in a series of arguments
needed for the MPI configuration as well as the actual program. Once the starter program is
launched it connects to the daemon programs running on the supporting compute nodes. The
start program sends the needed launch arguments and the daemon programs launch the the
actual Java application. Proper care must be taken to insurethe program codebase is avail-
able to the compute nodes. A shared file system eases this requirement but results in slower
speeds. Both MPI libraries provide scripts for their starterand daemon applications, however
their arguments differ and in some cases need to be changed for a given deployment. This
necessitated the creation of separate PPDM launching scripts for the different library types.
This script put together the proper Java class path for the application and constructed the
arguments and calls for the library used and helped hide manyof the problems previously
faced by the user.

2. Batch Job Scheduling

Batch scheduling of jobs is an important feature of the PPDM. This allows one to submit
many jobs to a cluster to be run in parallel. We used the qsub scheduling tool found on San-
dia’s compute clusters for this purpose. Unfortunately again, different cluster environments
require different qsub arguments. We again created scriptsfor the different environments to
hide these complications from the user. Special care is needed to be sure the daemon and
starter programs get launched correctly. We made use of the interactive option (-I) for much
of our debugging when running parallel jobs. Care and some debugging is still necessary
when moving the PPDM to new parallel environments.

34

Figure 5.1. Launch Diagram

35

36

Chapter 6

Integration

We integrated the PPDM with several existing simulation frameworks on an experimental basis.
This was used to see how well the PPDM could work with Sandia’sexisting simulation codebase
as well as how it might work with future simulation programs.

6.0.10 HLA

We first used the PPDM in conjunction with an HLA federation [16] to simulate a moving popu-
lation in a large metropolitan area. This was an important test because the primary purpose of the
PPDM was to add parallel support to the Weapons of Mass Destruction Decision Analysis Center
(WMD-DAC) suite of simulation tools. These tools consist of a collection of interacting submod-
els that simulate different parts of the overall system under study. Each submodel consists of a
HLA Federate. By incorporating the PPDM into one of these Federates, we allow that particular
submodel to scale in size and complexity beyond what could beprocessed on a single computer.
In this integration we tested the PPDM in three modes of operation.

1. Single Machine Figure 6.1

In the first mode of operation all of the HLA federation was runon a single Windows ma-
chine. Part of this federation was the Population Federate which contained an instance of
the PPDM running in serial mode. The PPDM was used to maintainand update the people
agents in the simulation. The other federates could submit particle algorithms as well as
other supporting data objects through HLA to the PopulationFederate. The algorithms were
then run by the PPDM to update the state of the agents and generate output statistics. Output
data was passed from the PPDM to the Population Federate and then out to all subscribing
Federates via HLA. This integration was the least complicated due to the fact that a good
portion of the source of the PPDM came from a previous versionof the Population Federate
used in the BioDAC program and there were no parallel processing or distributed computing
issues. This integration was successful and several current Sandia applications are using the
PPDM in this manner.

2. External Machine/Cluster Connection Figure 6.2

In the second mode of operation the HLA federation was again run on a single Windows
machine to be further referred to as the client. As opposed toabove, the PPDM was started

37

Figure 6.1. Single Machine

separately on a Linux compute cluster in parallel mode utilizing a configured number of
compute nodes. The launching of the PPDM can be done interactively or through a job sub-
mission client. Once both the Population Federate on the client and the PPDM on the cluster
are started a connection is made between them using a tunnel built using a custom imple-
mentation of Java’s Remote Method Invocation (RMI) functionality. The HLA federation
on the client runs as above but makes calls to a RMI proxy to the PPDM. These calls are
forwarded to the PPDM on the compute cluster using the RMI tunnel. Setting up the RMI
tunnel between the client machine and cluster proved to be complicated. Cluster nodes are
not addressable from outside of the cluster and the client machine is not addressable from
inside the cluster. A daemon application was setup on the cluster’s head node to solve this
problem. The head node of a cluster is generally used for launching jobs as well as accessing
resources on the compute nodes. When launching the parallel job on the cluster the daemon
application must also be launched on the head node. When the parallel job starts up one
of the processors is set to be the master node and provides coordination between all of the
worker nodes. This master node connects to the daemon application on the head node via
RMI. When the Population Federate starts up on the client machine it also connects to the
daemon application on the head node. RMI traffic can then pass from the client application
to the head node, then from the head node to the master PPDM node. If necessary the master
PPDM node then distributes the data to the PPDM compute nodes. Overall, this mode of
operation is quite complicated and the tunnel between the client node and the cluster nodes
adds a lot of communication overhead. However such a setup can pay off if the size and
workload of the population processing is high. This setup was also necessary in the case
where the application could only run on a Windows machine. This setup allows the heavy
processing and size of the population code to be distributedacross the cluster allowing the
Windows client to process larger and more complicated scenarios.

3. Cluster Figure 6.3

In the third mode of operation both the PPDM and the HLA Federation ran on the cluster.

38

Figure 6.2. External Machine/Cluster Connection

However, the test application in question was only a simple toy program since the larger HLA
federation program only worked on Windows. The cluster’s job submission tool was used
and upon launching each test federate was started on its own compute node. An instance of
the PPDM was also launched in parallel across a number of compute nodes. The master node
of the PPDM was located on the same node as the Population TestFederate. Communication
between the PPDM and the test federate occurred again through RMI even though both were
on the same machine. This use of RMI and associated overhead could be removed if both
the Population Test Federate and the master node of the PPDM were started in the same Java
Virtual Machine. This is just a mater of solving some complications in the launch code for
Federates and the PPDM. Running everything inside of the cluster represents a more sane
and less cumbersome mode of operation. Federates can be distributed over a number of
processors and the Federate to PPDM connection is much more direct. This mode represents
the best case for non interactive, batch data analysis.

6.0.11 RePast

We also used the PPDM as the underlying data structure for oneof the demo application models
of the RePast Agent-Based Modeling toolkit [9]. RePast is a freeand open source agent based
modeling toolkit and is very popular in the social simulation community. The tool was originally
developed at the University of Chicago but has subsequently become an open source project re-
ceiving much development support and direction from Argonne National Laboratory. This toolkit
provides many utilities for agent creation, visualization, geometry, scheduling, and data analysis.
It incorporates the use of dynamic scripting languages suchas Groovy and also provides tools for
some concurrent event processing, allowing the utilization of multi-processor/multi-core systems
as well as clustered batch processing mechanisms. However,it is limited in that that it currently
does not support distributed, fine grained parallelism of a model. To clarify, a single model can
not be run distributed across multiple computers. This limits the size and complexity of a model
to what can be stored and processed on a single machine. This is the very task that the PPDM was

39

Figure 6.3. Cluster

designed to handle.

An ad-hoc integration between the two tools was undertaken to prove that a RePast model
could be run distributed using the PPDM. A similar approach to adding parallelism to RePast can
be found in [27]. To provide the integration, the 2d landscape of the model was replaced by a
PPDM Domain with one Particle Field. The PPDM was run in Single Program, Multiple Data
(SPMD) mode and each processor was in charge of creating a segment of the agent population
based on its id. No changes were made to the RePast model’s agents or agent update code. We did
have to make some changes to the RePastSchedule class to maintain synchronization between the
PPDM worker nodes. At each time step synchronization took place to allow for agent movement
and shadow agent updates between processors. We scheduled particle movement and update at
fixed intervals on all nodes.

This was a proof-of-concept integration and a more detailedanalysis and code changes would
need to be undertaken if the PPDM were to be effectively integrated into the RePast codebase.
Such an integration could be advantageous to RePast, the social simulation community, as well as
Sandia and the PPDM project itself. The social simulation community would benefit by being able
to run their existing and new RePast models in a distributed fashion by using the PPDM. Sandia and
PPDM user’s would benefit by allowing use of RePast’s library of agent based modeling utilities.
There would also be the benefit of a larger user base for findingand fixing bugs as well as a pool
of people willing to make continued improvements to the framework. The 2nd World Congress
on Social Simulation afforded us contact with one of the coredevelopers and project life planners
of RePast. The project is very welcoming of outside contributions but would require the PPDM
to be open-sourced and be made available with one of their licenses. The RePast project itself

40

also has several side projects, not available at the time of this paper, working to make distributing
computing available to RePast modelers.

41

42

Chapter 7

Improvements/Limitations

The following is a list of limitations of the PPDM as well as suggestions for further improvement.

1. Load Balancing

The PPDM currently comes with no load balancing tools. Patches are evenly distributed
across the available processors. This may not be ideal as patch loads may very greatly. Load
balancing was not in the scope of this LDRD but, to be effective, the PPDM should be able
to make use of load balancing tools or at least provide the user with ways of choosing their
own load balancing scheme. Seldon, which uses the PPDM, usesthe Zoltan library for load
balancing and provides an example of how other applicationsmay do the same.

2. Parallel Discrete Event Processing Support (PDES)

All PPDM applications are currently time stepped. A given time is reached, all of the patches
are processed, the patch processors synchronize, time is advanced and the process repeats.
This time stepping behavior is wasteful in cases where the work load varies in time and
space across the simulation domain. The PPDM could be made compatible with the PDES
paradigm so better support such simulations. In this paradigm each patch would be treated
as its own processing unit (logical process) and would only need to synchronize with neigh-
boring patches if there were a time or data dependence between them. This allows time to
advance at rates that match the actual model needs. Such an integration would take some
work but could greatly expand the powers of the PPDM.

3. Simulation Support Tools

Simulation frameworks such as RePast provide for the integration of a lot of different simu-
lation support tools for visualization and statistics. Such a capability should also be available
to users of the PPDM. The actual implementation of these tools would be out of the scope of
the project. However, it would be very beneficial to search out existing libraries that would
be compatible with the PPDM and provide examples of how to usethem in conjunction with
the PPDM. This could greatly increase the functionality andpopularity of the PPDM.

4. Dynamic Language Support

Dynamic languages such as Python [36], Groovy [33], and Ruby [24] have been growing
quickly in popularity due to the increase in programmer productivity that they can achieve.
Sophisticated support for these languages using Java’s JVM(Jython [18], JRuby [25]) also

43

continues to make progress. Support for these language inside of the PPDM may increase
the PPDM’s ease of use, user base, and even functionality.

5. More data access patterns

Currently the PPDM provides only a few particle algorithm types for iterating through the
simulated population of agents. The algorithms mimic the observer design pattern and give
the user access to the population one agent, cell, or patch ata time. After doing all of
their processing they can submit a collective operation that allows them to synchronize their
output data. Additional accessor algorithm types could be created to provide new and useful
access patterns. One such useful access pattern would use the MapReduce [10] algorithm.
This algorithm would provide access to the agent populationone agent, cell, or patch at a
time. But instead of a final collective output the user would emit intermediate outputs as they
process the population. When defining the algorithm the user also submits a corresponding
gather algorithm that will be used to process all of the outputs that they emit across all
processors. We would hope that as the PPDM gets further used additional useful access
patterns would emerge that would eventually be folded back into the PPDM code base.

6. Better support for multi core/processor machines

Being a Java multithreaded application, the PPDM is already natively able to take some
advantage of multi core/processor machines. This is particularly applicable in garbage col-
lecting operations that can run in the background. However,computer architectures are in-
creasingly being pushed to multi-core systems. For the current implementation of the PPDM
to fully take advantage of the power of a core a separate JVM instance must be launch for
each core. This creates a separate memory space, additionaloverhead, and the added com-
plication of parallel launch scripts. This overhead could be eliminated if the PPDM were
refactored to run in a multithreaded manner for each patch. This would require duplicating
all processing requests across the patches and would need additions to properly handle the
collective operations between patches. The multiple corescould also be put to use in the syn-
chronization states of shadow data updates and agent movements. Such implementations are
definitely warranted and would greatly improve performanceif the trend toward multi-core
architectures continues.

44

Chapter 8

Conclusion

Agent-based modeling and discrete event simulation are arguably the standard tools for under-
standing and making predictions about complex systems. To some degree both ABM and DES
make the argument that, unlike statistical methods, simulations must be performed at scale. For
such social systems, there is noa priori idea of a scaling law or average that would predict their
emergent behavior. Because the phenomena simulated are usually large and complex, and be-
cause they must be computed at scale, parallel high performance computing is required to enable
successful simulations of social systems.

We hope that our work in developing the Parallel Particle Data Model (PPDM) instigates the
development of a library of general purpose components for large-scale entity modeling. From a
software engineering point of view, separable components for ABM/DES will aid repeatability and
methodical experimentation. Beyond reusable software to speed software development, the ability
to change out entity models and even the framework and schemes for updating without changing
the parallelization scheme is an important contribution ofthe PPDM. Often when comparing two
different models that purport to achieve the same result, the phenomenological particulars of the
solutions differ in so many ways that comparisons are difficult. Separating out the parallel im-
plementation, as we have done in the PPDM, hopefully will make comparison between different
models easier in the future.

45

46

References

[1] Brian Amedro, Vladimir Bodnartchouk, Denis Caromel, Christian Delbe, Fabrice Huet, and
Guillermo L. Taboada. Current state of java for hpc. http://hal.inria.fr/inria-00312039/en,
2008.

[2] Mark Baker and Bryan Carpenter. mpiJava. http://www.hpjava.org/mpiJava.html.

[3] C. Barrett, K. Bisset, R. Jacob, G. Konjevod, , and M.V. Marathe. Transims: Transportation
analysis simulation systems. http://ndssl.vbi.vt.edu/transims.html.

[4] C. Barrett, S. Eubank, V.S. Anil Kumar, and M. Marathe. The epidemiological simulation
system (episims). http://ndssl.vbi.vt.edu/episims.html.

[5] David Beazley. Swig homepage. http://www.swig.org.

[6] Kent Beck and Erich Gamma. JUnit - a unit testing frameworkfor the java programming
language. http://junit.sourceforge.net/.

[7] M. Bornemann, R. V. van Nieuwpoort, and T. Kielmann. Ibis: Efficient java-based grid
computing. http://projects.gforge.cs.vu.nl/ibis/.

[8] Denis Caromel. Proactive - parallel, distributed, multi-core solutions with java.
http://proactive.inria.fr/.

[9] Nick Collier. Repast agent simulation toolkit. http://repast.sourceforge.net/index.html.

[10] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplifieddata processing on large clus-
ters. InOSDI ’04, pages 137–150, 2004.

[11] Karen Devine. Zoltan homepage. http://www.cs.sandia.gov/Zoltan/.

[12] Joshua M. Epstein.Generative Social Science. Princeton University Press, New Jersey, 2007.

[13] Apache Software Foundation. Ant - a software tool for automating software build processes.
http://ant.apache.org/.

[14] Eclipse Foundation. Eclipse - an open development platform. http://www.eclipse.org/.

[15] R. Fujimoto, K. Perumalla, A. Park, H. Wu, M. Ammar, and G.Riley. Large-scale network
simulation: How big? How fast? In M. Calzarossa and E. Gelenbe, editors,11th IEEE
International Symposium on Modeling, Analysis and Simulation of Computer and Telecom-
munications Systems (MASCOTS 2003), volume 2965 ofLecture Notes in Computer Science,
pages 116–123. IEEE Computer Society, 2006.

47

[16] R. M. Fujimoto. Parallel and Distributed Simulation Systems. John Wiley and Sons, New
York, 2000.

[17] D. Helbing, I. Farkas, and T. Vicsek. Simulating dynamical features of escape panic.Nature,
407(6803):487–490, September 2000.

[18] Jim Hugunin. Jython - java implementation of the pythoninterpreter. http://www.jython.org.

[19] M. Hybinette, E. Kraemer, X. Yinand G. Matthews, and J. Ahmed. Sassy: A design for
a scalable agent-based simulation system using a distributed discrete event infrastructure.
In B. Lawson, F. Perrone, J. Liu, and F. Wieland, editors,Proceedings of the 2006 Winter
Simulation Conference, pages 926–933. IEEE Computer Society, 2006.

[20] CollabNet Inc. Subversion - a version control system. http://subversion.tigris.org/.

[21] G Karypis, K Schloegel, and V Kumar. Parmetis homepage.
http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview.

[22] Sean Luke, Gabriel Catalin Balan, and Liviu Panait. Mason: Multi-agent simulator of neigh-
borhoods. http://cs.gmu.edu/ eclab/projects/mason/.

[23] Bryan Carpenter Mark Baker and Aamir Shafi. Mpj express project.
http://acet.rdg.ac.uk/projects/mpj.

[24] Yukihiro Matsumoto. Ruby programming language. http://www.ruby-lang.org/en/.

[25] Charles Nutter, Thomas Enebo, Ola Bini, , and Nick Sieger.Jruby - java implementation of
the ruby interpreter. http://jruby.codehaus.org/.

[26] Jon Parker. A flexible, large-scale, distributed agentbased epidemic model. InWSC ’07:
Proceedings of the 39th conference on Winter simulation, pages 1543–1547, Piscataway, NJ,
USA, 2007. IEEE Press.

[27] Hazel R. Parry, Andrew J. Evans, and Alison J. Heppenstall. Millions of agents: Parallel
simulations with the repast agent-based toolkit. InInternational Symposium on Agent Based
Modeling and Simulation, 2006.

[28] K. S. Perumalla. A systems approach to scalable transportation network modeling. In B. Law-
son, F. Perrone, J. Liu, and F. Wieland, editors,Proceedings of the 2006 Winter Simulation
Conference, pages 1500–1507. IEEE Computer Society, 2006.

[29] K. S. Perumalla. Scaling Time Warp-based discrete eventexecution to 104 processors on a
Blue Gene supercomputer. In U. Banerjee, J. Moreira, M. Dubois, and P. Stenström, editors,
Proceedings of the 4th Conference on Computing Frontiers, 2007, pages 69–76. Association
for Computing Machinery, 2007.

[30] M. J. Quinn, R. A. Metoyer, and K. Hunter-Zaworski. Parallel implementation of the so-
cial forces model.Proceedings of the Second International Conference in Pedestrian and
Evacuation Dynamics, 2003.

48

[31] C. Reynolds. Big fast crowds on ps3. InSandbox (an ACM Video Games Symposium),
Boston, Massachusetts, 2006.

[32] splitbrain.org. Dokuwiki - standards compliant, simple to use wiki.
http://www.dokuwiki.org/dokuwiki.

[33] James Strachan. Groovy programming language. http://groovy.codehaus.org/.

[34] G. L. Taboada, J. Touriño, and R. Doallo. Efficient Java Communication Protocols on
High-speed Cluster Interconnects. InProc. 31st IEEE Conf. on Local Computer Networks
(LCN’06), pages 264–271, Tampa, FL, 2006.

[35] Tigris. Subclipse - subversion eclipse plug-in. http://subclipse.tigris.org/.

[36] Guido van Rossum. Python programming language. http://www.python.org/.

[37] Jason van Zyl. Maven - software tool for java project management and build automation.
http://maven.apache.org/.

49

50

Appendix A

Publications

The following paper appeared in the proceedings of the 2008 World Congress on Social Simulation
at George Mason University in Farfax, VA in July 2008.

51

52

Appendix B

Parallel Particle Data Model

Zachary J. Heath, Max S. Shneider, Jaideep Ray, Benjamin A. Allan,
Keith B. Vanderveen, Michael E. Goldsby and Robert C. Armstrong
{zheath, msshnei, jairay, baallan, kbvande, megolds, rob}@sandia.gov
Sandia National Laboratories
7011 East Avenue, MS 9915, Livermore CA, 94550-0969

Abstract

We present the design and performance of a parallel entity simulation framework called the Paral-
lel Particle Data Model (PPDM). Based loosely on a Particle-In-Cell algorithm, the PPDM orches-
trates and supports agent-based simulations on a parallel high-performance platform. The PPDM
is targeted at social simulation applications and is designed to be portable to a variety of high-
performance platforms. In this paper we show that the PPDM performs well for two agent-based
simulations on a clustered platform. We hope that this work will form the cornerstone of a reusable
toolkit for modeling and simulation.

53

B.1 Introduction

Enterprise modeling, social simulation, system-of-systems war gaming, and related techniques
simulate complex environments and systems (hereafter referred to as Human Dynamical Systems
(HDS)) and compute observables which manifest themselves primarily as emergent phenomena.
To increase fidelity of these HDS systems, increasingly large computations are needed and are
accessible only through high-performance computing (HPC).Computer-based simulation of HDS
has long been used within the military for war games, to carryout training, assess new technolo-
gies, and evaluate tactics. Recently, the Department of Homeland Security (DHS) and other federal
agencies charged with disaster preparedness and response have embraced simulation for modeling
a variety of complex phenomena including response to attacks by Weapons of Mass Destruction
(WMD) and natural disasters. Sandia National Laboratories has developed a number of simula-
tion applications to support different programs examiningWMD countermeasures and concepts of
operation, defense applications, terrorist networks, andeconomic consequences from natural dis-
asters or terrorism affecting critical infrastructures. These simulation applications differ in several
respects, yet they share an underlying commonality: all concern themselves with modeling com-
plex ”systems of systems” where the system components are discrete (such as people, autonomous
land vehicles, or companies) and interact in highly complexways with other system components.
Historically, modeling of HDS has not taken advantage of parallel processing hardware or tech-
niques. There are at least two reasons for this:

1. The phenomena in question was not modeled at a fidelity thatwould require the extra com-
plication of parallel computing.

2. The history of simulation of HDS has favored developer friendly environments, use of widely
available computing hardware and software, and incorporation of sophisticated graphical
user interfaces (GUIs) over speed of execution. This emphasis on rapid deliverables portable
to a wide variety of platforms led to the use of virtual machine-based languages such as Java,
Python, and Tcl over C and C++, because most programmers are much more productive in
these languages. Most programming for high performance parallel processor systems has
taken place in languages like C, C++, and (historically) FORTRAN because they give the
programmer fine-grained control over allocation of memory and other processor resources.

Increasingly, however, HDS must reproduce significant phenomena/effects at credible fidelity
while being fast enough to enable human-in-the-loop and timely batch-oriented analysis. Recently
developed requirements for the next generation of social simulation applications have shown that
the current capability, based on conventional computing architectures, falls short in both respects,
requiring extension to HPC platforms using parallel processing. Also, improvements to Java and
other virtual machine-based languages have made them more attractive in the domain of high per-
formance computing.

We have developed components and tools for HDS simulation methods in a parallel HPC set-
ting. In particular, we are addressing the challenges outlined above by creating a portable, scalable,
and general engine for particle simulations as a facility for multi-use in agent-based simulations.

54

B.2 Related Work

Many simulations have been created to study complex Human Dynamical Systems. Two excel-
lent examples originally developed at Los Alamos National Laboratories and now hosted by Vir-
ginia Tech’s Network Dynamics and Simulation Science Laboratory include TRANSIMS[3] and
EpiSims[4]. TRANSIMS uses detailed urban travel data to model transportation networks and can
model the effects that changes to those networks will have ontraffic. EpiSims uses that same travel
data to model disease epidemics and can be used to test publichealth mitigation strategies. An-
other example of work in this arena is Generative Social Science, which uses simulations to help
discover the underlying dynamics of complex social systems[12]. In this work Epstein makes a
hypothesis of the sets of rules that govern a given dynamic social system. An agent-based model
(ABM) implementation of those rules is then created and the results are measured against historical
data. The closeness by which the generated data matches the historical data gives credibility to the
hypothesised rules.

As the modeling of HDS has grown in popularity, a number of reusable agent-based modeling
toolkits have emerged to simplify the work of the developer.RePast[9] is arguably the most pop-
ular framework in the ABM community and provides developers with libraries for agent creation,
event scheduling, and data charting and visualization. Mason[22] provides similar functionality but
focuses more on light-weight models meant to be run many times for Monte Carlo-type studies.
While these toolkits can be run in a parallel batch mode on a clustered environment, neither toolkit
lends itself for use developing models that run singularly in parallel across a cluster of computers,
thus limiting the size and complexity of such models.

The PPDM in its present form operates in a time-stepped fashion. Discrete event simulation
(DES) provides a different time management paradigm for simulation. Instead of advancing time
in globally synchronous fixed steps, DES advances the local simulation time to the exact time of
the next local event. DES scheduling delivers events in timestamp order at all nodes allowing it
to achieve performance gains if the simulated events are irregularly spaced in time or space. The
greatest successes of DES to date have been in the areas of network simulation and war gaming.
Several frameworks and systems have been created to supportthis. The High Level Architecture
(HLA) standard[16] specifies an API for distributed DES thathas seen wide use, particularly in
work done for the Department of Defense. An example of parallel DES (PDES) used for social
simulation is the SCATTER traffic simulator[28]. PDES scheduling has also provided time man-
agement for an agent-based simulation system[19]. Applications using PDES have scaled to over
1500 nodes[15]. In an exceptional scaling exercise, Perumalla[29] ran a test program on 16384
nodes of a Blue Gene supercomputer. Though the PPDM in its present form makes no use of DES
concepts, we envision future DES extensions. To our knowledge, no agent-based simulation sys-
tem in widespread use provides the distributed synchronization needed for true PDES scheduling.

In a work that highly influenced our design, a more traditional particle-in-cell based, time
stepped model was used for simulating the evacuation of large crowds in a building environment[30].
In this work, the Social Forces algorithm was implemented such that the simulated geometry and
populations were divided up amongst a cluster of computers.In [31] a similar approach was used
for large crowd simulation but made novel use of the PlayStation 3’s high performance Cell archi-

55

tecture.

B.3 Architecture

In our work modeling various HDS, we identified a great deal offunctional commonality in our
simulation codes. We also observed that future simulationsin the problem domain would be grow-
ing in population size and complexity. This led us to create the Parallel Particle Data Model
(PPDM), a Java-based, reusable programming toolkit that supports HDS simulations and can scale
to a large number of processors.

The HDS simulated by Sandia are generally composed of large populations of agents (people,
vehicles, etc.) spread across a geography of segmented locations such as cities, census tracts, or
even households and businesses. Each location contains a set of agents that are able to interact
with each other as well as with agents in neighboring locations. The agents can move between
locations as time evolves. Various modules of the simulation need to update or gather information
from the agent populations in different ways based on the phenomena they model. Examples
include infection of people due to a biological hazard plumeor detection that a car should trigger
a radiation sensor alarm.

We designed the PPDM to accommodate this method of interacting with the simulated pop-
ulations while operating in a distributed environment. ThePPDM uses a particle-in-cell (PIC)
data structure which divides the simulated geography into cells that contain populations of agents.
The PPDM then distributes these cells across a number of processors. Agents directly affect other
agents residing in the same or neighboring cells. Non-neighboring particles can interact through
special, less efficient mechanisms.

Even though Java is not renowned for its high performance computing capabilities we chose
it as the PPDM’s implementation language. The primary reasons were to support legacy code, to
utilize existing programmer skill sets and to provide ease of development. Evolving improvements
to the JVM’s performance and extensive open source code libraries, including several new high
performance communication libraries, have also increasedits attractiveness. The end result is that
Java tools can provide a portable and easy to use framework for high performance computing.

To make use of the PPDM, the user must first define the geometry of the problem domain.
Currently, we have implemented two types of geometry. A user can specify either an n-d lattice or
a graph of cell locations. Along with the geometrical structure, the user must define the number of
functional patches into which they would like the geometry broken. A patch represents a grouping
of cell locations that are guaranteed to be collocated on thesame processor. Each processor is
allocated a number of patches to process. Modelers write their algorithms and agent update code
to work on a patch-by-patch or cell-by-cell basis which enables the PPDM to distribute the user’s
program across many processors.

56

Figure B.1. Domain Model

B.3.1 Data and Particle Fields

After specifying the domain geometry, modelers define multiple data and particle fields across this
geometry. A data field holds a single unit of data (such as an int or float) for each cell in the
domain, while a particle field allocates to each cell in the domain a list-like data structure called
a particle set. The particle set data structure allows the modeler to store and organize agents and
provides other useful utility functions. In creating a dataor particle field, the modeler specifies a
locality stencil for that field. This defines each cell’s local data neighborhood within the overall
defined geometry. In the case of 2-d lattices, a modeler will commonly specify a 4 point stencil
in which a cell’s neighbors include adjacent cells to the north, east, south, and west. In a graph
geometry, on the other hand, the graph structure directly determines cell neighborhoods. The local
neighborhood defines a region of shadow data that each patch must make available to the cells
it maintains. Shadow data is a read only copy of neighboring cell’s data. After doing a shadow
update for a particle field, each patch will have the data for the cells it maintains as well as a read-
only copy of data from its neighboring cells that are maintained by other patches. If a patch has
neighboring cells that are located on another processor, data communication must take place. The
transfer of shadow data enables the simulation to update agents’ state using data from their own
cell as well as neighboring cells. This method is similar to that used in a parallel implementation
of the social forces model [30]. The shadow data construct isoptional. If a particular domain does
not need to have neighbor cell interactions this feature canbe disabled. To summarize, a processors
will be allocated a number of patches. Each patch is composedof a number of cells. Each cell
contains a number of particles or agents.

While processing the agents, modelers also have the ability to schedule the movement of agents
from cell to cell. This cell movement can span patches and processors. The PPDM takes care of the
actual movement of the agents and transfer of shadow data. Ifthe modeler guarantees that particle
movement only occurs between neighboring cells, the PPDM can make optimizations that reduce

57

the amount of communications needed between processors, thereby allowing greater speedup. The
PPDM’s capabilities hide a lot of parallel processing complexity from the modeler.

To better enable parallel processing, the PPDM limits the modeler’s interaction to the data
and particle fields by allowing only cell-by-cell or patch-by-patch access to the data. A modeler’s
algorithms have full access to all agents owned by the patch they process, as well as read access
to agents of neighboring cells of that patch. The PPDM’s feature set encourages modelers to build
their algorithms with locality in mind. This allows the algorithms and data to be more easily and
efficiently distributed across multiple processors. From our experience in prior simulations, this
restriction is acceptable. We also offer various convenient yet less efficient mechanisms to handle
global communication between processors.

Several patterns for interacting with the particle populations are available. The most common
method of particle access is to submit particle algorithms to the PPDM. Particle algorithms are
data structures that implement the visitor pattern. When particle algorithms are submitted to the
PPDM, the PPDM duplicates them across all processors and schedules them to be executed at
regular intervals. The algorithms visit each cell or patch owned by the processors on which they
are located and perform their needed operations on the contained agents. The particle algorithms
can optionally coordinate with their copies on other processors and send back aggregated data to
their parent modules or other subscribing particle algorithms.

In our simulations, various modules work together in a decoupled manner by submitting parti-
cle algorithms that enforce their desired behavior or area of concern on the agents. This deviates
from standard agent-based techniques, which initialize the agents with a given behavior and state
and allow the agents to evolve their state. This difference arises because the PPDM grew out of
our experience with prior simulations composed of separatemodules that ran on their own Java
virtual machine. Each of these modules needed to interact with the population. Rather than mov-
ing the population data to each of the modules, we allowed themodules to move their code to
the population data. This is similar to how distributed systems interact with a common database
through sql or stored procedure calls. One can duplicate themore traditional agent update behavior
in the PPDM through the use of a simple particle algorithm that calls an update method on all or
a selected number of the agents at scheduled intervals. The agents themselves would contain all
of the logic needed to interact with neighboring data and agents and perform all necessary updates
and movement. Another alternative would be to have the various modules inject differing behavior
strategy objects into the agents upon initialization whichwill eventually be called during updates.
Dynamic languages like Ruby would provide an ideal environment for this technique.

We are also looking into incorporating patch-based event queues into the PPDM to allow
for algorithms or agents themselves to make use of the discrete event simulation programming
model[16]. To date, our simulation needs have not warrantedthe added synchronization and book-
keeping issues that DES will require.

58

Figure B.2. Visitor Algorithms

B.3.2 Communication implementation

The PPDM uses the MPI model for parallel data communication.Communication occurs between
copies of particle algorithms running on differing patches, when agents move between cells owned
by different processors, and to update shadow data located on neighboring processors.

When necessary, the particle algorithms communicate and coordinate with each other across
patches using standard parallel processing messaging suchas the MPI broadcast and reduction
methods. We have provided modelers with simplified interfaces to these functions. We have also
implemented a messaging service to allow agents to communicate with other agents that are not
located on their patch. The PPDM organizes and sends messages using a regularly occurring batch
update process. The messaging service is optional and when in use it requires additional overhead
because it must track agent locations to enable routing.

The PPDM handles particle movement during a regularly scheduled batch update where all
processors work together to redistribute agents to the correct locations. We handle copying of
shadow cell data for neighboring cells in a similar manner. This requires the various processors to
remain synchronized in time.

Modelers can configure the PPDM to make use of mpiJava [2] or MPJ Express [23] for the
MPI services. Both of these are object-oriented implementations of the MPI protocol using the
Java programming language. They differ in that mpiJava provides a JNI wrapping over a native
MPI environment (such as MPICH or LAM), while MPJ Express is a complete implementation
of the MPI protocol using only Java. We found MPJ Express to befar more portable and easier
to use since it removes the native MPI compilation and integration steps. In Java, serialization of
object data to byte data is a major cpu cost. We hope that custom serialization code will reduce
some of this cost and are looking into the serialization and communication libraries from the Ibis
project[7].

B.4 Example Simulations

In this section we demonstrate the use of PPDM in two different examples and conclude with
an illustration of its parallel capabilities. The problemshave been formulated in an agent-based

59

fashion, but carry a PIC flavor in the sense that agents/particles are collated into “bags”/cells with
in-cell (in-bag/near-field) behavior modeled at a far greater fidelity than the far-field (out-of-bag)
behavior.

B.4.1 Spread of disease in a 2-species population

This example approximates the spread of a disease in two separate species, humans and (non-
human) primates, with primates acting as a reservoir for thepathogen. The pathogen, modeled
loosely on Ebola, is communicable within each of the speciesand is also capable of primate-to-
human jumps. This example models both humans and primates asindividual agents. A number
of primates and humans are collocated into settlements where humans may come in contact with
primates and contract the disease. Both humans and primates may move between cells, though
primates’ movements are significantly more circumscribed than humans.

B.4.1.1 Disease model

In this work we use a compartmental disease propagation model. Both the humans and the primates
go through five compartments/states of health - Susceptible(S), Exposed (E), Mildly Symptomatic
(MS), Severely Symptomatic (SS), and Recovered/Dead (R/D). The residence time in each of these
states of health is a random variable, which follows a distribution (usually log-normal). The process
of infection of humans is governed by their contact with other humans, cadavers and primates, i.e.
it depends on their closeness of contact and the probabilityof meeting an infected individual,
primate or cadaver. Transmission within the primate population is entirely by contact. We will
assume that both the Mildly Symptomatic and Severely Symptomatic stages are contagious, for
both humans and primates.

B.4.1.2 Movement model

We assume that there existM human settlements, each containing a number of primates. Inter-
actions between human and primate occur between those present in the same settlement. The
human and primate populations in each settlement are drawn from the log-normal distribution
L (Nmedian,S), whereNmedian is the median andS the standard deviation. In each settlement we
use a median of 1000 and standard deviation of 500 for the human population and a median of 50
and standard deviation of 12.5 for the monkey population.

For each settlement we define a mobility factorMh andMm for the human and monkey pop-
ulations. This mobility factor determines the percentage of each population that will relocate on
a given movement step. The indexing of settlements reflects geographical proximity. Primates
travel to other human settlements primarily because of proximity. Once the connection routes are
determined, a settlement’s mobile population is distributed across its connecting settlements using
the above probabilities as a weighting factor.

60

The model can be configured with two modes of population movement. In the first, agents are
assigned a fixed day-night routine. In the second mode, agents move randomly several times a day
to connected settlements using the above probabilities andweights, and at night they return to their
home settlement. Mildly symptomatic individuals move, butseverely symptomatic ones do not.

B.4.1.3 Disease Model Implementation and Scaling

The disease model initializes the PPDM with a 2-d lattice geometry. The model represents each
settlement by a cell in the lattice where a cell is given an x and y location to determine its distance
from other cells. We initialize two separate particle fieldsfor the human and monkey populations.
We submit four configurable particle algorithms to the PPDM to evolve the disease agents. These
algorithms create the initial population distributions, initialize the agent movement patterns, per-
form agent movement at a set rate, and evolve the disease state of the agents. The algorithms are
modular and can be replaced with different implementationsof varying complexity to study how
changes to the population or disease dynamics effect the outcome of the epidemic. For this model,
two types of inter processor communication take place. During agent movement some agents will
need to relocate to neighboring processors, and after each disease update the master disease algo-
rithm coordinates with its neighbor algorithms to output the aggregated disease statistics for that
time.

We performed experiments testing both the strong and weak scalability of this model on the
PPDM. In the strong scaling test, we initialized the population with a fixed 2,048 settlements, each
containing an average population size of 1,000 for a total population of 2 million agents. We then
varied the number of processors allocated to the PPDM and ranthe simulation for a simulated 2
months. Figure B.3 shows the results of the strong scaling test. The results show near-ideal scaling
up to 16 processors, after which the particular problem setup begins to scale poorly. This poor
scaling results because we keep the problem size fixed. As we increase the number of processors,
each processor has less to do and communication and synchronizations costs take over.

In the weak scaling test, we initialized the population witha fixed 2,048 settlements. We then
scaled the population size up linearly with the number of processors allocated to the PPDM so
that each processor would maintain a fixed number of agents. We ran the model for a simulated
2 months. The Estimated Single-Node plot line represents the expected time that a single node
would take to perform the problem size if it had infinite memory and did not succumb to non-
linear effects. Under the weak scaling case where the problem size grows with the number of
allocated processors, we achieve fairly good scaling with the 64 node case within twenty-five
percent of the ideal result. We see this good scaling becausethe communication load for each
processor is balanced by the increasing computational load. These results show that we can scale
up our modeled size by increasing the available number of processors. Figure B.6 shows a further
exploration of the scaling data space. For a given processorallocation we plot the timing response
for problems of increasing scale. The problem size represents a linear scaling of the population
allocated to each cell while the number of cells remains fixed. Missing data points exist when a
problem size is to large for the number of allocated processors.

61

To further test the weak scaling of the PPDM, the disease model’s problem growth strategy
was modified. In this case as the number of processors was increased the population per cell was
kept constant but the number of total cells allocated was increased linearly. This led to a fixed
number of cells and people allocated per processor. The simulation run time was also increased
to 3 months to mask some additional initialization costs. Figure B.5 shows the resultant weak
scaling numbers. Figure B.8 shows additional plots of the cell based scaling of the disease model.
Surprisingly, the scaling results are quite a bit worse for this case. Even though the scaling results
show that the problem complexity does scale linearly for a given processor allocation, the run times
for a given problem size are much greater than ideal between processor allocations. We have yet to
determine the cause for this deviation from the previous weak scaling case as the communication
loads between processors are similar. Despite the worse results, this level of scaling is still useful
because it allows one to run problem sizes much larger than what can be run on a single processor.

 1

 10

 100

 1000

 1 10

T
im

e(
s)

Number of Nodes

Ebola Model
Ideal

Figure B.3. Disease Strong Scaling

 300

 400

 500

 600

 1 10

T
im

e(
s)

Number of Nodes

Ebola Model
Ideal

Estimated Single-Node

Figure B.4. Disease Weak Scaling (Cell Size)

B.4.2 Seldon

Seldon is a software toolkit that combines technology and concepts from a variety of different
research areas, including psychology, social science, andagent-based modeling and simulation.
It has been used to study urban gang recruitment and terrorist network recruitment. This second
example demonstrates the utility of Seldon and the PPDM in analyzing the effect of media on
populations.

Previous uses of Seldon involved rather few (O(103)) agents, and serial implementations gen-
erally sufficed. However, large agent populations were required to study the effect of media, which
in turn required parallel computing. Further, the individual agent models were enhanced to include
a cognitive model (essentially a semantic graph of concept activations and edge weights), allowing
a realistic processing of media information. This led to an increase in the computational intensity

62

 700
 800

 1000

 2000

 3000

 4000

 1 10

T
im

e(
s)

Number of Nodes

Ebola Model
Ideal

Estimated Single-Node

Figure B.5. Disease Weak Scaling (Num Cells)

of individual agents, further spurring the need for parallelization.

Seldon has two types of agents: individuals and abstract. Abstract agents represent social or
institutional concepts that can influence an individual (e.g. schools and mosques). Since they
contain a set of individual agent members, they can be highly-connected nodes in the overall
structure.

An interaction between two agents involves significant processing. Sets of attributes are ex-
changed and modified according to linear attraction and reinforcement rules. Concept activation
vectors are also exchanged, causing nodes to fire in the semantic graphs, and thereby changing
their cognitive states.

The simulation commences with an unconnected set of agents.Homophily is used as the basis
of attraction, and relationships form as interactions proceed. Each agent has a maximum amount
of relationship energy, thus providing a flexible cap for either a large number of weak relationships
or a small number of strong relationships. Agents also have personality factors, which affect their
interactions. For instance, an extroverted agent might interact more than an introverted agent. As
relationships evolve, social networks form, ranging from acquaintances to cliques. These, in turn,
drive subsequent interactions, so that agents are more likely to interact with close friends in cliques
than acquaintances.

Each timestep in the algorithm consists of a couple of steps.First, the individual agents de-
termine their membership with the abstract agents, and thenthe interactions occur between them.
Next, the individual agents identify other individual agents with which to interact. The interac-
tion procedure consists of three parts:send, receive, andrespond. Agent A sends a subset of its
information to Agent B, who thenreceives the information, compares it to its own, andresponds
to Agent A. The procedure is transactional, so both agents change their emotional state, or both
stay the same. Interactions occur between agents through the creation of message objects, and

63

 0

 200

 400

 600

 800

 1000

 10 20 30 40 50 60 70

T
im

e(
s)

Problem Size

1 proc
2 proc

2 proc ideal
4 proc

4 proc ideal
16 proc

16 proc ideal
64 proc

64 proc ideal

Figure B.6. Disease Performance (Cell Size)

 100

 1000

 10 100

T
im

e(
s)

Problem Size

1 proc
2 proc

2 proc ideal
4 proc

4 proc ideal
16 proc

16 proc ideal
64 proc

64 proc ideal

Figure B.7. Disease Performance (Cell Size
log/log)

large numbers of messages are routed and delivered concurrently. Sincereceive messages can
createresponse messages, processing continues until there are no more messages. This barrier
synchronization ensures that each step finishes completelybefore the next step starts.

We parallelized Seldon by decomposing the problem across processors in a load-balanced man-
ner. We also maximized the likelihood of intraprocessor communication by using Zoltan [11], a
load-balancing library, to invoke graph-partitioning algorithms in ParMETIS [21]. Zoltan uses
the social network structure (with relationship strengthsas edge weights) to calculate the opti-
mal agent-to-processor mapping. It also provides a distributed directory capability to track these
mappings for routing. The data migration is performed separately and involves packing and un-
packing agents at the source and target processors, similarto the process of message delivery.
When repartitioning, Zoltan exploits the current decomposition to reduce data migration. An ad-
ditional difficulty involved multi-language integration,since Zoltan is implemented in C/C++ and
Seldon is implemented in Java. We created a JNI wrapper around Zoltan using Swig [5], which
then provided access from Seldon.

To study scaling characteristics, we used a cognitive modelwith agents for individuals and
media outlets to simulate the shift in public opinion in Amman, Jordan, after the November, 2005,
bombings. The individual agents were provided with cognitive information automatically gener-
ated from Jordanian newspapers published before and aroundthe time of the bombings. The weak
scaling runs held the number of individuals constant at 1000; the strong scaling runs used 1000P
individuals, whereP is the number of processors . There were 40 media agents in allruns.

In Figures B.10 and B.11 we plot results from strong and weak scalability studies. It is clear
from the weak scalability analysis (Figure B.11) that there is little locality in the agent-interaction
pattern - cross-processor communication costs increase asthe processors (and the total problem
size) are increased. The strong scalability run is somewhatmore promising, following a quasi-

64

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 10 20 30 40 50 60 70

T
im

e(
s)

Problem Size

1 proc
2 proc

2 proc ideal
4 proc

4 proc ideal
16 proc

16 proc ideal
64 proc

64 proc ideal

Figure B.8. Disease Performance (Num Cells)

 100

 1000

 1 10

T
im

e(
s)

Problem Size

1 proc
2 proc

2 proc ideal
4 proc

4 proc ideal
16 proc

16 proc ideal
64 proc

64 proc ideal

Figure B.9. Disease Performance (Num Cells
log/log)

ideal convergence till around 10 nodes; thereafter divergence from ideal is abrupt, as the high
communication costs (observed in the weak scalability analysis) overwhelm the steadily decreasing
computational costs. At a point (around 30 nodes), the communication costs dominate and a follow
the trend observed in the weak scalability study (Figure B.11) where communication costs are
roughly proportional to the number of processors.

B.5 Integration

We integrated the PPDM with several existing frameworks on an experimental basis. We used
the PPDM as an extension of an HLA federate [16] to simulate a moving population in a large
metropolitan area. The PPDM ran on a cluster, the HLA federation ran outside the cluster, and
the two communicated via remote method invocation (RMI). We separated the components in this
way because of differing platform requirements. We also used the PPDM as the underlying data
structure for one of the demo application models of ths RePastAgent-Based Modeling framework
[9]. A similar approach to adding parallelism to RePast can befound in [27]. We had to make some
changes to the RePastSchedule class to maintain synchronization, allow for agent movement, and
shadow agent updates between processors. We scheduled particle movement and update at fixed
intervals on all nodes.

65

B.6 Conclusion

Agent-based modeling and discrete event simulation are arguably the standard tools for under-
standing and making predictions about complex systems. To some degree both ABM and DES
make the argument that, unlike statistical methods, simulations must be performed at scale. For
such social systems, there is noa priori idea of a scaling law or average that would predict their
emergent behavior. Because the phenomena simulated are usually large and complex, and be-
cause they must be computed at scale, parallel high performance computing is required to enable
successful simulations of social systems.

We hope that our work in developing the Parallel Particle Data Model (PPDM) instigates the
development of a library of general purpose components for large-scale entity modeling. From a
software engineering point of view, separable components for ABM/DES will aid repeatability and
methodical experimentation. Beyond reusable software to speed software development, the ability
to change out entity models and even the framework and schemes for updating without changing
the parallelization scheme is an important contribution ofthe PPDM. Often when comparing two
different models that purport to acheive the same result, the phenomenological particulars of the
solutions differ in so many ways that comparisons are difficult. Separating out the parallel im-
plementation as we have done in the PPDM, hopefully will makecomparison between different
models easier in the future.

66

 10

 100

 1000

 1 10 100

T
im

e(
s)

Number of Nodes

Seldon
Ideal

Figure B.10. Seldon Strong Scaling

 1000

 10000

 100000

 1 10 100

T
im

e(
s)

Number of Nodes

Seldon
Ideal

Estimated Single-Node

Figure B.11. Seldon Weak Scaling

67

DISTRIBUTION:

1 MS 0763 Donna L. Chavez, 0123
1 MS 9151 Howard H. Hirano, 8960
1 MS 9159 Heidi R. Ammerlahn, 8962
1 MS 0899 Technical Library, 9536
1 MS 0899 Technical Library, 9536 (electronic)

68

v1.31

