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ABSTRACT

An Improved Neutrino Oscillations Analysis of the

MiniBooNE Data

Alexis Armando Aguilar-Arévalo

We calculate the exclusion region in the parameter space of νμ → νe oscillations

of the LSND type using a combined fit to the reconstructed energy distributions of

neutrino candidate samples from the MiniBooNE data obtained with two different

particle identification methods. The two νe candidate samples are included together

with a high statistics sample of νμ events in the definition of a χ2 statistic which

includes the correlations between the energy intervals of all three samples and handles

the event overlap between the νe samples. The νμ sample is introduced to constrain

the effect of systematic uncertainties. This analysis increases the exclusion limit in

the region Δm2 � 1eV2 when compared with the result previously published by the

collaboration, which used a different technique.
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Introduction

Neutrinos were postulated by W. Pauli in 1930 [1] to explain the continuous energy

spectrum of the electrons emitted in the beta decay of certain radioactive nuclei

while maintaining energy and momentum conservation. Pauli originally named this

new particle neutron, and determined that besides being electrically neutral, it should

also have spin 1/2 and a very small mass (at most 10−2 times that of the proton).

Pauli’s neutron would exist in the interior of atomic nuclei, thought at the time to be

composed by protons and electrons, and in a beta decay would be emitted together

with an electron in a three body decay explaining the continuous energy spectrum of

the electrons.

Pauli’s idea gained acceptance with the discovery of the neutron as a constituent

of atomic nuclei by Chadwick in 1932 [2], and in 1934 Fermi used it to complete his

theory of beta decay [3], giving it the name neutrino to distinguish it from Chadwick’s

neutron. In 1956 Reines and Cowan [4] first detected the neutrinos from a nuclear

reactor through the reaction known as inverse beta decay (p + νe → n + e+), and in

1962 the Columbia University group led by Lederman, Schwartz and Steinberger [5]

discovered the muon neutrino. The discovery of the tau lepton in 1975 [6] suggested

the existence of a third neutrino, the ντ , pointing to the scheme of three generations

of particles in the Standard Model completed in 1995 [7] with the discovery of the

top quark in Fermilab in 1995.

1



2

The idea of neutrino oscillations was first proposed by Pontecorvo in 1957 [8]

suggesting the possibility of ν ↔ ν transitions in analogy with K0K
0

oscillations

[9]. Soon after the discovery of the muon neutrino, Maki, Nakagawa and Sakata [10]

suggested that transitions between neutrinos of different flavors could occur if the

neutrinos were massive particles and if the states with definite flavor and definite

mass were related to one another by a linear transformation similar to a change of

basis. This idea provided a framework to interpret the early observations of the deficit

of solar neutrinos made by Ray Davis in the 60’s and 70’s, which admitted neutrino

flavor transitions as a possible solution. However, it was not supported by the lack of

evidence for oscillations coming from pioneering experiments using nuclear reactors.

In the mid 1990’s the LSND experiment at Los Alamos National Laboratory

searched for neutrino oscillations of the type νμ → νe with a neutrino beam that

traveled a short distance (∼30 m) from source to detector, finding a positive signal

in favor of this process. Soon after in 1998, the Super-Kamiokande experiment [65],

in Japan presented for the first time strong evidence in favor of neutrino oscillations

of the type νμ → ντ from the observation of muon neutrinos produced in the Earth’s

atmosphere traveling distances comparable to the Earth’s diameter. The observations

implied three very distinct regimes of oscillations requiring the existence of at least

one new type of neutrino, in conflict with the three-neutrino picture of the Standard

Model. New experiments were performed and the signatures for oscillations from solar

and atmospheric neutrinos were confirmed, while the LSND observation remained

unverified.

Recent experimental observations of solar, atmospheric, and accelerator neutrino

oscillations (see Section 1.4, Chapter 1) have conclusively established that neutrinos

have non-zero masses. In order to seriously address the LSND anomaly, as it became

known, the MiniBooNE experiment at Fermilab performed a search for νμ → νe oscil-



3

lations in the same region of the oscillations parameter space that would account for

the LSND observation. First results from this search have been published providing

evidence that the LSND result cannot be due to the simple two-neutrino oscillations

model as was originally thought. Two different analyses of the MiniBooNE data

based on different particle identification algorithms and techniques to reduce the ef-

fect of systematic uncertainties gave consistent answers disfavoring the two-neutrino

oscillation hypothesis. A first attempt to combine the power of the two analyses is

the goal of this thesis where a combination of the two particle identification methods

is used to explore the gain in the oscillation sensitivity and in the exclusion power of

the final fit to the MiniBooNE data.

The results of this thesis are summarized in Figures 1, 2, and 3 below. In Figure

1 we show the fits to the energy distributions of the two νe samples, obtained with

the two particle identification methods (labeled BDT and TBL in the figures), and

the νμ sample (see Chapters 4 and 5 for the full description of these results) with

the technique of this thesis. In Figure 2 we compare the oscillations results1 obtained

using both νe samples to those obtained using either of the two νe samples separately2.

In Figure 3 we compare the results with the previously published ones, where it is

shown that there is a net gain in sensitivity to oscillations (Figure 2(a)), as well as

an increase in the exclusion limit below Δm2 �1 eV2 when compared with the limit

previously published by the collaboration [190] (Figure 3(b)).

Thesis Results in next three pages.

1 Sensitivity to 2ν oscillations of the LSND type and limits on oscillations parameters, drawn as

curves on the Δm2 vs. sin2 2θ plane introduced in Section 1.2.1.
2 Also shown are the 90% (dark filled area) and 99% (light filled area) C.L. allowed regions of

LSND which will appear in all similar plots of the Δm2 vs. sin2 2θ plane throughout this thesis.
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In Chapter 1 a brief description of the theory of massive neutrinos and neutrino

oscillations is given, followed by a compilation of results from experiments on neutrino

oscillations including LSND which is the main motivation for the MiniBooNE exper-

iment. In Chapter 2 the MiniBooNE experimental apparatus and the subsystems

relevant for the present work are described. In Chapter 3 we describe the experiment

simulation, reconstruction algorithms, particle identification methods, and the esti-

mation of systematic uncertainties for the νμ → νe oscillations search. In this chapter

we also introduce the boosted decision tree (BDT) and track based likelihood (TBL)

criteria used to select νe candidate samples for the oscillations search, as well as the

criterion used to select a high statistics νμ candidate sample that helps constrain the

effect of systematic uncertainties.

The original contributions from this thesis are presented in Chapter 4 where the

technique to combine the BDT and TBL νe candidate samples is described in detail,

and in Chapter 5 where the results and conclusions of the application of the proposed

technique are compared to those previously made public by the collaboration.



Chapter 1

Neutrinos

1.1 Field Theory of massive fermions

A free fermion of mass m is described by 4-component spinor field ψ satisfying the

Dirac equation:

(iγμ∂μ − m)ψ = 0 , (1.1)

where γi, i = 0, 1, 2, 3 are the Dirac matrices [19]. Using the Euler-Lagrange equation

∂μ(∂L/∂(∂μψ)) = ∂L/∂ψ one can derive Eq.(1.1) from the Dirac Lagrangian density

L = ψ(iγμ∂μ − m)ψ . The projections ψL = 1/2(1 − γ5)ψ and ψR = 1/2(1 + γ5)ψ

are eigenstates of γ5 ≡ iγ0γ1γ2γ3, which satisfies (γ5)2 = 1. They are called the

left (L) and right (R) handed components of ψ = (ψL + ψR) and are said to have

definite chirality. The evolution described by the Dirac equation mixes the left and

right handed components of the field, but the anti commutation relation {γ5, γμ} = 0

guarantees that in the ultra-relativistic limit E/m → ∞ (or for massless particles)

the definite chirality states ψL and ψR satisfy the Dirac equation at all times making

chirality (also called handedness) a good quantum number. In this limit the projection

of the particle’s spin Σ = −iγ4γ5γ along its momentum p, called helicity, satisfies

8
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Σ · p/|p| → γ5. Therefore, helicity and chirality are the same for massless particles.

Massless neutrinos in the Standard Model

In the Standard Model neutrinos are massless particles that interact with matter

only through the weak interaction1. They can interact via charged current (CC)

interactions (exchange of a W+ or W− boson) or neutral current (NC) interactions

(exchange of a Z0 boson). The particles of the three generations are arranged into

two SU(2)L weak isospin doublets and three weak isospin singlets as shown in Table

1.1

Table 1.1: Left handed isospin doublets and right handed isospin singlets in the Standard

Model. In the Table ψ represents the neutrino field ν.

Lepton doublets Quark doublets Lepton singlets Quark singlets⎛
⎝ψe

e

⎞
⎠

L

⎛
⎝ u

d

⎞
⎠

L

eR uR dR

⎛
⎝ψμ

μ

⎞
⎠

L

⎛
⎝ c

s

⎞
⎠

L

μR cR sR

⎛
⎝ψτ

τ

⎞
⎠

L

⎛
⎝ t

b

⎞
⎠

L

τR tR bR

A Higgs boson doublet (φ+, φ)T with a non-zero vacuum expectation value (VEV)

(0, v/
√

2)T is responsible for breaking the SU(2)L symmetry giving masses to the

gauge bosons W± and Z0 as well as the massive fermions. The weak interactions

are restricted to involve exclusively the left handed components of the interacting

1 Massless neutrinos also feel the effects of gravitational fields, however, gravity is not a part of

the Standard Model of Particle Physics and is hence excluded from the discussion.
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particles, hence the CC and NC interactions are described by terms in the Lagrangian

of the form [19]:

−LCC =
g√
2

∑
l=e,μ,τ

ψlLγμlL W++h.c. , −LNC =
g√

2cos θW

∑
l=e,μ,τ

ψlLγμlL W++h.c.

where g is the the SU(2)L coupling constant, and θW is the Weinberg angle. Such

terms will appear in the Lagrangian upon the imposition of local SU(2)L×U(1)Y

gauge invariance and bring interactions into the theory. The SM contains no right

handed neutrino fields making impossible the existence of a Dirac mass term. This

in turn causes the neutrino magnetic moment and mixings to vanish [22]. However,

there is no fundamental symmetry in the model that prevent us from including right

handed fields in one way or another [23].

To the present day, there has been no observation of a process consistent with a

neutral current interaction that involves a net change in flavor. Many experiments

have looked for processes such as K0
L → e+e−, K0

L → μ+μ−, K0
L → μ±e∓, K+ →

π+νν, μ → eγ, μ± → e−e+e−, μ + Nucl → e + Nucl, etc., placing limits on the

strength of such flavor changing neutral current (FCNC) interactions to the level of

∼ 10−4 × GF from Kaon decays, and ∼ 10−6 × GF from muon decays [11]. These

observations imply that one can define lepton family quantum numbers Le, Lμ, and

Lτ , which are conserved in weak interactions. The analogous family numbers for

quarks are not possible because of the observed flavor change in charged current

weak interactions, manifested through the CKM mixing matrix in the quark sector.

This makes charged leptons and neutrinos very different from quarks.

Neutrino mass terms

It is possible to construct states with definite chirality that are different from ψL and

ψR by means of the charge conjugation operator C. Defining the charge conjugate
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field ψc = ηCCψ
T

where ηC is a phase factor, ψ = ψ†γ0 is the Dirac adjoint of field

ψ, and T represents the transpose, one can form the states [20]

(ψL)c =
1 + γ5

2
ψc ≡ (ψc)R and (ψR)c =

1 − γ5

2
ψc ≡ (ψc)L (1.2)

which are also eigenstates of γ5 and therefore have definite chirality. In terms of the

chiral fields, the mass term in the Dirac Lagrangian is m ψψ = m (ψRψL + ψLψR).

This term is only one of many possible terms satisfying Lorentz invariance and being

hermitian. A more general Lagrangian density for a massive particle will admit terms

such as ψLψR , ψc
RψL = (ψL)cψL , ψc

LψR = (ψR)cψR , and their hermitian

conjugates [21]. These terms can be introduced with three real masses MD, ML, and

MR to form the most general mass Lagrangian density respecting CP invariance 2:

− Lmass = MD

(
ψLψR + h.c.

)
+

ML

2

(
(ψL)cψL + h.c.

)
+

MR

2

(
(ψR)cψR + h.c.

)
.

(1.3)

The first term is the usual mass term of a Dirac field, and the next two terms are

called Majorana mass terms. If we define the Majorana fields

φ ≡ ψL + (ψL)c

√
2

and Φ ≡ ψR + (ψR)c

√
2

,

the mass term takes the simple form −Lmass = MD

(
φΦ + Φφ

)
+ ML φφ + MR ΦΦ.

Adding one kinetic term for each of these two new fields and arranging the mass

constants into a matrix M, the total Lagrangian density of the system can be written,

using matrix notation for the mass term, as

−L = −φiγμ∂μφ − Φiγμ∂μΦ +
(
φ , Φ

)⎛⎝ ML MD

MD MR

⎞
⎠
⎛
⎝ φ

Φ

⎞
⎠

The matrix in the above expression is called the mass matrix of the system. If ν ′ and

N are the eigenvectors of the mass matrix, with eigenvalues Mν′ and MN respectively,

2It can be shown that for the case of complex constants, the Lagrangian is not CP invariant[20].
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the Lagrangian of the system is expressed as

−L = −ν ′iγμ∂μν ′ − Niγμ∂μN + Mν′ν ′ν + MNNN

which is the free Lagrangian density of two spin 1/2 particles ν ′ and N , with masses

Mν′ and MN . The Dirac field ψ describes the two spin states of a particle and its

antiparticle having the same mass (four states). Introduction of the Majorana mass

terms breaks the degeneracy giving a different mass to the fields ν ′ and N . Given

that the spinor fields can only represent four different states, these fields represent

particles that are identical to their antiparticles (CPT self-conjugate).

Pairing left and right-handed components of a field with its Dirac adjoint, Dirac

mass terms explicitly conserve electric charge and can be used to describe charged

massive particles. Majorana mass terms on the other hand can only exist for electri-

cally neutral particles, otherwise one would allow for violation of charge conservation

by two units. Therefore the charged leptons admit a description in terms of Dirac,

but no Majorana mass terms.

The see-saw mechanism

A simple extension of the standard model that allows neutrino masses is to include

right handed neutrino fields ψR as members of an SU(2)R doublet analogous to the

SU(2)L doublets already present in the theory. For the first family one would have⎛
⎝ψe

e

⎞
⎠

L

⎛
⎝ψe

e

⎞
⎠

R

,

where e = eL + eR represent the electron field and its chiral components arranged

in their corresponding doublets. Such a theory would have an underlying SU(2)L×
SU(2)R×U(1) symmetry which spontaneously breaks at two different energy scales.

The mass terms for the neutrino fields will arise from the Yukawa couplings of the
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fields in the doublets with scalar Higgs fields which acquire some vacuum expectation

value (VEV) when the symmetry is broken. To obtain the mass terms in Eq.(1.3)

one can introduce three scalar Higgs fields h, hL, and hR with appropriate weak

isospin quantum numbers to guarantee the gauge invariance of the Lagrangian under

SU(2)L×SU(2)R×U(1) transformations [21]. The Yukawa couplings will be of the

form ψR h ψL , (ψL)c hL ψL , (ψR)c hR ψR , and the masses in the general

Lagrangian density will then be MD ∼ 〈h〉 , ML ∼ 〈hL〉 , MR ∼ 〈hr〉 , where

the brackets 〈·〉 represent the VEV. It is reasonable to assume that 〈hL〉 ≈ 0, since

a non-zero value for this VEV would affect the relative strengths of the CC and

NC interactions, found experimentally to be approximately equal [19]. One can also

assume that 〈hR〉 >> 〈h〉 which is true if the scale of the SU(2)L symmetry breaking

is much larger than that of the SU(2)L electroweak symmetry, occurring around the

mass of the W± boson of ∼ 83 GeV. Furthermore, the field h will continue to be

responsible to give the other fermions in the SM their masses, and we can expect that

MD be of order the mass of the quarks or leptons. In this situation, the mass matrix

for the neutrinos becomes

M ≈
⎛
⎝ 0 MD

MD MR

⎞
⎠

and the eigenvectors and eigenvalues are given in terms of the Majorana fields by

N ≈ Φ +
MD

MR
φ, MN ≈ MR ,

ν ′ ≈ φ − MD

MR

Φ, Mν′ ≈ −M2
D

MR
. (1.4)

To get a positive eigenvalue for the light neutrino state we take the physical neutrino

field to be ν = γ5ν ′, which will satisfy ν ′ν ′ = −νν and ν ′γμ∂μν ′ = + νγμ∂μν. This

gives the Lagrangian density for the free neutrinos ν and N and their masses

−L = −νiγμ∂μν + Mννν − Niγμ∂μN + MNNN.

MN ≈ MR and Mν ≈ +
M2

D

MR
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Under the assumption that MD ∼ Ml or q (the mass of a quark or lepton in the

SM), and the existence of a heavy neutrino state N , this procedure gives a natural

explanation as to why neutrino masses are so small. The relation Mν ×MN ≈ M2
l or q

is known as the see-saw relation.

1.2 Neutrino mixing

If neutrinos have masses, there is a set of at least three definite mass states, usually

denoted by ν1, ν2, ν3, . . ., νn which may in general be different from the definite-flavor

weak interaction eigenstates νe, νμ, and ντ . We use the term mixing to refer to the

situation in which the weak interaction couples any charged-lepton mass eigenstate lα,

α = e, μ, τ , with any of the neutrino mass eigenstates νi. Then the various amplitudes3

for the decay of a charged W± boson into the different pairings of charged leptons

and neutrino mass eigenstates can be arranged into the elements of a 3× n complex-

valued unitary matrix U known as the leptonic mixing matrix [10]. For example,

the amplitude for the decay of a W+ into the combination l+α + νi is the element

U∗
αi of the complex conjugate matrix U∗. The neutrino state created in the decay

W+ → l+α + ν can be seen as a superposition of definite-mass eigenstates weighted by

the amplitudes of each transition connecting them to the charged lepton α :

|να〉 =
∑

i

U∗
αi |νi〉 (1.5)

We refer to this superposition as the neutrino state of definite flavor α, and write

from now on the W+ decay reaction in the form W+ → l+α + να

For cases in which the number of mass eigenstates is equal to the number of flavor

eigenstates, the leptonic mixing matrix can be thought of as a rotation matrix taking

3 Their complex conjugates, by convention.
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us from the definite flavor basis to the definite mass basis. This matrix can be formed

by the consecutive application of rotations about the definite mass axes ν1, ν2, and

ν3 and parameterized by three angles θ12, θ23, and θ23 giving the magnitude of each

of these rotations about the ν3, ν1, and ν2 axes respectively.

The most general form of the neutrino mixing matrix for three neutrinos is the

PMNS4 matrix:

ν1 ν2 ν3

νe

νμ

ντ

⎡
⎢⎢⎢⎣

c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

⎤
⎥⎥⎥⎦

×diag(eiα1/2, eiα2/2, 1) (1.6)

where cij ≡ cos θij and sij ≡ sin θij , and δ is the CP-violating phase. The phases α1

and α2 are called Majorana phases, and can potentially appear in the case neutrinos

are their own anti particles. For Dirac neutrinos these phases can be absorbed in a

redefinition of the Dirac fields.

Sterile Neutrinos

If the number of mass eigenstates is larger than the number of weak interaction

eigenstates there are more linearly independent superpositions of mass eigenstates

than there are neutrino flavors. Let these extra states be denoted by

|νs〉 =
∑

i

U∗
si |νi〉 , s �= e, μ, τ . (1.7)

Such states will not couple to the Standard Model W± bosons, since they do not

4 Pontecorvo-Maki-Nakagawa-Sakata [11].
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have a corresponding charged lepton partner in the model. There is strong experi-

mental evidence that the number of neutrinos participating in the decays Z → νανα

of the Z boson is almost exactly equal to three [11], indicating that if they exist, these

linear superpositions do not couple to the Z boson either. Having no interactions with

any of the Standard Model bosons, these states are called sterile neutrinos.

Both, neutrino masses and mixing are not contained in the Standard Model of

Particle Physics, and are necessary for the phenomenon of neutrino oscillations to

occur.

1.2.1 Neutrino oscillations in vacuum

The time evolution of the neutrino state in Eq.(1.5) can be determined by calculating

the evolution of its definite mass components:

|να(t)〉 =

n∑
i

U∗
αi |νi(t)〉 . (1.8)

Approximating each neutrino mass eigenstate by a plane wave, its time evolution is

given by5: |νi(t)〉 = e−iEit |νi(0)〉 , where Ei =
√

p2
i + m2

i is the energy of the state of

mass mi and momentum pi. A useful assumption that is made when working with the

plane wave approximation used here is that all the mass eigenstate components are

created with the same momentum pi ≈ p, yielding a flavor eigenstate with a definite

momentum (plane wave with momentum p). The alternate assumption [21] that the

mass eigenstates have the same energy instead leads to the same expression for the

flavor transition probability. Furthermore, the neutrino will be highly relativistic

and its momentum will be much larger than the masses of the mass eigenstates.

Under these assumptions, we approximate the energy of the mass-eigenstate νi by

Ei =
√

p2 + m2
i ≈ p + m2

i /2p.

5 In this section we use natural units in which c = � = 1.
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The probability for a transition from the flavor state α to the flavor state β to

occur at time t will be given by

Pαβ = |〈νβ|να(t)〉|2 =

∣∣∣∣∣
n∑

i=1

n∑
j=1

U∗
αiUβj〈νj |νi(t)〉

∣∣∣∣∣
2

(1.9)

Using the orthonormality condition 〈νj |νi〉 = δij , and setting the time t = L/c, the

distance traveled by the neutrino from the production point to the detection point

divided by its speed (approximately equal to the speed of light c), one arrives at the

general formula for the transition probability between two flavor states:

P (να → νβ) = δαβ

−4
∑
i>j

R
(
U∗

αiUβi
UαjU

∗
βj

)
sin2

[
1.27 Δm2

ij (L/E)
]

+2
∑
i>j

I
(
U∗

αiUβi
UαjU

∗
βj

)
sin2

[
2.54 Δm2

ij (L/E)
]

, (1.10)

where Δm2
ij ≡ m2

i −m2
j is in eV2, L is in km, and E is in GeV. In Eq.(1.10) we have

used the conventional notation in which, factors of � and c are included to account

for the chosen units,

Δm2
ij(L/4E) ≈ 1.27 Δm2

ij(eV
2)

L(km)

E(GeV)
(1.11)

More detailed treatments of neutrino oscillations [12] that take into account the

wave packet nature of the mass eigenstates show that the assumptions made in the

derivation shown here are reasonable, but at the same time expose other relevant

aspects of the phenomenon.

Two neutrino mixing in vacuum - Average oscillation probability

In the two neutrino picture where α = e, μ, and i = 1, 2, the probability for a νμ

produced with energy E to be detected as a νe after traveling a distance L is

P (νμ → νe) = sin22θ sin2(1.27 Δm2(L/E)) (1.12)
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In a real experiment, the quantity L/E has a certain dispersion. Suppose that

b = 1.27 (L/E) has a Gaussian distribution with standard deviation σb and mean

b0 = 1.27 (L/E)0. Then the average of the oscillation probability P (b) over all the

possible values of b can be calculated as:

〈P 〉 =

∫ ∞

−∞
db P (b)

1√
2πσ2

b

e
− (b−b0)2

2σ2
b

=
1

2
sin22θ

[
1 − cos(2b0 Δm2) e−2σ2

b Δm2
]

(1.13)

Consider the case of an appearance experiment (νμ → νe), where measurement

of a net excess of electron neutrinos over the expectation is interpreted as two neu-

trino oscillations. In this situation Eq.(1.13) yields an explicit relation between the

unknown parameters sin22θ and Δm2. The uncertainty on the excess will allow for

a region in the parameter space containing all points that are consistent with the

measured excess as illustrated in Figure1.1.

In Figure 1.1 (right) the central curve corresponds to the central value of the measured

probability interval, and the curves to its left and right are the lower and upper edges

of the 1σ interval for the parameters.

Note that if the observed excess were consistent with the expectation within the

uncertainties, the lower boundary of the interval would be negative and the allowed

region would include sin22θ = 0 as a solution for all values of Δm2.

1.3 Direct limits on the neutrino mass

Direct limits on the neutrino mass have been established by experiments studying

the energy spectrum of leptons produced in weak decays. A summary of the most

relevant results is given in Table 1.2.
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Figure 1.1: On the right, the allowed values of the oscillation parameters obtained from

a hypothetical experiment using Eq.(1.13) when observing a net excess of νe events of

(0.26 ± 0.08)% of the expectation with a Gaussian distribution of L/E (left) with mean

(L/E)0 and standard deviation σL/E.

Limits on the electron neutrino mass νe

The best absolute limits on the mass of the electron neutrino come from measurements

of the β decay of tritium [25, 26], 3H → 3He + e− + νe . Having an energy release

Q = M(3H) − M(3He) − me = 18.591 ± 0.001 keV [36], this decay is particularly

sensitive to detect a small neutrino mass of a few eV/c2. If the electron neutrino

produced in the decay is a mixture of the different mass eigenstates νe =
∑

i Ueiνi,

both, mixing and non-zero neutrino masses affect the energy spectrum

dN

dE
= R(E)(E − E0)

∑
i

|Uei|2
[
(E0 − E)2 − mi

]1/2
Θ(E0 − E − mνi

) , (1.14)

where E0 = Q+me is the spectrum endpoint for zero neutrino mass, R(E) is a smooth

function which does not depend on the neutrino mass [15], and the step function

Θ(E0 − E − mνi
) guarantees that a neutrino eigenstate of mass mi is created only

when there is enough energy available in the decay. A typical experiment will measure
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the integrated count rate above the energy E0 − δ, given by N(δ) = R
∫ E0

E0−δ
1
R

dN
dE

dE,

since R(E) is a slowly varying function of E whose average over the interval is R.

Performing the integration, the averaged rate near the endpoint is

N(δ) =
R

3

n∑
i=1

|Uei|2(δ2 − m2
i )

3/2 Θ(δ − mi) ,

according to which several mass and mixing parameters should be used to fit the

experimental data. Tritium β decay experiments customarily present their results in

terms of a single effective mass mβ , in which case the averaged count rate is simply

N(δ) =
R

3
(δ2 − m2

β)3/2

In the limit δ2 >> m2
i , the effective fitted mass is related to the true masses and

mixings by

m2
β ≈

n∑
i=1

|Uei|2m2
i .

The KATRIN experiment [27] will set an upper limit on mβ of 0.2 eV at 90%

C.L. if the electron neutrino mass is zero, and will be able to distinguish a neutrino

mass of 0.3 eV (0.35 eV) with a significance of 3σ (5σ). Results with the expected

sensitivity will require three years of data taking, starting in 2010 [28].

Limits on the muon neutrino mass νμ

The strongest limit on the muon neutrino mass has been calculated by K. Assamagan

et al. [31] from measurements of the momentum of the muon in pion decay at rest

π+ → μ+ + νμ , where energy conservation allows one to calculate the squared

neutrino mass in terms of the pion mass mπ, the muon mass mμ and measured

momentum pμ:

m2
νμ

= m2
π + m2

μ − 2mπ(m2
μ + p2

μ)1/2 .
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Figure 1.2: Schematic of the expected effect of a non zero neutrino mass in the tail of the

energy spectrum of the electrons emitted in β decays like Eq.(1.3). Taken from Ref.[29]

From the result from Assamagan et al. pμ = (29.79200 ± 0.00011)MeV/c, and their

average for the π± mass, the authors in Ref.[11] calculate the limit shown in Table

1.2. As in the case of Tritium β decays, the value of mνμ extracted by this kinematic

measurements is related to the mixings and masses by m2
νμ

=
∑n

i=1 |Uμi|2m2
i [11] .

Limits on the tau neutrino mass ντ

The strongest limits have been estimated by R. Barate et al. (ALEPH Collaboration)

[33] from kinematic analyses of hadronic decays of the τ− lepton into multi-pion states

τ− → 2π− + π+ + ντ and τ− → 3π− + 2π+(+π0) + ντ Combining the limits from

the three channels the ALEPH group calculated the limit on m2
ντ

=
∑n

i=1 |Uτ i|2m2
i
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shown in Table 1.2.

Table 1.2: Direct limits for neutrino masses.

species mass limit decay reference

νe ≤ 3 eV ,95%C.L. 3H →3 He + e− + νe [25, 26]

νμ ≤ 190 keV, 90%C.L. π− → μ− + νμ [11]

ντ ≤ 18.2 MeV, 95%C.L. τ− → nπ + ντ [11]

Neutrino-less double beta decay (ββ0ν)

If neutrinos are Majorana particles and are their own antiparticles certain even-even

nuclei can decay according to the reaction (A, Z) → (A, Z + 2)+ 2 e−, a process that

violates lepton number by two units. This process is similar to its lepton number

conserving analogue (ββ2ν) where the reaction is (A, Z) → (A, Z + 2) + 2 e− + 2νe,

and has been observed in 10 isotopes [17] with half-lives ranging from 1019y-1024y.

The rate of (ββ0ν) has been estimated to be given by (T 0ν
1/2)

−1 = G0ν |M0ν |2〈mββ〉2

where G0ν is a phase factor for the emission of the two electrons, M0ν is a nuclear

matrix element for this process, and 〈mββ〉2 is an effective mass parameter given

by 〈mββ〉2 = |∑i U
2
eimi|, where cancellations may occur involving possible Dirac or

Majorana phases in the matrix U . To reach a sensitivity of 〈mββ〉2 ∼ 1 eV2, an

experiment must be able to observe a half-life T 0ν
1/2 of about 1026y-1027y [16]. To

date no convincing observation of (ββ0ν) has been made, but a limit on the effective

Majorana mass of around 〈mββ〉 ≤ 1 eV can be calculated with existing experimental

results [18].
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1.4 Experimental observations of neutrino oscilla-

tions

A series of observations of neutrinos from natural sources, as well as from nuclear

reactors, gave initial indications of a process not accounted for in the description

of neutrinos in the Standard Model. The interpretation of the observed anomalies

in terms of massive neutrinos undergoing neutrino oscillations between two states

became the standard way to present experimental results. As the experiments became

more precise and laboratory-based searches confirmed the observations from solar and

atmospheric neutrinos, the three neutrino picture explanation with a marked mass

hierarchy between the states gained force. This picture requires that the sum of

two of the mass splittings be equal to the third (Δm2
12 + Δm2

23 = Δm2
13), and a

mass hierarchy between the neutrinos would allow to use the two independent mass

splittings to interpret the different regimes in energy and baseline (L/E) probed

by the solar and atmospheric experiments. But this view is inconsistent with the

results of the LSND experiment [37, 38, 39, 40], which since the 1990’s introduced

the possibility of the existence of a fourth neutrino.

It became a usual practice among phenomenologists to exclude the LSND re-

sult from global fits to the available data, however this seemed unjustified given its

statistical significance, and a new experiment was designed to test the oscillations

interpretation of the LSND result. That experiment is MiniBooNE, whose results

will be presented in this thesis.

Solar neutrinos

Measurements of the average rate of solar neutrinos detected with the Chlorine ra-

diochemical experiment at the Homestake mine over more than 20 years of operation,



24

yield a ratio of the number of neutrinos observed to those predicted by the Standard

Solar Model [42] (SSM) of RCl/RSSM = 0.30 ± 0.03, with RCL = 2.56 ± 0.16 ± 0.16

SNU [43, 44] 6. The capture reaction 37Cl(ν, e−)37Ar has an energy threshold of 0.814

MeV, which according to the SSM corresponds to 78% of the events due to the 8B

flux and 13% from 7Be flux. The average ratio for the radiochemical experiments

using a Gallium target SAGE [45] and GALLEX [46] (succeeded by GNO [47]) gave

RGa/RSSM = 0.52± 0.03, with RGa = 68.1± 3.75 SNU [47]. In this case the capture

reaction 71Ga(ν, e−)71Ge has a threshold of 0.233 MeV, which according to the SSM

corresponds to 54% due to the pp flux, 26% from 7Be, and 11% from 8B. In addi-

tion, the water Cherenkov detectors Kamiokande [48] and Super-Kamiokande [49] in

Japan detected 8B neutrinos in real time through the elastic scattering (ES) reaction

νa + e− → νa + e− (a = e, μ, τ) with an energy threshold of 5 − 7 MeV. Their

results are presented in terms of the 8B flux yielding a ratio to the SSM prediction of

ΦSK/ΦSSM = 0.413 ± 0.014.

The different flux deficits observed by these experiments (Φobs/ΦSSM ∼ 0.3− 0.6)

suggested an energy dependent effect, which became known as the solar neutrino

problem [50], and was resolved by the heavy water SNO detector in the Sudbury mine

in Canada. SNO was also sensitive to 8B neutrinos via the ES reaction but also

used the deuterons in D2O to observe the CC reaction νe + d → p + p + e− with

an energy threshold of ∼ 5 MeV in its first phase [51, 52, 53], and the NC reaction

νa +d → n+p+ e−, (a = e, μ, τ) with an energy threshold of 2.225 MeV in its second

phase [54, 55]. The flavor composition of the solar 8B flux assuming flavor conversion

is related to the fluxes measured by SNO in these three channels:

6 1 Solar Neutrino unit, SNU≡ 10−36 captures/atom/sec
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ΦCC
SNO = (1.68+0.06+0.08

−0.06−0.09) × 106 cm−2s−1 = Φe

ΦES
SNO = (2.35 ± 0.22 ± 0.15) × 106 cm−2s−1 = Φe + r Φμ,τ

ΦNC
SNO = (4.94 ± 0.21+0.38

−0.34) × 106 cm−2s−1 = Φe + Φμ,τ ,

where r ≡ σμ/σe ≈ 0.15 is the ratio of the νee and νμμ elastic scattering cross

sections. The flavor conversion is well described by oscillations of νe into νμ or ντ

which in a two-neutrino picture correspond to the parameters Δm2
solar ≈ 5 × 10−5

eV2, and mixing angle θsolar ≈ 33◦ [41]. This solution is called the large mixing

angle (LMA) solution, and arises from the flavor conversion picture described by the

Mikheyev-Smirnov-Wolfenstein (MSW) [56] effect in the exponential density profile

of the sun.

In August 2007 the Borexino experiment presented its first results [57] on real

time observation of 7Be neutrinos, finding it in good agreement with the prediction

from the parameters derived from earlier observations.

Atmospheric neutrinos

Pions and kaons produced in the interaction of cosmic rays with oxygen and nitrogen

in the Earth’s atmosphere at a mean altitude of 15 km decay producing νe, νe, νμ,

and νμ, with a wide range of energies (from sub-GeV to multi-GeV). Produced via

the reaction π → μνμ followed by μ → eνμνe, it is expected that the ratio of muon

to electron neutrinos from this source be close to 2 : 1. First observations of these

neutrinos in experiments in South Africa [58] and India [59], showed disagreement

with expectations with low statistical significance, while two calorimeter experiments,

Frejus [60] and NUSEX [61] observed no disagreement. Later observations with water

Cherenkov detectors Kamiokande [63] and IMB [62] observed a ratio of muon-induced

to electron-induced events ∼ 0.6 smaller than the expected value. These discrepancies
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became known as the atmospheric neutrino anomaly. The zenith angular dependence

of the Kamiokande measurements indicated that the deficit was caused mainly by

neutrinos coming from below the horizon and traversed the ∼ 104 km of the Earth’s

diameter, while those coming from above the horizon traveled only ∼ 15 km.This

is further supported by the observations that the deficit grows with the distance

traveled by the neutrino from it production point. For multi-GeV energy events

Super-Kamiokande found an upward-downward asymmetry in the observed events

deviating from the expected value of zero by ∼ 10 standard deviations Aμ = U−D
U+D

=

−0.29 ± 0, 03, where U(D) occur in the zenith angle interval −1 < cos θz < −0.2

(0.2 < cos θz < 1.

The high precision and high statistics of the Super-Kamiokande atmospheric data

set [65, 66, 67], together with confirmation from the Soudan2 [69] and MACRO [70]

iron calorimeter experiments yield definitive evidence for disappearance of muon neu-

trinos produced in the atmosphere. The best interpretation of these results is the

oscillation of νμ into ντ with oscillation parameters Δm2
atm ≈ 2 × 10−3 eV2 and mix-

ing angle θatm ≈ 45◦ [41]. The explanation in terms of νμ → νe oscillations is excluded

at high C.L. because the νe events agree well with the expectation and would have

produced a deficit in the CHOOZ reactor experiment that was not observed. Oscil-

lations into sterile neutrinos νμ → νs are also ruled out for atmospheric neutrinos

because this implies a suppression of the NC signal that was not observed [71]. The

interpretation in terms of no ντ appearance is found to he disfavored at 2.4σ [72]

according to a recent analysis of the effects of this hypothesis.

Reactor Neutrinos

Nuclear reactors are sources of exclusively νe with energies of only a few MeV. With

energies this low a νe that oscillates into a different flavor would be impossible to
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detect with conventional detectors. There is not enough energy to produce a μ or a

τ , which is what a conventional detector needs to tell that the transition took place.

Therefore, reactor experiments look typically for a νe disappearance signal.

The experiments Gosgen [73] in Switzerland (L ∼ 38 − 65 m,) Krasnoyarsk [74]

in Russia (L ∼ 57 − 231 m), Bugey [75] (L ∼ 50 − 94 m) and CHOOZ [76] in

France (L ∼ 1 km), and Palo Verde [77] in Arizona, U.S. (L ∼ 750 − 890 m),

found no evidence of neutrino oscillations placing exclusion limits on the region of

the parameter space above sin22θ � 10−1 and Δm2 � 10−3eV2. The exclusion region

from CHOOZ extends to Δm2 values which are relevant to the interpretation of

atmospheric neutrino data, and have important implications in global fits invoking

the three-neutrino picture.

The ongoing KamLAND experiment [78] observes νe from several nuclear reactors

around the Kamioka mine in Japan, which are located at an average distance ranging

from 150 to 210 km from a liquid scintillator detector. At these longer baselines the

experiment is sensitive to neutrino oscillations with Δm2 � 10−5eV2, similar to that

effecting solar neutrinos. Expressed in terms of a ratio of the number of observed

events to the expectation for no oscillations for Eνe > 3.4 MeV, the first KamLAND

result is RKamLAND = 0.611± 0.094 [79], and the energy dependence of the observed

deficit is well described by neutrino oscillations [80, 81]. This result demonstrates that

electron anti-neutrinos oscillate with parameters consistent with those for electron

neutrinos from the Sun, which is the expected behavior if CPT is a symmetry of

leptonic processes. A combined analysis of the solar and KamLAND data yields

oscillation parameters Δsolar+KamLAND ≈ 8×10−5eV2, and θsolar+KamLAND ≈ 34◦ [41].

This solution is called the large mixing angle (LMA) solution to the solar neutrino

problem, in contrast to other solutions that had smaller mixing angles that were

possible before the KamLAND experiment. With the introduction of KamLAND
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data into global analyses of solar neutrino data the LMA solution unambiguously

emerged as the favoured solution to the solar neutrino problem.

Accelerator neutrinos with long baselines

Laboratory made neutrino beams [82] are derived from the decays of charged π and K

mesons, which are in turn produced from proton beams striking thick nuclear targets.

p + Xtarget → π± + Y

π± → μ± + νμ(νμ)

μ± → e± + νe(νe) + νμ(νμ)

The characteristics of the neutrino beam obtained depend on the precise selection

and manipulation of the mesons produced at the target.

The first long baseline accelerator neutrino experiment was K2K [83] which pro-

duced neutrinos at the KEK laboratory from a 12 GeV/c momentum proton beam

impacting a fixed aluminum target, and the neutrinos traveled a distance L ∼ 235

km to the Super-Kamiokande detector. The second of its kind is the ongoing MINOS

experiment [84] with a baseline L ∼ 730 km between the beam, produced from 120

GeV/c momentum protons from the Fermilab Main Injector impacting a graphite

target, and an iron calorimeter detector in Soudan, MI in the US.

The results from K2K [85, 86] and MINOS [87, 88] show in each case, an energy

dependent deficit consistent with oscillations of νμ over distances of order several

∼ 102 km with parameters that are consistent with those describing atmospheric

neutrino oscillations.

An emulsion detector with lead as passive target called OPERA [89], at the

Gran Sasso Underground Laboratory (LNGS) in Italy is located at a distance of 730

km from its neutrino source at CERN (CNGS beam), and was designed to test the
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νμ → ντ hypothesis for the atmospheric neutrino oscillations through the appearance

of ντ in a beam of νμ. The experiment reported the observation of the first neutrinos

from the first run of the CNGS beam in August 2006 [90].

Accelerator neutrinos with short baselines

Accelerator-based neutrino oscillations experiments in which the distance from the

production area to the detectors is of order a few hundred meters are referred to as

short baseline (SBL) experiments. So far there has only been one reported observation

of short baseline neutrino oscillations (experimental results summarized in Table 1.4),

the LSND experiment, whose result is described in the next section.

LSND

The LSND experiment [40] (Liquid Scintillator Neutrino Detector) was performed

at the Los Alamos Neutron Science Center (LANSCE) at Los Alamos National

Laboratory between 1993 and 1998 to search for neutrino oscillations of the type

νμ → νe. The neutrino sources of LSND include the pion decay modes π+ → μ+νμ

and π+ → e+νe, occurring both at rest (DAR) as well as in flight (DIF). The decays

π− → μ−νμ, and π− → e−νe occur only in flight, since π− are readily absorbed on

nuclei when they stop. Also relevant are the muon decay modes μ+ → e+νeνμ and

μ− → e−νeνμ. Nearly all the μ+ stop before decaying and produce a normal Michel

energy spectrum for νe and νμ, while the already small fraction of μ− produced from

the π− DIF are either absorbed in a nucleus or decay in orbit around one. The νe

flux is calculated to be only ∼ 8 × 10−4 as large as the νμ flux in the energy range

of 20 < Eν < 52.8 MeV. The potential oscillation signal νμ → νe derives from the νμ

flux from the isotropic μ+ DAR. The νe flux from μ− DAR is a background to this

signal whose energy spectrum is similar to that of the νe from μ+ used to verify the
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(a) SNO, from [55] (b) KamLAND, from [80]

(c) Super-Kamiokande, from [68] (d) MINOS, from [88]

(e) K2K, from [86]

Figure 1.3: A partial collection of results from experiments described in the text observing

(a) solar, (b) reactor, (c) atmospheric, and (d-e) accelerator neutrino oscillations. In (e)

the (dashed) solid histogram is the expected (un)oscillated spectrum. These measurements

have firmly established that neutrinos have non-zero masses and mixings.
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Table 1.3: 90% C.L. limit on the oscillation probability from searches at short baseline

experiments with negative results[41].

Experiment Laboratory Channel limit (90%) Δm2
min (eV 2) Ref.

CDHSW CERN νμ −→ νe Pμμ > 0.95 0.25 [91]

E776 BNL νμ −→ νe Peμ < 1.5 × 10−3 0.075 [92]

E734 BNL νμ −→ νe Peμ < 1.6 × 10−3 0.4 [93]

KARMEN2 Rutherford νμ −→ νe Peμ < 6.5 × 10−4 0.05 [94]

E531 FNAL νμ −→ ντ Pμτ < 2.5 × 10−3 0.9 [95]

CCFR FNAL νμ −→ ντ Pμτ < 4 × 10−3 1.6 [96]

νe −→ ντ Peτ < 0.1 20.0 [97]

νμ −→ νe Pμe < 9 × 10−4 1.6 [98]

Chorus CERN νμ −→ ντ Pμτ < 3.4 × 10−4 0.6 [99]

νe −→ ντ Peτ < 2.6 × 10−2 7.5 [99]

Nomad CERN νμ −→ ντ Pμτ < 1.7 × 10−4 0.7 [100]

νe −→ ντ Peτ < 7.5 × 10−3 5.9 [100]

νμ −→ νe Pμe < 6 × 10−4 0.4 [100]
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background estimates. A cylindrical tank 8.3 m long and 5.7 m in diameter lined with

1220 PMT’s was centered 30 m away from the neutrino source. The tank was filled

with 167 t of liquid scintillator and was used to look for an excess of events consistent

with the reaction νep → e+n, over the expected number from the μ− DAR back-

ground sources. The second most relevant background are events consistent with the

reaction νμp → μ+n from π− DIF around the source. These reactions were identified

through the correlation of a prompt signal from the e+ (μ+), and a 2.2 MeV γ from

the capture of the n. Accidental photons are distinguished by means of a correlated-

to-accidental likelihood ratio Rγ , which depends on number of PMT’s associated with

the γ, the reconstructed distance from the γ to the e+, and the time difference be-

tween the two (the capture time of thermal neutrons in mineral oil is 186 μs, while

accidental photons occur uniformly in time). A χ2 fit to the Rγ distribution of events

with 20 < Ee < 60 MeV and satisfying cuts on the time and angular dependence

of the emitted light is shown in Fig.1.4(a). The fit gives a (beam-on)-(beam-off) ex-

cess of 117.9± 22.4 events with a correlated neutron. After subtracting the neutrino

background from μ− DAR (19.5 ± 3.9 events), and from π− DIF (10.5 ± 4.6 events)

[102], LSND obtains a total excess of 87.9 ± 22.4 ± 6.0 events, corresponding to an

oscillation probability of (0.264 ± 0.067 ± 0.045)%, where the first error is statistical

and the second is the systematic error mainly due to uncertainties in the neutrino

flux (7%) and the e+ and γ efficiencies (7%). Fig.1.5(a) shows the allowed regions in

the oscillation parameters space (sin22θ,Δm2) obtained from a fit to the entire data

sample including the effect of a possible νμ → νe signal from the νμ flux.

The KARMEN experiment

The KArlsruhe Rutherford Medium Energy Neutrino experiment [94] shares many

similarities with LSND, but it observed no evidence for neutrino oscillations. KAR-
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(a) Rγ for events satisfying the νμ →
νe search criteria

(b) L/E distribution of LSND excess

events with Rγ > 10

Figure 1.4: In (a) the Rγ distribution of LSND events satisfying the νμ → νe search criteria

described in the text. In (b) the L/E distribution of events in the signal region of the Rγ

distribution.

MEN looked for νμ → νe oscillations from a DAR source with a negligible DIF

component using a smaller (mass of 56 t) but similar detector, and the same reaction

channel (νep → e+n) as LSND. KARMEN observed 15 events passing their selection

criteria, which showed good agreement in time, energy and position distributions with

the expected 15.8 ± 0.5 events.

LSND and KARMEN collaborators studied the compatibility of the observations

of the two experiments and concluded [101] that the differences in baseline, flux

and analysis techniques made their results compatible at the 64% level. Assuming

statistical compatibility a joint analysis yields the allowed regions shown in Fig.1.5(b).

This joint analysis used LSND data from the Decay At Rest (DAR) channel only

by requiring Rγ > 0. As a result, the joint KARMEN-LSND allowed region at 90%

is shifted to slightly larger values of sin22θ with respect to the LSND-only allowed

region.
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Figure 1.5: (a) Allowed oscillation parameter regions for the entire LSND DAR and DIF

data with 20 < Ee < 200 MeV. Inner (outer) regions are 90% (99%) C.L. The KARMEN

and Bugey limits are shown for comparison; (b) The allowed regions at 90% C.L. for the

joint analysis of LSND and KARMEN [101] with LSND DAR data only (Rγ > 0) which

causes the shift with respect to the LSND regions in (a), overlaid for comparison.



Chapter 2

The MiniBooNE Experiment

An intense neutrino beam is produced from the collision of protons with a beryllium

(Be) target located inside a magnetic focusing horn. The positive mesons produced by

the interactions of the protons with the target material are focused by the magnetic

field of the horn and allowed to decay. Neutrinos from the decay of these mesons

travel a distance of approximately 541 m before reaching the MiniBooNE detector.

Negative mesons are also produced, but they are defocused by the magnetic field and

their contribution to the neutrino flux through the detector is greatly suppressed.

2.1 The proton beam of the Booster Neutrino line

The Fermilab Booster accelerator delivers protons with 8 GeV kinetic energy (8.9

GeV/c momentum) to a beryllium target in 1.6 μs pulses with ∼ 5 × 1012 protons

per pulse at 15 Hz with a maximum average rate of ∼ 5 Hz. Figure 2.1 shows how

the proton beam is extracted into the 8 GeV neutrino line before being injected into

the Main Injector. The beam intensity, position and profile are constantly monitored

with toroids, beam position monitors (BPM), and multiwire arrays respectively. To

35
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prevent the beam from moving too far from its nominal position and deposit energy

in the horn material, a donut shaped collimator and beam loss monitor are installed

by the upstream end of the target to trip the beam if necessary. A program called

Autotune [119] corrects the beam position and angle in real time and minimizes any

misalignment.

2.2 Target, Focusing Horn, and decay pipe

The MiniBooNE target assembly, see Figure 2.2 (left), consists of 7 cylindrical Be slugs

∼10 cm in length and 1 cm in diameter, two concentric Be tubes, and an aluminum

manifold at the upstream end. Three radial cooling fins are placed symmetrically

around each cylindrical slug (not shown in the figure). Air enters through channels

in the manifold and flows in the space between the fins and the outer beryllium tube

to lower the target temperature. The Be tubes and slugs are placed inside the inner

conductor of a magnetic focusing horn, with the target axis aligned with the proton

beam impinging on its upstream face with a typical beam spot size of ∼1 mm across.

The 65 cm of the target length are equivalent to 1.7 proton interaction lengths. The

target assembly is kept in electrical contact with the horn inner conductor through

stainless steel bellows to prevent damages arising from electrical arching between the

two assemblies.

The purpose of the focusing horn1 is to create a magnetic field with the correct

characteristics to produce the desired secondary beam of mesons. The inner and

outer conductors of the MiniBooNE horn are shown in Figure 2.2 (right). The outer

conductor is a cylinder with inner surface radius of 30.0 cm, while the inner conductor

has an outer surface radius that varies from 2.2 cm to 3.9 cm depending on the

1 Designed by Bartoszek Engineering [197].
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Figure 2.1: Schematic of the 8 GeV beamline with extraction facility [116]. Taken from

[116].
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Figure 2.2: Three-Dimensional rendering of the target beryllium slugs (left) and the Mini-

BooNE focusing horn with the target in place (right). Images Provided by L. Bartoszek

[197].

longitudinal position along the horn axis. The two conductors are connected by an

end cap that transports a current of 170,000 Amperes injected at the upstream end

of the inner conductor to the outer conductor. The magnitude of the current and

the shape of the inner conductor were optimized using a GEANT [198] simulation to

maximize the νμ flux between 0.5 and 1 GeV at the detector, while minimizing the

flux above 1 GeV. The current flow produces a toroidal magnetic field in the region

between the conductors well described by a 1/r dependence. Measurements of the

magnetic field inside the horn have been made [105] showing that the deviation of the

magnetic field from the idealized case of two infinite conducting cylinders due to edge

effects is smaller than 5%. In the region outside the two conductors the magnetic

field is negligibly small.

The decay pipe is a 50 m tubular enclosure 1 m in diameter, filled with air at

normal atmospheric pressure that provides the necessary room for high momentum

mesons produced in the target to decay. At the end of the decay pipe is a concrete

beam absorber that stops the residual mesons that did not decay within the pipe and

also stops the part of the proton beam that did not interact with the target, and any

remaining hadronic component of the beam.

When the horn is operated with positive polarity the secondary meson beam is
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composed almost entirely of π+ with energies around ∼2 GeV, which upon decaying

through the dominant mode π+ → νμμ+ (99.988% branching ratio, BR), will produce

an almost pure beam of νμ. Most of the μ+ from π+ decay will reach the 50 m absorber

and capture on a nucleus, however any μ+ decaying in flight through μ+ → e+νμνe

will contribute to the νe contamination of the beam. K+ and K0 will also be produced

at the target and produce νe’s through the decays K+ → π0e+νe (4.87% BR), and

K0 → π±e∓νe (38.8% BR). We refer to these sources of νe as intrinsic.

Roughly 10 m upstream of the absorber a 17 m long pipe is inserted into the

decay pipe at an angle of ∼ 7◦, leading to the Little Muon Counter (LMC). The

LMC is designed to observe muons from the off axis decay of kaons moving along the

decay pipe. This device provides a good check of the number of K mesons produced

at the target and hence on the modeling of the intrinsic νe contamination from K+

decays. More details on the LMC can be found elsewhere [118].

2.3 Neutrino beam and detector

The detector is a spherical tank 6.1 m in radius filled with ∼950,000 lt of ultra

pure mineral oil (density of 0.845 g/cm3). The detector volume is divided by an

optical barrier into an inner region 5.5 m in radius and an outer region with 6.1 m

radius. The inner region observed by 1280 inward-facing 8-inch photomultiplier tubes

(PMTs), while the outer region is instrumented with 240 PMTs facing tangentially

to the tank wall as can be seen in Figure 2.3(b).

The PMTs detect the light produced as charged particles traverse the oil, pro-

viding 10% active photocathode coverage of the inner tank wall. The detector is

particularly suited to detect the Cherenkov radiation from relativistic particles mov-

ing with speeds larger than the speed of light in the oil, although the PMTs are also
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(a) (b)

Figure 2.3: (a) The MiniBooNE detector; (b) Photograph showing the arrangement of

PMTs inside the tank (black area) and the veto region (white area).

sensitive to isotropic light emitted through natural scintillation processes in the oil.

The outer region, called veto is used to detect charged particles entering the tank

from the outside (e.g. cosmic ray muons), and provides a rejection of 99.9% of cosmic

background events. The tank is located under 3 m of overburden (see Figure 2.3),

which keeps the rate of cosmic ray muons through the tank below 10 kHz.

The experiment uses 1197 PMTs used previously in the LSND experiment (Hama-

matsu [199] R1408) plus 323 new tubes (Hamamatsu R5912) that were required due

to the discontinuation of the production of the R1408 model. Both types of tubes

are 8” in diameter fabricated from low radioactivity glass, a major difference being

that the R1408 has a 9-stage dynode chain while the the R5912 has a 10-stage dyn-

ode chain. The smaller number if dynodes in the R1408 causes them to produce a

significantly lower anode pulse (∼1.5 mV) for a single photoelectron (PE) event at

the operation voltage, while the R5912 produces a typical 25 mV anode output at



41

the same operating voltage. A preamplification factor of ×19 was added to the high

voltage distribution system for every R1408 tube to reduce the difference in output

anode voltages. The tubes are operated with the anode at a positive high voltage and

the cathode at ground, as required in their specifications [200]. The operating volt-

age of each tube is set by a series of trim resistors on the inputs to the preamplifiers,

allowing for the use of fixed voltage supplies to power all the tubes.

Figure 2.4: Elevation view of the detector inside its containment plant, showing the oil

overflow tank.

The number of neutrinos passing through the detector volume is calculated with

a GEANT4 based simulation containing the details of the meson production, the

geometry of the horn, the decay pipe, and the detector. The detector is located at

a distance of 541 m from the target. The contributions from νμ and νe are shown in

Figure 2.5.
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Figure 2.5: Predicted νμ and νe flux distributions as a function of neutrino energy in

MiniBooNE.

2.4 Data Acquisition and Calibration systems

Electronics and Data Acquisition

The fast PMT anode pulses are converted into two new slower analog voltages, one

proportional to the charge of the pulse (Vq) and a second one proportional to the

time at which the pulse occurs (Vt). Groups of 8 PMTs are read out by one card that

performs this charge/time conversion (QT board2). The QT boards are arranged in

groups of 16 into 12 crates controlled by a VME-based monoboard computer, giving

a total of 16 × 8 × 12 = 1536 available channels for the 1520 PMTs. Within each

QT board, the Vq and Vt signals (illustrated in Figure 2.6) are digitized by two

2 Originally designed for LSND by Vern Sandberg, Los Alamos National Laboratory.
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separate ADC’s at 10 MHz and stored in circular buffer memories which overwrite

every 2048×100 ns = 204.8 μs.

Vpmt

Vq

100ns

Discriminator

Vt

Synchronous
Discriminator

tt-2
t-1 t+1

t+2
t+3

t+4
t+5

t+6
t+7

t+8

Clock Ticks

Figure 2.6: PMT charge and time signals. Vpmt and Vq in the figure are the anode pulse

and its integral respectively (both analog signals). When the anode pulse crosses a preset

threshold the “Discriminator” digital pulse is started, along with the analog Vt time ramp.

Vq and Vt are digitized by FADCs every 100 ns (clock ticks). Taken from [117].

In Figure 2.6 the signal Vq is the voltage across an integrating capacitor whose

feeding voltage is the PMT anode signal Vpmt. If the anode signal is large enough to

fire an on-board discriminator (set to ∼ 0.25 photoelectrons), the voltage signal Vt

begins to ramp up linearly from the PMT baseline until two clock ticks have elapsed,

time at which it is reset to the PMT baseline voltage before the next clock tick. Both,

Vq and Vt as described above are digitized at every 100 ns clock tick.

The signals for the ADC conversion are provided by a GPS referenced 10 MHz

clock. At every 100 ns clock tick the digitized Vq and Vt are stored at a memory
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location in the circular buffer that corresponds to the number of clock ticks in the

10 MHz clock. When a trigger condition is met a trigger broadcast module sends

out a set of timestamp addresses (TSAs) to all the buffer memories, and the data in

these addresses is transfered from the buffers to a set of First-In-First-Out (FIFO)

memories that hold it until it can be read and processed by the VME-based mono

board computer. If the trigger decision takes longer than 204.8 μs to request data

from a particular set of TSAs, the circular buffer overwrites them and the data is

lost3. A latency filter is applied to all analyzed data to reject events in which this

occurs [106].

Each QT board also contains a PMT sum card which counts the number of

channels that caused the discriminator to fire in the last two clock ticks (200 ns).

This information is sent to the trigger crate, which takes care of the “sum of sums”

for the main tank and the veto separately to give an overall number of PMTs in each

of these two detector regions.

The mono-board computers process the time and charge information in Vq and

Vt for each tube and reduce it to four Vq values (the charge quad) and four Vt values

(the time quad) which are sent to the main acquisition computer. In each case one

element of the quad occurs before the discriminator fires, and three occur after. These

are equivalent to simple charge values and the time they occured with subnanosecond

resolution. The detector data stream consists of the following information for each

PMT hit:

1. The PMT channel number

2. The clock tick, counted from the start of the event, that preceeds the firing of

the discriminator.

3 The fraction of beam events lost due to latency is typically ∼ 0.1%
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3. The four recorded Vq values in ADC counts (the charge quad)

4. The four recorded Vt values in ADC counts (the time quad)

When a PMT hit saturates the ADC range (by having more than ∼20 photoelec-

trons), the DAQ writes out additional charge quads until Vq is small enough to fit

on the ADC range. The charge and time quads are used to extract the time at which

each hit occured relative to the other hits in a given event, and the number of pho-

toelectrons that correspond to each hit. The time and charge of a hit are calculated

as follows

t = traw + (100 ns) × Ntick + Δtoffset + Δtslew(Qraw)

q = Qraw/Gain (2.1)

where traw is the time of the hit relative to the preceeding clock tick, which is obtained

from the slope of the ramping Vt signal and its intersection with the baseline. Ntick

is the number of the clock tick that precedes the firing of the discriminator, and is

the coarse measure of the time of the hit. The term Δtoffset is a channel-dependent

calibration constant that removes time differences originating from things such as

differing cable lengths and differing dynode structures between PMT’s4. The term

Δtslew(Qraw) is a charge-dependent time-slewing correction read from a look-up ta-

ble 5. The PMT gains and time slewing corrections are determined with the laser

calibration system described next.

4 The set of new PMTs has 10 dynodes, while the set of old PMTs from LSND has 9.
5 The raw charge Qraw is proportional to the PMT anode charge and is determined solely from

the information in the charge quad.
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The LASER calibration system

Light from a pulsed diode laser is sent via optical fibers to four light dispersing flasks

distributed in various positions throughout the interior of the MiniBooNE detector.

The purpose of these devices is to provide a controlled source of photons that can be

used to monitor the time offsets and gains of individual PMTs. The flasks are 10 cm

in diameter and are filled with Ludox R© [108] as dispersive medium6.

Table 2.1: Laser flask positions in beam coordinates (z along beam, y upward, x such

that system is right-handed, origin at tank center).

Flask # x (cm) y (cm) z (cm)

1 -0.08 1.52 -4.35

2 -28.18 78.81 0.98

3 83.34 2.67 203.69

4 -97.11 -165.92 96.23

The diode laser is pulsed asynchronous to the proton beam at 3.3 Hz continuously

during normal data taking. A switch box is used to send the ≤ 100 ns width pulses

to each of the four flasks. The position of the flasks inside the tank is shown in Figure

2.8.

The time slewing corrections and PMT gains of Eq.(2.1) are determined sepa-

rately for the R1408 and R5912 PMTs. The time slewing corrections are obtained

from runs with a variety of light intensities, while the PMT gains are calculated by

fitting the single photoelectron (PE) peak for each PMT in low intenstiy runs [111].

Low intensity laser runs are also used to determine the PMTs quantum efficiencies

6 Ludox R© colloidal silicas are aqueous colloidal dispersions of very small silica particles, opales-

cent as white milky white liquids.
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and charge-likelihood tables, both key to the reconstruction algorithms (see Section

3.4).

These calibrations are regularly stored in look-up tables approximately every four

days, and are primarily performed using the central flask (flask #1). Data from the

other three flasks and from a Michel electron sample are used to cross-check the

calibrations. The corrected time distribution for both types of PMTs is shown in

Figure 2.7.

(a) R1408 (old PMTs) (b) R5912 (new PMTs)

Figure 2.7: Corrected time distribution PMT hits for 397 nm light from laser flask 1. Data

are shown in black points and simulation in blue. The green histogram shows the simulation

without reflections. The red histogram has no reflections and no scattering (Rayleigh and

Raman), showing only the simulated PMT response. Variations in transit time of electron

cascades down the PMT dynode stack are the leading contribution to the PMT timing

resolution. See Ref.[180] for a detailed description of the various features.

The speed of light in the oil can also be measured from low intensity laser data.

Using the light from flask 4 gives a value of the speed of light of cn = 18.7 ± 0.5
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cm/ns [111], which is consistent with the expected value of 19.3 cm/ns used in the

reconstruction algorithms7.

Figure 2.8: MiniBooNE calibration systems. The figure shows the two planes of the Muon

Tracker hodoscope system, the 7 scintillation cubes (black cubes) and the 4 laser flasks

(white circles) in their positions inside the tank. Taken from [117].

7 The exact value of the speed of light in the oil is not critical to the performance reconstruction

algorithms.
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The Muon Tracker and scintillation cubes

A tracking hodoscope [109] is used to measure the entry point and direction of cosmic

ray muons that penetrate the MiniBooNE tank. The hodoscope measures the (x, y)

coordinates of an entering cosmic ray muon at two fixed heights zb, and zt above

the tank (zt − zb = 150 cm). At each of the two heights, one plane of scintillator

strips is used to determine the x coordinate and a second plane, with strips running

perpendicular to the first one, is used to determine the y coordinate. This system

allows for a reconstruction of muon tracks with an angular resolution of ∼ 6◦.

Seven optically isolated scintillation cubes are distributed at various positions

inside the detector and are connected by an optical fiber to a 1 inch PMT for read-

out. They are used together with the Muon Tracker hodoscope to obtain a precise

determination of the energy of stopping muons from their stopping range [110]. The

cosmic ray calibration system (muon hodoscope and cubes) are shown in they sur-

veyed positions in Figure 2.8.

For a downward going muon that enters the tank and stops in one of the scintilla-

tion cubes, a three point fit to a straight line is performed using the two points from

the Muon Tracker and the position of the cube. Then the fitted line is intersected

with the sphere defined by the optical barrier of the tank to obtain the entry point of

the muon (the solution with yint > ycube is chosen). The muon range is the distance

from the entry point to the cube. The position of the various cubes ranges from 15

cm to 400 cm from the tank surface, corresponding to energies of stopping muons

from 20 MeV to 800 MeV, which are determined from tables of ionization energy loss

based in the Bethe-Bloch formula with various corrections:

− dE

dx
= 2π a2

0 mec
2 ne

(
Z

β

)2 [
ln

(
2 mec

2 γ2 β2 Tmax

I2

)
− 2β2 − δ − 2

C

Z

]
, (2.2)

where a0 is the Bohr radius, me is the electron mass, c is the speed of light, I is the
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mean ionization potential of the medium through which the particle travels, β and

γ are the usual relativistic factors, Tmax is the maximum kinetic energy that can be

imparted to a free electron in a single collision, δ is the density effect correction to

the energy loss, and C is a shell correction [112].

A comparison of the energy obtained from the range of muon events crossing

through the Muon Tracked hodoscope and stopping in a scintillation cube, and the

energy determined from the light in the tank 8 is shown in Figure 2.9.
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Figure 2.9: Energy determined from light in the tank (vertical axis) versus energy deter-

mined with the cosmic muon tracker and cubes system (horizontal axis) for a sample of

muons passing through the tracking hodoscope and stopping in the scintillation cubes. The

visible tank energy is reconstructed with the S-Fitter algorithm described in Section 3.4.

For more details on this calibration see [110].

The sample of stopping muons for the calibration of the energy reconstruction algo-

rithms is assembled by requiring a delayed coincidence between a muon that stops in

a cube and its subsequent decay electron. This sample provides an absolute energy

calibration with a resolution of ±3% in the relevant energy range for these events.

8 From the S-Fitter algorithm described in Section 3.4.
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Michel electron energy calibration

The energy spectrum of electrons from the decay of stopped muons (Michel electrons)

provides another absolute way to calibrate the energy of events in the tank. The

observed energy distribution of these electrons, shown in Figure 2.10, provides a

measurement of the energy resolution at the endpoint of the Michel electron spectrum

of 52.8 MeV.

Figure 2.10: Observed Michel electron energy spectrum (histogram) and the best fit (solid

curve) obtained by smearing the theoretical energy spectrum with a Gaussian with width

proportional to
√

E. The energy resolution determined from the fit is 14.8% at 52.8 MeV.

The Michel electron sample is also used to tune the reconstruction algorithms [114]

described in Section 3.4, and to check the PMT calibration constants determined

from laser runs. This sample is also used to study the optical properties of the oil

and plays an important role in determining the systematic uncertainties in the optical

model of the detector.
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Table 2.2: Internal trigger bits and their thresholds.

Sum over Main Tank PMT Hits Sum over Veto PMT Hits

DET1 DET2 DET3 DET4 DET5 VETO1 VETO2

≥ 10 ≥ 24 ≥ 200 ≥ 100 ≥ 60 ≥ 6 ≥ 4

Trigger conditions

Both internal and external triggers can cause data to be written to disk. Internal

triggers are based on information from the main and veto sum cards in the trigger

crate. Seven internal trigger bit types are asserted if simple requirements on the

number of PMT signals in the main and veto regions are met. The names and

settings of the internal trigger bits are shown in Table 2.2. Four input connections

on the front of the trigger crate (labelled E1 through E4) handle the various external

triggers.

Beam on target trigger (E1):

Timing information in the accelerator complex is transmitted to all Fermilab areas

through optical fiber running along communication ducts. The Booster broadcasts

two timing signals relevant to the MiniBooNE beam trigger called “$1D” and “$1F”.

A $1D signal indicates that the Booster is preparing to send a beam pulse to Mini-

BooNE, and occurs 25 ms before the 1F signal. The 1F signal precedes the beam

extraction kick by 320 μs. A coincidence between two TTL signals (TTL1 and TTL2)

that take into account the time delays and transport times of the $1D and $1F sig-

nals, as well as the beam time of flight to the target is used to set the E1 bit. As a

result, the information from TSAs in a 19.2 μs wide window starting 4.5μs before the

neutrinos arrive at the detector are retrieved and stored to disk. A holdoff of 20μs is

enforced after a beam trigger before the trigger can register new activity.
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Strobe Trigger (E2):

This trigger bit can be set by four different triggering events: strobe, debuncher,

follower, and NuMI. The different triggers sharing the E2 trigger bit are distinguished

from each other by the width of a TTL pulse (Δtpulse) produced when the particular

triggering condition is met. For the strobe trigger (Δtpulse = 350 ns), a pulse generator

set to a frequency of 2.01 Hz is used to retrieve tank activity in a 19.2μs window 9. A

signal from the accelerator complex indicating that beam is about to be sent to the

anti-proton source target 10 is used for the debuncher trigger (Δtpulse = 550 ns) [107].

The Follower trigger (Δtpulse = 150 ns) is aimed to look for neutron capture events

after a beam or strobe event, and is delayed 20μs from a beam or strobe trigger. The

NuMI trigger (Δtpulse = 750 ns) is designed to observe events from the nearby NuMI

neutrino beam at Fermilab. For a description of this trigger see Appendix G.

Calibration trigger (E3):

Similar to the E2 trigger bit, the E3 bit shares four types of triggering events all

related to calibration data: the CALIB CUBE (Δtpulse = 150 ns), triggered by activ-

ity in the scintillation cubes, CALIB LASER (Δtpulse = 450 ns), triggered by pulses

of the calibration laser, CALIB TRACKER (Δtpulse = 650 ns), triggered by a 4-

plane coincidence in the Muon Tracker system, or a councidence between the cubes

and the tracker, and CALIB BEAM (Δtpulse = 850 ns), triggered by a laser pulse

asynchronous with a Booster pulse.

Hardware OR (E4):

This is a NIM hardware OR of the E1, E2, E3 external bits, and the internal bits.

An assertion of the E4 bit enforces the storage of the time and current state (on or

9 The strobe trigger is used to study the detector activity when no beam is present.
10 Accelerator tclk signal $81.
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off) of ALL internal and external trigger bits.

2.5 Neutrino events in the tank

The DAQ system opens a 19.2 μs window for every proton spill delivered by the

Booster beam to the experiment starting 4.6 μs before the begining of the spill. A

distribution of the time of a collection of PMT hits for a fraction of a spill typi-

cally displays clusters in time that are produced by individual particle tracks in the

detector. These clusters are called sub-events.
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Figure 2.11: Time distribution of PMT hits for an event with 1 sub-event (black) and an

event with two sub-events (red). The dotted vertical lines delimit the beam spill window

duration. The two sub-event event is likely to come from the decay of a stopping muon.

The range shown is a subset of the 19.2 μs DAQ window.

Subevents are defined as groups of at least ten hits separated by less than 10 ns from

one another. A typical νμ CCQE interaction produces a pattern of time activity with

two subevents, one due to the muon created in the interaction, which suffers ionization
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energy loss and stops, and a second subevent from its decay Michel electron. An

example is shown in Figure 2.11.

The activity in the tank during the DAQ window is substantially increased when

the proton beam is on. This is shown in Figure 2.12 where the 1.6 μs beam spill from

the Booster beam is clearly seen even without any selection cuts.

Figure 2.12: PMT hit multiplicity cuts applied to select neutrino interactions and reject

cosmogenic backgrounds in MiniBooNE. Background rejection is 99.9%. Taken from [180].

A clean sample of neutrino interactions is selected by requiring low PMT multi-

plicity in the veto region and a minimum PMT multiplicity in the main tank. Cosmic

ray muons that enter the tank during the 19.2 μs DAQ window produce a significant

amount of light in the veto and can be eliminated efficiently with a low veto activity

requirement (Nveto < 6). Residual cosmogenic activity is produced when a cosmic

muon penetrates the tank when the DAQ window is not open, but decays after the
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window has opened. Michel electrons, having energies below 52.8 MeV, have a simi-

larly compact MT hit distribution range extending up to 200 PMT hits in the main

tank.

In Figure 2.12 the distribution of times of all subevents relative to the start of

the beam spill is shown. Without any cuts (topmost black histogram) the excess due

to neutrino interactions is evident. The width of the excess correseponds with the

duration of the beam spill (1.6 μs). Beam-induced Michel electrons accumulate early

in the spill and cause the raising slope and subsequent exponential decay. Events with

energies above the Michel endpoint populate the red histogram (second from top), as

well as cosmic ray backgrounds contributing to the flat component. The green his-

togram (third from top) shows the effect of a low veto hit multiplicity requirement.

The residual exponential decay corresponds to the Michels whose parent muon pene-

trates the tank while the DAQ window is closed. Finally, the blue histogram (fourth

from top) shows how the combination of the multiplicity cuts in the main tank and

the veto isolate a pure sample of neutrino interactions within the beam window.



Chapter 3

Experiment Simulation and

Reconstruction algorithms

The simulation of the experiment can be broken down into three main components:

I) Beam Simulation, II) Neutrino interactions and final state generation III) Detec-

tor simulation (light propagation and electronics response). Details on the beam

simulation can be found in [182]. Only a cursory description is given here.

3.1 Beam simulation

A GEANT4 [123, 124] based program is first used to simulate the production of

secondary particles in a proton-beryllium interaction at incident proton beam mo-

mentum of 8.9 GeV/c. The four most relevant types of secondaries for neutrino flux

calculations are π+, π−, K+, K0
L, followed by p and n, all of which are produced in

inelastic interactions of the primary proton beam with the Be target. K− are not sim-

ulated since their contribution to the neutrino flux is at least two orders of magnitude

smaller than that of K+. The production simulation of the first four types and the

57
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estimation of the corresponding uncertainties are based on parameterizations of the

meson production non-invariant double-differential cross section d2σ
dp dΩ

extracted from

existing measurements of either the non-invariant cross section itself or the invariant

cross section E d3σ
dp3 (related by d2σ

dp dΩ
= p2

E
E d3σ

dp3 ). The simulation of p and n produc-

tion and is based on production cross-sections obtained from the MARS15 Monte

Carlo [125, 126]. The neutrino flux is then simulated with a FORTRAN based tool

that generates kinematic distributions for neutrinos from the decays of the simulated

mesons and muons, extrapolating it to the detector location.

3.1.1 Particle production parameterizations

Data from experiments measuring particle production by protons of various energies

on many different nuclear targets data have been historically used to study the phe-

nomenology of particle production and have led to several scaling laws and quark

counting rules. Table 3.1 shows the production processes of various mesons in p + p

interactions and their threshold production energies.

Table 3.1: Threshold production channels for p + p production of various mesons. MFS is

the minimum mass of the final state in the second column.The table shows the threshold

energy in the CM frame
√

sth and in the lab frame EBeam
th

Produced Final Production Quark MFS
√

sth EBeam
th

Hadron State Process Process (GeV/c2) (GeV) GeV

π+ pnπ+ p → nπ+ uud → ud 1.878 2.018 1.233

π− ppπ+π− p → pπ+π− uud → du 2.016 2.156 1.54

K+ Λ0pK+ p → Λ0K+ uud → us 2.053 2.547 2.52

K− ppK+K− p → pK+K− uud → su 2.37 2.864 3.434

K0 pΣ+K0 p → pΣ+K0 uud → ds 2.13 2.628 2.743
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Sanford and Wang (SW) [121] proposed the following parameterization of the

double-differential cross section of particle production:

d2σ

dΩ dp

SW

= c1 pc2

(
1 − p

pB − c9

)
exp

(
−c3

pc4

pc5
B

− c6 (p − c7pBcosc8θ) θ

)
, (3.1)

where pB is the incident proton beam momentum, θ and p are the scattering angle and

momentum of the produced meson, and c1, . . . , c9 are parameters to be determined

from experiments. Wang [122] found coefficients satisfying c2 � 1/2, c4 � c5 � 5/3,

and c7 � 0, from beam momenta between 10 GeV/c and 70 GeV/c on Be. With

these substitutions, defining X ≡ p/pB, and approximating pt � pθ, the SW formula

Eq.(3.1) becomes

d2σ

dpdΩ

SW

= c1p
1/2
B F (X) exp (−c6pt) , with F (X) = X1/2(1 − X) exp(−c3X

5/3) ,

from where we see that the non-invariant double-differential cross section and angle

of mesons produced at two different momenta pB and p′B satisfy the scaling laws:

d2σ(p′B)

dp dΩ
=

(
p′B
pB

)1/2

× d2σ(p′B)

dpdΩ
, and θ′ =

pB

p′B
× θ .

The more complex functional form in Eq.(3.1) suits better the production of pions

at the MiniBooNE beam momentum of 8.9 GeV/c. Parameters c1, c3, c5 and c9

determine the change in cross section with incident beam momentum, while c2 and

c4 relate to the variation with the outgoing pion momentum, and parameters c6, c7,

and c8 relate to the variation with the pion production angle.

Other parameterizations are possible as well. For example, Feynman [127] pro-

posed a theoretical model where the invariant cross section is only a function of the

transverse momentum pt and the variable xF :

E
d3σ

dp3
= A F (xF )G(pt) ⇒ d2σ

dpdΩ
=

p2

E
E

d3σ

dp3
=

p2

E
A F (xF )G(pt) (3.2)

where A is a normalization constant, xF ≡ pcm
z

pcm max
||

, and pcm max
|| ≈ √

s/2, with
√

s,

the center of mass energy in the collision. This scaling has been previously tested for
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large incident beam momenta PB > 50 GeV, but it gives a good description of K+

production data at lower momenta relevant for MiniBooNE, as has been shown by

Shaevitz [132].

Simulation of π+ production

The π+ production cross section is described with a Sanford-Wang (SW) parameter-

ization like that in Eq.(3.1). The HARP experiment [129] at CERN measured the

π+ production double-differential cross section in p-Be interactions with a replica of

the MiniBooNE target at the incident beam momentum of 8.9 GeV/c. To obtain a

better measure of the uncertainty on the SW fit parameters it was decided to use

data from the E910 [128] experiment at two incident beam momenta, one above and

one below that of MiniBooNE’s beam. E910 data also has the favorable feature of

having a broader coverage on the production angle θ.

Data from HARP [130] at pB =8.9 GeV/c, and E910 at pB =6.4 GeV/c and

pB =12.3 GeV/c are used in a fit to determine the coefficients c1 through c8 (c9 is

kept fixed at 1.0 for π+ production fits) via a χ2 minimization fit that takes into

account the bin-to bin correlations of the measurements. Details on the fit performed

to extract the parameter values can be found in [115]. In this procedure it was

found that the parameters c3 and c5 are completely correlated, therefore parameter

c3 was fixed at 1.0 also. The result is expressed as a central value for the parameters

c1, . . . , c8, and a covariance matrix Mπ+
for them, shown in table 3.2.

Simulation of π− production

The production of π− is also described with a SW parameterization like that of

Eq.(3.1). In this case parameters c1 through c8 are allowed to float while keeping c9
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Experiment PB Pπ θπ xF pt σNorm

E910 [128] 6.4, 12.3 1 - 5.5 0◦-20◦ -0.02 - 0.6 0.025-1.3 5%

HARP [130] 8.9 1 - 5.5 0◦-11◦ 0.05 - 0.7 0.025-1.1 4%

Figure 3.1: Top: Summary of pBe → π+X experiments used in the determination of

the parameterization in Eq.(3.1). PB , PK and pt are given in GeV/c. Bottom: Sanford-

Wang function (red solid curve) and HARP data (red points). The blue dotted curves were

obtained from 1000 draws from the multivariate Gaussian implied by the 7×7 covariance

matrix in Table 3.2. The Bands indicate the RMS in the π+ production cross section for

each (pπ, θ). Taken from [115].
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Table 3.2: The central values and covariance matrix of SW parameters describing π+

production in MiniBooNE. Extracted from fits to HARP [129] and E910 [128] π+ production

data. Parameters c3 and c9 have been fixed at 1.0.

CV 220.7 1.080 1.978 1.320 5.572 0.08678 9.686

Mπ+

ij c1 c2 c4 c5 c6 c7 c8

c1 1707.22 1.14601 -17.6455 -15.9683 -8.80997 -0.73472 -60.8160

c2 1.14601 0.03963 -0.10719 -0.09928 0.03249 0.00069 -0.07772

c4 -17.6455 -0.10719 0.59447 0.50491 0.06546 0.00251 0.19795

c5 -15.9683 -0.09928 0.50491 0.44109 0.05684 0.00250 0.22709

c6 -8.80997 0.03249 0.06546 0.05684 0.20664 0.00466 0.10310

c7 -0.73472 0.00069 0.00251 0.00250 0.00466 0.00049 0.06405

c8 -60.8160 -0.07772 0.19795 0.22709 0.10310 0.06405 16.01887

fixed at 1.0 in a χ2 minimization fit (technique described in [181]). The results used

in this thesis are shown in table 3.3.

As we will see the contribution from this source to the final uncertainty on the

oscillations analysis presented in this thesis is negligible small, since only less than

1% of the neutrino flux originates from π− decays when the experiment is running

in neutrino mode (normal horn polarity). This will not be the case in an oscilla-

tions search in the anti-neutrino mode (reversed horn polarity), where the dominant

contribution of the events in the tank will originate from the decays of π−.

Simulation of K+ production

A parameterization based on Feynman scaling [127] was developed by M. H. Shaevitz

[131] to fit various external data sets from experiments on K+ production. The
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Table 3.3: The central values and covariance matrix of SW parameters describing π−

production in MiniBooNE. Extracted from π− production HARP [129] and E910 [128]

data. Parameter c9 has been fixed at 1.0.

CV 237.2 0.8986 4.521 1.154 1.105 4.224 0.06613 9.961

Mπ−
ij c1 c2 c3 c4 c5 c6 c7 c8

c1 2309.02 3.0489 7.0802 -5.5568 -5.9875 -5.7957 -0.7692 -63.227

c2 3.0489 0.0258 -0.0168 -0.0095 -0.0179 0.0229 -4.43E-05 -0.1989

c3 7.0802 -0.0168 1.0963 -0.0240 0.0922 -0.0272 -0.0042 -0.2816

c4 -5.5568 -0.0095 -0.0240 0.0272 0.0227 0.0096 0.0008 0.0308

c5 -5.9875 -0.0179 0.0922 0.0227 0.0356 0.0110 0.0007 0.0340

c6 -5.7957 0.0229 -0.0272 0.0096 0.0110 0.1496 0.0031 -0.4283

c7 -0.7692 -4.43E-05 -0.0042 0.0008 0.0007 0.0031 0.0005 0.0741

c8 -63.227 -0.1989 -0.2816 0.0308 0.0340 -0.4283 0.0741 27.513

parameterization used in this case is:

d2σ

dpdΩ
=
(

p2
K

EK

)
c1 exp

[−c3|xF |c4 − c7|pt × xF |c6 − c2pt − c5p
2
t

]
, (3.3)

where pK and EK are the momentum and energy of the outgoing K+ respectively,

and the parameters c1, . . . , c7 are determined from fits to external data. This pa-

rameterization proved to be superior to the SW parameterization in describing the

available K+ production data listed in Figure 3.2, The data sets in Figure 3.2 where

scaled to a common beam momentum of 8.9 GeV/c and seen to respect the scaling

hypothesis of Eq.(3.2).

Simulation of K0 production

Data on pBe → K0X from the E910 experiment [142] at incident beam momenta of

12.3 GeV/c and 17.6 GeV/c, and Abe [143] at beam momentum of 12.0 GeV/c were
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Experiment PB PK θK xF pt σNorm

Abbott [133] 14.6 2 - 8 20◦-30◦ -0.12 - 0.07 0.2-0.7 10%

Aleshin [140] 9.5 3 - 6.5 3.5◦ 0.3-0.8 0.2 - 0.4 10%

Allaby [134] 19.2 3 - 16 0◦-7◦ 0.3 - 0.9 0.1 - 1.0 15%

Dekkers [135] 18.8, 23.1 4 - 12 0◦, 5◦ 0.1 - 0.5 0.0 - 1.2 20%

Eichten [139] 24.0 4 - 18 0◦-6◦ 0.1 - 0.8 0.1 - 1.2 20%

Vorontsov [141] 10.1 1 - 4.5 3.5◦ 0.03 - 0.5 -0.1 - 0.25 25%

Figure 3.2: Top: Summary of recent pBe → K+X experiments used in the determination of

the parameterization in Eq.(3.3). PB , PK and pt are given in GeV/c. Bottom: Comparison

of various data sets (after Feynman scaling) with the Feynman Scaling parameterization

(solid curve). The error bands (dashed curves) correspond to the uncertainties in Table 3.4.
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Table 3.4: The central values (CV) and covariance matrix for the parameters of the Feyn-

man Scaling parameterization describing K+ (Eq.3.3) production in MiniBooNE as calcu-

lated by Shaevitz [131].

CV 11.70 0.88 4.77 1.51 2.21 2.17 1.51

MK+

ij c1 c2 c3 c4 c5 c6 c7

c1 1.094046 0.05017 2.99E-03 -0.03316 -0.03745 0.125194 0.074319

c2 0.05017 0.016104 1.39E-03 -1.44E-03 -0.01264 0.032194 0.021996

c3 2.99E-03 1.39E-03 7.47E-03 2.06E-03 1.93E-03 0.013534 -3.34E-03

c4 -0.03316 -1.44E-03 2.06E-03 3.46E-03 2.03E-03 -4.11E-03 -6.28E-03

c5 -0.03745 -0.01264 1.93E-03 2.03E-03 0.014637 -0.01544 -0.02444

c6 0.125194 0.032194 0.013534 -4.11E-03 -0.01544 0.181522 0.126181

c7 0.074319 0.021996 -3.34E-03 -6.28E-03 -0.02444 0.126181 0.159265

used in a fit by Shaevitz [132] to determine the Sanford-Wang parameters in Eq.(3.1)

that best describe the data. The characteristics of the data sets are illustrated in

Figure 3.3.

3.1.2 Neutrino flux simulation

Following the simulation of particle production, individual secondaries are tracked as

they interact with the materials of the various elements in the beamline geometry

(described in detail in [182]), some producing other secondaries. As they exit the

target and enter the magnetic field region of the horn, charged secondaries modify

their trajectories according to a static and azimuthal ∼ 1/r magnetic field. Particles

are tracked across the materials of the target, horn and the decay pipe simulating

electromagnetic interactions, ionization energy loss, multiple Coulomb scattering and

ultimately meson decay.
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Experiment PB PK θK xF pt σNorm

E910 [142] 12.3, 17.6 0.5 - 2.5 4◦ - 32◦ -0.35 - 0.45 0.25 - 1.0 5%

Abe [143] 12.0 5.52 - 9.7 3.5◦, 5◦ 0.5 - 0.82 0.35 - 0.85 20%

Figure 3.3: Top: Summary of pBe → K0X experiments used in the determination of the

parameterization in Eq.(3.1). PB , PK and pt are given in GeV/c. Bottom: Plot of pt vs. xF

from various experiments (squares with dashed lines) compared to the MiniBooNE Beam

Monte Carlo prediction for K0 with νe entering the MiniBooNE detector (scattered points

and contours). Taken from [132].
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Table 3.5: The central values (CV) and covariance matrix for the parameters of the Sanford-

Wang parameterization describing K0 (Eq.3.1) production in MiniBooNE as calculated by

Shaevitz [132].

CV 15.13 1.975 4.084 0.9277 0.7306 4.362 4.79E-02 13.3 1.278

MK0

ij c1 c2 c3 c4 c5 c6 c7 c8 c9

c1 32.302 -0.0969 0.8215 -0.1018 -0.2124 -0.8902 -0.1333 16.552 -1.7893

c2 -0.0969 0.0957 0.0325 0.0013 -0.0130 0.0884 -0.0003 -1.5364 -0.2156

c3 0.8215 0.0325 0.5283 -0.0192 0.0227 -0.0033 -0.0024 0.0391 -0.0802

c4 -0.1018 0.0013 -0.0192 0.0084 0.0040 0.0007 -0.0004 -0.0144 -0.0730

c5 -0.2124 -0.0130 0.0227 0.0040 0.0098 0.0029 0.0003 -0.0578 0.0297

c6 -0.8902 0.0884 -0.0033 0.0007 0.0029 0.3599 0.0038 -4.7514 -0.1577

c7 -0.1333 -0.0003 -0.0024 -0.0004 0.0003 0.0038 0.0010 0.0581 0.0069

c8 16.552 -1.5364 0.0391 -0.0144 -0.0578 -4.7514 0.0581 130.201 1.2222

c9 -1.7893 -0.2156 -0.0802 -0.0730 0.0297 -0.1577 0.0069 1.2222 2.9480

The flux of each neutrino type per proton delivered to the target is shown in Figure

3.4. Neutrinos are produced by the decay of mesons that are produced somewhere

along the chain that starts with the production of a secondary particle in the target.

The plots in the figure show the contributions from the chains starting with the

production of π±, K+, K0
L, or nucleons, producing in the end a neutrino of a given

flavor.

Hadronic interactions

The hadronic interactions of primary protons as well as secondary p, n, π+, and

π− within the target and the horn material are handled using parameterizations of

the momentum dependence of the (p/n)-Nucleus and π±-Nucleus total, inelastic and

quasi-elastic cross-sections (σTOT,σINE, σQE respectively) [144], related by

σTOTAL = σINE + σELA and σINE = σPROD + σQE ,
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Figure 3.4: Predicted flux in the MiniBooNE detector as a function of neutrino energy

for each neutrino type. The components from different secondary particles produced at the

target are shown. The percent contribution of these various sources is shown in table 3.6.
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Table 3.6: Predicted contributions to the neutrino fluxes in Figure 3.4 per secondary

particle produced at the target. Each neutrino type comes from a chain initiated by the

indicated process.

Neutrino flavor Process Contribution

pBe → π± → (. . .) → νμ 89.5 %

pBe → K± → (. . .) → νμ 2.8 %

νμ (93.5%) pBe → K0
L → (. . .) → νμ <0.1 %

pBe → p or n→ (. . .) → νμ 7.7 %

pBe → π± → (. . .) → νe 48.8 %

pBe → K± → (. . .) → νe 36.8 %

νe (0.5%) pBe → K0
L → (. . .) → νe 7.0 %

pBe → p or n→ (. . .) → νe 7.4 %

pBe → π± → (. . .) → νμ 66.5 %

pBe → K± → (. . .) → νμ 1.3 %

νμ (5.9%) pBe → K0
L → (. . .) → νμ 0.7 %

pBe → p or n→ (. . .) → νμ 31.0 %

pBe → other → (. . .) → νμ 0.5 %

pBe → π± → (. . .) → νe 12.9 %

pBe → K± → (. . .) → νe 6.3 %

νe (0.1%) pBe → K0
L → (. . .) → νe 65.2 %

pBe → p or n→ (. . .) → νe 15.3 %

pBe → other → (. . .) → νe 0.3 %
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where σELA is the total elastic cross section and σPROD is the cross section for parti-

cle production processes described earlier. The parameterizations of the total cross

sections for p or n, used in [144] are of the form:

σ = A + B × pn + C × ln2p + D × lnp (3.4)

where A,B,C,D, and n are constants to be fit, and p is the particle’s momentum.

For π±-Nucleus cross sections a slightly more complicated form was used to take into

account the occurrence of resonances:

σ = [1 + tanh{θs(p − θ0)}] ×
[
A + Bpn + C × ln2p

]
+NR

∣∣∣∣ −m(p)ΓR

M2
R − m(p)2 + im(p)ΓR

∣∣∣∣
2

(3.5)

where a threshold shape in the form of a hyperbolic tangent suppresses the low mo-

mentum contribution so that the Breit-Wigner form dominates in the presence of a

resonance with width ΓR. The parameterizations and the models used to predict the

hadronic interaction cross sections are described in detail in [144, 145], and are shown

in Figure 3.5 for (p/n)-Be interactions.

The (p/n)-Nucleus total cross sections are calculated using the Glauber model

[146], which yields good agreement with published experimental measurements of the

n-Be and n-Al cross sections in the momentum range from 2.0-9.0 GeV/c. No data

is available for p-Be cross sections, but isospin symmetry assures that it should be

equally well described. A parameterization which describes the data and theoretical

calculations well is used in this range, and is shown in Figure 3.5(a) for (p/n)-Be

interactions.

The π±-Nucleus total cross section is parameterized by fitting Glauber model

predictions at high momenta and existing experimental data at low momenta obtain-

ing a model in the full range 0.5-6.0 GeV/c. This is shown in Figure 3.5(b) for π+-Be

interactions.
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The (p/n)-Nucleus and π±-Nucleus inelastic cross sections are derived entirely

from existing measurements and fit to a parameterization in the range 2.0-9.0 GeV/c

and 0.5-6.0 GeV/c respectively. These are shown in Figures 3.5(c) and 3.5(d) for

(p/n)-Be and π+-Be interactions respectively.

There are no measurements of the (p/n)-Nucleus Quasi-Elastic cross section.

These are instead theoretically calculated accounting for shadowing effects and the

values are parameterized in the interval from 2.0-9.0 GeV/c. The parameterization

is checked against the prediction of other hadronic interaction packages like FLUKA

[147] and found to be in good agreement. This is shown in Figure 3.5(e) for (p/n)-Be

interactions.

Similarly, there are limited measurements of the π±-Nucleus Quasi-Elastic cross

section around the Δ resonance, therefore the theoretically calculated values and the

available data are parameterized in the momentum range of 0.5-6.0 GeV/c. Figure

3.5(e) for π+-Be interactions.

3.1.3 Systematic uncertainties in the flux prediction

In addition to the uncertainties encoded in the covariance matrices extracted from

the fits to hadron production data with Sanford-Wang and Feynman-Scaling param-

eterizations (Tables 3.2, 3.3, 3.4, and 3.5 ), we consider the uncertainty associated

with the propagation of the secondary particles across the target and horn mate-

rials (Beryllium and Aluminum respectively) inherent in the modeling of hadronic

interactions.

The parameterizations used to describe the hadronic interaction data and models

provide a way to define systematic uncertainty bands that cover the variations in the

data or the models. Systematic excursions of the flux prediction were estimated to
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represent one standard deviations covering the spread of available data and theoretical

uncertainties. The effect of these excursions on the flux was calculated by running

the beam Monte Carlo simulation for each one of them.

Also considered are excursions for the skin depth in the model of the horn inner

conductor and the intensity of the current flowing through it were made. The mag-

nitude of the changes caused by these excursions on the total neutrino flux is shown

in Table 3.7.

The sources of systematic uncertainty of secondaries as they interact within the

target and the horn materials are listed in Table 3.7.

Table 3.7: Sources of systematic uncertainty associated with the hadronic interactions

models at the target, and the horn focusing

Source of Uncertainty Percent Change in Total Neutrino Flux

Skin Depth 2.89 %

Horn Current 0.31 %

(p/n)-Be σinel 0.09 %

(p/n)-Be σQE 3.03 %

(p/n)-Be σtotal 0.27 %

π-Be σinel 0.01 %

π-Be σQE 0.86 %

π-Be σtotal 0.32 %

Total 4.31 %
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(a) (p/n)-Be, Total. (b) π+-Be total.

(c) (p/n)-Be inelastic. (d) π+-Be inelastic.

(e) (p/n)-Be Quasi-Elastic (f) π+-Be Quasi-Elastic

Figure 3.5: The total (a-b), inelastic (c-d) and quasi-elastic (d-e) cross sections for p/n and

π+ interactions in Beryllium in the MiniBooNE beam Monte Carlo simulation. The error

bands shown are calculated by varying the coefficients in the parameterizations to cover the

spread in the data and theoretical uncertainties. Taken from [145].
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3.2 NUANCE cross section generator

The experiment uses the NUANCE [148] event generator to simulate neutrino inter-

actions in the detector volume.

At high energies neutrino cross sections are well known (to within ∼1% - 2%),

however, in the few-GeV range experimental and theoretical uncertainties range be-

tween ∼10% to 20%. Figure 3.6 shows the available experimental constraints on deep

inelastic scattering (DIS), quasi-elastic (QE), and single pion (1π) cross sections in

the range from 0 to 300 GeV. Most of the existing measurements were done using

light targets. The bulk of the interactions in MiniBooNE occur in nucleons bound in

12C nuclei, therefore nuclear effects must be modeled to incorporate the knowledge of

cross sections on free nucleons obtained from measurements on light targets.

3.2.1 The CCQE interaction

The dominant channel for a neutrino to interact with a nucleon in the energy range

between 200 and 2000 MeV is the charged current quasi-elastic (CCQE) interaction:

ν
 + n → �− + p

ν
 + p → �+ + n , � = e, μ .

This process, shown in Figure 3.7 is an ideal signal in a neutrino oscillations search

because it has a large cross section and identifies the flavor of the incident neutrino.

The CCQE cross section is given by [185]:

dσ

dq2
=

M2 GF |Vud|2
8πE2

ν

[
A(q2) ∓ B(q2)

s − u

M2
+ C(q2)

(s − u)2

M4

]
(3.6)

(s − u)2 = 4ME − q2 − m2

 ,

where the (+)− sign refers to (anti)neutrino scattering, M = 1
2(Mp + Mn) is the

average of the proton and neutron masses, q = (pν − p
) = (pN − p′N) is the four-
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Figure 3.6: Total νμ charged-current cross section per nucleon divided by neutrino energy,

σCC/Eν (blue curve), in the energy range 0.1 < Eν(GeV ) < 300. Also shown are the

predicted CCQE (red), CC resonant single π production (green), and CC DIS (black)

contributions [120].
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n (p)

�−(�+)

p (n)

Figure 3.7: Feynman diagram for the CCQE process on a free nucleon.

momentum transfer, s = (pν + pN) and u = (pν − p′N ) are the usual Mandelstam

variables, Vud is the CKM matrix element connecting the u and d quarks, and GF =

1.1803 × 10−5GeV−2 is the Fermi constant. The functions A(q2), B(q2), and C(q2)

contain the information about the structure of the nucleons and can be written in

terms of the four real form factors F 1
V (q2) (isovector Dirac), F 2

V (q2) (isovector Pauli),

FA(q2) (axial-vector), and FP (q2) (induced pseudoscalar) as follows [185] :

A(q2) =
m2

�−q2

4M2

{(
4 − q2

M2

)
(FA)2 −

(
4 + q2

M2

)
(F1V )2 − q2

M2 (ξF2V )2
(
1 + q2

4M2

)
− 4q2

M2 (F 1
V ξF 2

V ) −m2
�

M2

[
(F 1

V + ξF 2
V )2 + (FA + 2FP )2 +

(
q2

M2 − 4
)]

(FP )2
}

,

B(q2) = − q2

M2 [FA(F 1
V + ξF 2

V )] ,

C(q2) = 1
4

(
(FA)2 + (F 1

V )2 − q2

M2

(
1
2
ξF 2

V

)2)
,

(3.7)

where ξ = (μp − μn)/μN = 3.706 is the difference between the anomalous magnetic

moment of the proton and the neutron expressed in units of the Nuclear Magneton

μN . The isovector Dirac and Pauli form factors F 1
V and F 2

V are related to the isovector

electric and magnetic form factors (Sachs form factors) GV
E and GV

M obtained from

electron scattering experiments by:

GV
E(q2) = F 1

V (q2) + q2

4M2 ξ F 2
V (q2) ,

GV
M(q2) = F 1

V (q2) + ξ F 2
V (q2) .

(3.8)
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These are described to ∼ 5% accuracy [187] by the dipole form

GV
E(q2)

GV
E(0)

=
GV

M(q2)

GV
M(0)

(
1 − q2

M2
V

)−2

, (3.9)

The parameter MV is called the vector mass, and it is experimentally found to be

MV ≈ 0.84 GeV. Moreover, the electric and magnetic form factors satisfy the scaling

relation GV
E(q2) = (1 − ξ)−1GV

M(q2) .

The axial-vector form factor FA is presumed to also obey the dipole form as well,

with a parameter called the axial mass MA:

FA(q2) = FA(0)

(
1 − q2

M2
A

)−2

, (3.10)

where FA(0) = −1.2674± 0.0035, and the world average value of the axial mass from

neutrino experiments is MA = 1.026 ± 0.021 GeV [188].

Finally, the pseudo-scalar form factor FP is [189]

FP (q2) = FA(q2)
2M

m2
π − q2

,

with mπ the pion mass. Details on the determination of the q2 dependence of the

various form factors can be found elsewhere [22] [24] [185] [187] [189].
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Nuclear effects in CCQE scattering

The majority of the nucleons with which neutrinos interact in MiniBooNE are bound

in the interior of 12C nuclei. To introduce this effect in the determination of the

CCQE cross sections, NUANCE uses the formalism of Smith and Moniz [186]. Some

details of this formalism are necessary to understand the evaluation of the systematic

uncertainties in the CCQE cross section used in this thesis.

Following Ref.[186] we express the cross section for CCQE scattering off an entire

nucleus in terms of a leptonic tensor ημν and a nuclear tensor Wνμ :

d3σ

d3p

=

G2
F

2
1

(2π)2
1

2|pν ·pN |
1

2E

ηνμ Wνμ (3.11)

ηνμ = Tr{γν(1 + γ5)pν�γμ(1 + γ5)p
�}

Wμν = (2π)3Ω
∑

i

∑
f

δ(4)(pN − p′N − q) 〈 n(pN )
∣∣J+

μ

∣∣ p(p′N ) 〉 〈 n(p′N )
∣∣J−

μ

∣∣n(pN ) 〉 ET

where J+(J−) is the nuclear current connecting the initial (final) to the final (initial)

state nuclei, ET is the energy of the target nucleus, and the sums indicate averaging

over initial and final polarization states.

The target nucleus state is described as a superposition of two non-interacting

Fermi gases of neutrons and protons with momentum distributions nn(k) = np(k) =

θ(kF − |k|). For a simple Fermi gas the quantization volume Ω can be replaced by

Ω = 3π2 N
k3

Fn

, with N the number of neutrons in the nucleus and kF is the Fermi

momentum of the nucleon gas system.

Summing over the contribution of all the nucleons below the Fermi surface the

tensor Wμν can be calculated in terms of a single particle tensor Tμν involving the

single nucleon transition current j+(j−) connecting a neutron (proton) to a proton

(neutron), and the energy transfered to the nucleus ω = q0:

Wμν =

∫ Ehi

Elo

d3k f(k,q, ω) Tμν .
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where f(k,q, ω) is the nucleon phase space density function. If EB is the binding

energy per nucleon, there is an effective energy transfer ωeff = ω − EB, and an

effective four-momentum transfer q2
eff = q2 − ω2

eff − M ′
T

2 − M2
T , where M ′

T is the

mass of the recoil nucleus. The limits of integration are:

Ehi =
√

k2
F + M2 The Fermi energy,

Elo = max

{
Ehi − weff , M

(
xy
√

1−x2+y2

1−y2

)}
, x =

(
q2
eff

2Mq

)
, y =

(
−ωeff

q

)
.

(3.12)

Reference [186] writes f(k,q, ω) as:

f(k,q, ω) =
MΩ

(2π3)

ni(k) [1 − nf (|k − q|)]
Ek Ek−q

δ(4)(Ek − Ek−q + ω)

Tμν = EkEk−qΩ
2
∑
λλ′

〈 k − q, λ′ ∣∣j+
μ (0)

∣∣k, λ 〉 〈 k, λ
∣∣j−ν (0)

∣∣k − q, λ′ 〉

The Pauli exclusion factor [1 − nf (|k − q|)] guarantees that the recoil nucleon is out-

side the Fermi sphere, otherwise the interaction is Pauli-blocked.

The single particle nucleon tensor Tμν can be written in terms of free nucleon

form factors:

Tμν = T1δμν + T2/M
2 kμkν + Tα/M2qμqν

+Tβ/M2(kμqν + kνqμ) ± T8/M
2 εμνστ kσqτ ,

which reference [186] calculates in terms of the free nucleon form factors of Llewellyn-

Smith [185]:

T1 = 1
2
q2 (F 1

V + 2M ξF 2
V )

2
+ (2M2 + 1

2
q2) (FA)2

T2 = 2M2 ((F 1
V )2 + q2(ξF 2

V )2 + (FA)2)

Tα = −M2

q2 T1 + 1
4

T2 + M2

2q2 (2MFA − q2FP )2

Tβ = −1
2
T2 , T8 = 2M2FA(F 1

V + 2M ξF 2
V )

(3.13)

Analogous form factors can be defined for the nuclear tensor Wνμ:

Wμν = W1δμν + W2/M
2
T pμpν + Wα/M2

T qμqν

+Wβ/M2
T (pμqν + pνqμ) ± W8/M

2
T εμνστ pσqτ
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where now the mass of the target nucleus MT is used instead. The relation between

the nuclear and free-nucleon form factors can be found analytically for a Fermi gas

[186]:

W1 = a1T1 + 1
2
(a2 − a3)T2

W2 =
[
a4 + 2ω

|q|a5 + ω2

|q|2 a3 + q2

2|q|2 (a2 − a3)
]
T2

Wα =
(

3
2
a3 − 1

2
a2

) M2
T

|q|2 T2 +
M2

T

M ′2 a1Tα +
2M2

T

|q|M ′ a6Tβ

Wβ = MT

M ′

(
a7 + ω

|q|a6

)
Tβ + MT

|q|

(
a5 + ω

|q|(
3
2
a3 − 1

2
a2)
)

T2

W8 = MT

M ′

(
a7 + ω

|q|a6

)
T8 ,

(3.14)

where using the quantities defined in Eq(3.12), the constants ai are given by:

a1 = b0 , a2 = b2 − b0 , a3 = y2 b2 + 2xy b1 + x2 b0 ,

a4 = b2 − 2EB

M ′ b1 +
(

EB

M ′
)2

b0 , a5 = y b2 +
(
x − EB

M ′ y
)

b1 − EB

M ′ x b0 ,

a6 = x b0 + y b1 , a7 = b1 − EB

M ′ b0 ,

bn = MT Ω
(2π)2|q|

(
1

M ′
)n {∑n+1

k=1
1
k
(Ehi − Elo)E

n−k+1 + En+1
B ln

(
Ehi−EB

Elo−EB

)}
(3.15)

The CCQE cross section on the nuclear system in the laboratory frame used

by the NUANCE cross section generator can be found by substituting the above

expressions for the tensor Wμν into the following formula taken from reference [186]:

d2σ

dp
 dΩ
=

(VudGF )2 p2

 cos2( 1

2χ)
2π2M

(
W2 +

[
2W1 +

m2



M2
Wα

]
tan2( 1

2χ)

+ (Wβ ± W8) m2

/(ME
 cos2( 1

2χ))

− 2W8/M tan ( 1
2χ) sec ( 1

2χ)
[
q2cos2( 1

2χ) + |q|2cos2( 1
2χ) + m2




] 1
2

)
, (3.16)

where cos χ = p
/E
 cos θ
, with θ
 the scattering angle of the lepton in the laboratory

frame. The +(−) sign of W8 corresponds to neutrino (anti-neutrino) scattering.
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Figure 3.8: NUANCE prediction for the νμ-CCQE cross section compared to experimental

data on light (D2) and heavy (typically 12C) nuclear targets. The solid curve and light

colored band show, respectively, the cross-section on free nucleons with MA = 1.03 GeV

and its estimated uncertainty.

CCQE kinematics

The energy of the interacting neutrino can be calculated from the kinematics of the

final state if the scattering angle and energy of both outgoing particles is determined.

In general, as is the case for MiniBooNE, the track of the outgoing nucleon is hard

to measure, but the outgoing lepton energy and scattering angle are well determined.

In this case the neutrino energy can be approximated by assuming that the incident

nucleon is at rest.

In a quasi-elastic interaction with a free neutron at rest like that shown in Figure

3.9 the energy of the incoming neutrino is completely determined by the energy of

the outgoing lepton E
, and its scattering angle with respect to the incident neutrino
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Figure 3.9: CCQE neutrino scattering on a neutron at rest in (a) the center of mass frame,

and (b) the laboratory frame. In the laboratory frame, the outgoing lepton (proton) makes

an angle θ
 (φp) with the original neutrino direction.

direction θ
:

EQE
ν (pn = 0) =

1

2

2M E
 − m2



M − E
 +
√

E2

 − m2


 cos θ


(3.17)

The four momentum transfer Q2 = −q2 = −(pν − p
)
2 is also given in terms of these

quantities:

Q2 = 2EνE
 (1 − β
 cos θ
) − m2

 , (3.18)

where β
 is the velocity of the outgoing lepton, but this expression is general and does

not assume anything for the target neutron. The Fermi gas model in the NUANCE

simulation has the neutrons in a potential well with binding energy B = 34 MeV and

satisfying the dispersion relation (En −B)2 = |pn|2−M2
n . The maximum momentum

of a neutron inside the bound nucleus (the Fermi Momentum) is set to pF = 220

MeV/c. The binding energy and Fermi momentum are set by electron scattering data.

A calibration procedure aimed at reducing the effect of ignoring Fermi motion in the

calculation of the neutrino energy in a CCQE interaction (for both, νe and νμ) was

implemented and is described in Appendix A. This calibration procedure improves

the energy resolution at 1 GeV of muon energy from ∼15% to ∼10% by reducing the

non-Gaussian tails in the distribution of fractional residuals (Erec
ν − Etrue

ν )/Etrue
ν .
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3.2.2 Neutral Current π0 production

The largest νμ-induced background to the MiniBooNE νe appearance search is the

production of π0’s via neutral current interactions. The dominant mode of NC π0

production is the excitation of nucleons into baryonic resonances like the Δ(1232) and

their subsequent decay, a process illustrated in Figure 3.10. NUANCE predictions

of this process use the formalism of Rein and Sehgal [150] incorporating a total of

sixteen higher mass resonances and their interference effects.

Δ

Z0

p(n)

νμ

p(n)

π0

νμ

Figure 3.10: Neutral Current resonant π0 production via the excitation of a nucleon into

a Δ(1232) resonance.

Existing predictions of the cross sections for this process have large uncertainties,

especially at the energies of interest to MiniBooNE. Only a handful of measurements

have been performed to date, including a re-analysis of the Gargamelle bubble cham-

ber data [151], a measurement from K2K at 1.3 GeV of the ratio of NC to CC π0

cross section [152], and a measurement in an early spark chamber experiment [153].

Another NC process producing π0’s is the coherent scattering of a neutrino off

a nucleus as a whole: νμ A → νμ A π0, which NUANCE also simulates using the

formalism in [150]. Investigations of NC π0 production with the MiniBooNE detector

[183] [165] suggest that coherent π0 production is not negligible1.

1 Recent measurements of K2K [163] suggest that the coherent production of π0s in CC inter-

actions is negligible. The authors in [164] suggest that nuclear effects can account for the different

behavior in CC π0 production in K2K and NC π0 production in MiniBooNE.
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For these reasons a direct measurement of the rate of NC π0 events in MiniBooNE

is the most direct way to correct the predictions from the simulation and to constrain

the uncertainties associated with it. The measurement (described in detail elsewhere

[149]) consists of assembling a sample of NC π0 interactions with high purity (96.5%)

and determine the yield of these events in nine bins of reconstructed momentum of

the π0. A comparison of this distribution between data and the simulation defines

a correction factor that can be applied in each reconstructed π0 momentum bin to

bring the simulated distribution agreement with that of the data. The events from

the data and Monte Carlo samples are required to have no following muon decay

electron, an electron/muon likelihood ratio which favors the electron hypothesis and

an electron/pion likelihood which favors the π0 hypothesis2. As a final requirement,

the events must have a reconstructed π0 mass between 80 and 200 MeV/c2 (around the

π0 mass peak). The comparison between the uncorrected π0 momentum distribution

in data and Monte Carlo with and without the correction factors is shown in Figure

3.11. The correction factors in each of the nine reconstructed momentum bins and

their uncertainties expressed as a 9 × 9 covariance matrix are shown in Table 3.2.2.

Figure 3.12 shows that prior to tuning, there is an excess of π0 events at lower

momenta relative to the uncorrected NUANCE prediction, while the higher momenta

are in agreement. Based on these distributions, the rate of π0 production is corrected

in order to bring them in agreement with the data.

3.2.3 Cross sections systematic uncertainties

Fits to the Q2 distribution shape for a sample of νμ CCQE events were done following

the methodology in [191] yielding values and correlations for the parameter MA and

a scale factor κ multiplying the low energy limit Elo in Eq.(3.12). It is important to

2 For a description of these likelihoods and ratios see chapter 3.4 and the references therein.
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Figure 3.11: Reconstructed momentum distribution of π0 events in data (points) and Monte

Carlo (black histogram) following the application of correction factors in Table 3.2.2. The

red histogram shows the uncorrected (default NUANCE) prediction. See text for more

details. Taken from [149].
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Figure 3.12: Reconstructed mass distribution of NC π0 events in reconstructed π0 mo-

mentum bins. Systematic uncertainties are shown as red boxes whose centers mark the

corrected predictions. The dashed histogram shows the uncorrected prediction from the

NUANCE event generator. The blue solid histograms show the non-π0 contamination of

the total sample (as predicted after the correction). Taken from [149].
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Table 3.8: The central values (CV) and covariance matrix for the correction factors applied

to the NUANCE predicted yield of NC π0 events in the MiniBooNE detector in each of

nine reconstructed π0 momentum bins, as calculated by Djurcic et al. [132].

CV 1.4477 1.4794 1.1301 1.0414 0.9515 1.0241 0.7071 0.9638 0.9684

Mπ0

ij bin 1 bin 2 bin 3 bin 4 bin 5 bin 6 bin 7 bin 8 bin 9

bin 1 0.1203 0.0401 0.0015 -0.0079 -0.0182 -0.0455 -0.0345 -0.0672 -0.0898

bin 2 0.0401 0.0195 0.0008 -0.0027 -0.0074 -0.0165 -0.0161 -0.0240 -0.0392

bin 3 0.0015 0.0008 0.0016 0.0001 0.0001 -0.0003 -0.0010 -0.0024 -0.0024

bin 4 -0.0079 -0.0027 0.0001 0.0019 0.0009 0.0037 0.0024 0.0035 0.0063

bin 5 -0.0182 -0.0074 0.0001 0.0009 0.0054 0.0043 0.0076 0.0081 0.0170

bin 6 -0.0455 -0.0165 -0.0003 0.0037 0.0043 0.0314 0.0104 0.0317 0.0412

bin 7 -0.0345 -0.0161 -0.0010 0.0024 0.0076 0.0104 0.0198 0.0203 0.0400

bin 8 -0.0672 -0.0240 -0.0024 0.0035 0.0081 0.0317 0.0203 0.0777 0.0540

bin 9 -0.0898 -0.0392 -0.0024 0.0063 0.0170 0.0412 0.0400 0.0540 0.1274

Bin boundaries of π0 momentum distribution (|p|π0 in GeV):

0.0 - 0.1 0.1 - 0.2 0.2 - 0.3 0.3 - 0.4 0.4 - 0.5 0.5 - 0.6 0.6 - 0.8 0.8 - 1.0 1.0 - 1.5

note that the νμ CCQE sample used in this work is different from the one used in the

MiniBooNE first publication [190]. The values of the CCQE cross section parameters

shown in Table 3.9 are therefore different to those detailed in [180], which correspond

to the first oscillations result.

Uncertainties in single pion production and multiple pion production cross sec-

tions were assessed through the corresponding axial mass parameters M1π
A and MNπ

A

in NUANCE. Uncertainties from the final state interactions model in NUANCE af-

fecting primarily the level of π+ backgrounds in the νμ CCQE sample were introduced

through variations in the π+ charge exchange and absorption cross sections. The as-

sumed uncertainty in the total π+ absorption cross section is 50% and for the charge

exchange cross section 35%. The strange quark contribution to the neutral current

scattering is set with the parameter Δs = 0.0 ± 0.1. The deep inelastic scattering
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Table 3.9: NUANCE cross section parameters with uncertainties. The QE cross section

parameters MQE
A and κ were determined as described in [191]. Parameters are assumed

uncorrelated unless indicated in the table by the value of the correlation coefficient.

Parameter Value Correlations

MQE
A (1.2341 ± 0.077) GeV ρ(MQE

A , κ) = −0.875

M1π
A (1.1 ± 0.275) GeV ρ(M1π

A , M coh
A ) = 1

MNπ
A (1.3 ± 0.52) GeV NONE

M coh
A (1.030 ± 0.275) GeV ρ(M coh

A M1π
A ) = 1

κ (1.0220 ± 0.0205) ρ(κ, MQE
A ) = −0.875

EB (34 ± 9) MeV NONE

pF (220 ± 30) MeV NONE

Δs (0.0 ± 0.1) MeV NONE

Charge exchange 50% NONE

π+ absorption 35% NONE

cross section is given a 25% uncertainty, and the radiative decay of the Δ resonance

into photons is assigned a 9% uncertainty.

3.3 Detector simulation

The final state particles produced by the NUANCE event generator are passed to

a GEANT3 [154] based Monte Carlo simulation that takes care of their transport

across the oil medium and the production and propagation of individual photons,

which are tracked from their production point until absorbed in the detector material.

Photons that are absorbed in a PMT photocathode have the chance to produce a

photoelectron. The PMT response and DAQ electronics are simulated separately.
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In the simulation the detector is a spherical iron shell with a small cylindrical neck

at the top. The detector volume is filled with CH2 with density ρoil = 0.855 g/cm3

used to model the oil. The tank is placed inside a vertical cylindrical concrete vault

filled with air. The vault volume is contained in a larger cylindrical volume of dirt,

modeled as a mixture of silicon (20%), oxygen (65%) and aluminum (15%) atoms with

total density ρdirt = 2.15 g/cm3. A truncated cone of the same dirt material is placed

above the dirt cylinder to model the overburden. A rendering of the detector and its

surroundings is shown in Figure 3.13. The optical barrier separating the veto region

from the inner tank is modeled as an aluminum sphere containing the four spherical

flasks, the seven scintillator cubes, the PMTs and an array of pipes for PMT support

arranged as circles of latitude parallel to the ground.

Figure 3.13: GEANT3 rendering of the detector, vault and surrounding dirt with overbur-

den as defined in the detector Monte Carlo. The model is axially symmetric around the

tank’s vertical diameter.

The muon tracker system is also modeled and placed according to its surveyed position

above the top hat.
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Particle propagation and light production

Details on the particle propagation and light production have been given elsewhere

[180]. Suffice here to mention that GEANT3 routines have been used with the excep-

tion of the treatment of the decays π0 → γe+e− and μ → eνν, for which routines using

matrix elements have been developed 3. Other non-standard modifications include

proper implementation of the μ− capture rate on carbon [156] as well as modeling of

hadronic interactions in the detector volume with the GCALOR [157] package.

The production of optical photons by charged particles moving through the oil is

modeled with three mechanisms: (1) Cherenkov radiation, (2) intrinsic scintillation

of the oil and (3) UV fluorescence, which we describe briefly below:

Cherenkov radiation:

Relativistic charged particles traversing a medium with index of refraction n(ω) with

velocity β ≡ v/c, emit Cherenkov radiation at all frequencies ω satisfying the relation

βn(ω) > 1. The coherent wavefront associated with radiation of each frequency is

emitted at an angle cos θC = 1/βn(ω), and the number of photons emitted per unit

path-length x, per unit wavelength λ = 2πc/ω is given by [11]:

d2N

dxdλ
=

2πα

λ2
sin2 θC (3.19)

where α is the fine structure constant. H. O. Meyer from Indiana University measured

the wavelength and temperature dependence of the index of refraction of the Marcol

7 oil used in MiniBooNE with an Abbe refractometer [155] and found it to be well

described by:

3P. Meyers, Princeton University
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n(λ, T ) =

[
nD + B

(
1

λ2
− 1

λ2
D

)]
[1 − β(T − T0)] , (3.20)

nD 1.468 ± 0.0002

B (4240 ± 157) nm2

β (3.66 ± 0.04) × 10−4 (◦C)−1

λD 589.3 nm
T0 20.0◦C

Measured parameters for MiniBooNE Marcol 7 oil [155]

where λ is the wavelength and T is the temperature. The group velocity used to

determine the velocity of photon propagation in the simulation is calculated from the

phase velocity vp = c/n and dispersion relation n(ω), with ω ≡ 2πc/λ derived from

Eq.(3.20), as vg = vp/(1 + ω
n

dn
dω

).

Scintillation and UV fluorescence:

Energy deposition of charged particles traversing the oil produces the excitation of

organic molecules, whose subsequent de-excitation over timescales of 10’s of ns is a

source of isotropic and delayed light emission known as scintillation light (see Figure

2.7 in Section 2.4). The excitation of organic molecules can be also produced by UV

photons (as opposed to particle tracks), in which case the term fluorescence is used.

UV fluorescence is a wavelength-shifting process by which an otherwise undetectable

UV photon 4 can produce optical photons that the PMTs can detect. The number

of scintillation or fluorescence photons per energy deposited in the oil medium is

simulated according to the expression [11]

dNsci

dE
=

31.64MeV−1

1 + B1

(
1

ρoil
dE
dx

)
+ B2

(
1

ρoil
dE
dx

)2 (3.21)

with the coefficients set to the values

4The PMTs are not sensitive to photons with λ � 280 nm
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Figure 3.14: The photon attenuation rates in mineral oil as a function of photon wavelength

λ. The contributions from absorption, scattering, and fluorescence are also shown. Also

shown are the the contributions to the fluorescence rate from each of the four fluors included

in the simulation.

B1 = 0.014 g MeV−1 cm−2

B2 = 0.000 g MeV−1 cm−4

The coefficient B2 is included in the simulation to assess systematic uncertainties.

This expression (Birk’s Law) estimates the light output from a single fluorophore

correcting for the ionization loss of tracks in the medium. The scintillation yield con-

stant 31.64 photons per MeV in Eq.(3.21) was determined experimentally to have an

exponentially decaying emission with time constant of τ = 34 ns [158]. A total of four

fluorophores (fluors for short) were detected in studies of time resolved fluorescence

[159] of the Marcol 7 oil by D. Toptygin from John Hopkins University. The optimal

settings for the photon yields from each fluor were determined by comparing data and

simulation distributions from samples of events rich in scintillation light (NC elastic

scattering sample [184] and Michel electron samples). It was found that the data

preferred a model in which scintillation light comes only from a single fluor (fluor 4 in
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Figure 3.14). The remaining three fluors were simulated and used in the systematic

error assessment.

Photon absorption, scattering, and fluorescence affect the propagation of photons

traveling across the tank. The rates of these processes are shown in Figure 3.14

External interactions

Neutrino interactions with the material surrounding the detector were simulated by

extending the radius of event generation to a large volume 15 meters in radius, con-

centric with the detector and within the dirt volume described in Section 3.3. These

events contribute significantly to the misidentification background of the νμ → νe

oscillations search, and typically produce a π0 via a NC interaction which promptly

decays into two gammas, one of them finding its way to the interior of the tank, as

schematically represented in Figure 3.15(a).

Events from external interactions tend to deposit all of their energy near the tank

wall, and their reconstructed tracks tend to point toward the interior of the detector5.

A dedicated sample enhanced in dirt events was used to measure the observed rate of

these interactions. Details on the measurement can be found elsewhere [160]. Figure

3.15 shows the measurement as a distribution of visible energy deposited by the events

in the dedicated dirt sample. The dirt contribution is shown in red and is consistent

with the Monte Carlo prediction within the measurement uncertainty.

Beam-off background simulation

Activity from random triggers coming primarily from cosmic ray muons and their

decay electrons, and dark noise is recorded at 2.01 Hz. PMT hits from this triggers

5 The direction vector U and radial vertex position R of dirt events tend to point in opposite

directions: U · R < 0.
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(a) Dirt event illustration. (b) Sample composition.

(c) Visible energy distribution. (d) U · R/R distribution.

Figure 3.15: Events from external interactions. In (a) an illustration of an external inter-

action. In (b) the composition if the sample in terms of neutrino interaction type. In (c)

and (d) the visible energy and U · R/R distribution of a sample of events enhanced in dirt

events, respectively. The points with error bars show the data with statistical uncertainties,

the solid red line shows the contribution from the dirt events, and the solid blue line shows

the contribution from events occurring within the tank walls. The black line is the sum of

the dirt plus backgrounds. Taken from [160].



95

Table 3.10: Number of parameters associated with the various optical properties of the

detector simulation. The 35 parameters are varied to assess systematic uncertainties from

the modeling of optical properties. Taken from [180].

Property # par. Property # par.

extinction length 5 Scattering (Rayleigh/Raman) 3

index of refraction 3 PMT angular efficiency 2

fluor scintillation yield 4 fluor fluorescence yield 4

fluor UV fluorescence yield 4 fluor time constant 4

Cherenkov scale factor 1 reflections 2

Birks’ law coefficients 2 old/new PMT relative efficiency 1

are mixed with PMT hits from the Monte Carlo simulation to account for beam

unrelated activity in a process called “strobe merge”. Hits from the random trigger

that coincide in channel number with hits from simulated events are combined on a

single pulse in that channel.

3.3.1 Detector simulation uncertainties

A 35-dimensional parameter space is used to represent all possible variations in the

optical properties of the detector. Table 3.10 shows the number of parameters control-

ling each of the various optical properties in the simulation. The covariance matrix

relating all the parameters in Table 3.10 is formed with the procedure originally de-

scribed in [180] which is summarized here for completeness. A starting estimate of the

covariance matrix S and mean ŝ = (ŝ1, . . . , ŝ35) of all the optical model parameters

is constructed. Assuming a multivariate Gaussian distribution for the parameters we

draw M ∼ 3000 random Monte Carlo parameter sets s(m), m = 1, . . . , M , generating

for each one of them a simulated sample of Michel electrons in the detector. We
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compare the agreement between data and each of the M simulations by calculating

the χ2 of a given reconstructed distribution. For an ideal simulation, χ2 = Ndof is the

number of bins used in the comparison. The likelihood that the difference between

the data and the given simulation is due only to statistical fluctuations is calculated

as

p = exp

(
−1

2
(χ2 − Ndof)

)
(3.22)

and compare it to the likelihood to draw that parameter set according to the matrix

S:

w = exp

(
−1

2

(
s(m) − ŝ

)T
S−1

(
s(m) − ŝ

))
. (3.23)

The constraint from the data is introduced by defining a weight for each drawn

parameter set

η ≡ min
(
1,

p

w

)
, (3.24)

with which we construct a new multivariate Gaussian distribution with mean

ŝ′ =

∑
m ηm s(m)∑

m ηm
(3.25)

and covariance matrix

S ′
ij =

∑
m ηm

(
s
(m)
i − ŝ′i

)(
s
(m)
j − ŝ′j

)
M−1

M

∑
m ηm

(3.26)

Using this new Gaussian distribution the process is repeated using new test dis-

tributions (energy, timing, position, etc.) in the χ2 calculation until data/simulation

agreement ceases to improve. About 20 iterations were computed requiring
∑

m ηm >

300 at each iteration step.
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3.4 Event Reconstruction algorithms

The experiment uses two main reconstruction algorithms, the S-Fitter and the P-

Fitter, which differ primarily in the detail with which they model light emission by

extended tracks like those of muons, and the amount of time and effort devoted to

fitting an event under the π0 hypothesis. The P-Fitter can be seen as an improved

version of the S-Fitter.

In both reconstruction algorithms an event is characterized by a set of parameters

�α (position, direction, energy, etc.). The likelihood for measuring a set of charges qi

and times ti in a given event is calculated as the product of the individual time and

charge likelihoods of all the PMTs:

Levent =

1280∏
i=1

Lq(qi; �α)Lt(ti; �α) (3.27)

where Lq and Lt represent the probability of measuring a charge q and a time t at any

PMT6. Levent is the likelihood that the event is described by the set of parameters �α

given the set of charges and times (qi, ti). The optimal values of the parameters are

found by maximizing the likelihood Levent with respect to the parameters �α.

3.4.1 S-Fitter: electron reconstruction

The S-Fitter uses a point-like source model to describe electron tracks. An elec-

tron track is fully characterized by a four-vertex (x, y, z, t) in the detector coordinate

system, a direction (θ, φ), and a kinetic energy (E), this is �α = (x, y, z, t, θ, φ, E).

6 The description given here is based on the S-Fitter, from which the P-Fitter was constructed.

Both share many of the same principles and differ on the details. For the precise definition of the

event likelihood in the P-Fitter reconstruction see [180].
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Cherenkov light from a relativistic electron is modeled to have a strength ρ (pho-

tons per steradian), modulated by an energy dependent angular distribution function

F (cos θe, E) where θe is the photon emission angle with respect to the electron track

direction. The angular distribution is normalized such that∫ 1

−1

F (cos θe, E) d cos θe = 1 . (3.28)

As a consequence of the point-like source approximation, the angular distribution

F (cos θe, E) broadens with increasing electron energy for longer tracks. Natural

isotropic scintillation light from the oil and scattered Cherenkov light are emitted

with a strength Φ (photons per steradian). Both ρ and Φ are proportional to the

event energy E, and the proportionality constants are determined from fits to the

charge distributions of Michel electron data [114].

Raw event position and time

A typical track in the tank produces photons that hit a certain number Nhit of PMTs.

The charge and time (qi, ti), i = 1, . . . , Nhit of each PMT hit is the basic information

for the event reconstruction. A first guess of the position of the event is calculated

from the charge-averaged position of the PMTs that are hit:

r =
1

Q

Nhit∑
i=1

qi Ri , Q =

Nhit∑
i=1

qi (3.29)

With this first guess position, a first guess of the time of the event is calculated as

the charge-averaged time of each hit, corrected for the photon time of flight.

t =
1

Q

Nhit∑
i=1

qi (ti − |Ri − r|/cn) (3.30)

where cn is the speed of light in the oil with index of refraction n. This first guess of

the time and position of the event are used to seed a detailed reconstruction maximum

likelihood algorithm described next.
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Time Likelihood and the fast fit

For each track hypothesis the simulation is used to produce the distribution of cor-

rected times Tc(t
g
corr), where tgcorr = tg−ti+|Ri−rg|/cn is the true generated corrected

time distribution, depending on the true generated event time tg and position rg, and

the time of each hit ti. The distribution Tc has a Gaussian component from the

prompt Cherenkov light and an exponential component folded with a Gaussian of

equal width corresponding to the scintillation light. The common width of the Gaus-

sian used in this step is σeff ∼ 2 ns, and the exponential component has a time

constant of τeff ∼ 20 ns, having relative amplitudes of 0.57 (Cherenkov) and 0.43

(scintillation). This simple model of the corrected time distribution Tc(tcorr), is used

to form a primitive time likelihood for events with unknown time and position, whose

corrected time is tcorr = t − ti + |Ri − r|/cn)

L =

Nhit∏
i=1

Tc(tcorr,i) (3.31)

A better estimate of the event time and position is obtained by maximizing this time

likelihood function with respect to the position r and the time t, using as starting

values the values guessed in Eqs.(3.29) and (3.30). This better estimate of the position

is then used to determine the track direction as the charge-averaged direction of the

emitted photons:

U =
1

Q

Nhit∑
i=1,prompt

qi (Ri − r) ,

û = U/|U| normalized direction ,

where the sum is over the prompt hits defined as those with tcorr < 2.5σeff . At this

stage, a first estimate of the event energy is calculated from the total charge with a

radial position dependent correction determined from control data sample of Michel
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electrons:

E(Q, r) =
Q

F (r)
, F (r) =

(
3.17 + 0.0283 exp

{ r

1.344 m

})( PE

MeV

)
(3.32)

This radial correction empirically takes into account the attenuation length and solid

angle effects in the detector and is obtained from fits to the charge distribution of

Michel electron data in radial shells and provides the charge-to-energy conversion.

This reconstructed event energy determines the Cherenkov angular distribution and

the corrected time distribution, as well as the strengths of Cherenkov and scintillation

light emission. All of these quantities are used in the next minimization step.

The full fit

The full fitting algorithm starts with a prediction μi of the number of PE in each

hit PMT, which will have a contribution from prompt Cherenkov light μi
c as well as

delayed scintillation light μi
s. Both contributions to the total charge (μi = μi

c +μi
s) in

a PMT depend on the solid angle Ωi subtended by the PMT from the event vertex,

the PMT relative quantum efficiency7 εi, and the corresponding attenuation length λ

for light in the oil (λcer = 24.4 m, λsci = 16.4 m). In addition, the predicted amount

of charge from Cherenkov photons depends on the angular distribution of photons

emitted for a given track F (cos θe, E) described above. We predict the number of PE

from Cherenkov and scintillation light reaching a PMT as:

μi
c = ρ Ωi exp(−|Rr − r|/λcer) × εiF (cos θ, E)

μi
s = Φ Ωi exp(−|Rr − r|/λsci) × εi

where absorbing the factor π |Rr − r|2 in the definition of the fluxes ρ and Φ, the

solid angle Ωi is given in terms of the PMT angular acceptance f(cos η)8, and the

7 The absolute values can be absorbed in the definition of the fluxes ρ and Φ.
8 η is the incoming photon angle with respect to the normal to the PMT face.
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event radial distance from the PMT:

Ωi = f(cos η)/|Ri − r|2 (3.33)

Using the simulation, corrected time distributions for various values of the predicted

charge μ are calculated and separated into a Cherenkov and scintillation components

Tc(tcorr, μi) and Ts(tcorr, μ
i). A detailed time likelihood function is defined for each

hit with predicted charge μi and corrected time ticorr as:

Li
T (ticorr, μ

i) = xi Tc(t
i
corr, μ

i) + (1 − x) Ts(t
i
corr, μ

i) , (3.34)

ticorr = t − ti + |Ri − r|/c) ,

where xi = μi
c/(μi

c + μi
s) is the predicted fraction of Cherenkov charge in PMT i, and

tcorr is the corrected time of the hit. A charge likelihood Li
q, defined as the probability

to measure a charge qi when expecting a charge μi in PMT i, is extracted from a set

of laser calibration events [114] by recording a two dimensional histogram of all the

possible values of the measured and predicted charge (q and μ) and enforcing the

normalization condition
∫ P(q, μ) dq = 1.

The total likelihood of a hit is simply the product of the time likelihood Li
T and

the charge likelihood Li
q, and the total Likelihood to be maximized for the event is

LQ,T (r, t) =

Nhit∏
i=1

Li
T (ticorr, μ

i) × Li
q(qi, μ

i) (3.35)

Maximization of this likelihood function with respect to the event time and position

gives a much better reconstruction of the event. The vertex that is calculated from

this procedure corresponds to the mean photon emission point (MγEP) assumed in

the model, which has a systematic shift that is corrected for to obtain the event

vertex. The reconstructed event vertex is calculated by shifting the reconstructed

MγEP backward along the track direction by an amount dependent on the energy
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of the track9. This energy dependent correction is also extracted from the Michel

electron control sample. The electron vertex reconstruction resolution is ∼ 30 cm.

Flux Fit

A final minimization step is performed keeping the 4-vertex and direction found in

the full fit fixed, but varying the Cherenkov and scintillation light strengths ρ and Φ.

The charge to energy conversion factors change throughout the detector volume as a

consequence of PMT angular coverage as well as light attenuation and scattering. A

radial correction as that in Eq.(3.32) are applied giving an energy resolution at the

Michel energy spectrum end-point (52.3) MeV of ∼ 13%.

3.4.2 S-Fitter: TRK (muon) reconstruction

Even when muons produce tracks that are typically much longer than electron tracks

the four-vertex and energy calculated with the single MγEP model used for electrons

gives a reasonably good position (∼ 28 cm uncertainty), direction (∼ 10◦ uncertainty),

and energy (∼ 5% uncertainty at 1 GeV muon energy) resolution. In order to obtain

a good electron/muon discriminant the following simple approach is taken: once the

event has been reconstructed using the point-like model, the reconstructed MγEP

and reconstructed direction are kept fixed, while the central light source is replaced

by two identical sources placed symmetrically around the middle point on the track.

The minimization algorithm determines the optimal distance between the sources and

their strengths. The fitted separation, labeled TRK10, is used as a discriminant to

separate electron tacks from muon tracks.

9 s = 203.8− 156.7 exp(−E/995.96 MeV) , expressed in cm
10 This quantity is not properly a track length, but is proportional to the spatial extension of the

event.
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3.4.3 S-Fitter: π0 reconstruction

A π0 decays promptly into two photons which upon traveling a certain distance in the

oil medium photo-convert producing each a shower of electrons and positrons. Each

shower produces a light pattern similar to that of a single electron with a Cherenkov

ring plus some scintillation light. The model used to fit these events consists of two

electron models with displaced vertices. The fit has 14 parameters in the set �α: the

π0 four-vertex (x, y, z, t), two directions (φ1, θ1) and (φ2, θ2) for the two photons, two

shifts along these directions s1 and s2, representing the conversion distances from the

π0 vertex, and the scintillation and Cherenkov strengths for the two rings (ρ1, Φ1),

and (ρ2, Φ2). These parameters are adjusted in three minimization steps which consist

on combination of fixed and free parameters which follow an initialization phase to

get the optimal starting values of all variables.

The event four-vertex and position from the electron algorithm described above

are used as the initial set of parameters for the most energetic of the two photons

(labeled 1 here unto). This sets the initial values of (x, y, z, t), (φ1, θ1) and ρ1. The

energy and direction of the second photon are initialized by performing a grid search

over ∼ O(100) directions distributed uniformly over the 4π solid angle around the

first photon track and finding the direction and energy (E2 ∝ ρ2) that maximizes the

amount of charge contained in the second Cherenkov cone giving the initial values

or (φ2, θ2) and ρ2. The scintillation fractions are ignored in the first two steps of the

three-step minimization process described below:

1. An unconstrained fit returns the π0 four-vertex (x, y, z, t), the shifts to the two

photons (s1, s2), the directions of the two photons (φ1, θ1) and (φ2, θ2), and

the fraction of Cherenkov light carried by the most energetic photon fcer =

ρ1/(ρ1 + ρ2). The two scintillation strengths are ignored.
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2. The four-vertex of the π0 is held fixed, the scintillation strengths are ignored,

and a second iteration of the directions (φ1, θ1), (φ2, θ2), the shifts s1 and s2,

and the Cherenkov strengths ρ1 and ρ2 are obtained.

3. The four-vertex position, the direction of the two photons, and the conversion

shifts of the two photons s1 and s2 are kept fixed with the values obtained in the

previous step, while varying the Cherenkov and scintillation strengths (ρ1, Φ1)

and (ρ2, Φ2).

This procedure yields a spatial resolution of the π0 vertex of ∼ 50 cm. The recon-

structed energy of the photons E1 and E2 are determined directly from the fitted

Cherenkov light strengths of the two cones ρ1 and ρ2 after the third step, and are

used together with the angle between the two reconstructed directions αγγ to give the

reconstructed π0 mass:

M2
π0 = 2E1E2(1 − cos αγγ) (3.36)

The π0 mass reconstruction has a resolution of ∼ 25 MeV. For a more detailed

description of this algorithm see [113] and [183].

3.4.4 P-Fitter: electron/muon single track reconstruction

The P-Fitter11 has been extensively described elsewhere [180]. The algorithm uses

a more detailed light emission model by introducing photon emission profiles for

Cherenkov (ρCh(s)) and scintillation (ρsci(s)) light, which depend on the distance s

along the track from its vertex, and on the event energy E0. The calculation of the

predicted charge in a PMT involves an integral of the emission profile along the track

11Developer Ryan B. Patterson, Princeton University
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convoluted with a PMT acceptance function J(s):

μCh ∝
∫ ∞

−∞
ρCh(s)J(s) F (cos θ(s); s) ds , (3.37)

μsci ∝
∫ ∞

−∞
ρsci(s)J(s) ds .

The function J(s) is approximated by a parabola J(s) ≈ j1 + j2s + j3s
2 and param-

eterized with the coefficients {ji} determined from evaluating J(s) at three points

along the track: the vertex s = 0, the mid point s = Δsmid, and the end point

s = 2Δsmid. For the Cherenkov light contribution, the angular distribution of pho-

tons F (cos θ(s); s, E0) depends on the distance along the track s12 as well as the event

energy E0. Tables of the integrals

Isci
i (E0) =

∫ ∞

−∞
ds snρsci(s, E0) (3.38)

ICh
i (E0) =

∫ ∞

−∞
ds snρCh(s, E0)F (cos θ(s); s, E0) , for i = 0, 1, 2 ,

for a wide range of energies are calculated beforehand and made available to the code.

Similar tables are constructed for the indirect contribution to the Cherenkov

and scintillation light yields coming from processes like reflections, scattering and

fluorescence.

The P-Fitter constructs a time likelihood function for each hit using a similar

convention as the S-Fitter in Eq.(3.35), in that it uses the mean of the emission

profile (the track “mid-point”) in the definition of the corrected time:

tc = t − T0 − r(Δsmid(E0))

cn
− Δsmid(E0)

c
, (3.39)

where t is the time measured hit, T0 is the track starting time, Δsmid(E0) is the

mean of the Cherenkov emission profile for a track of energy E0, r(Δsmid(E0)) is the

12 The profile of Cherenkov light emission changes as the particle advances and loses energy, and

the angle θ(s) depends on which part of the track we are in.
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distance to the PMT from the track mid point, c is the speed of light, assumed to be

the particle velocity, and cn is, as before, the speed of light in the oil. As mentioned

before, the time likelihood p.d.f. used in the P-Fitter is similar to that of the S-Fitters

but it constructs the prompt (Cherenkov) and late (scintillation) contributions using

a different procedure detailed in [180]. The charge likelihood is calculated assuming

Poisson statistics for each hit.

In addition, all the required quantities, the look-up tables of the integrals ICh
i

and Isci
i , as well as the time likelihood distribution components are calculated for the

two hypotheses of muon and electron tracks.

This detailed model of photon emission from extended tracks gives the P-Fitter

significant power to reconstruct muon tracks over the S-Fitter, while the electron

tracks are reconstructed with comparable resolution with both algorithms.

3.4.5 P-Fitter: π0 reconstruction

A two-track extension of the single-track algorithm of the P-Fitter is used to fit the

12 parameters defining a π0 → γγ event: the four-vertex of the π0 (x, y, z, t), the two

conversion distances s1 and s2 of the photons, and the energy and direction of each

photon Ei, (φi, θi), i = 1.2. As opposed to the S-Fitter, no fit for the Cherenkov and

scintillation strengths is made, since these are obtained from pre-calculated look-up

tables.

The main difference between the P-Fitter and S-Fitter π0 reconstruction algo-

rithms is the amount of time spent sampling the parameter space and the care taken

to avoid trapping scenarios where the minimization of the negative log of the likeli-

hood function falls into local minima and stops sampling possibly better regions of the

parameter space. The procedure devised by Patterson [180] uses Monte Carlo simu-
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lated π0 events to study all possible scenarios that can lead to the fit getting trapped

in pathological configurations and finds a collection of initializations of the seeds to

start the minimization that resolves most of the pathologies. These are summarized

below:

• Four possible pairs of conversion lengths s1 and s2 are tried by seeding each to

either 50 cm or 250 cm.

• Nine starting directions for the first photon (φ1, θ1) are tried starting with the

result of a one-track fit under the electron hypothesis (e-fit), followed by eight

perturbations extracted from the covariance ellipse of the fitted direction.

• The direction of the second photon (φ2, θ2) is searched over a grid of 24 φ steps

and 12 θ steps which can be made finer (50 and 25) in case of failure to find

the second track.

• The four-vertex of the π0 is seeded with the e-fit vertex, shifted according to

s1, φ1, and θ1.

• The energy of the most energetic photon E1 is seeded with approximately the

e-fit energy, and that of the second photon E2 is set to that needed to give the

mass of the π0 as in Eq.(3.36)

The π0 fit can be run with the additional constraint of yielding the invariant mass

Mπ0 . This is implemented by removing the energy of the second photon as a free

parameter and fixing it to E2 = M2
π0/[E1()1−cos αγγ ]. The fixed-mass fit the standard

π0 hypothesis whose likelihood value Lπ0 is used as a particle identification variable,

while the free mass fit allows for the reconstructed Mπ0 value to be used as a second

PID variable.
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The result of all these initializations is a significantly slower π0 fitter (∼ ×10

slower than S-Fitter), but with a much higher power to distinguish π0 events from

electron-like events.



109

3.5 Particle Identification Methods

The detector is able to identify particles by means of the topology of their light emis-

sion patterns projected onto the tank walls and the time distribution of the activity

produced by their tracks. Only charged particles able to ionize the medium produc-

ing either Cherenkov and/or scintillation light are visible to the detector. Typically,

muons have a sharp outer Cherenkov ring that in as it advances along its track, elec-

trons have a diffuse Cherenkov ring effected by multiple Coulomb scattering of the

electron track, the ring is typically not filled in because electron tracks are very short

(a few tens of centimeters long). A third class of events that are relevant are NC

π0 events which decay promptly (τ ∼ 8.4 × 10−17 s) into two photons, which photo-

convert as they travel through the oil producing two electron-like rings in a single

event. These three types of event topologies are illustrated in Figure 3.16.

Figure 3.16: Schematic of typical hit topologies of electrons, muons, and NC π0 events in

the MiniBooNE detector.

3.5.1 Track Based Likelihood (TBL) particle identification

The P-Fitter described in sections 3.4.4 to 3.4.5 provides a powerful way to distinguish

electrons from muons and electrons from π0 events. Best-fit track parameters and the

corresponding maximum likelihoods are extracted under three different hypotheses:
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Figure 3.17: Two-dimensional distributions of (a) log(Le/Lμ), (b) log(Le/Lπ0), and (c)

Mγγ versus the P-Fitter electron hypothesis fitted energy Ee for signal and background

events. The Ee dependent cuts shown by the continuous line in each plot (detailed on the

table) are used to select νe CCQE events for the TBL oscillation analysis. Taken from [180].

electron, muon, and π0, and ratios of the maximum likelihoods provide differentia-

tion between them. Denoting the three likelihoods by Le, Lμ, and Lπ0 respectively,

two particle identification discriminants defined by log(Le/Lμ) and log(Le/Lπ0) are

formed with the sign convention that electron like events have more positive values

than μ-like or π0-like events. Events are also fit under the π0 hypothesis without a π0

mass constraint enforced by the default π0 hypothesis fit. The resulting fitted mass

Mγγ is also used as a discriminant to select or reject π0 events. Patterson [180] calcu-

lated the optimal cut values on log(Le/Lμ), log(Le/Lπ0), and Mγγ as a function of the
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fitted event energy13 to maximize the νe CCQE selection and minimize the νμ and π0

misidentification backgrounds. Two dimensional distributions of the three discrimi-

nants versus the fitted energy of the event are shown in Figure 3.17. The black curves

represent the cut values calculated by Patterson to optimize the signal/background

separation. We refer to these cuts as the TBL selection cuts throughout the rest

of this thesis. These same cuts were used to produce the first MiniBooNE result in

Ref. [190] where different techniques14 from those presented in this thesis were used

to apply data-driven corrections to the background predictions and to constrain the

effect of systematic uncertainties, as will be described in Section 4.1.

3.5.2 Boosted Decision Tree (BDT) particle identification

A boosted decision tree machine learning algorithm [193] based on 172 input recon-

structed variables from the S-Fitter was used to form a discriminator to separate

signal-like events (νe CCQE interactions) from all sources of background. The list of

possible inputs to the BDT algorithm was assembled over several years by the Mini-

BooNE Algorithms group [196]. Many of the variables were determined by specifically

considering the physical effects which may separate different types of events, while

others were formed by combining both charge and time information, and finding which

combinations had more discriminating power. A number of the variables depend di-

rectly or indirectly on geometric or kinematic quantities such as the event energy and

radial position, introducing correlations between them.

Selecting the input variables

The input variables were selected from an initial pool of ∼ 1000 reconstructed vari-

13 This is the energy under the P-Fitter electron hypothesis Ee.
14 These have been described in full detail in [180].
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ables of a wide variety. Certain classes of variables are obtained by dividing the tank

into 10 equal Δ cos θ intervals around the reconstructed track, where θ is the photon

direction from the track MγEP with respect to the reconstructed S-Fitter track direc-

tion15. This is schematically shown in Figure 3.18(a). For some other variables, the

reconstructed track length was divided into 10 track length bins to form 10 rings with

the Cherenkov angle of the track, as shown in Figure 3.18(b), to look at information

in rings of different sharpness (thin or broad). In either case, the set of PMTs that

fall in the angular interval of interest is considered. Intervals of corrected time were

also used to define variables capable of distinguishing events by their time structure.

This binning scheme was used for a number of observables such as, for example, the

total event charge, PMT hit times, or the contribution to the S-Fitter reconstruction

likelihoods (time, charge or total) under the electron or π0 fit hypotheses. The initial

input variables can be grouped into five major categories.

1. Reconstructed physical/geometric observables: These include reconstructed

quantities from the S-Fitter like the visible energy from the Fast, Full and π0

fits, the π0 mass, track length and angle with respect to the beam, fraction

of Cherenkov and scintillation light, fraction of light from the photons in the

π0 → γγ fit, distance of MγEP from the wall, among others.

2. Time-related variables: Include, for example, time likelihood values from the

S-Fitter to electron or π0 hypotheses from all PMTs, and from PMTs in cos θ

and ring sharpness bins. Also likelihood ratios and products between different

cos θ and sharpness bins are calculated.

3. Charge/Hits-related variables: Include combinations of charge-likelihoods

from the S-Fitters similar to those of time-related variables. Also Include ratios

15 No variables from the P-Fitter are used as inputs to the BDT algorithm.
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(a) cos θ bins (b) Ring sharpness bins

Figure 3.18: Schematic of cos θ and ring sharpness bins (see text) used to define some of

the input variables for the BDT algorithm.

of un-hit PMTs to hit PMTs, and ratios of hit PMTs to total PTMs in the

various cos θ and ring sharpness bins. The Charge likelihood ratios are also

separated in those from hit and un-hit PMTs. These also include measured and

predicted charges in the PMTs and ratios of these in the various angular and

ring sharpness bins.

4. Combinations of Charge and time information: These include charge

likelihoods and number of hits in corrected time bins, fraction of prompt and

late hits in an event, etc.

5. Auxiliary variables from the minimization: These include the best fit

value found by MINUIT in each of the algorithm steps (Full, Flux, π0 fits), and

combinations (sums and differences) of them.

The number of variables was reduced to 172 by requiring: (a) good agreement be-

tween data and simulation (differences must lie within systematic uncertainties) in

all of the six open boxes in table 3.11, and (b) significantly contribution to the final

discriminator (e.g. if a variable is removed, the classifier becomes weaker). A final



114

Table 3.11: The Boxes used in the PID input validation of the BDT algorithm.

Box Name Dominant event type

CCQE νμ CCQE interactions

NCπ0 (S-Fitter) NC π0 events

CC1π Interactions producing a single π+ or π−.

NC box Neutral Current interactions

Michel Michel electron from stopped muons

10% Box All event types (satisfies blindness)

sub set of 172 variables was used to train the algorithm.

The application of the BDT technique to the MiniBooNE input variables for

signal/background separation has been extensively studied [192].

The BDT algorithm

The goal of the algorithm is to separate signal-like events (νe CCQE) from all back-

grounds using a single PID discriminant variable (called score). Using pure Monte

Carlo event samples a collection of ∼ 1000 decision trees is trained to separate signal

from background, with each tree contributing to the calculation of the score of an

event. A toy example of a simple decision tree is shown in Figure 3.19, where three

variables are used for signal/background separation: PMT hit multiplicity, energy,

and radial position.

The algorithm initially assigns an equal weight Wi = 1/N to each of the N events in

the training sample (signal plus background) and loops over all possible cuts on the

172 input variables to select one that provides the highest separation into its signal

and background components. The criterion to select the cut at a given branch is
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based on the calculation of a quantity called the Gini index, defined as

Gini =

(∑
i

Wi

)
P (1 − P ) (3.40)

where P is the purity of the separation defined as

P =

∑
s Ws∑

s Ws +
∑

b Wb
(3.41)

and the sum
∑

s (
∑

b) is over signal (background) events only. The chosen input

variable and cut value are chosen as to maximize the difference in Gini index between

the parent node and its two daughters:

Criterion = Giniparent − (Ginidaughter left + Ginidaughter right) (3.42)

Notice that a pure signal or background leaf has P (1 − P ) = 0, therefore, a cut that

achieves perfect separation maximizes the criterion in Eq.(3.42) in the best possible

way.

Once the starting cut for the tree is found, the procedure is repeated by adding more

branches to the tree increasing at each step the number of terminal leaves, which is a

parameter to be optimized. The BDT algorithm used for the oscillation analysis used

trees with a maximum of 45 leaves. When the tree reaches the desired size the purity

P of its terminal leaves is evaluated and those with P > 1/2 are labeled signal (S)

leaves, and the rest are labeled background (B) leaves. Next, the weight of all events

in the training sample that were misclassified 16 is increased (boosted). A second tree

is built using the new weights to define the Gini index and purity of its nodes. When

it is finished, the weights of misclassified events are boosted again, and the procedure

is repeated until Ntree ∼ O(1000) trees are constructed.

16 Correctly classified events are signal events that land in a S leaf and background events that

land in a B leaf. Signal events landing in a B leaf and background events landing in a S leaf are

called misclassified events.
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Figure 3.19: Schematic of a decision tree with three nodes (ellipses) and four leaves (boxes).

Cuts are applied at each node. If signal (background) events dominate, a leaf is called signal

(background) leaf. S stands for signal and B stands for background. Taken from [192].
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The increase of the weight of misclassified events that was used corresponds to

the variety of boosting algorithms known as AdaBoost [193] in which for the mth tree

in the sequence one defines

errm =

∑N
i=1 Wi × Im

i∑N
i=1 Wi

αm = 0.5 × ln

(
1 − errm

errm

)
(3.43)

where Im
i = 1 if event i is misclassified by tree m, and zero otherwise. In Eq.(3.43) the

quantity errm represents the rate of misclassified events whose weight will be boosted

by an amount determined by the quantity αm. A typical progression of errm and αm

as a function of the number of trees is shown in Figure 3.20 showing that after ∼ 500

trees the algorithms is well stabilized. The AdaBoost prescription to set the weights

Figure 3.20: AdaBoost progression of the misclassified event rate (red triangles) and weight

factor αm (blue stars) in Eq.(3.43) as a function of the number of trees. For comparison the

un-weighted number of misclassified events is shown as the black points. Taken from [192].

of the events for the calculation of the (m + 1)th tree in the sequence is:

Wi → Wi × exp(αm Im
i ) , i = 1, . . . , N , (3.44)
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Each tree in the sequence assigns a partial score Tm(x) = 1 (Tm(x) = −1) to event x

when it lands in a S (B) leaf. The final score is defined as

T (x) =

Ntree∑
i=1

αm Tm(x) (3.45)

which is the weighted sum of the partial scores from all the trees. After training

the algorithm 17 the set of trees Tm and weights αm are fixed and are ready to be

applied to event from a test sample, from which the performance of the algorithm is

evaluated.

3.5.3 The νe selection of the BDT and TBL analyses

As we have seen, the TBL and BDT particle identification techniques are each based

in one of the two reconstruction algorithms described in Section 3.4:

• BDT PID: based on S-Fitter reconstruction.

• TBL PID: based on P-Fitters reconstruction.

Keeping this separation was motivated by the idea to perform two oscillation analyses

that would be complimentary to each other, the most powerful of which would provide

the main result of the experiment, while the second would be a powerful cross check.

As described in [190] the oscillation analysis based on the TBL reconstruction proved

to yield the highest sensitivity to oscillations, and on this basis was selected as the

primary analysis.

17 To increase the separation power the algorithm the cascade-training technique described in

[194] was implemented.



119

Two analyses

We henceforth refer to the two possible ways to proceed towards an oscillation result

as the TBL analysis and BDT analysis. In both cases a fit to the reconstructed

neutrino energy distribution18 will be used to interpret any excess of events as an

LSND like oscillation signal. We will denote the neutrino energy of the TBL analysis

by EQE
ν − TBL which is calculated with Eq.(3.17) using P-Fitter quantities, and

that of the BDT analysis by EQE
ν −BDT , which besides being based on the S-Fitter

reconstruction, is calibrated as described in Appendix A. Both analyses share a few

common cuts to select νe candidate events but differ in the more powerful part of their

selection criteria. The common cuts used by both, the BDT and the TBL analyses

are:

• Only one sub-event is present:

Removes events with muon decays. Clean νe CCQE interactions should produce

a single electron track.

• Nveto < 6 hits in the veto:

Removes cosmic rays and other activity from the outside of the tank that pen-

etrates the veto.

• Ntank > 200 hits in the main tank:

Eliminates Michel electrons from muons that entered the tank before the DAQ

window was open.

Subsequent cuts are algorithm specific, and are described below.

TBL-specific νe selection

18 Reconstructed under the hypothesis of a νe CCQE interaction.
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We will denote the fiducial volume cuts used in the TBL analysis as Rvtx < 500 cm for

the requirement that the reconstructed event vertex lies within the sphere with 500

cm radius, and Rend < 488 cm the requirement that the end point of the reconstructed

track lies within 488 cm from the tank center. The TBL analysis uses an additional

low visible energy cut Ee < 140 MeV to avoid mis-reconstruction of the neutrino

energy and reduce low energy backgrounds. Both the visible energy on which this cut

is based, and the reconstructed neutrino energy used in the TBL oscillation analysis

are calculated under the assumption that there is only one track in the event. νe

candidate events for the TBL analysis are required to satisfy the cuts described in

Figure 3.17. The signal efficiency of the TBL analysis cuts is shown in Figure 3.21.

BDT-specific νe selection

The BDT analysis uses a different fiducial volume cut, based on the S-Fitter algo-

rithm. We will denote the fiducial volume cut in this analysis as RTC < 500 cm,

where the subscript TC refers to the track center19. The νe CCQE candidates of the

BDT analysis are required to satisfy the energy dependent BDT score cut shown by

the solid black line in Figure 3.22. The cut values in each energy bin were optimized

to yield the highest sensitivity to oscillations when considering the dominant source

of systematic uncertainty for the BDT analysis.

Optimization of the BDT score cut:

A MINUIT [195] minimization routine was used to find the optimal value of the

BDT score output as a function of the EQE
ν −BDT reconstructed neutrino energy to

maximize the sensitivity to oscillations simultaneously at three values of the oscillation

parameter Δm2 in Eq.(1.12).

19The mean photon emission point MγEP described in Section 3.4.1
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Figure 3.21: νe efficiency of the TBL selection cuts as a function of the reconstructed

neutrino energy EQE
ν − TBL. Left: Efficiency relative to neutrino candidate cuts (Ntank >

200 & Nveto < 6 & only 1 sub-event); Right: Efficiency of the e/μ, e/π0, and π0 mass cuts

of Section 3.5.1, relative to all TBL specific precuts.
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Figure 3.22: The energy-dependent BDT score cut (solid line) used in the νe CCQE

selection of the BDT analysis. The plotted energy is EQE
ν − BDT . The distribution of

BDT score values for νe CCQE events (red points) and all backgrounds (gray points) is also

shown. The BTD cut value at each bin was optimized to yield the maximum sensitivity to

oscillations.
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Figure 3.23: νe efficiency of the BDT selection cuts as a function of the reconstructed

neutrino energy EQE
ν −BDT . Left: Efficiency relative to neutrino candidate cuts (Ntank >

200 & Nveto < 6 & only 1 sub-event); Right: Efficiency of the BDT cuts of Section 3.5.2

relative to all BDT specific precuts.
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It is interesting to note that the efficiency of the BDT RTC < 500 cm cut as

a function of energy has a different behavior when compared to the efficiency of

the corresponding TBL fiducial volume cut of Rvtx < 500 cm, as can be seen by

comparing the top-left plots in Figures 3.21 and 3.23. While the ∼ 75% efficiency of

the Rvtx < 500 cm cut in the TBL analysis is flat with the reconstructed energy, the

efficiency of the RTC < 500 cm of the BDT analysis is ∼ 75% only for the lowest energy

tracks (also the shortest) and raises to 100% for energies above ∼1 GeV. The reason of

this difference is that contained events with high enough deposited energy (> 1 GeV)

will produce sufficiently long tracks (� 700 cm) always having their reconstructed

track centers well within the tank wall and pass the BDT fiducial volume cut, while

the reconstructed track vertices used for the TBL cut are homogeneously distributed

inside the tank, with approximately 75% of them lying more than ∼ 50 cm away from

the PMT faces, beyond which only a few contained event vertices are reconstructed20.

3.5.4 The νμ CCQE sample

The νμ CCQE sample used in this thesis is described in [191], and was isolated

by requiring the detection of the primary muon and the associated decay electron

(νμ + n → μ− + p, μ− → e− + νμ + νe). Timing information from the PMTs allows

one to separate the light produced by the muon in the initial neutrino interaction (first

“sub-event”) from the light produced by the decay electron (second “sub-event”). The

position and momentum of the primary particles in each sub-event are reconstructed

with the S-Fitter algorithm. We require that the first sub-event (the neutrino inter-

action) satisfy the S-Fitter based cut RTC < 500 cm, fire < 6 veto-PMTs to ensure

its containment, and > 200 tank-PMTs to avoid electrons from cosmic ray muon

20The sphere tangent to the PMT surfaces has radius of 550 cm, therefore: (500 cm/550 cm)3 ∼
0.75
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decays. The second sub-event (the μ− decay electron) must fire < 6 veto-PMTs and

< 200 tank-PMTs. Subsequent cuts specifically select νμ CCQE events, discriminat-

ing against neutrino induced single pion (CC1π+) backgrounds. First, events must

contain exactly two sub-events. Second, the distance between the electron vertex and

the muon track endpoint must be less than 100 cm, to ensure that the decay electron

is associated with the muon track.

The previous selection yields a total of 193,709 events from the 5.58×1020 protons

on target (POT) accumulated in neutrino mode (positive horn polarity). These cuts

are estimated to be 35% efficient and to have a CCQE purity of 74%.

The total number of νμ CCQE events in the data was found to be 1.22±0.27 times

higher than that in the simulation This normalization correction is well within the

total uncertainties and assumed to be due to a normalization error on the number of

π+ decaying into neutrinos in the detector acceptance. The effect of this normalization

correction was propagated to the simulation by scaling all events originating from

decaying π+ by this factor.



Chapter 4

Oscillation analysis with two νe

candidate samples

The primary goal of the experiment is to test the scenario of 2-neutrino oscillations

of the type νμ → νe, and specifically, those described by the parameters allowed by

the LSND result. MiniBooNE can make use of the large flux of νμ’s to normalize

its predicted number of background events to this signal, and use this information

to constrain the magnitude of the uncertainties affecting the prediction of νe events.

The approach followed in this thesis is similar to that presented in [181], but has been

extended to deal with two input νe event samples plus one νμ sample, and restricted

to a νe appearance search. The procedure has been applied to the actual MiniBooNE

data set for (5.58 ± 0.12) × 1020 POT collected between the years 2002 and 2006.

4.1 Analysis overview

In its first publication [190] the MiniBooNE collaboration reported on the agreement

of the observed number of νe-induced events with background expectations in the

126
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absence of νμ → νe appearance-only oscillations of the LSND [37, 38, 39, 40] type in

the range from 475 MeV to 3000 MeV of reconstructed neutrino energy. The νe sample

used in that measurement was isolated using the particle identification (PID) method

based on likelihood ratios described in Section 3.5.1. Following the nomenclature of

Section 3.5.3, we refer to this result as the track-based likelihood (TBL) analysis.

The TBL analysis in the first MiniBooNE publication [190] used a high statis-

tics sample of νμ charged-current quasi-elastic (CCQE) events to correct the number

of expected background events to the νμ → νe oscillation search, and to reduce the

magnitude of the systematic uncertainties associated with these predictions. The

corrected predictions and reduced errors were then used in a fit of the reconstructed

neutrino energy distribution under the two-neutrino appearance-only oscillations hy-

pothesis1. In the same publication the result of a cross-check analysis supporting

the conclusion of the TBL analysis was also presented. This is the BDT oscillation

analysis, whose νe selection criteria was also described in Section 3.5.3. The BDT

analysis, in contrast, used the technique of introducing the νμ sample into the χ2

minimization of the oscillations fit. The reduction of systematic uncertainties is ac-

complished by the presence of a penalty coming from the correlations between the

reconstructed neutrino energy bins of the νμ and νe samples. The two analyses make

use of distinct but complementary νe candidate samples. While there is large overlap

of events, there are significant differences that make attractive their use in a combined

analysis, which is the purpose of this thesis.

In Section 4.2, we describe the combined νμ/νe fitting technique, the estimation

of systematic errors, and its implementation to calculate the limit to oscillations from

the BDT analysis appearing in Ref.[190]. The BDT analysis results are reviewed in

Section 4.3. In Section 4.4 we show that the combined fit technique used with the

1 Details of the constraining procedure have been given elsewhere by Patterson [180].
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TBL selection yields an equivalent systematic error constraint as that achieved by the

alternative technique used in Ref.[190], leading to a comparable sensitivity and limit

to oscillations. In Section 4.5 we extend the combined fit technique to use the three

samples (BDT νe, TBL νe and νμ CCQE) together while taking care of the overlap of

events between the two νe samples and the effect of the correlations between them in

the estimate of systematic uncertainties. We show that the sensitivity to oscillations

so obtained is increased. The final results are presented in chapter 5.

We would like to emphasize that, as in Ref.[190], the present analysis of the

MiniBooNE data is performed within a two-neutrino appearance-only νμ → νe model,

and that no other effects beyond the standard model are assumed.

Energy distributions

Each of the two analyses performs a fit to the reconstructed neutrino energy distri-

bution of νe candidate events calculated under the hypothesis of a CCQE interaction

with a neutron at rest, in which the energy and scattering angle of the outgoing par-

ticle track fully determine the neutrino energy when its incoming direction is known.

As mentioned in Section 3.5.3 the neutrino energy so obtained is denoted EQE
ν -BDT

and EQE
ν -TBL in each case. The two energy estimators will in general be different

even for events that are present in both νe candidate samples.

The reconstructed neutrino energy distributions of the νμ CCQE sample and the

two νe candidate samples (BDT and TBL cuts), are shown in Figure 4.1. The Monte

Carlo prediction has been adjusted by weighting the contribution of all events from a

decaying π+ by a factor of 1.22 (see Section 3.5.4). We emphasize that the νμ CCQE

sample in the top plot in Figure 4.1 used the energy estimator based on the S-Fitter

and the νμ CCQE calibration of Appendix A2. The composition of the samples as

2 The νμ CCQE sample used in Ref.[190] had slightly different selection criteria and an energy
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Figure 4.1: Reconstructed neutrino energy distributions for the νμ CCQE sample (top), the

BDT νe candidate sample (middle), and the TBL νe candidate sample (bottom). The dashed

curves represent the unconstrained total systematic uncertainties as calculated from the

procedure described in the text. For display purposes, the first bin in the BDT distribution

has been scaled to 20% of its value.
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Process Number of events ± unconstrained uncertainty

BDT TBL

EQE
ν range (MeV) [300, 1600] [475, 1250]

NC π0 223 ± 89 66 ± 20

NC Δ → Nγ 78 ± 20 29 ± 6

Dirt 115 ± 18 19 ± 3

νe from μ decay 342 ±119 127 ± 34

νe from K+ decay 207 ± 79 71 ± 21

νe from K0
L decay 44 ± 24 14 ± 5

Other 54 ± 32 38 ± 18

Total Background 1066 ± 266 368 ± 52

Osc [sin22θ = 0.004,Δm2 = 1eV2] 302 ±93 133 ±32

Table 4.1: The expected number of events passing the νe candidate selection cuts in both

analyses. The uncertainties correspond to the total unconstrained error estimates consistent

with the error bands in Figure 4.1. The last row shows the expected number of events for

an LSND type νμ → νe oscillation with the parameters shown.

predicted by the Monte Carlo is displayed in the figure. The dashed lines represent

the total systematic uncertainty expected on the predicted number of events, and was

calculated with the procedure described in the next section. The number of events in

these distributions correspond to the full POT in the neutrino mode run. Note that

the νμ CCQE distribution is truncated at 1.9 GeV, the total number of νμ CCQE

events from the data in this range is 190,917.

The numbers of events passing the two separate νe candidate selection cuts are

estimator based on the P-Fitter reconstruction For details on this sample see [180].
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shown in Table 4.1. The uncertainties in the table will be reduced by using the high

statistics of the observed νμ CCQE sample. There is significant overlap in the events

passing both νe selection criteria. If we want to benefit from the total number of

events present in both samples it is necessary to take into account the statistical

correlations that the overlap creates.

4.2 The combined νμ/νe fit technique used in the

BDT analysis.

The result from the BDT analysis in Ref.[190] makes use of a sample of candidate

νe events selected with the energy dependent cut in Figure 3.22, as well as the high

statistics sample of νμ CCQE events described earlier. The νe candidate and νμ

CCQE samples are used together in the definition of a χ2 statistic that is used to

fit a two-neutrino oscillations hypothesis to the data. In the fit only the number of

events in the νe sample is affected by the oscillation parameters sin2 2θ and Δm2. We

used a two-dimensional (2D) χ2 minimization technique to find the best fit oscillation

parameters describing the data. A one-dimensional (1D) raster-scan fit for sin2 2θ at

each Δm2 value was also performed and shown to find the same best fit point as the

2D fit. We used the results from the 1D method to report limits on oscillations.

4.2.1 Definition of χ2

A χ2 statistic is calculated comparing the observed energy distributions for the νe

and νμ samples with the predictions for a given point in the oscillations parameter
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space. The details of the χ2 definition are given in Eq.(4.1) below.

χ2(Δm2, sin2 2θ) =
∑Ne+Nμ

i,j (mi − ti)M
−1
ij (mj − tj)

νe candidate bins: i = 1, . . . , Ne

νμ candidate bins: i = Ne + 1, . . . , Ne + Nμ

ti(sin
2 2θ, Δm2; fπ, fK)

mi = Number of observed data events in bin i,

ti = Number of predicted events in bin i,

M−1
ij = Inverse of the covariance matrix,

fπ (fK) = pion (kaon) normalization factor.

(4.1)

The predicted number if events ti depends on the oscillation parameters sin2 2θ and

Δm2, as well as in two normalization factors fπ and fK , which are fixed during the

minimization3. The indices i, j run over the bins of both distributions (Ne νe bins

and Nμ νμ bins) and the number of predicted events for the νμ CCQE sample (ti for

i = Ne + 1, . . . , Ne + Nμ) does not vary with the oscillation parameters. The matrix

Mij is the total covariance matrix including all sources of uncertainty, statistical and

systematic, and contains the correlations between the νe and νμ bins.

Calculating the predicted number of events ti

The predicted number of events ti is a combination of background and signal event

estimates from various sources. The event estimates are obtained from the Mini-

BooNE Monte Carlo separately for events from pion and kaon parent, and using a

sample of 100% νμ → νe transmutated events4 modulated by the oscillation proba-

bility Eq.(1.12) for the signal component. Events from external interactions (section

3 We set Nπ = 1.22 to account for the normalization difference described in Section 3.5.4 and

NK = 1.0.
4 These are νe events with a νμ flux.
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3.3), and NC π0 interactions (section 3.2.2) are not affected by the normalization

factors fπ and fK , since their contributions are set from the observed rates of these

events. The various contributions to the predicted number of events in νe and νμ bins

is shown in

tνe
i = fπ × MC[νe cuts − no π0]π

+ parent
i + fK × MC[νe cuts − no π0]K

+ parent
i

+ NCπ0[νe cuts]i + Dirt[νe cuts]i + Other[νe cuts]i

+ P (sin2 2θ, Δm2) × (fπ × FO[νe cuts]π
+ parent

i + fK × FO[νe cuts]K
+ parent

i )

t
νμ

i = fπ × MC[νμ cuts − no π0]π
+ parent

i + fK × MC[νμcuts − no π0]K
+ parent

i

+ NCπ0[νμ cuts]i + Dirt[νμ cuts]i + Other[νμ cuts]i (4.2)

where P (sin2 2θ, Δm2) is the oscillation probability Eq.(1.12), and the other quantities

are explained below:

MC[νe,μ cuts−no π0]π
+ parent

i = MC events from π+ decay passing the νe,μ cuts

excluding NC π0 events, in bin i

MC[νe,μ cuts−no π0]K
+ parent

i = MC events from K+ decay passing the νe,μ cuts

excluding NC π0 events, in bin i.

FO[νe,μ cuts−no π0]π
+ parent

i = 100% (νμ → νe) (Fully Oscillated) events

from π+ decay passing the νe,μ cuts, in bin i

FO[νe,μ cuts−no π0]K
+ parent

i = 100% (νμ → νe) (Fully Oscillated) events

from K+ decay passing the νe,μ cuts, in bin i.

NCπ0[νe,μ cuts] = NC π0 events passing the νe,μ cuts, in bin i

Dirt[νe,μ cuts] = Events from external interactions passing

the νe,μ cuts, in bin i

Other[νe,μ cuts] = Events from any other source passing

the νe,μ cuts, in bin i

(4.3)
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4.2.2 Systematic Uncertainties

The systematic errors associated with the neutrino flux prediction, modeling of the

detector, and neutrino cross sections were estimated as described in [190]. Flux uncer-

tainties are determined from the uncertainties of particle production measurements

described in Section 3.1. The neutrino cross Section systematic uncertainties, de-

scribed in section 3.2, are determined from MiniBooNE data as well as from external

sources, both experimental and theoretical. Finally, the detector model systematic

uncertainties described in section 3.3 are determined also from MiniBooNE data.

The covariance matrix Mij in Eq.(4.1) is a sum of matrices from each of the

uncertainty sources:

Mij = Mπ+ flux + Mπ− flux + MK+ flux + MK0
L flux+

Mbeam + MXsec + MNC π0 yield + MDirt + MO.M.
(4.4)

which is an (Ne + Nμ) × (Ne + Nμ) matrix. Each component in Eq.(4.4) is associ-

ated with the covariance matrix of a set of underlying simulation parameters, and is

obtained by sampling the multivariate Gaussian parameter space implied by this co-

variance. We will refer to the simulations obtained from such sampling of underlying

parameters as multisims.

Whenever possible, multisims were constructed with an event-by-event reweight-

ing mechanism to reduce the needed computation. However, sources of uncertainty

such as the modeling of the optical properties of the detecting medium and some

electronics processes were not suited to be treated by reweighting of events.

For example, the uncertainties in Mπ+ flux, associated with the Sanford-Wang

parameterization of the π+ production of Section 3.1.1, are obtained by calculating the

covariance of the bin contents of α = 1, . . . , 1000 simulated distributions (multisims),

each obtained by reweighting each event k, whose parent meson has momentum and
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scattering angle (pk, θk), with the weight:

wα
k =

SW (cα
1 , . . . , cα

8 ; pπ
k , θπ

k )

SW (c0
1, . . . , c

0
8; p

π
k , θπ

k )
(4.5)

where: SW = Sanford-Wang function for pπ
k , θπ

k with given c’s

cα
n = SW parameter n for multisim α

c0
n = SW parameter n for standard Monte Carlo.

The optical model (O.M.) errors MO.M.
ij are an example where such reweighting

cannot be used to determine the effect of a change in underlying parameters on the

energy distributions of samples after selection cuts. In this case, OM multisims were

produced by generating 66 fully reconstructed hit-level simulations which where then

passed through the selection cuts for the various samples. The statistics of the O.M.

multisims was chosen to match the normalization of the νμ CCQE data set for the

5.58 × 1020 POT. Energy scale errors are contained in the O.M. component.

In our error estimates we have included the effect of electronics modeling of the

discriminator threshold levels and the charge-time corrections in the photoelectric

response of the PMTs. However, such components can only be studied in discrete

variations. We took single excursions and estimated the associated error by the

difference between the excursion and the default settings. We term such sources of

simulation unisims.

Error matrix calculation

In practice, we construct an expanded version of the covariance matrices with dimen-

sions:

(NFO
e + NBkgd

e + Nμ) × (NFO
e + NBkgd

e + Nμ) (4.6)
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where FO refers to the fully oscillated events introduced in Eq.(4.3) which are used

to calculate the predicted oscillation signal events, and we distinguish them from the

background (BG events). Note that NFO
e = NBkgd

e = Ne. A schematic representation

of this extended error matrix is shown in Figure 4.2.

Figure 4.2: Illustration of the extended error matrix used in the BDT analysis. The matrix

on the left is composed of a νe signal block (S), a νe background block (B), and a νμ CCQE

block (μ), and their correlations. The matrix on the right has combined the S and B

components and their correlations with the μ component.

In Figure 4.2 we illustrate the procedure to obtain from such an extended matrix, the

error matrix with the signal and background (S + B) contributions combined. This

is simply done by adding together the S and B blocks of the extended matrix (red

blocks) and the blocks containing the S/μ and B/μ correlations (blue blocks). Note

that the S and B blocks have the same dimension Ne × Ne.

The extended matrix is constructed by forming the histogram of the reconstructed

neutrino energy (EQE
ν ) for both, the νμ-CCQE candidates (Nμ bins) and νe candidates

(Ne bins), and calculate the covariance matrix for the contents of the combined Ne+Nμ

bin histogram using the following procedure.
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Covariance of the EQE
ν bin contents:

For each uncertainty source, points in its underlying parameter space are drawn from

an assumed multivariate Gaussian distribution. Each chosen point will induce a

distortion of the distributions of any observable in both the νμ and νe samples.

Consider the distribution of a variable X in Nb bins. Let xi be the bin contents

of bin i of the distribution. For the purposes of this analysis, X = EQE
ν (-BDT, or

-TBL.

Suppose there are Nsys sources of systematic error, each associated with a pa-

rameter pj, j = 1, . . . , Nsys, and suppose that the Nsys × Nsys covariance matrix Mp

of the systematic error parameters is known. We use this matrix to sample the Nsys-

dimensional space of the parameters pj from a multivariate distribution assumed to

be Gaussian. Each point p = (p1, . . . , pNsys) sampled from this space according to the

covariance matrix, will produce a slightly different distribution of variable X from

the one obtained from any other point. Suppose we sample Nmulti of such points.

We calculate the covariance between the number of events in each bin of the

distribution of X with respect to the distribution defined by the default values of the

parameters as follows:

〈σiσj〉 =
1

Nmulti − 1

Nmulti∑
α=1

(x0
i − xα

i )(x0
j − xα

j ) (4.7)

where x0
i is the value of the bin contents when the systematic parameters take their

mean values p0
j , j = 1, . . . , Nsys, and define the Central Value (CV) MC simulation.

The values xα
i , α = 1, . . . , Nmulti, represent the distributions obtained for multisim α

after varying the systematic parameters away from their means p0
j , j = 1, . . . , Nsys:

multisim α: pα = (p0
1 + Δpα

1 , . . . , p0
Nsys

+ Δpα
Nsys

)
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In the case of uncertainties estimated from single excursions or unisims as defined ear-

lier, the covariance matrix in bins of variable X is calculated from the first derivative

matrix Fil defined as:

Fil ≡
(

Δxj

Δpl

)
σpl

i = 1, . . . , Nb l = 1, . . . , Nsys (4.8)

where Nuni is the number of uncertainty sources estimated in this way (Nuni = 2

in the present analysis). It is assumed that the change in Δxi caused by the unisim

excursion corresponds to a 1σ variation, and therefore σpl
/Δpl ≈ 1, leaving Fil ≈ Δxi.

The covariance in bins of the quantity X is then given by

〈σiσj〉 =

Nuni∑
l,m

Fil × δlm × Fjm (4.9)

where the sources of uncertainty associated with the unisim excursions have been

assumed to be uncorrelated. The expression in Eq.(4.9) assumes that the distribution

of variable X is a linear function of the systematic parameters that define the unisim

excursion, and that the parameters are all linearly correlated.

If one uses a multisim approach to calculate the covariance between the contents

of the bins of X, then one assumes that the correlations between the parameters pj

are linear, while taking care of the nonlinear dependence of the distribution of X on

the parameters pj . For details on this point see Ref.[166].

The covariance matrices constructed in this way are then expressed as fractional

error matrices by dividing 〈σiσj〉 by the contents in the CV simulation that was used

to produce them (x0
i ). In this way, We obtain a collection of fractional error matrices

M ′
ij which can be weighted to the appropriate number of signal and background

events by multiplying the fractional matrices by the predicted number of signal and

background events in each bin tsigi , tbgd
i :

MS
ij = tsig,bgd

i × MS ′
ij × tsig,bgd

j (4.10)
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where S is any of the 9 sources of systematic error, MS ′
ij is the fractional error matrix

for source S, and tsigi (tbgd
i ) is the predicted number of signal (background) events that

contribute to the total predicted number of events ti in Eq.(4.2). This method allows

to calculate the error matrix for any value of the oscillation parameters and scaling

factors fπ and fK .

The contribution of the various systematic uncertainty sources as extracted from

this method are shown in Table 4.2 and Table 4.3 for the νe signal and background

contributions in the BDT analysis, in Table 4.5 and Table 4.6 for the νe signal and

background contributions in the TBL analysis, and in Table 4.4, for the νμ CCQE

sample. The uncertainties on these tables are expressed in percent of the total number

of events in the energy range of 300-1600 MeV for the BDT analysis and from 475-

3000 MeV for the TBL analysis. The error estimates in these tables include all the

correlations between the different contributions to the total error.

For example, the total error of 30.6% shown in the last column of Table 4.2 for

the fully oscillated νμ → νe events passing the BDT cuts is made up predominantly

from the 32.1% uncertainty affecting the CCQE events (90.2% of the total), and

the 44.4% uncertainty affecting the CC1π events (8.1% of the total). A significant

positive correlation ρQE,1π ≈ 0.41 between these two contributions5 makes the total

error smaller than the two independent contributions:

σ2
Tot ≈ (σQE)2 + 2 × (ρQE,1π × σQE × σ1π) + (σ1π)2 = (30.6%)2 (4.11)

The other tables show similar effects coming from the correlations of the tabulated

components.

5 The numbers ρQE,1π ≈ 0.41, σQE = 0.902×32.1% = 28.95%, and σ1π = 0.081×44.4% = 3.6%,

in Eq.(4.11) can be determined directly from the information in Table 4.2.
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Table 4.2: Fractional systematic uncertainties (in percent) on the number of 100% full

νμ → νe transmutation events in the reconstructed neutrino energy range of 300 MeV<

EQE
ν -BDT<1600 MeV. The top row lists the two main types of interactions composing the

sample (CCQE and CC1π) with their contributions shown in the percentage in parenthesis.

The various sources of systematic uncertainties are listed in the left column, and the total

uncertainty associated with each source is listed in the right-most column. The bottom row

shows the total systematic uncertainty of the component indicated in the top row.

BDT 100% (νμ → νe) νe (νe) CCQE νe (νe) CC1π and other interactions Total

(90.2%) (8.1%) 100%

π+ prod 15.9 15.9 15.5

π− prod 0.1 0.2 0.1

K+ prod – – 0.2

K0
L prod – – 0

Beam Model 3.9 6.5 4.1

Cross Sections 19 25.4 17.5

NC π0 yield – – 0

O.M. (multisims) 17.4 29.5 17.8

O.M. (unisims) 10 12.9 7.5

Total 32.1 44.4 30.6
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4.2.3 χ2 minimization procedure

As mentioned in Section 4.2.2, depending on the region of the oscillation parameter

space that is being sampled, a non-negligible number of signal events in the νe distri-

bution can introduce additional contributions to the systematic error component of

Mij . We introduce the dependence of the error matrix on the oscillation parameters

Δm2 and sin22θ into our χ2 minimization with the iterative scheme described below.

Grid search global scan

The χ2 minimization is carried out over a grid of 190×190 points in the oscillation

parameter space chosen to be uniform in logarithmic scale and to span the region of

interest6. The error matrix is first assumed to contain no signal contribution and is

kept fixed while the predicted number of events MCi is varied over the grid to find

the pair that gives the minimum χ2
1. The error matrix is then updated to contain the

amount of signal found in the previous step and kept fixed again while the predicted

number of events is varied in a second minimization that yields a value χ2
2 < χ2

1. This

iterative procedure is continued until the difference χ2
i −χ2

i−1 < 10−3. Convergence is

typically achieved after three iterations. Studies with fits to fake signals hove shown

that typically the best fit point found in the first iteration moves by as much as one

grid point in the second iteration, remaining fixed after the third. For fake fits to

zero signal distributions one iteration of the error matrix proved enough. Failure to

converge after a few iterations (< 6) was observed only for fake input signals exceeding

sin2 2θ � 10−2 and Δm2 � 10.

6 The interval 4×10−4 < sin2 2θ < 1, and 0.01 eV2 < Δm2 < 100 eV2 was used for all calculations

in this thesis.
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Table 4.4: Fractional systematic uncertainties (in percent) on the number of νμ CCQE

events in the reconstructed neutrino energy range of 0 MeV< EQE
ν -BDT<1900 MeV. The

top row lists the two main types of interactions composing the sample (CCQE and CC1π)

with their contributions shown in the percentage in parenthesis. The various sources of

systematic uncertainties are listed in the left column, and the total uncertainty associated

with each source is listed in the right-most column. The bottom row shows the total

systematic uncertainty of the component indicated in the top row.

νμ CCQE candidates νμ CCQE νμ CC1π and other interactions Total

(72.6%) (27.5%) 100%

π+ prod 16.2 15.9 15.8

π− prod 0.1 0.2 0.1

K+ prod – – 0.2

K0
L prod – – 0

Beam Model 3.7 5.3 4

Cross Sections 19.3 23.8 15.5

NC π0 yield – – 0

Dirt – – 0

O.M. (multisims) 1.9 9.4 3.4

O.M. (unisims) 2.9 3.9 3.2

Total 25.7 30.9 23

The raster scan method

In this Section we describe the procedure that was used to construct the 90% C.L.

limits to oscillations for the BDT analysis in [190] and throughout the rest of this work.

The raster scan method is a common way to display the result of null experiments

and was chosen in order to compare with older results, and it attempts to answer the

specific question of what range of sin2 2θ values are allowed for a given assumption of

the true value of Δm2.
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For each Δm2
i value, i = 1, . . . , NΔm2 :

1. Loop over the sin2 2θ values to find the sin2 2θbf
i that minimizes χ2 using an

error matrix with no signal.

2. Update the error matrix to contain the found value sin2 2θbf
i and the current

Δm2
i value. This defines a matrix Mbf

i .

3. Loop over the sin2 2θ values again and calculate Δχ2
i for the current Δm2

i value

as follows:

Δχ2
i (x) = χ2(Mbf

i , x) − χ2(Mbf
i , sin2 2θbf

i ) (4.12)

where the first argument of χ2 is the matrix used and the second is the sin2 2θ

value. Both use the current Δm2
i to determine the amount of signal present.

The set of curves Δχ2
i (x) for all i, are functions of sin2 2θ and define a surface that is

then used to determine confidence level limits by moving away from sin2 2θbf
i to reach

a specified Δχ2
i (e.g. Δχ2

i = 1.64 for one-sided 90% C.L. limits).

Several thousand fits to fake experiments with zero and non zero input oscillation

signals have been performed to test the robustness of the minimization procedures.

The results have the expected behavior giving Δχ2 distributions with ∼ 2 dof in

most of the parameter space. Failure to converge in less than 2 iterations occurred

only for input signals around Δm2 > 10 eV2 and sin2 2θ > 0.01, but behaving well

in all other cases. Examples of fits to fake data sets can be seen in Appendix F. A

frequentist calculation using the 2D fitting technique was performed and it was found

that the limits obtained by requiring a Δχ2 change of 4.61 (called global-scan for

2 dof Gaussian assumption) are close to the frequentist result and disagree slightly

only in the region of Δm2 > 1eV2. This study is described in Appendix C.
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4.2.4 νμ-constrained number of νe’s

Besides constraining the magnitude of the uncertainties in the number of νe events, the

observed νμ energy distribution and the correlations between the two samples provide

a means to correct the shape and normalization of the predicted νe distribution.

Although no correction7 is applied to the νe distribution, the presence of the off-

diagonal terms in the χ2 Eq.(4.1) Will allow solutions in which the νe and νμ bins

display similar discrepancies with respect to the data8 while giving an acceptable χ2

value. As a result an excess of events in the νe distribution will only be ascribed to an

oscillation signal if it is larger than the differences that can be accounted for through

the νμ/νe correlations. An analytical example showing how this occurs in the case of

1 νe bin and 1 νμ bin is given in Appendix B.

To explicitly calculate what the equivalent correction is, one can attempt to solve

for the number of events in the νe and νμ energy distributions that minimize the

following χ2 function:

χ2 =

nνe+nνμ∑
ij

ΔiM
−1
ij Δj +

nνμ∑
k

(Nfit
k − Ndata

k )2

Ndata
k

∂χ2

∂Nfit
i

= 0 ,

where Δi = Nfit
i − NMC

i is the difference between the fitted number of events and

the Monte Carlo prediction. The set of equations that need to be solved is:

∂χ2

∂Nfit
i

= 2

nνe+nνμ∑
j=1

M−1
ij Δj + 2

(Nfit
i − Ndata

i )δi(νμbin)

Ndata
i

= 0 (4.13)

where δi(νμbin) is equal to 1 when i is a νμ bin, and zero otherwise. Defining the matrix

7 Other than the fπ = 1.22 scaling in the predicted number of events
8 For example, an overall residual normalization difference larger than the error bars.



146

B−1
ij as follows:

B−1
ij =

⎧⎨
⎩ M−1

ij for i ≤ nνe or j ≤ nνe

M−1
ij + 1

Ndata
i

for i > nνe and j > nνe

(4.14)

we can write Eq.(4.13) in the following form:

∑
ij

B−1
ij Nfit

j =
∑

j

M−1
ij NMC

j +
Ndata

i δi(νμbin)

Ndata
i

(4.15)

The solution of this set of equations is

Nfit
i =

∑
k

Bik

(∑
j

M−1
kj NMC

j + δk(νμbin)

)
(4.16)

and the covariance matrix for the Nfit
i values is given by

〈δNfit
i δNfit

j 〉 = Bij (4.17)

The errors contained in the matrix Bij have been effectively constrained by the

high number of events in the νμ bins.

The transformations in Eq.(4.14) and Eq.(4.16) are used throughout this thesis

only to display the results of the fitted distributions and constrained error bands, and

are not part of the fitting machinery.

4.3 Oscillations results with the BDT analysis

In Section 4.1 we showed the comparison of the energy distributions of the BDT νe

candidate events in data and Monte Carlo before the fit is performed (middle plot

in Figure 4.1). The uncertainties shown there are those obtained directly from the

multisim procedure, and correspond to a suitable combination of the numbers in

Table 4.2 and Table 4.3 for the νe sample, and Table 4.4 for the νμ sample.
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Figure 4.3: The reconstructed neutrino energy distributions (EQE
ν -BDT) for νμ CCQE

and νe candidate samples in the BDT analysis after constraints and corrections. The best

fit parameters (sin2 2θ,Δm2) and goodness of fit values are shown in the figures. In the

background subtracted distributions in (b) the points have total errors.
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Figure 4.4: The 90% (blue), 3σ (cyan), and 5σ (magenta) sensitivity curves and limits

to oscillations of the BDT analysis. The 90% C.L. limit shown in (b) reproduces the one

appearing in [190].
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Figure 4.3 compares the energy distributions after the fit is performed on the

open data in the full energy range from 300 MeV to 3000 MeV. The fit yields a χ2

probability of 41% for the null hypothesis (χ2
null/ndf = 11.36/11), and 48% for the

best fit point (χ2
bf/ndf = 10.58/11) at Δm2 = 5.56eV2, and sin2 2θ = 0.0013. We

stress that the number of degrees of freedom was reduced by one by virtue of the

scaling by a factor of 1.22 applied to correct the νμ CCQE normalization as described

at the end of Section 3.5.3. The top plot in Figure 4.3(a) shows the reconstructed

neutrino energy distribution EQE
ν -BDT of the νμ CCQE events in data (points), and

Monte Carlo after the correction of Eq.(4.16), which has become nearly identical to

the data distribution. The fine dotted lines represent the constrained systematic error

band, which has become of the size of the statistical error in the sample after applying

the transformation Eq(4.14). The residual differences of data minus simulation are

shown in the top plot of Figure 4.3(b).

The solid line in bottom plot in Figure 4.3(a) shows the predicted number of

background νe candidate events after the correction of Eq.(4.16), and the dashed line

is the background plus fitted signal. The dotted lines represent the constrained errors

on the fitted total number of events in each bin as calculated with Eq.(4.14). The

points are the distribution from the data, which agrees with the prediction within

uncertainties. The background subtracted distribution of events in the bottom plot

of Figure 4.3(b) shows that there is a net deficit of data events with respect of the

expected number. the dashed line in the figure shows the result of the fit. For

comparison, two LSND like signals are shown in the red and blue curves.

We stress that the Monte Carlo distributions in Figure 4.3 have been slightly mod-

ified from the original ones in Figure 4.1 by using the transformation in Eq.(4.16) to

represent the constraining effect of the νμ CCQE sample during the fitting procedure.

Any remaining differences in the νμ CCQE distribution after the normalization scal-
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ing of 1.22 mentioned in Section 3.5.3 are further reduced with this procedure. In

this transformation also the number of νμ CCQE events is modified to be as close

as possible to the data distribution, The details of the correction applied to the νμ

CCQE distribution depend also on the νe distribution and the total error matrix.

Figure 4.4(a) shows the expected 90%, 3σ, and 5σ oscillation sensitivity curves

that are expected for the BDT analysis using this technique. These limits are calcu-

lated by fitting a fake data sample identical to the background prediction (no signal)

with the procedure described in Section 4.2.3. Figure 4.4(b) shows the 90%, 3σ, and

5σ C.L. limits in the oscillation parameter space obtained from fitting the MiniBooNE

open data set. The fit is consistent with no oscillations. The resulting exclusion re-

gion in the oscillation parameter space shown in Figure 4.4(b) reproduces the result

in [190].
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Table 4.5: Fractional systematic uncertainties (in percent) on the number of 100% full

νμ → νe transmutation events in the reconstructed neutrino energy range of 475 MeV<

EQE
ν -TBL<1250 MeV. The top row lists the two main types of interactions composing the

sample (CCQE and CC1π) with their contributions shown in the percentage in parenthesis.

The various sources of systematic uncertainties are listed in the left column, and the total

uncertainty associated with each source is listed in the right-most column. The bottom row

shows the total systematic uncertainty of the component indicated in the top row.

TBL 100% (νμ → νe) νe (νe) CCQE νe (νe) CC1π and other interactions Total

(84.5%) (14.0%) 100%

π+ prod 16 15.8 15.7

π− prod 0.1 0.3 0.1

K+ prod – – 0.1

K0
L prod – – 0

Beam Model 3.5 4.8 3.6

Cross Sections 19.3 21.8 16.8

NC π0 yield – – 0

O.M. (multisims) 4.1 21 5

O.M. (unisims) 7.3 24.7 2.5

Total 26.7 42.4 23.9
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4.4 Oscillations results with the TBL analysis

The techniques used in the official TBL analysis are significantly different from those

presented here, but they both aim to constrain the predicted νe distribution by using

the high statistics of the νμ CCQE sample and the correlations between them. As has

been seen in the previous section, bringing the νμ CCQE sample into the oscillations

fit has the desired effect.

The TBL analysis in [190] performed corrections and constrained the systematic

errors before making a fit for two neutrino oscillations. This technique, described

elsewhere [180], ultimately uses the same information as the present fit technique,

and therefore it is expected to yield comparable results.

In the present analysis we show that one can achieve a similar sensitivity to

oscillations by applying the combined fit technique to the TBL νe candidate sample.

We use the TBL selection cuts and neutrino energy calculation to form the νe

candidate sample, and construct the full covariance matrix of this distribution with

the νμ CCQE sample used for the BDT analysis. It is important to note that the νμ

CCQE sample used here is not the same as that used to constrain the νe prediction

in the TBL analysis in [190], and therefore some differences are expected.

The systematic uncertainties for the TBL analysis νe candidate sample were calcu-

lated as described in Section 4.2.2 and are shown in Table 4.5 for the signal component

and in Table 4.6 for the background events.

4.4.1 Treatment of Optical Model uncertainties

An important difference between the TBL and BDT analyses is the estimation of the

detector optical model (O.M.) uncertainties. The estimation of this particular source
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Figure 4.5: Energy distributions for the TBL analysis result with the present technique.

The best fit parameters (sin2 2θ,Δm2) and goodness of fit values are shown in the figures.

In the background subtracted distributions in (b) the points have total errors.
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Figure 4.6: The 90% (blue), 3σ (cyan), and 5σ (magenta) sensitivity curves (a) and limits

to oscillations (b) obtained with the present technique using the TBL selection cuts for the

νe candidate sample. For comparison, the solid and dashed black lines show the result from

the technique used in [190].
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of error used 66 hit-level simulations of the experiment 9 with varying optical model

parameters drawn from the estimated covariance ellipsoid to construct a reliable error

matrix. The method used to estimate the underlying covariance of the 35 optical

model parameters was described in Section 3.3.1. Each hit-level simulation has the

statistics of the data sample (corresponding to 5.7×1020 P.O.T.) and therefore already

contains the statistical uncertainty of the data.

The BDT analysis used an alternative procedure to remove the contribution of

statistical uncertainty from the O.M. variations. A 5th degree polynomial was fit to

the distribution x0
i − xα

i , i = 1, . . . , Nb in Eq.(4.7) before calculating the covariance

matrix. This smoothing procedure can potentially incorrectly transform statistical

fluctuations into part of the systematic error that is being estimated, and therefore

represents an upper bound to the desired uncertainty.

It was observed that for the BDT analysis the unsmoothed O.M. error matrix

induced a pathological behavior in the optimization code used to determine the BDT

score cuts as a function of EQE
ν -BDT, and on this basis it was decided to use the

slightly overestimated O.M. uncertainties obtained with the smoothing procedure,

with which the optimization code behaved properly.

It is clear from this discussion that in order to compare the results from the

present analysis using the TBL selection cuts with the results in [190] we need to use

the unsmoothed O.M. error matrix.

The results using the unsmoothed OM matrices and the TBL selection cuts with

the present fitting technique are shown in Figure 4.5, and the corresponding sensitivity

and limit to oscillations are shown in Figure 4.6.

The fit over the 475 MeV< EQE
ν -TBL<3000 MeV energy range yields a χ2 prob-

ability of 79% for the null hypothesis (χ2
null/ndf = 6.33/10), and 85% for the best fit

9In the notation of Section 4.2.2 Nmulti = 66 for the O.M. errors
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point (χ2
bf/ndf = 5.60/10) at Δm2 = 2.58eV2, and sin2 2θ = 0.0006. The number of

degrees of freedom is again reduced by one to account for the scaling factor of 1.22

applied to correct the νμ CCQE normalization as explained near the end of Section

3.5.3.

Figure 4.5(a) shows the reconstructed energy distributions of the νμ CCQE sample

(EQE
ν -BDT) and the TBL νe candidate sample (EQE

ν -TBL) after the fit. The best

fit oscillation parameters (sin2 2θ, Δm2) = 0.0006, 2.851, give a goodness of the fit

χ2/dof = 5.60/10.

The top plot in Figure 4.5(b) shows the difference in data minus Monte Carlo

for the νμ CCQE distributions, and the bottom plot the background-subtracted νe

candidate distribution after the fit. The backgrounds have been corrected correction

of Eq.(4.16), and the error bars have been constrained using Eq.(4.14).

Note that although we used the same νμ CCQE sample, the top plot of Figure

4.5(b) is slightly different from the top plot in Figure 4.3(b). This is because the

transformation Eq.(4.16) depends on the specific νe candidate distribution that is

used, giving slightly different corrections to the Monte Carlo prediction of νμ CCQE

events in the BDT and TBL cases.

It can be seen that the oscillations results have comparable statistical strength

to those of Ref.[190], indicating that the two techniques used similar underlying in-

formation to constrain the νe sample. The differences in the detailed structure above

Δm2 � 1 eV2 are expected from our usage of a different νμ CCQE sample in the

construction of the νμ-νe correlations in the systematic error estimates. Although

the same data and simulation were used for the νe candidate sample, we stress that

the result in Ref.[190] used a different νμ data set to determine the corrections to

the νe prediction and to reduce the systematic uncertainties, and therefore, the de-

tail in which the χ2 minimization responds to the fluctuations of the data in the
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determination of the C.L. contours is expected to be slightly different.

4.4.2 TBL analysis with smoothed O.M. errors
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Figure 4.7: Results with the TBL selection using the smoothed O.M. errors I. The sensitivity

(a) and limit (b) are slightly degraded with respect to the case of the unsmoothed O.M. errors

(see text).

One can apply the combined fit technique to the TBL νe candidate sample using

the O.M. errors estimated with the smoothing procedure described earlier. The result

of this calculation is shown in Figure 4.7, showing that the sensitivity to oscillations

becomes degraded, as does the result of fitting the open data, although the latter

does so to a lesser extent.

The fit over the 475 MeV< EQE
ν -TBL<3000 MeV energy range yields a χ2 prob-

ability of 81% for the null hypothesis (χ2
null/ndf = 6.03/10), and 84% for the best fit

point (χ2
bf/ndf = 5.68/10) at Δm2 = 0.010eV2, and sin2 2θ = 0.0003.
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4.5 Combining the νe BDT, νe TBA, and νμ CCQE

samples

The method chosen to perform an oscillation analysis with both νe candidate samples

was to extended the definition of the χ2 in Eq.(4.1) to include the bins of the BDT

and TBL νe candidate samples together with the already used νμ bins:

χ2(Δm2, sin2 2θ) =
∑Ne+Nμ

i,j (mi − ti)M
−1
ij (mj − tj)

νe BDT candidate bins: i = 1, . . . , NBDT
e

νe TBL candidate bins: i = NBDT
e + 1, . . . , NBDT

e + NTBL
e

νμ candidate bins: i = NBDT
e + NTBL

e + 1, . . . , NBDT
e + NTBL

e + Nμ

(4.18)

with similar nomenclature as in Eq.(4.1). From this expression we should expect an

increase in the power of constraining the systematic uncertainties coming from the

newly introduced correlations in the matrix Mij , which include: (a) the correlations

between the BDT and TBL signal events, (b) the correlations between the BDT and

TBL background events, (c) correlations between the BDT signal (background) events

and TBL background (signal) events, (d) the correlations of all of the νμCCQE events

with the BDT signal, BDT backgrounds, and with the TBL signal and background

events.

This leads to a matrix with 5× 5 blocks (as opposed to the 3× 3 block structure

used so far), which is illustrated in Figure 4.8. As was done before, this 5× 5 matrix

is formed by adding the contributions of all uncertainty sources, taking into account

the contribution from a possible oscillation signal. The color of the blocks in the

arrays shown in Figure 4.8 indicates the portions that need to be added together

to combine the corresponding signal and background components on the left into a

collapsed matrix on the right.
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Figure 4.8: Illustration of the extended error matrix used in the combined BDT+TBL

analysis. The matrix on the left is composed of a νe signal block (SBDT/STBL) and a νe

background block (BBDT/BTBL) for each of the two νe candidate samples, a νμ CCQE block

(μ), and their correlations.

As was mentioned before the BDT and TBL selection cuts form two largely

independent sets of νe candidates with an important overlap between them. Inclusion

of the shared events in the two samples into a combined analysis requires knowledge of

the statistical correlations that are induced by the overlap in the energy distributions

in the two samples. These correlations cause the appearance of off-diagonal elements

to the statistical component of the error matrix Mstat
ij , which in the absence of such

overlap would be diagonal.

Figure 4.9(b) shows a graphical representation of the part of the statistical error

matrix that comes from data events appearing in both the BDT and the TBL energy

distributions (overlapping events) and Figure 4.9(a) shows the remaining contribution

from the events that only appear in one of them (non-overlapping events). The

two analyses used different energy estimators, hence the spread shown in the blocks

containing the correlations in Figure 4.9(b). The array resulting from the sum of the
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arrays (a) and (b) in Figure 4.9 is the statistical error matrix that takes into account

the overlap of events.

The handling of the statistical correlations was tested by performing a fit in which

the same νe candidate sample (either BDT or TBL) was input twice together with

the νμ CCQE sample. The result of such experiments yielded identical results to

that of using the νe sample once. This is shown in Figure 4.10 (4.11) for the BDT

(TBL) νe candidate distributions in a fit to a fake positive signal using only statistical

uncertainties in the fit. The effect of ignoring the statistical correlations is equivalent

to assume that we have twice the amount of data available, reducing the statistical

uncertainty by a factor ∼ √
2. This incorrect assumption is visually obvious by com-

paring Figure 4.10(a) to Figure 4.10(b), where the latter gives smaller are contours,

corresponding to a reduced total error. Once the statistical correlations are included,

we recover the correct level of statistical uncertainty, which is manifest in the fact

that Figure 4.10(c) yields identical regions as Figure 4.10(a). The corresponding com-

parisons apply for Figures 4.11(a), 4.11(b), and 4.11(c). Similar tests were performed

in fits including the total errors and are shown in Appendix F.

As a second test, we performed fits in which the BDT and TBL νe candidate

samples were input into the fit but the statistical correlations were turned off, resulting

in an even stronger exclusion region which is expected from treating the two νe samples

as independent increasing the statistics of the fit. The statistical correlations reduce

this fictitious gain by incorporating the fact that only a fraction of the added events

from the second sample are adding new information.
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Chapter 5

Results and Conclusions

5.1 Results

To combine the BDT and TBL analyses we calculated the covariance of the bin

contents of the three samples as described in 4.2.2, but with the bin index running

freely across the three energy distributions: νe BDT (signal and background), νe TBL

(signal and background), and νμ CCQE, forming the 5×5-block matrix illustrated in

Figure 4.8. The 3× 3-block matrix resulting from the collapsing procedure described

in Section 4.5 is then used to minimize the χ2 defined in Eq.(4.18) using the same

minimization procedure as in Section 4.2.3. We used the smoothed O.M error estimate

for this case in order to avoid introducing the pathologies observed in the BDT case.

In Figure 5.1(a) we compare the 90% C.L. sensitivity to oscillations between the

combined νe BDT + νμ CCQE fit of Section 4.3, the combined νe TBL + νμ CCQE

fit of Section 4.4, and the fit using the three samples together. The blue (cyan)

curve shows the result of combining the BDT (TBA) νe candidate sample with the

νμ CCQE sample as was done in section 4.3 (4.4). The red curve shows the result

of the present technique combining the two νe candidate samples with the νμ CCQE
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sample, which yields a significantly higher sensitivity to oscillations.

Figure 5.1(b) shows the corresponding comparison for the 90% C.L. limits to

oscillations when the three types of constrained fits are performed on the MiniBooNE

open data set. The combination of the two νe candidate samples gives a more powerful

result for almost every value of Δm2, although the improvement is less apparent in

this case. Note that the specific fluctuations in the three data sets cause the limit

obtained with the νe BDT + νe TBL + νμ CCQE fit to be worse than the νe BDT +

νμ CCQE or νe BDT + νμ CCQE limits for some values of Δm2. While not ideal, this

is a perfectly possible scenario, since the total data set used in each fit is different,

adding new fluctuations that will affect the details of the final result in each case.

Figure 5.2 shows the energy distributions for the three samples used in the present

fit. The corrections to the Monte Carlo prediction and the error bars are calculated

using the transformations in Eq.(4.16), and Eq.(4.14), which are slightly different

than those obtained for the two individual cases treated earlier.

Finally in Figure 5.3(b) we compare the result in Ref.[190] with the present fit

combining the BDT and TBL νe candidate samples with the νμ CCQE sample. The

details of the oscillating portion of the limit are determined by how the fit responds to

the fluctuations in the νμ and νe data distributions1, and in this case the analysis does

not improve the limit at the highest Δm2 values. However, an increase of ∼ 10%−30%

depending on the Δm2 value, in the coverage of the region below Δm2 � 1 eV2 is

achieved, which is a significant gain over the first publication.

Table 5.1 summarizes the results of a counting experiment combining the two

samples. The number of events from the data in the reconstructed energy range used

for each individual analysis is compared to the prediction and the significance of the

1 The analysis in Ref.[190] used a different νμ CCQE sample.
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Table 5.1: Comparison of the observed and predicted number of events in the energy range

300 MeV< EQE
ν -BDT<1600 MeV for the BDT analysis, and 475 MeV< EQE

ν -TBL<1250

MeV for the TBL analysis. The significances of the differences shown in parenthesis are

calculated with the errors of Table 4.1 for the unconstrained case, and with the uncertainties

resulting from the present technique for the constrained case. The overlap of the observed

and expected events is shown in the last two rows.

Observed Unconstrained Prediction Constrained Prediction

BDT 970 ± 31 1066 ± 266 (−0.36σ) 1066 ± 245, (−0.39σ)

TBL 378 ± 19 368 ± 52 (0.18σ) 368 ± 41, (0.22σ)

Events distributed in both samples [overlap fraction in %]:

BDT only TBL only BDT & TBL BDT Total TBL Total

Observed 748 156 222 970 [22.9% ov.] 378 [58.7% ov.]

Expected 853 155 213 1066 [20.0% ov.] 368 [57.9% ov.]

deviation is calculated as

Nσ =
Ndata − Npred√

σ2
stat + σ2

sys

. (5.1)

Notice that the total systematic uncertainty in each case is reduced with the combined

technique, and the difference in the total number of events is within one standard

deviation after the constraint.
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5.2 Conclusions

Non-zero neutrino masses and mixings have been established by observations of solar,

atmospheric, reactor, and accelerator-based neutrino oscillations experiments over the

last two decades (see Section 1.4). These observations seem to be consistent with the

three-neutrino picture of the Standard Model of elementary particles, except for the

result of the LSND experiment at Los Alamos. If due to oscillations, the LSND

observation would have important implications for the Standard Model, requiring the

existence of at least one sterile neutrino.

First results from the MiniBooNE experiment [190] at Fermilab, have ruled out

the possibility that the LSND observation be due to a simple two-neutrino oscillations

model as was previously claimed. MiniBooNE used two oscillations analyses which

differed in reconstruction algorithms, sample selection cuts, methods to constrain

systematic errors, and the oscillations fit technique. Both analyses gave a consistent

answer.

In this thesis we have described the technique used to obtain the result of the

cross check analysis appearing in the first MiniBooNE publication [190] (the BDT2

analysis), in which a high statistics sample of νμ events is introduced in the definition

of a χ2 statistic minimized to fit a 2ν oscillations model with the aim to constrain

the systematic uncertainties on the predicted number of νe events. This χ2 uses the

reconstructed energy distributions of the νμ and νe events simultaneously, with only

the νe events being affected by the oscillations model parameters: Δm2 and sin2 2θ.

All sources of uncertainty on the underlying simulation parameters were propagated

to calculate the covariance matrix of the contents of the νμ and νe reconstructed

energy bins. The final covariance matrix contains all systematic and statistical errors

2 Boosted Decision Tree. From the particle identification technique used to isolate the sample.

Described in Section 3.5.2.
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as well as the correlations between the various νμ and νe reconstructed energy bins.

The approach used in this thesis is significantly different from the one used for the

main result in Ref.[190], nonetheless, we obtain comparable results to those presented

therein when we use the νe sample from the TBL3 analysis cuts in our combined νμ/νe

fit technique, and treat the systematic errors consistently with Ref.[190].

An extension of the combined νμ/νe fit technique was developed to include a

second sample of νe events in the definition of the χ2, and was used in a combined

analysis of the νe sample from the first MiniBooNE publication (the TBL νe sample),

the BDT νe sample, and the high statistics νμ sample. This extension required ap-

propriate handling of the non-negligible event overlap between the two νe samples,

which induces additional correlations between their reconstructed energy bins. These

correlations were included in the definition of the statistical component of the total

error matrix used in the χ2 and appear as off-diagonal elements connecting the en-

ergy bins of both νe samples4. This allowed us to make use of all the available events

passing both νe selection criteria.

We compared the sensitivities to 2ν oscillations in the three scenarios studied in

this work:

1) νeBDT + νμ, 2) νeTBL + νμ, 3) νeBDT + νeTBL + νμ,

and found that the combination of both νe candidate samples with the νμ sample

(number 3 above) yields stronger sensitivities than the use of either one of them

separately. The same is true in general for the limits to oscillations extracted from

fits to the MiniBooNE data, although specific fluctuations of the three data sets cause

the limit in scenario number 3 above to be worse than those in scenarios 1 or 2 for

3 Track Based Likelihood particle identification technique described in Section 3.5.1.
4In the absence of event overlap the statistical error matrix is diagonal with the number of events

in each bin along the diagonal.
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some values of Δm2. When compared to the result in Ref.[190] the present technique

yields a stronger limit to oscillations in the region of Δm2 � 1 eV2 (∼ 10%-30%

increase in coverage depending on Δm2).

This result strengthens the statement that the MiniBooNE data rules out the

interpretation of the LSND result as due to νμ → νe oscillations described under

the standard L/E dependence of oscillations and the usual CP and CPT invariance

assumptions.
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Appendix A

Neutrino Energy Calibration

A.1 Selecting well reconstructed QE events

A simple set of cuts was applied to try to isolate those QE events with a reasonably

good reconstruction:

1. NUANCE Channel = CCQE

2. 2 Sub-Events for νμ (1 for νe)

3. Nveto < 6 and Ntank > 100

4. Reconstructed radius < 500 cm

A.2 Calibration Procedure

The procedure to calculate the neutrino energy with good resolution was developed

by studying the specific case of νμ CCQE interactions. The method was seen to work

reasonably well for νe CCQE interactions as well, although with slightly reduced

quality. The procedure can be summarized as follows:

1. Correct the reconstructed energy of the lepton � = μ, e, towards its generated

true kinetic energy. The true lepton kinetic energy (T
) is calculated from the
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information of the generated momentum of the particle: T
 =
√

p2

 + m2


 − m
.

The correction equation is found by fitting a straight line to the profile histogram

T
 vs Erec
1:

T corr

 = aT
 + b

� a b (GeV)

μ 0.8867 0.0927

e 0.9942 0.0113

(A.1)

The calibrated constants are shown in the above table for νμ and νe CCQE

interactions. The total lepton energy is calculated as Ecorr

 = T corr


 +m
. where

m
 is the lepton mass. The comparison of the true and estimated lepton kinetic

energies is shown in Figure A.1. There is a small shift from the identity line,

however, the philosophy of this calibration procedure was not to fine tune the

reconstructed lepton energy, but to get the best reconstructed neutrino energy.

2. Use the Quasi-Elastic formula assuming neutrons at rest to compute the neu-

trino energy with the corrected lepton total energy and reconstructed angle.

Note that the reconstructed angle was not subject to a correction given that a

very good correlation with the generated angle was observed.

EQE
ν =

1

2

2(M + B)E
 − (2MB + B2 + m2

 + ΔM2

np)

(M + B) − E
 +
√

E2

 − m2


 cos θ


(A.2)

Here θ
 is the reconstructed lepton scattering angle, p
 =
√

E2

 − m2


 is the

lepton momentum, M = Mp = 0.9387 GeV is the proton mass, and ΔMnp =

M2
n −M2

p = 0.0024 GeV2 is the difference in the squared masses of the neutron

and proton. A binding energy of B = −25 MeV which differs from the value

assumed in the NUANCE generator (34 MeV) was used at the time the cali-

bration was done, however this has a negligible effect since the smearing arising

from Fermi motion of the nucleons inside the nuclei is dominant.
1In this calibration Erec is the StancuFull E reconstructed track energy.
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In this step, also calculate the momentum transferred to the lepton in the

interaction using the quantities calculated so far, and the formula:

Q2
rec = 2 EQE

ν E
(1 − β
 cosθ
) − m2

 (A.3)

Here β
 is the lepton velocity, given by β
 = p
/E
, and p
, E
 are obtained from

the corrected muon kinetic energy of step 1.

3. Look at the profile plot of the distribution (EQE
ν −EGen

ν ) vs. Q2
rec as calculated in

the previous step. This profile can be fitted by a third degree polynomial, giving

the following relation between the generated neutrino energy and reconstructed

quantities EQE
ν and Q2:

EGen
ν = EQE

ν − [a0 + a1(Q
2) + a2(Q

2)2 + a3(Q
2)3] (A.4)

In a given Q2
rec bin, the spread of (EQE

ν −EGen
ν ) values is approximately symmet-

ric with respect to their mean. Therefore, with this Q2
rec dependent correction

the differences (EQE
ν − EGen

ν ) become more evenly distributed around zero in

all the Q2
rec bins.

4. After making the Q2
rec correction to EQE

ν , the profile plot of the distribution

(EQE
ν − EGen

ν ) vs. EGen
ν is fitted with a quadratic polynomial in the interval

from 0.2 to 2.0 GeV:

(EQE
ν − EGen

ν ) = b0 + b1(E
Gen
ν ) + b2(E

Gen
ν )2 (A.5)

giving the following correction equation:

EGen
ν =

√
(1 + b1)2 + 4b2(E

QE
ν − b0) − (1 + b1)

2b2

(A.6)
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To avoid negative values in the square root, the last correction is not applied

for events with EQE
ν < b0. This is a small effect, since almost all events passing

the CCQE cuts result on neutrino energies grater than 200 MeV.
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(a) νe CCQE events.
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(b) νμ CCQE events.

Figure A.1: Reconstructed vs. true kinetic energy of electrons (a), and muons (b) produced

in CCQE interactions, after the corrections of step 1 of the calibration procedure. The

calibration procedure aims to correct the neutrino energy and does not focus on the estimate

of the lepton kinetic energy.

Neutrino Energy Resolution

The energy resolution is estimated by plotting the distribution of EQE
ν − Etrue

ν vs.

Etrue
ν in 100 MeV slices of true Etrue

ν , shown in Figure A.4(a) for νμ interactions and

Figure A.4(b) for νe interactions. Each resulting distribution is fit to Gaussian and

the fitted widths are plotted as a function of the center of the Etrue
ν interval for each

slice. The Neutrino energy resolution curves so obtained are shown in Figures A.5(a)

and A.5(b).
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(a) Comparisons of reconstructed and true νμ energy after Step 2 of the calibration.
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(b) Comparisons of reconstructed and true νμ energy after Step 3 of the calibration.
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(c) Comparisons of reconstructed and true νμ energy after all corrections are applied

Figure A.2: Reconstruction of νμ CCQE kinematics after the second (a), third (b), and

final (c) calibration steps. From left to right: Comparison of true and reconstructed νμ

energy spectra; Scatter plot and profile of reconstructed vs. true νμ energy EQE
ν vs. Etrue

ν

; Scatter plot and profile of residuals vs. reconstructed Q2; Scatter plot and profile of

residuals vs. true νμ energy EQE
ν − Etrue

ν vs. Etrue
ν .
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(a) Comparisons of reconstructed and true νe energy after Step 2 of the calibration.
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(b) Comparisons of reconstructed and true νe energy after Step 3 of the calibration.
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(c) Comparisons of reconstructed and true νe energy after all corrections are applied

Figure A.3: Reconstruction of νe CCQE kinematics after the second (a), third (b), and final

(c) calibration steps. From left to right: Comparison of true and reconstructed νe energy

spectra; Scatter plot and profile of reconstructed vs. true νe energy EQE
ν vs. Etrue

ν ; Scatter

plot and profile of residuals vs. reconstructed Q2; Scatter plot and profile of residuals vs.

true νe energy EQE
ν − Etrue

ν vs. Etrue
ν .
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(b) νe CCQE events.

Figure A.4: Distribution of ΔEν reconstructed EQE
ν −generated Etrue

ν in 100 MeV slices of

.Etrue
ν .The curve is a Gaussian fit to each distribution. The true energy interval is indicated

at the top-right corner of each plot in GeV.
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Figure A.5: Neutrino energy resolution for CCQE events as a function of generated Etrue
ν

in 100 MeV bins.



Appendix B

Understanding the νμ constraint

B.1 Example: 1-νe bin + 1-νμ bin

In order too see how the νμ events constraint the νe events we look at the simplest

possible case of a single νe bin and a single νμ bin.

Setting up the problem

We start by defining an error matrix. If

σe, σμ

are the statistical uncertainties on the numbers of events in

the νe and νμ samples respectively.

δe, δμ

are systematic uncertainties on the numbers of events in the

νe and νμ samples respectively.

ρ
is the correlation between the νe systematic and the νμ sys-

tematic uncertainty.
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then the error matrix for the system can be written as

E2×2 =

⎛
⎜⎝ σ2

e + δ2
e ρ δe δμ

ρ δe δμ σ2
μ + δ2

μ

⎞
⎟⎠ (B.1)

If we define αe = σe/δe, and αμ = σμ/δμ then the inverse error matrix is

E−1
2×2 =

1

(α2
e + 1)(α2

μ + 1) − ρ2

⎛
⎜⎝

α2
μ+1

δ2
e

−ρ
δeδμ

−ρ
δeδμ

α2
e+1
δ2
μ

⎞
⎟⎠ (B.2)

Now turn to the χ2. If

s is the number of oscillation events in the νe sample,

Δe

is the difference between the number of events in the νe sample

and the number of predicted νe background events.

Δμ

is the difference between the number of events in the νμ sample

and the number of predicted νμ events.

then the χ2 for the combined νe and νμ counting experiment can be written in vector

form as

χ2 = (Δe − s Δμ) E−1
2×2

⎛
⎜⎝ Δe − s

Δμ

⎞
⎟⎠ (B.3)

from where

χ2 =
1

(α2
e + 1)(α2

μ + 1) − ρ2
×[

(α2
μ + 1)

(Δe − s)2

δ2
e

− 2ρ
Δμ(Δe − s)

δeδμ
+ (α2

e + 1)
Δ2

μ

δ2
μ

]
(B.4)



201

Differentiating this last expression with respect to s and equating to zero produces

the best fit signal events:

s = Δe

[
1 − ρ

α2
μ + 1

Δμ/δμ

Δe/δe

]
(B.5)

and taking twice the inverse of the second derivative yields the uncertainty on

the number of signal events

δ2
s = σ2

e +

[
1 − ρ2

α2
μ + 1

]
δ2
e (B.6)

1. If there is no correlation between the νe and νμ bins (ρ = 0), or if the νμ

sample has large stat. uncertainty (αμ −→ ∞) then the extracted signal and

its uncertainty are Δe ±
√

(σ2
e + δ2

e).

2. If the νe’s and νμ’s are fully correlated (ρ = 1) and the νμ sample has negligible

statistical uncertainty (αμ = 0), the extracted signal and its uncertainty are

Δe(1 − Δμ/δμ

Δe/δe
) ± σe

Note that if we substitute s = PNpred
μ , where P is an oscillation probability

and Npred
fullosc is the predicted number of fullosc events, then the extracted

oscillation probability has no tie to the observed νμ data, and would be wrong.

This is addressed in the following section.

IMPORTANT NOTE:

The previous derivation the elements of the error matrix E2×2 are assumed

independent of s
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Introducing the signal component error

Start from the 3 × 3 matrix:

E3×3 =

⎛
⎜⎜⎜⎜⎜⎝

σ2
s + δ2

s ρsb δs δb ρsμ δs δμ

ρsb δs δb σ2
b + δ2

b ρbμ δb δμ

ρsμ δs δμ ρbμ δb δμ σ2
μ + δ2

μ

⎞
⎟⎟⎟⎟⎟⎠ ; x =

⎛
⎜⎜⎜⎝

s

b

μ

⎞
⎟⎟⎟⎠ (B.7)

where we introduce analogous quantities to those defined earlier:

σs is the statistical uncertainty on the number of signal events s

δs is the systematic uncertainty on the number of signal events s

δb

is the systematic uncertainty on the number of νe background

events b.

ρsb, ρsμ

are the correlations between the systematic uncertainties of

the signal and νe background events, and between the signal

and νμ events. respectively.

ρsb

is the correlation between the systematic uncertainties of the

νe and νμ events.

Error matrix propagation

Propagation of this covariance (E3×3 = cov(xl, xm)) matrix through the linear

transformation f(x) whose Jacobian matrix is show below:

f(x) =

⎛
⎜⎜⎜⎝

s + b

μ

0

⎞
⎟⎟⎟⎠ , J =

⎛
⎜⎜⎜⎝

1 1 0

0 0 1

0 0 0

⎞
⎟⎟⎟⎠ (B.8)
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will be accomplished by:

cov(f i, f j) =

Dim(x)∑
l,m

(
∂f i

∂xl

)(
∂f j

∂xm

)
cov(xl, xm) (B.9)

Or simply:

E′
3×3 = J ×E3×3 ×J T (B.10)

The 2 × 2 matrix defined by the non-zero elements of E′
3×3 is our covariance

matrix in e and μ bins that includes the correlations between s and b:

E2×2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ2
s + δ2

s ρsb δs δb

+

ρsb δs δb σ2
s + δ2

s

ρsμ δs δμ

+

ρbμ δb δμ

ρsμ δs δμ + ρbμ δb δμ σ2
μ + δ2

μ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

; x =

⎛
⎜⎝ s + b

μ

⎞
⎟⎠ (B.11)

Making the following definitions:

σ2
e = σ2

s + σ2
b

δ2
e = δ2

s + δ2
b + 2 ρsb δs δb

ρ = (ρsμ δs + ρbμ δb)/δe (B.12)

we write the matrix E2×2 in the notation of the first section:

E2×2 =

⎛
⎜⎝ σ2

e + δ2
e ρ δe δμ

ρ δe δμ σ2
μ + δ2

μ

⎞
⎟⎠ (B.13)

Solving first the problem where there is no signal contribution to the error matrix

E2×2 arriving at expressions (B.1), and (B.1) reproduced here:

s = Δe

[
1 − ρ

α2
μ + 1

Δμ/δμ

Δe/δe

]

δ2
s = σ2

e +

[
1 − ρ2

α2
μ + 1

]
δ2
e
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Iterative approach

We now allow the following quantities to be functions of s:

σe = σe(s)

δe = δe(s)

ρ = ρ(s) (B.14)

but neglect the dependence of the covariance matrix on s to minimize the χ2 at each

step. We then recalculate the matrix using the previously obtained best value of s,

and minimize again to find the next iteration of s.

In this scheme, the value of s that minimizes χ2 at iteration n + 1 is given in

terms of the matrix evaluated at iteration n by:

s(n+1) = Δe

[
1 − ρ(n)

α2
μ + 1

Δμ/δμ

Δe/δ
(n)
e

]
(B.15)

and the error on the signal is:

(δ(n+1)
s )2 = (σ(n)

e )2 +

[
1 − (ρ(n))2

α2
μ + 1

]
(δ(n)

e )2 (B.16)

Iterative solution for the signal:

We first rewrite s(n+1) as follows:

s(n+1) = Δe − Δμ

δμ (α2
μ + 1)

ρ(n)δ(n)
e . (B.17)

Using the definition in Eq.(B.12), the combination ρ(n)δ
(n)
e is:

ρ(n)δ(n)
e = ρ(n)

sμ δ(n)
s + ρbμ δb , (B.18)

We now write δ
(n)
s = δfrac

s × s, where δfrac
s is the fractional systematic error on s,

which is the same in all iterations. Note that also the correlation ρ
(n)
sμ between s and
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μ is the same in all iterations, so we will drop the iteration index from it, and write:

s(n+1) = Δe − Δμ

δμ (α2
μ + 1)

[
ρsμ δfrac

s × s(n) + ρbμ δb

]
(B.19)

Defining the following constants:

A = − Δμ

δμ (α2
μ + 1)

ρsμ δfrac
s (B.20)

B = Δe − Δμ

δμ (α2
μ + 1)

ρbμ δb , (B.21)

we see that the recursion relation is simply expressed as:

s(n+1) = A s(n) + B (B.22)

If we use the index n = 0 to denote the starting values (for example s(0) = 0), we find

that the recursion relation implies:

s(n) = (A)n s(0) + B
n∑

l=1

(A)l . (B.23)

If |A| < 1 the sequence will converge when n → ∞ by the vanishing of the first term

and the convergence of the geometric series in the second term:

s(∞) =
B

1 − A
(B.24)

or

s =
1(

1 + Δμ

δμ (α2
μ+1)

ρsμ δfrac
s

) [Δe − Δμ

δμ (α2
μ + 1)

ρbμ δb

]
(B.25)

Convergence of the iterative approach

|A| > 1 would require that the difference between the observed an predicted νμ’s

be larger than the number of predicted events. Such a fluctuation should be very

rare.
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Extracting an oscillation probability

Rearranging the terms we write:

s =
1(

1 + Δμ

δμ (α2
μ+1)

ρsμ δfrac
s

)Δe

[
1 − ρbμ

α2
μ + 1

Δμ/δμ

Δe/δb

]
(B.26)

If the signal s is due to an oscillation, we can extract the oscillation probability

by writing:

s = P Nfullosc
μ P = P (sin22θ, Δm2) (B.27)

The quantity P is the energy-averaged oscillation probability, and Nfullosc
μ is the

predicted number of fully oscillated νμ events that interacted as νe’s in the detector.

The extracted value of this oscillation probability is given by:

P =
1

Nfullosc
μ

(
1 + Δμ

δμ (α2
μ+1)

ρsμ δfrac
s

)Δe

[
1 − ρbμ

α2
μ + 1

Δμ/δμ

Δe/δb

]
(B.28)

Here we note that the factor in the denominator, which we will denote fsμ:

fsμ = Nfullosc
μ

(
1 +

Δμ

δμ (α2
μ + 1)

ρsμ δfrac
s

)
(B.29)

represents a corrected number of fully oscillated νμ’s interacting as νe’s.

It is easy to see that in the case when s and μ are 100% correlated and the

statistical error in μ is negligible (i.e. αμ ≈ 0), the correction factor is simply:

fsμ ≈ Nfullosc
μ × Nobs

μ

NPred
μ

(B.30)
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where we have taken Δμ = Nobs
μ − Npred

μ , δμ = δfrac
μ NPred

μ , and have assumed that

the fractional systematic errors satisfy δfrac
μ ≈ δfrac

s .

Therefore, the extraction of an oscillation probability with the combined sample

has made use of the observed νμ spectrum to correct the predicted number of fullosc

events.

Conclusion

• The constraint from the νμ’s on the systematic errors in the νe’s is clearly

identified with the presence of correlations between the νμ and νe uncertainties.

• When the signal component of the error matrix is introduced along with the

correlations that it has with the νμ sample, an automatic normalization cor-

rection is applied to the predicted fullosc events which we use to extract an

oscillation probability from an excess of events.

• This simple calculation gives important insight into the behavior of the Com-

bined oscillations fit.



Appendix C

A frequentist study with the BDT

analysis.

C.1 Introduction

The CombinedFit1 package produces as part of its output a plot of the confidence

level intervals in the space of oscillation parameters Δm2 and sin22θ. In the past these

contours have been calculated as constant level slices of the χ2 surface obtained by

comparing the predicted distributions for different points of the oscillations parameter

space with the distribution for a given data set, using the error matrix with signal

component equal to the best fit value to the data. The levels of the slices have been

taken to be the textbook values for a two degree of freedom (d.o.f.) fit.

Here we describe the method to obtain such regions based in a modification of the

frequentist approach explained in the paper of 1998 by Feldman and Cousins [169].

1 http://www-boone.fnal.gov/software and analysis/current framework/doc/index.html.

This study can also be found in Ref.[174] and its addenda.

208



209

C.2 Finding the best fit oscillation parameters

Given a data set with an observed EQE
ν distribution for νμ candidates and one for

νe candidates, we compare them with corresponding Monte Carlo distributions for

various signals across the oscillations parameter space and find the parameter set

that minimizes a χ2 statistic of the form

χ2 =
∑
i,j

[
Ndata

i − NMC
i (Δm2, sin22θ)

]
M−1

ij

[
Ndata

j − NMC
j (Δm2, sin22θ)

]
(C.1)

where the matrix Mij is the covariance matrix in bins of EQE
ν . Notice that in fact the

covariance matrix depends on the oscillations parameters (Δm2, sin22θ) and therefore

the straightforward minimization of this χ2 may yield undesired results, for it is a well

known effect in this kind of procedure that one way to obtain a very small value of

χ2 is to make the inverse matrix M−1
ij go to zero, no matter how large the difference

between the data and Monte Carlo distributions are.

In this type of situation, a better method to find the best fit oscillations parame-

ters is an iterative scheme in which the error matrix is first calculated assuming there

is no signal and is kept constant while varying the oscillations parameters in the dif-

ferences Δi(N
data
i −NMC

i ). Once the minimum has been found using the matrix with

no signal, the matrix is recalculated with the parameters found to minimize the χ2

the first time. A new minimization is then performed, again, keeping the new matrix

fixed throughout. This procedure is repeated until a desired convergence criterion is

met. Typical number of iterations range from the mode of 2 iterations, to a number

less than 6 in very extreme cases.

The result of such a procedure is a set of best fit parameters that correspond to

the minimum of the χ2 surface defined between the data and all possible predictions,

when the covariance matrix is fixed at the best fit parameters themselves.
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C.3 Ordering Principle

In order to determine confidence regions in the parameter space one can follow the

procedure depicted in Figure C.1.

Figure C.1: Region ordering principle.

We pick one point in the parameter space and generate, say, 1000 fake data sets,
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all having the same true signal corresponding to the chosen point (T in Figure C.1).

The data sets are fluctuated versions of the Monte Carlo prediction drawn from the

error matrix at point T in the parameter space.

Each of the 1000 data sets is run through the fitting code and we obtain for each

one a best fit point (labeled BFi in Figure C.1), which may in general be different

from the true signal point. At the same time we calculate for each of the data sets

the χ2 value using the matrix at the best fit point, but evaluating the Monte Carlo

predicted signal with the true parameters, and take the difference:

Δχ2
i = χ2 (MBFi

, PT ) − χ2 (MBFi
, PBFi

) , i = 1, ..., 1000 (C.2)

where PT represents that the signal distribution is calculated with the true signal

parameters, and PBFi
represents that the signal distribution is calculated with the

the best fit parameters obtained for the ith fake data set.

We now form the distribution of Δχ2
i values for the i = 1, ..., 1000 fake experi-

ments and find for this true signal point a value Δχ2
c(T ) that satisfies

Prob(Δχ2 < Δχ2
c(T )) = 0.9 , (C.3)

to find, say, the 90% C.L. region. This cut value in the distribution of Δχ2
i values tells

us that if the true parameters are given by the point PT , there is a 90% probability to

find a best fit point PBFi
for which the value Δχ2

i in Eq.(C.2) is smaller than Δχ2
c(T ).

Moreover, since the χ2 values are all calculated using the matrix at the best fit

point for each experiment, the Δχ2
i values represent likelihood ratios measuring how

likely it is that the true parameter lies a certain distance away from the best fit point

that was found.

Proceeding in this way for all the points in a grid of the parameter space we will

form a surface of Δχ2
c cut values representing the likelihood that the best fit will be

found with a certain confidence (eg. 90% ), at a given distance away from each point.
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To form the desired confidence region in the parameter space we now turn to the

actual data and find the best fit point for it, which we will call PBFD
, and calculate,

for all points P in the space the surface:

χ2(MBFD
, P ) =

∑
i,j

[
Ndata

i − NMC
i (P )

]
M−1

ij

[
Ndata

j − NMC
j (P )

]
(C.4)

where it is understood that the error matrix is calculated at the best fit point, while

the differences
[
Ndata

j − NMC
j (P )

]
vary from point to point in the space. This surface

contains the information about comparing the data distribution with all the points

of the parameter space, while assuming that the error matrix is given by the best fit

parameters.

Note that the data distribution can be thought of as just another one of the fake

experiments. However, it is the only tie to reality that the experiment will have.

Therefore, using the surface so defined seems appropriate.

We will define the acceptance region for the confidence level that gave us the cut

values Δχ2
c before, as the collection of points P on the parameter space satisfying

χ2(MBFD
, P ) − χ2(MBFD

, PBFD
) < Δχ2

c(P ) (C.5)

this is, the intersection of the surface of cut values Δχ2
c(P ) with the surface

Δχ2(MBFD
, P ) = χ2(MBFD

, P ) − χ2(MBFD
, PBFD

). (C.6)

C.4 Alternative possibilities

One may define the ordering principle in four different ways similar to Eq.(C.2):

A) Δχ2
i = χ2 (MT , PT ) − χ2 (MT , PBFi

) , i = 1, ..., 1000
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B) Δχ2
i = χ2 (MT , PT ) − χ2 (MBFi

, PBFi
) , i = 1, ..., 1000

C) Δχ2
i = χ2 (MBFi

, PT ) − χ2 (MT , PBFi
) , i = 1, ..., 1000

D) Δχ2
i = χ2 (MBFi

, PT ) − χ2 (MBFi
, PBFi

) , i = 1, ..., 1000

We recognize D) as the method we discussed earlier. What distinguishes these 4

possibilities is which matrix is being used to calculate the χ2 values at the true point

versus the best fit point.

Given our iterative minimization procedure, we immediately deem methods A)

and C) as impractical because the best fit point is not guaranteed to be a minimum

over a χ2 surface that has not been calculated using the matrix at the best fit point,

allowing for negative values of Δχ2
i .

With respect to method B), it is clear that it will give non negative values of Δχ2
i

when PT is a null signal point, for by construction of the minimization algorithm one

has that

χ2 (MBFi
, PBFi

) ≤ χ2 (Mnull, Pnull)

However, it is not guaranteed that this will be true for all points in the space.

Therefore, we must choose method D, which is guaranteed to yield a positive value

of the ordering statistic Δχ2
i by the iterative minimization method.

C.5 Example with a 6 × 6 grid

A test calculation was run defining a 6 × 6 grid in the parameter space and running

300 fake experiments for each of the 36 chosen points. Figure C.3 (Figure C.5) shows

the distribution of Δχ2
i values from which the cut Δχ2

c that defines the 90% C.L.

limit for each point in the grid is extracted. In this figure only statistical errors (all



214

errors)2 are included. The surfaces defined by these cut values are shown in the top

plot of Figure C.4 (Figure C.6). The implementation of the method to actually find

the contour by applying the criterion in Eq.(C.5) is shown in the bottom plot of

Figure C.4 (Figure C.6) for a data set with background identical to the prediction

and no signal.

It is clear that a good determination of these contours will require a larger number

of experiments than the 300 used for the purposes of this study. A much finer grid is

also desirable.

In [169] the authors report that one “... might naively expect that Δχ2
c = 4.61,

the 90% C.L. value for a χ2 distribution with two degrees of freedom...”. Their model

used statistical errors only and they found that “...it actually varies from about 2.4

to 6.6 across the sin2(2θ)−Δm2 plane. ” It is interesting to compare these numbers

with the Δχ2
c values found for each distribution in Figure C.3 which range from 3.15

to 6.45 3.

Table C.1: χ2 values that define the various central confidence intervals for different

numbers of dof [171].

Interval Prob 1 2 3 4 5 6 ← dof

1σ 0.3173 1.00 2.30 3.53 4.72 5.89 7.04

2σ 0.4550E-01 4.00 6.18 8.03 9.72 11.31 12.85

3σ 0.2700E-02 9.00 11.83 14.15 16.25 18.20 20.06

4σ 0.6300E-04 16.01 19.34 22.06 24.51 26.78 28.92

5σ 0.5700E-06 24.92 28.67 31.15 34.20 26.88 39.33

90%C.L. 0.1000 2.71 4.61 6.25 7.78 9.24 10.64

2 For this calculation the overestimated errors labeled elbg-uz-smoothed were used.
3Studies done with other selection cuts suggest that adding more statistics will take the values

near the NULL signal point closer to the 1dof value of 2.71.
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When the systematic errors are introduced, regions in which sin2(2θ) and Δm2

are strongly correlated, and therefore used to behave as having only ∼ 1 effective dof

in the statistics only case, will begin to act more as having a larger effective number

of dof . An example of this behavior can be seen in Figure C.2

(a) Statistical errors, grid point

(Δm2, sin22θ)=(0.039,0.00044)

(b) Statistical errors, grid point

(Δm2, sin22θ)=(2.855,0.00205)

(c) Stat+Systematic errors, grid point

(Δm2, sin22θ)=(0.039,0.00044)

(d) Stat+Systematic errors, grid point

(Δm2, sin22θ)=(2.855,0.00205)

Figure C.2: Δχ2
c distributions for two points in the grid.

For comparison, Table C.1 lists the values expected for central confidence intervals
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for various numbers of dof .
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Figure C.3: Statistical errors only: Δχ2 distributions for a grid of 6 × 6 points in the

oscillations parameter space.
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Figure C.5: Stat+Systematic errors: Δχ2 distributions for a grid of 6 × 6 points in the

oscillations parameter space.
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Figure C.6: Stat+Systematic errors: Surface of the Δχ2
c(90%) cut values that define the

90% C.L at each point in the parameter space. At the bottom, the intersection of the Δχ2

surface defined in Eq.(C.6) with a data set with no signal is shown yielding the 90% contour

limit.
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C.6 Generalized Frequentist Sensitivity

Schwetz [170] proposes that to obtain the sensitivity of an experiment such as Mini-

BooNE following a frequentist approach one could pose the following question:

Given a true point (sin22θ, Δm2) in the parameter space, what

is the probability that the null oscillations hypothesis results

excluded at a certain confidence level?

Following [170] we will define the generalized sensitivity of the experiment as the

set of all points (sin22θ, Δm2)true in the parameter space for which there is a 50%

probability to exclude the null hypothesis (sin22θ=0) at a given C.L.

To answer this question we first find the value Δχ2
c(null; α) at which we keep

(1− α)× 100% (α determines the C.L. we are interested on) of the fake experiments

whose true parameters are those of the null hypothesis. This value is given by the

position of the lines in the lower left plot in Figure C.3 (Figure C.5) for some typical

C.L.’s4 .

For each of the points in the grid and for each fake experiment generated at that

point, we form the statistic:

D′) Δχ2
null i = χ2 (MBFi

, Pnull) − χ2 (MBFi
, PBFi

) , i = 1, ..., 1000 (C.7)

this is, the difference in χ2 between the null hypothesis and the best fit point, using

the matrix at the best fit point in both. Notice we have labeled this scheme D′), for

it is a variation of method the D) stated earlier.

4 To a good approximation. Note that the chosen grid does not include the null hypothesis

points at sin22θ = 0, however, the smallest signal point in it is the one in the lower left corner.
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By counting the fraction of experiments in each grid point PT for which we obtain

value of Δχ2
null i larger than Δχ2

c(null; α), we calculate the probability

Prob
[
Δχ2

null i > Δχ2
c(null; α)|PT

]
(C.8)

The 2D plot of these probabilities over all points PT on the oscillations parameter

space contains all the information about how likely it is that the experiment will reject

the null hypothesis at the (1 − α) × 100% C.L.

The generalized frequentist sensitivity curve is then obtained by taking the slice

of this distribution at the value

Prob
[
Δχ2

null i > Δχ2
c(null; α)|PT

]
= 50%

Using a 6×6 grid on the parameter space we formed the distributions of Δχ2
null i

values for i = 1, . . . , 300 experiments at each point. These distributions are shown

in Figure C.7 (Figure C.9) for the case of only statistical errors (statistical plus sys-

tematic errors). In each plot, the cut in Δχ2
null c to keep 90% of the fake experiments

when they are generated with the NULL signal is indicated with a red line, and is the

same in all the plots in Figure C.7 (Figure C.9). It can be seen that when the fake

data sets are generated with larger signals, it becomes more and more probable to

exclude the NULL hypothesis at the given C.L. The probability to reject the NULL

hypothesis at the 90% C.L. with only statistical errors (statistical plus systematic

errors) is shown in Figure C.8(a) (C.10(a)) as a function of Δm2 and sin22θ.

The generalized definition of sensitivity advises us to take the slice at 50% prob-

ability and is shown in Figures C.8(b) and C.10(b).

It should be noted that the coarse grid used for this study is forcing us to make

a very crude linear interpolation between the regions below and above 50% rejection

probability. It is expected that the transition from low to high rejection probability
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will be very rapidly rising across this boundary, therefore the linear interpolation with

so few grid points will give us the poor estimates shown here.

The comparison of our implementation of the generalized sensitivity method de-

scribed in [170] with the result of the modified Feldman-Cousins technique is shown

in Figure C.11 for both, statistical errors and statistical+systematic errors. The re-

sult of slicing the Δχ2 surface for the data with a constant plane at the level of 4.61

is shown for comparison. All three methods agree reasonably well, given the poor

resolution of the grid that was used in the study.
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Figure C.7: Statistical errors: Δχ2
null distributions for a grid of 6× 6 points in the oscilla-

tions parameter space. The cut to keep 90% of the experiments when generated with the

NULL signal point is indicated by a red line at Δχ2
null = 3.15 in all the plots. As the signal

becomes large, the probability to reject the NULL hypothesis grows. In the empty plots all

the experiments have Δχ2
null values larger than the displayed range.
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Figure C.9: Stat+Systematic errors: Δχ2
null distributions for a grid of 6 × 6 points in the

oscillations parameter space. The cut to keep 90% of the experiments when generated with

the NULL signal point is indicated by a red line at Δχ2
null = 3.95 in all the plots. As the

signal becomes large, the probability to reject the NULL hypothesis grows. In the empty

plots all the experiments have Δχ2
null values larger than the displayed range.
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Appendix D

Frequentist 3σ and 5σ C.L.

contours with limited numbers of

fake experiments.

D.1 Introduction

In Appendix C we used the CombinedFit package to produce multiple fake experi-

ments with signals given by a set of selected points in the oscillation parameter space.

The outcomes of such experiments as produced by the fitter code were used to con-

struct the probability distribution of the Δχ2 statistic appropriate for each point, and

then determine the cut in this statistic that would yield proper 90% C.L. coverage.

It is clear that in order to determine higher confidence intervals the number of fake

experiments had to be much larger than those used in the study. The purpose of

this appendix is to explore a method to estimate those higher confidence intervals

based on the determination of the effective degrees of freedom for each true signal

point, which can be extracted from the 90% C.L.’s, for which a smaller number of

228
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fake experiments is needed.

We will work under the assumption that the Δχ2 distributions obtained by run-

ning the CombinedFit package can be reasonably approximated by a Gamma Distri-

bution, which can be looked at as a generalization of the familiar chisquare distribution

allowing fractional degrees of freedom.

D.2 The Gamma Distribution and the Incomplete

Gamma Function

We are interested in evaluating integrals of the Standard Gamma Distribution [172],

f(x) =
xγ−1 e−x

Γ(γ)
x > 0, γ > 0 (D.1)

where γ is the real effective number of dof divided by 2, and Γ is the (complete)

gamma function 1. The cumulative distribution function (CDF) F (x) of this pdf is

given in terms of the upper incomplete gamma function2 :

F (x) = Γx(γ)/Γ(γ) (D.2)

ROOT v4.00/08 has a built in implementation of the incomplete gamma function

[173] in the method TMath::Gamma(a,b) which, with the aid of a simple change of

variables (γ = 2a x = 2b) yields the cumulative gamma distribution in Eq. (D.2).

This was implemented as shown in Figure D.1.

Shown in Table D.1 are the values obtained with this routine for the χ2 values for

which the complementary cumulative gamma distribution 1 − F (χ2) takes the value

1 Γ(γ) =
∫∞
0

tγ−1 e−tdt
2 Γx(γ) =

∫ x

0
tγ−1 e−tdt
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Double_t CumulativeGammaDist(Double_t x, Double_t dof)

{

if ((x<0) || (dof<=0)) {

Error("CumulativeGammaDist", "illegal parameter values");

return 0;

}

Double_t temp1 = 0.5 * dof;

Double_t temp2 = 0.5 * x;

Double_t result = TMath::Gamma(temp1,temp2);

return result;

}

Figure D.1: Implementation of the change of variable to yield the CDF F (x).

of some typically used probabilities. The table shows both, integer and fractional

values for the parameter γ, which will be interpreted as the effective number of dof

divided by 2.

D.3 Finding the effective number of dof

D.3.1 Method I

For each point in a grid of the oscillation parameter space and using the procedure

outlined in Appendix C, we form the distribution of Δχ2 values that the fitter returns.
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Table D.1: χ2 values defining the various central confidence intervals for different val-

ues of γ = dof/2 calculated with the above implementation of CumulativeGammaDist

C.L. 1 − F (χ2) 0.5 1 1.5 2 2.5 3 3.5 ← dof

1σ 0.3173 0.334 1.00 1.658 2.296 2.917 3.527 4.127

2σ 4.5500E-02 2.553 4.00 5.156 6.180 7.128 8.025 8.884

3σ 2.6998E-03 7.041 9.00 10.51 11.83 13.03 14.16 15.23

4σ 6.3342E-05 13.69 16.00 17.78 19.33 20.74 22.06 23.31

5σ 5.7330E-07 22.42 25.00 27.00 28.74 30.33 31.81 33.21

90% 0.10000 1.500 2.706 3.704 4.605 5.448 6.251 7.026

We now fit to each of the distributions a function of the form 3

g(x) = p1 × 1

2
x(p2/2−1) e−x/2 (D.3)

where the fit parameter p1 takes care of the normalization and p2/2 corresponds to γ

in Eq.(D.1). Naively one would integrate the fitted function from 0 to Δχ2
c such that

the integral yields 0.9973 (3σ), or 0.99999943 (5σ). To avoid numerical integration

problems one instead resorts to the equivalent method of using the cumulative gamma

distribution as described in Section D.2, with dof = p2.

The 3σ and 5σ contours will be determined by finding the appropriate cut values

Δχ2
c(α), for (1−α)×100% C.L., such that the cumulative gamma distribution satisfies:

F (Δχ2
c(1.0000E − 01)) = 0.9 90% C.L.

F (Δχ2
c(2.6998E − 03)) = 0.9973 3σ C.L.

F (Δχ2
c(5.7330E − 07)) = 0.99999943 5σ C.L. (D.4)

3Note that the factor of 1/2 in the exponential is what introduced the need for the change of

variable x −→ 0.5x in the implementation of CumulativeGammaDist of Figure D.1
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at each point in the grid.

D.3.2 Method II

One can also obtain the effective number of dof without performing a fit to a gamma

distribution pdf at each grid point. Instead, we just find the cut for the 90% C.L.

directly from the Δχ2 distributions and ask the question

Given Δχ2
c such that 90% of the experiments in a particular

grid point have Δχ2 < Δχ2
c , what is the value of γ = dof/2 for

which F (Δχ2
c) = 0.9?

This will also make the assumption that the distributions of Δχ2 values are

gamma distributions, but without the need of performing a fit.

Suppose that we only had of order ∼ 103 experiments for each point at our

disposal over a 20 × 20 grid4. Then one can obtain the 90% C.L. cut in the Δχ2

statistic with an accuracy of ∼ 10%. This would be the level of precission with which

our effective number of dof would be determined.

Once the effective number of dof is determined we proceed to find the Δχ2
c values

for the 3σ and 5σ as done in Method I.

D.3.3 Comparison of Methods I and II

Table D.2 shows the comparison of the effective number of dof found using methods

I and II for the set of points defined by the 6×6 grid used in Appendix C. There were

400 experiments at each point, therefore the numbers for Method II are estimated to

have an uncertainty in the number of dof of ∼ 15%.

4 This corresponds to a total of 500× 20 × 20 = 200, 000 fits.
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Table D.2: Comparison of dofeff obtained with Methods I and II. See Appendix C for

the location of the points. Numbers from Method II have an uncertainty of ∼ 15%

Point I II Point I II Point I II

(1 1) 1.81 1.85 (3 1) 2.51 1.85 (5 1) 2.59 2.00

(1 2) 1.78 1.85 (3 2) 2.85 2.45 (5 2) 2.99 2.60

(1 3) 1.81 1.85 (3 3) 2.00 3.40 (5 3) 2.39 6.30

(1 4) 2.07 1.85 (3 4) 1.78 3.40 (5 4) 0.59 13.60

(1 5) 2.56 2.15 (3 5) 1.46 3.55 (5 5) 0.36 2.60

(1 6) 1.56 2.90 (3 6) 0.86 2.30 (5 6) 1.00 0.95

(2 1) 1.78 1.70 (4 1) 2.20 2.00 (6 1) 2.88 2.00

(2 2) 2.00 1.85 (4 2) 2.44 2.60 (6 2) 3.45 2.60

(2 3) 2.42 2.15 (4 3) 1.27 5.40 (6 3) 3.43 6.85

(2 4) 2.02 2.75 (4 4) 0.56 4.40 (6 4) 2.41 15.45

(2 5) 1.38 2.30 (4 5) 0.58 1.55 (6 5) 1.87 8.00

(2 6) 1.23 2.90 (4 6) 1.00 1.05 (6 6) 1.00 6.15
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It should be noted that points (4,6) and (6,6) in the table (at sin22θ=1.0) were

assigned dof = 1.00 by Method I solely because the fit to a gamma distribution

failed. In most of the cases the effective number of dof is reasonably close. Examples

of some fits are shown in Figure D.2.

The comparison of the numbers in Table D.2 is better appreciated in Figure D.3.

Notice that in the regions where the sensitivity of the experiment is expected the two

methods have very similar values of the effective number of dof . Only in the case

of a strong signal with Δm2 ∼ 1eV2 or larger the contours obtained with the two

methods are expected to disagree.

It is interesting to note that the region of large disagreement between the two

methods is where strong non-linearities are expected in the oscillation parameter

space due to the periodic nature of the oscillation probability that is more apparent

at high values of Δm2. These are regions where the Δχ2 distributions are not well

described by the gamma distribution and have long tails, giving small dof values

from the fits in Method I and large values from the counting of experiments in the

tails of the distributions in Method II.

The Feldman-Cousins contours obtained with the two methods when applied to

the final MiniBooNE data sample5 are shown in Figure D.4. Also shown are the

contours obtained using the global scan (constant slice) method. A it is here, it is

usually the case that higher confidence intervals are in better agreement between the

global scan and Feldman-Cousins methods.

5 In this appendix we used the BDT algorithm of Section 3.5.2 that was used for the first

MiniBooNE result in Ref.[190], and all the corresponding systematic uncertainties.
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(a) Stat+Systematic,point

(Δm2, sin22θ)=(0.039,0.00044)

(b) Stat+Systematic,point

(Δm2, sin22θ)=(2.855,0.04523)

(c) Stat+Systematic,point

(Δm2, sin22θ)=(0.163,0.00962)

(d) Stat+Systematic,point

(Δm2, sin22θ)=(0.682,0.00962)

(e) Stat+Systematic,point

(Δm2, sin22θ)=(11.948,0.04523)

(f) Stat+Systematic,point

(Δm2, sin22θ)=(50.0,0.04523)

Figure D.2: Δχ2 distributions for six points in the grid used in Appendix C. The solid

green line is the fit used in Method I. The quoted values of Δχ2
c are for the 90% C.L. that

is used in Method II.
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D.4 Conclusions

An approximate method to calculate 3σ and 5σ contours with low numbers of fake

experiments using the unified approach of Feldman and Cousins based on a calculation

of the effective number of dof has been implemented. Two alternative methods to

calculate the effective number of dof have been used and shown to yield similar results

in the region where the sensitivity of the experiment lies.



Appendix E

Frequentist contours for the

MiniBooNE BDT analysis.

E.1 Introduction

In this Appendix we show the results of the methods described in Appendix D to the

BDT oscillation analysis.

A total of 1011 fake experiments were run for each of 400 points in a 20×20 grid

in the oscillation parameter space1 . The grid points are chosen to be equally spaced

in logarithmic scale, and correspond to a subset of the 120 × 120 grid that was used

to perform each fit using the CombinedFit package.

The curves for the Feldman-Cousins method shown here correspond to those

obtained with Method I in Appendix D. The small differences with the result obtained

with Method II in the region of interest are considered not to be a concern.

1 The 404,400 fits were run over a period of ∼9 days in the MiniBooNE Condor cluster, submitting

groups of 400 fits in individual jobs (1011 Condor jobs). Each job took an average time of ∼ 4.5

hrs. to complete and ran typically ∼20 simultaneous jobs.
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The results presented here can be directly compared to those presented in Section

4.3 for the BDT analysis.

E.2 Results

Figure E.1 Shows the comparison of the contours obtained with the global scan method

(constant slice), the unified approach of Feldman-Cousins, and the generalized fre-

quentist sensitivity of T. Schwetz described in Appendices C and D. The Schwetz

method gives a significantly different result for the 3σ and 5σ contours when com-

pared to the other two. At this point this difference is not understood, but it is likely

to improve with a more refined grid.

The effect of the size of the grid that is used to determine the surface of Δχ2
c

cut values in the Feldman-Cousins method is small because the gradients over this

surface are not large in the regions of interest. It should be noted that it also uses

the more refined information in the χ2 surface from the fit to the data (a 120 × 120

grid). Even with a much smaller grid as the 6 × 6 used in Appendix D reasonable

results are obtained.

Figure E.2 shows the comparison of the Feldman-Cousins and global scan methods

with the raster scan technique implemented in CombinedFit to make a 1-dimensional

fit of sin22θ for each Δm2 value. The 90% C.L. curve for this technique used a

Δχ2 = 1.64 that corresponds to a 1-sided Gaussian distribution (sin22θ cannot be

negative). The 3σ and 5σ contours used the corresponding values for a 2-sided Gaus-

sian distribution (Δχ2 = 9, and Δχ2 = 25 respectively). We also chose to show the

90% C.L. region from the joint KARMEN-LSND analysis [101] here.

The 3σ and 5σ contours from the global scan (inherently 2-dimensional because

it used Δχ2 = 11.83, and 28.67 respectively) are consistent with those from the
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raster scan (inherently 1-dimensional, Δχ2 = 9, 25 respectively) because the right

Δχ2 value is chosen in each case. It can be inferred from the 90% C.L. curves that a

Δχ2 = 2.71 (1-sided, 1 − dof for 90%C.L.) will be close to the global scan result as

well.

E.3 Effective number of dof

Figure E.3 shows the effective number of dof calculated using the two methods de-

scribed in Appendix D. These surfaces are relevant to the discussion of how to

approximate the 3σ and 5σ contours with a limited number of fake experiments,

since the 90% C.L. can be safely estimated with ∼ O(1000) experiments using the

distributions of Δχ2 themselves. It can be seen that in the region where the Mini-

BooNE limits lie the two methods give similar effective numbers of dof (∼ 2). This

is supported by the fact that the extracted contours agree well with the results from

the global scan.
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Figure E.3: Effective number of degrees of freedom calculated using Methods I (top) and

II (bottom ) described in Appendix D with the 20×20 grid. The Feldman-Cousins contours

in this note were calculated using Method I. Method II yields very similar results by virtue

of the specific location of the MiniBooNE limits in this space.



Appendix F

Miscellaneous tests of the fits

F.1 Tests of statistical correlations with system-

atic errors

Here we show a collection of fits to a fake input signal used to test the handling

of statistical correlations in the fitting code when all systematic uncertainties are

included.

These tests consist of three steps:

I: Perform a νe/νμ combined fit.

II: Perform a νe/νe/νμ combined fit in which the two electron samples are the same

sample ignoring statistical correlations. II: Perform a νe/νe/νμ combined fit in which

the two electron samples are the same sample. Including the statistical correlations

The test is passed successfully if the results of I and III are the same.

We first consider the systematic uncertainties that include the smoothed O.M.

245
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errors and later the unsmoothed O.M. errors, both of which are described in described

in 4.4.1.

The cautious reader will have realized that in these tests the total error matrix

is a perfectly singular matrix, (the top half of the matrix is identical to its lower

half). These tests, including the tests using only statistical errors in Section 4.5, were

performed by forcing the total error matrices to be non-singular by adding a small1

number ε to the lower diagonal. It was observed that the agreement of steps I and

III in the tests increased as ε became smaller.

The results are arranged as follows:

• Smoothed O.M. BDT-BDT test: Figure F.1

TBL-TBL test: Figure F.2

• Unsmoothed O.M. BDT-BDT test: Figure F.3

TBL-TBL test: Figure F.4

Note that in the case of unsmoothed O.M. errors it is not possible to ignore the

statistical correlations, since they are expected to be contained in the O.M. error

component. The tests in Figure F.3 and Figure F.4 indicate that the statistical

correlations between the various bins in the unsmoothed O.M. matrix are not bad

approximations for the TBL case, while they are not so good for the BDT case.

1 Compared to the eigenvalues of the matrix.



247

)θ
(2

2
si

n
-3

10
-2

10
-1

10
1

)  
2

 (eV
2

 mΔ

-2
10

-1
10

110

2
10

)θ
(2

2
si

n
-3

10
-2

10
-1

10
1

)  
2

 (eV
2

 mΔ

-2
10

-1
10

110

2
10

90
%

 C
.L

.

 C
.L

.
σ3

 C
.L

.
σ5

in
p

u
t 

si
g

 :
 (

0.
00

39
9,

 1
.0

38
6)

b
es

t 
fi

t 
   

: 
(0

.0
04

11
, 1

.0
24

7)
 :

 0
.0

05
14

m
in

2 χ

 :
 1

0.
82

56
7

n
u

ll
2 χ

(a
)

B
D

T
on

ly
)θ

(2
2

si
n

-3
10

-2
10

-1
10

1

)  
2

 (eV
2

 mΔ

-2
10

-1
10

110

2
10

)θ
(2

2
si

n
-3

10
-2

10
-1

10
1

)  
2

 (eV
2

 mΔ

-2
10

-1
10

110

2
10

90
%

 C
.L

.

 C
.L

.
σ3

 C
.L

.
σ5

in
p

u
t 

si
g

 :
 (

0.
00

39
9,

 1
.0

38
6)

b
es

t 
fi

t 
   

: 
(0

.0
04

11
, 1

.0
24

7)
 :

 0
.0

06
96

m
in

2 χ

 :
 1

4.
23

61
2

n
u

ll
2 χ

(b
)

B
D

T
tw

ic
e,

no
st

at
.

co
rr

el
at

io
ns

)θ
(2

2
si

n
-3

10
-2

10
-1

10
1

)  
2

 (eV
2

 mΔ

-2
10

-1
10

110

2
10

)θ
(2

2
si

n
-3

10
-2

10
-1

10
1

)  
2

 (eV
2

 mΔ

-2
10

-1
10

110

2
10

90
%

 C
.L

.

 C
.L

.
σ3

 C
.L

.
σ5

in
p

u
t 

si
g

 :
 (

0.
00

39
9,

 1
.0

38
6)

b
es

t 
fi

t 
   

: 
(0

.0
04

11
, 1

.0
24

7)
 :

 0
.0

04
37

m
in

2 χ

 :
 1

0.
11

85
7

n
u

ll
2 χ

(c
)

B
D

T
tw

ic
e,

w
it

h
st

at
.

co
rr

el
at

io
ns

F
ig

u
re

F
.1

:
T
es

t
of

th
e

ha
nd

lin
g

of
st

at
is

ti
ca

l
co

rr
el

at
io

ns
us

in
g

a
fit

to
a

fa
ke

si
gn

al
w

it
h

th
e

B
D

T
sa

m
pl

e.
In

(a
)

th
e

B
D

T
ν e

ca
nd

id
at

e
sa

m
pl

e
w

as
co

m
bi

ne
d

w
it
h

th
e

ν μ
C

C
Q

E
sa

m
pl

e
as

in
Se

ct
io

n
4.

3.
In

(b
)

w
e

in
pu

t
th

e
sa

m
e

ν e
sa

m
pl

e
tw

ic
e

in
to

th
e

m
ac

hi
ne

ry
se

tt
in

g
th

e
st

at
is

ti
ca

l
co

rr
el

at
io

ns
to

ze
ro

.
In

(c
)

th
e

eff
ec

t
of

st
at

is
ti
ca

l
co

rr
el

at
io

ns
(1

00
%

fo
r

th
is

ex
am

pl
e)

is
tu

rn
ed

on
,a

nd
th

e
re

su
lt

is
id

en
ti
ca

l
to

th
at

in
(a

).
T

he
fit

s
us

ed
al

l
sy

st
em

at
ic

er
ro

rs
w

it
h

th
e

sm
oo

th
ed

ve
rs

io
n

of
th

e
O

M
er

ro
rs

.



248

)θ
(2

2
si

n
-3

10
-2

10
-1

10
1

)  
2

 (eV
2

 mΔ

-2
10

-1
10

110

2
10

)θ
(2

2
si

n
-3

10
-2

10
-1

10
1

)  
2

 (eV
2

 mΔ

-2
10

-1
10

110

2
10

90
%

 C
.L

.

 C
.L

.
σ3

 C
.L

.
σ5

in
p

u
t 

si
g

 :
 (

0.
00

39
9,

 1
.0

38
6)

b
es

t 
fi

t 
   

: 
(0

.0
04

11
, 1

.0
24

7)
 :

 0
.0

02
24

m
in

2 χ

 :
 9

.2
11

94
n

u
ll

2 χ

(a
)

T
B

L
on

ly
)θ

(2
2

si
n

-3
10

-2
10

-1
10

1

)  
2

 (eV
2

 mΔ

-2
10

-1
10

110

2
10

)θ
(2

2
si

n
-3

10
-2

10
-1

10
1

)  
2

 (eV
2

 mΔ

-2
10

-1
10

110

2
10

90
%

 C
.L

.

 C
.L

.
σ3

 C
.L

.
σ5

in
p

u
t 

si
g

 :
 (

0.
00

39
9,

 1
.0

38
6)

b
es

t 
fi

t 
   

: 
(0

.0
04

11
, 1

.0
24

7)
 :

 0
.0

02
73

m
in

2 χ

 :
 1

1.
34

30
2

n
u

ll
2 χ

(b
)

T
B

L
tw

ic
e,

no
st

at
.

co
rr

el
at

io
ns

)θ
(2

2
si

n
-3

10
-2

10
-1

10
1

)  
2

 (eV
2

 mΔ

-2
10

-1
10

110

2
10

)θ
(2

2
si

n
-3

10
-2

10
-1

10
1

)  
2

 (eV
2

 mΔ

-2
10

-1
10

110

2
10

90
%

 C
.L

.

 C
.L

.
σ3

 C
.L

.
σ5

in
p

u
t 

si
g

 :
 (

0.
00

39
9,

 1
.0

38
6)

b
es

t 
fi

t 
   

: 
(0

.0
04

11
, 1

.0
24

7)
 :

 0
.0

02
18

m
in

2 χ

 :
 8

.9
97

02
n

u
ll

2 χ

(c
)

T
B

L
tw

ic
e,

w
it

h
st

at
.

co
rr

el
at

io
ns

F
ig

u
re

F
.2

:
T
es

t
of

th
e

ha
nd

lin
g

of
st

at
is

ti
ca

l
co

rr
el

at
io

ns
us

in
g

a
fit

to
a

fa
ke

si
gn

al
w

it
h

th
e

T
B

L
sa

m
pl

e.
In

(a
)

th
e

T
B

L
ν e

ca
nd

id
at

e
sa

m
pl

e
w

as
co

m
bi

ne
d

w
it
h

th
e

ν μ
C

C
Q

E
sa

m
pl

e
as

in
Se

ct
io

n
4.

4.
2.

In
(b

)
w

e
in

pu
t

th
e

sa
m

e
ν e

sa
m

pl
e

tw
ic

e
in

to
th

e

m
ac

hi
ne

ry
se

tt
in

g
th

e
st

at
is

ti
ca

l
co

rr
el

at
io

ns
to

ze
ro

.
In

(c
)

th
e

eff
ec

t
of

st
at

is
ti
ca

l
co

rr
el

at
io

ns
(1

00
%

fo
r

th
is

ex
am

pl
e)

is
tu

rn
ed

on
,a

nd
th

e
re

su
lt

is
id

en
ti
ca

l
to

th
at

in
(a

).
T

he
fit

s
us

ed
al

l
sy

st
em

at
ic

er
ro

rs
w

it
h

th
e

sm
oo

th
ed

ve
rs

io
n

of
th

e
O

M
er

ro
rs

.



249

)θ
(2

2
si

n
-3

10
-2

10
-1

10
1

)  
2

 (eV
2

 mΔ

-2
10

-1
10

110

2
10

)θ
(2

2
si

n
-3

10
-2

10
-1

10
1

)  
2

 (eV
2

 mΔ

-2
10

-1
10

110

2
10

90
%

 C
.L

.

 C
.L

.
σ3

 C
.L

.
σ5

in
p

u
t 

si
g

 :
 (

0.
00

39
9,

 1
.0

38
6)

b
es

t 
fi

t 
   

: 
(0

.0
04

11
, 1

.0
24

7)
 :

 0
.0

02
55

m
in

2 χ

 :
 9

.8
57

82
n

u
ll

2 χ

(a
)

B
D

T
on

ly
)θ

(2
2

si
n

-3
10

-2
10

-1
10

1

)  
2

 (eV
2

 mΔ

-2
10

-1
10

110

2
10

)θ
(2

2
si

n
-3

10
-2

10
-1

10
1

)  
2

 (eV
2

 mΔ

-2
10

-1
10

110

2
10

90
%

 C
.L

.

 C
.L

.
σ3

 C
.L

.
σ5

in
p

u
t 

si
g

 :
 (

0.
00

39
9,

 1
.0

38
6)

b
es

t 
fi

t 
   

: 
(0

.0
04

11
, 1

.0
24

7)
 :

 0
.0

02
37

m
in

2 χ

 :
 9

.3
15

19
n

u
ll

2 χ

(b
)

B
D

T
tw

ic
e,

w
it

h
st

at
.

co
rr

el
at

io
ns

F
ig

u
re

F
.3

:
T
es

t
of

th
e

ha
nd

lin
g

of
st

at
is

ti
ca

l
co

rr
el

at
io

ns
us

in
g

a
fit

to
a

fa
ke

si
gn

al
w

it
h

th
e

B
D

T
sa

m
pl

e
an

d
th

e
un

sm
oo

th
ed

O
M

er
ro

r
m

at
ri

x.
In

(a
)

th
e

B
D

T
ν e

ca
nd

id
at

e
sa

m
pl

e
w

as
co

m
bi

ne
d

w
it
h

th
e

ν μ
C

C
Q

E
sa

m
pl

e
as

in
Se

ct
io

n
4.

3.
In

(b
)

w
e

in
pu

t
th

e
sa

m
e

ν e
sa

m
pl

e
tw

ic
e

in
to

th
e

m
ac

hi
ne

ry
us

in
g

th
e

st
at

is
ti
ca

l
co

rr
el

at
io

ns
th

at
ar

e
bu

ilt
in

th
e

un
sm

oo
th

ed
O

M
er

ro
r

m
at

ri
x,

ge
tt

in
g

a
re

su
lt

cl
os

e
to

th
at

in
(a

).
T

he
fit

s
us

ed
al

l
sy

st
em

at
ic

er
ro

rs
w

it
h

th
e

un
sm

oo
th

ed
ve

rs
io

n
of

th
e

O
M

er
ro

rs
.



250

)θ
(2

2
si

n
-3

10
-2

10
-1

10
1

)  
2

 (eV
2

 mΔ

-2
10

-1
10

110

2
10

)θ
(2

2
si

n
-3

10
-2

10
-1

10
1

)  
2

 (eV
2

 mΔ

-2
10

-1
10

110

2
10

90
%

 C
.L

.

 C
.L

.
σ3

 C
.L

.
σ5

in
p

u
t 

si
g

 :
 (

0.
00

39
9,

 1
.0

38
6)

b
es

t 
fi

t 
   

: 
(0

.0
04

11
, 1

.0
24

7)
 :

 0
.0

02
18

m
in

2 χ

 :
 9

.6
22

20
n

u
ll

2 χ

(a
)

T
B

L
on

ly
)θ

(2
2

si
n

-3
10

-2
10

-1
10

1

)  
2

 (eV
2

 mΔ

-2
10

-1
10

110

2
10

)θ
(2

2
si

n
-3

10
-2

10
-1

10
1

)  
2

 (eV
2

 mΔ

-2
10

-1
10

110

2
10

90
%

 C
.L

.

 C
.L

.
σ3

 C
.L

.
σ5

in
p

u
t 

si
g

 :
 (

0.
00

39
9,

 1
.0

38
6)

b
es

t 
fi

t 
   

: 
(0

.0
04

11
, 1

.0
24

7)
 :

 0
.0

02
13

m
in

2 χ

 :
 9

.4
83

26
n

u
ll

2 χ

(b
)

T
B

L
tw

ic
e,

w
it

h
st

at
.

co
rr

el
at

io
ns

F
ig

u
re

F
.4

:
T
es

t
of

th
e

ha
nd

lin
g

of
st

at
is

ti
ca

l
co

rr
el

at
io

ns
us

in
g

a
fit

to
a

fa
ke

si
gn

al
w

it
h

th
e

T
B

L
sa

m
pl

e
an

d
th

e
un

sm
oo

th
ed

O
M

er
ro

r
m

at
ri

x.
In

(a
)

th
e

T
B

L
ν e

ca
nd

id
at

e
sa

m
pl

e
w

as
co

m
bi

ne
d

w
it
h

th
e

ν μ
C

C
Q

E
sa

m
pl

e
as

in
Se

ct
io

n
4.

4.
In

(b
)

w
e

in
pu

t
th

e
sa

m
e

ν e
sa

m
pl

e
tw

ic
e

in
to

th
e

m
ac

hi
ne

ry
us

in
g

th
e

st
at

is
ti
ca

l
co

rr
el

at
io

ns
th

at
ar

e
bu

ilt
in

th
e

un
sm

oo
th

ed
O

M
er

ro
r

m
at

ri
x,

ge
tt

in
g

a
re

su
lt

cl
os

e
to

th
at

in
(a

).
T

he
fit

s
us

ed
al

l
sy

st
em

at
ic

er
ro

rs
w

it
h

th
e

un
sm

oo
th

ed
ve

rs
io

n
of

th
e

O
M

er
ro

rs
.



251

F.2 Slices of the χ2 surface

Slices of the Δχ2 surface defined in Section 4.2.3 for a sensitivity calculation are

shown in Figure F.5 for various values of Δm2. The minimum sin2 2θ found for all

Δm2 values is by definition equal to zero for a sensitivity. The horizontal line at

Δχ2 = 1.64 intersects the three curves (BDT in black, TBL in red, and BDT/TBL

combined in green) at the sin2 2θ value where the 90% C.L. sensitivity curves of Figure

5.1(a) lie.

The corresponding comparison for the fits to the open data are shown in Figure

F.6. In this case the fit finds a very small signal which is consistent with zero within

the uncertainties. Again, the intercepts of the constant at Δχ2 = 1.64 with the curves

correspond to the sin2 2θ values of the 90% C.L. limits calculated in Figure 5.3(b)

In both the sensitivity and limits, the addition of the two νe candidate samples

makes the Δχ2 surface more steep as a function of sin2 2θ, which causes the C.L.

contours to become narrower around the minimum, which is always near sin2 2θ = 0.

F.3 Example fits to fake data sets

In this section we present the result of fits to fake data sets with a toy set of PID

selection cuts. Except for the results shown in Figure F.9 and Figure F.10, the studies

below do not correspond to the main results presented in this thesis and are shown

only to demonstrate the workings of the CombinedFit package machinery.

F.3.1 Constructing fake datasets

Fake datasets are used to study the fitting procedure and to determine its statistical

capabilities and shortcomings for addressing neutrino oscillations of the LSND type.
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Figure F.5: Slices of the raster-scan Δχ2 surface defined in Section 4.2.3 for the sensitivity

calculation using either one or both of the νe candidate samples combined with the νμ

sample.
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Figure F.6: Slices of the raster-scan Δχ2 surface defined in Section 4.2.3 for the fits to

the open data using either one or both of the νe candidate samples combined with the νμ

sample.
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Starting from the Monte Carlo prediction for the νμ-CCQE and νe distributions

after the selection cuts have been applied, one can generate fluctuated distributions

that are consistent with statistical and/or systematic errors.

Statistical fluctuations

If n is the number of events in a given bin of the EQE
ν distribution is, a new number

of events x is randomly thrown from the Poisson probability distribution

p(x, n) =
e−nnx

x!
, x = 0, 1, 2, . . . ,

the new bin contents x replaces the original number and the procedure is repeated for

all the bins in both the νμ-CCQE and νe distributions. The fluctuated event numbers

are all independent and the size of the fluctuation is determined by the statistical

error
√

n in the contents of each bin.

Systematic fluctuations

These are generated using the method of the lower triangular factorization of the error

matrix described in [162]. In this method, a random n-dimensional column vector Y

belonging to a population described by the multivariate Gaussian distribution with

n × n covariance matrix M and mean 〈Y〉 = 0 is generated as follows:

1. Find a lower triangular matrix H such that M = H HT

2. Generate n independent random numbers X1, . . .Xn with zero

mean and unit variance

3. Return Y = HX

If N is a n-dimensional array containing the number of events in a given distribu-

tion and the matrix M (n×n) is the error matrix describing the correlations between
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the contents if the various bins of N, then one can form the fluctuated distribution

N′ as:

N′ = N + Y

The distribution described by N′ will be a fluctuation of N consistent with the co-

variance matrix M.

Example of fits to fake data with strong/null LSND-like signals

When an oscillations signal is present, signal and background νe events determine the

total contents of each bin of the νe distribution, and the sum must be used to form

a consistent statistical fluctuation. Note that statistical fluctuations of the νμ-CCQE

dataset are very small due to the large numbers of events in that sample.

The result of the fit over a fake dataset with a strong (absent) signal using the

BDT+νμ fit is shown in Figure F.7 (Figure F.8). We can compare the fake data

distributions with the original Monte Carlo prediction in the stacked plot of Figure

F.7(a) (Figure F.8(a)), which also shows the composition of the samples. The large

error bars shown are the total errors as directly extracted from the multisim procedure

described in Section 4.2.2. The second panel Figure F.7(b) (Figure F.8(b)) shows the

effect that the high statistics νμ sample has on the distributions when it is allowed

to constrain the Monte Carlo predictions. In this case the νμ-CCQE distribution

is made to be statistically identical to the fake νμ-CCQE distribution, and this re-

shaping and normalization affects the νe-CCQE distribution by means of the terms

connecting the bins of the two samples in the total error matrix. The error bars on

the νe sample have also been reduced by the νμ-CCQE constraint. The third panel

Figure F.7(c) (Figure F.8(c)) shows the fit result in terms of the event excess over

the expected backgrounds and compares it with two sample LSND solutions at low
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and high values of Δm2. In this plot the data points have total errors. Finally, the

fourth panel, Figure F.7(d) (Figure F.8(d)) shows the fit result in terms of allowed

regions in the oscillations parameter space for various levels of confidence.

It is important at this stage to notice that the result of the fit to the fake dataset

with no signal produced a best fit point that is distant from the exactly zero-signal

solution, however, the size of the total uncertainties is such that this best fit point

is consistent with it. The particular point that is chosen by the fit is in the ∼high

Δm2 region. This behavior is typical of fits to very small signals and it is due to

finding a minimum χ2 when some of the statistical fluctuations near the tail of the

data distribution can be mimicked by an oscillatory behavior typical of a large Δm2.

Given the size of the uncertainties, signals that are fit in this region of the space are

indistinguishable from zero-signal solutions.

Examples of fits to fake signals with the extended machinery used for the result

in this thesis are also shown in Figure F.9 for a strong LSND-like signal, and in Figure

F.10. The fit in Figure F.9 provides a good example of how the fit takes care of an

overall normalization fluctuation in the νμ CCQE sample and correctly finds the true

signal after this normalization has been propagated to the νe predictions through the

νμ−νe correlations in the error matrix as described in Section 4.2.4. The fit in Figure

F.9 shows a similar effect. The fitted signal in this case is indistinguishable from the

true negligible signal.
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Figure F.7: Fitting a fake data set with a strong signal. In (a) the green component is

the true oscillations signal, and the dotted curves represent the unconstrained systematic

uncertainties. In (b) the dotted curves represent the constrained systematic uncertainties

calculated as described in Section 4.2.4. In (d) the red star indicates the true signal and

the blue star indicates the best fit.
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Figure F.8: Fitting a fake data set with no oscillations signal. In (a) the green component

is the true oscillations signal, and the dotted curves represent the unconstrained systematic

uncertainties. In (b) the dotted curves represent the constrained systematic uncertainties

calculated as described in Section 4.2.4. In (d) the blue star indicates the best fit.
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Appendix G

Events from the NuMI Beamline

The NuMI beamline in Fermilab delivers an intense neutrino beam to the MINOS

[84] experiment. The neutrinos are produced by the interaction of 120 GeV protons

from the Fermilab Main Injector (MI) onto a 2 interaction length graphite target.

Secondary particles are focused by two magnetic horns whose configuration can be

adjusted to modify the energy spectrum of the neutrinos. The focused secondaries

decay along a ∼600 m long decay tunnel which points towards the MINOS near

detector located at about 740 m from the target. MiniBooNE subtends an angle of

111 mrad from the face of the first horn.

G.1 The NuMI Trigger in MiniBooNE

The signal to extract the proton beam from the MI to the NuMI beamline is called

“Main Injector Beam Synchronization event (MIBS) $74”. The MIBS clock broad-

casts a $74 signal approximately every two seconds during normal operation condi-

tions. This signal has a fixed time delay relative to the actual physical firing of the
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extraction magnets that take the beam from the MI into the NuMI beamline1.

Event $74 originates at the location MI-60 (see Figure G.1) on the MI accelerator,

which houses the NuMI kicker extraction magnets. A copy of $74 is branched out to

the Main Accelerator Controls (MAC) room where it triggers several reflected signals

(called TCLK events), among which is the $A9 signal that eventually reaches the

MiniBooNE experimental hall and is used as trigger. TCLK events originate in the

MAC room and are distributed over the accelerator complex trough utility tunnels

and duct banks. The TCLK $A9 follows a branch heading directly back to MI-60,

where the original $74 event was produced. Once $A9 reaches MI-60, it is sent to

the MI ring locations MI-60 North, MI-62, MI-65, MI-8, MI-10, MI-12, and finally to

the MiniBooNE detector building following the path shown in Figure G.1. The time

delay between MIBS $74 and TCLK $A9 at MI-60 was measured to be 14.5±1 μs2.

This time is the sum of travel times of the $74 from MI-60 to the MAC room (∼ 6

μs) plus ∼ 2.8±1 μs hardware decode/encode delay in the MAC room plus the travel

time of the $A9 back out to MI-60 (∼ 6 μs).

At the end of this 14.5 μs period after the $74 was originated, the TCLK $A9

has just arrived at MI-60 on its way to MINOS (and the other locations in between),

the $74 is 14.5 μs downstream of it en route to the same points, and the timer on

the NuMI kicker has counted down from 222.0005 μs to 207.5 μs. The $A9 starts its

travel along the fiber optics path towards MINOS following the $74, and will take

∼8 μs to get to the MiniBooNE vault.

The $A9 signal is extracted from the Internet Relay Monitor (IRM) at the Mini-

BooNE detector vault adding a ∼1.6 μs decode time to its delay (the signal is taken

from IRM channel 8). Taking into account a beam time of flight of ∼1.5 μs, the time

1 This delay is set to 20.04932 MI revolutions, with 1 MI = 11.07272 μs, this is 222.00050 μs.
2 Measured by Greg Vogel, FNAL Accelerator Controls. The uncertainty is dominated by a ∼1

μs encoding/decoding time jitter.
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Figure G.1: Path of trigger signal along communications ducts. The MIBS $74 event

originates at MI-60 and travels along the dark solid path until MI-8 from where it continues

along the dashed path to the MAC room (X-Gallery). A reflected TCLK event ($A9) is

sent back from MAC to MI-60 along the same path, and then follows the full length of the

path marked by the solid line towards the MiniBooNE detector enclosure, where it is read

out from an IRM and input into the MiniBooNE trigger crate.
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Table G.1: Relevant times for the determination of the time delay of the NuMI event trigger

in MiniBooNE. The total delay shown is the setting of the ACNET parameter E:MBDT3.

Only the dominant uncertainties are shown.

Description ± Time

Delay between $74 and kickers firing (+) 222.0005 μs

Beam time of flight from kickers to NuMI target (+) 1.5 μs

Delay between $74 and $A9 arriving at MI-60 (−) 14.5 ± 1 μs

$A9 fiber optics delay from MI-60 to MB vault (−) ∼7 μs

Decode time of $A9 at IRM in MB vault (−) ∼0.6 ± 0.5μs

Early opening of DAQ window (catch rising edge) (−) 2 μs

Total delay 199.4 ± 1.1 μs

lapse between the decoding of the $A9 at the MiniBooNE vault and the beam hitting

the tank was estimated to be 201.4± 1 μs. An additional delay of 2 μs was added in

order to open the 19.2 μs window approximately 2 μs before the beam goes through.

The relevant times used to decide the delay of the IRM signal $A9 to be input to the

trigger system are shown in Table G.1, where the final delay setting of 199.4 ± 1.1

μs is shown in the last row. The uncertainty of ∼ 1 μs will smear the 1.6 μs batch

structure of the NuMI beam, as is shown in Figure G.2.

The NuMI trigger signal is input as an OR with the Debuncher, ZeroBias and

Strobe triggers into the E2 bit of the DAQ electronics rack #13. It is distinguished

from the other E2 inputs by setting its pulse width to 750 μs, meaning that either 7

or 8 DAQ clock ticks will be asserted during this time interval after a $A9 is received.

When a NuMI event trigger has been identified a look-back into the circular buffer is

performed opening a window of 19.2 μs.
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Observing NuMI events

NuMI triggers are stored in the BigNu data stream in the MiniBooNE DAQ system.

They are distinguished from other triggers also stored in that stream by being assigned

the trigger event number #19. Typically, a filter to select this trigger event

number and a latency filter are applied to the BigNu stream to form NuMI event

data sets suitable for subsequent analysis.

Events in the tank are easily observed by applying the usual neutrino candidate

cuts on the first sub-event: THits[0]>200 and VHits[0]<6. As shown in Figure G.2

the neutrino events can be clearly seen in the NuMI beam window of ∼10 μs even

before any cuts. The 5-6 batch structure of the NuMI beam is visible, although it

is greatly smeared by the jitter in the triggering signal coming from the encoding

and decoding time variations that affect the MIBS $74 and $A9 accelerator signals

described earlier. This smearing effect prevents the detector from resolving the fine

timing structure of the spills.

Good proton spills from the beam are selected using the beam quality cuts de-

tailed in Table G.2. Beam spill information was obtained from MINOS collaborators

[103] in the form of beam summary ntuples containing the beam position and spread

at the target, the horn current and the target position defining the beam configura-

tion, and the UTC time stamp of each spill since the beginning of the run in May 20th

2005. The majority of the data acquired with the NuMI event trigger corresponds to

the so called Low Energy-10 (LE10) configuration of the NuMI beam, which is tuned

to have a softer energy spectrum at the MINOS far detector than other possible con-

figurations. Data taken in the LE10 configuration was used in the first oscillations

results from the MINOS experiment [87][88]. The defining characteristics of this beam

configuration are a current flow across the two-horn system of -175 kA and a target

displacement of 10 cm upstream of the nominal target position. Other configurations
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Figure G.2: Time distribution of neutrino candidates from the NuMI beam in the Mini-

BooNE DAQ window. The events are required to satisfy: no cuts (dotted line), negligible

veto activity in the first sub-event (VHits[0]<6, dashed line), negligible veto activity and

more than 200 tank PMT’s in the first sub-event (VHits[0]<6 & THits[0]>6, solid filled).

The vertical lines indicate the 6-batch structure of the NuMI beam. The earliest batch is

extracted from the Main Injector only ∼ 40% of the time.
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of the beam have been exercised by the NuMI-MINOS collaborators in order to study

the systematics of the beam simulation. A detailed study of the NuMI beam and its

systematics can be found elsewhere [82].

Table G.2: Quality cuts applied to select good spills from the NuMI beam. The selection

of the horn current corresponds to the LE10 configuration of the NuMI beamline used for

the first result from the MINOS experiment [87].

NuMI beam quality cuts units

Beam Spill Intensity (IB) IB > 0.1 × 1012 protons/spill

Horizontal Beam Position at target (XB) −2.0 < XB < 0.0 mm

Vertical Beam Position at target (YB) 0 < YB < 2.0 mm

Horizontal Beam Width at target (ΔXB) < 1.5 mm

Vertical Beam Width at target (ΔYB) < 2.0 mm

Horn Peak Current, LE10 config. (IH) −185 < IH < −175 kA

Target Z position, LE10 config. (Tarz) 3850 < Tarz < 4000 mills [104]

The rate of NuMI neutrino candidates satisfying the simple VHits[0]< 6 and

THits[0]> 200 selection cuts is measured to be:

0.52 ± 0.01 ν/P.O.T.

(NuMI ν Candidates per proton delivered to the NuMI Target)

Figure G.3 shows the stability of this rate as a function of time starting on May 20,

2005. The lines in the figure are a fit to a horizontal line and a line with a slope, both

of which are consistent with a constant rate with very good goodness of fit.
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Figure G.3: Rate of NuMI neutrino candidates as a function of time. The uncertainties

shown are statistical and include a 2% error in POT counting and calibration [103].

Observing the NuMI beamline geometry with exiting events

A sample of events with the highest energies is useful to try to observe the geometry

of the NuMI beamline. It is expected that high energy neutrinos will produce tracks

that in average point back to their parent meson decay position, and will punch

through the detector veto on their way out while firing a cluster of veto PMT’s that

can be lined up with the reconstructed track direction. Using the cuts of Table G.3

a sample with these characteristics was accumulated.

Since most of the neutrinos seen by the detector at its off-axis position come

from meson decays in the vicinity of the NuMI target, the coarse selection of exiting

events in Table G.3 will predominantly come from that area, and in average their

reconstructed tracks will point back to the NuMI target within a few meters. This is

clearly seen in Figure G.4(d), which shows the distribution of the angle between the

projection of the target production line and the MiniBooNE Z axis on the X-Z plane.

The schematic drawing in Figure G.4(e) shows the angles between the beamlines in

the plain and elevation views (X-Z and Y-Z projections) as determined from survey

measurements of various beamline elements (See Appendix H). The angle that the
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Table G.3: Selection cuts for a sample of exiting NuMI events with a cluster of veto PMT’s

along the end of the reconstructed track and high energy deposition. Distributions for these

events are shown in Figure G.4.

Selection cuts, NuMI exiting sample

Loose beam window cut 1μs< Avg. Time < 12μs

Punch-through Veto once 6 <VHits< 30

Single cluster present in veto NC = 1

Small angle between track and vertex-cluster line cos θveto
cl < 0.95

High energy deposition Evis > 1.5 GeV

target production line makes with the MiniBooNE beamline in the elevation view

projection can be obtained from the distribution for cos θY in Figure G.4(c). Both

angles as determined from the sample of exiting events are in excellent agreement

with those derived from survey measurements, and are summarized in Table G.4.

Table G.4: Comparison of measurements of the vertical and horizontal inclinations of

the target production line (as defined in Appendix H). θXZ is the angle between the XZ

projection of this line and the MiniBooNE Z axis. θY is the angle of this line wrt. the

vertical. Measurements are from Figure G.4.

Angle From Survey Measurements Angular distributions of exiting events

θY 24.88◦ (24.93 ± 0.44)◦

θXZ 87.50◦ (87.25 ± 0.41)◦
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(d) Angle of X-Z projection of track.

(e) Plain and elevation cartoon views of the NuMI and MiniBooNE beamlines.

Figure G.4: Distributions for events exiting the tank (See Table G.3). In average the tracks

point in the direction of the target production line, defined in Appendix H. The ∼ 25◦ angle

between the plane view projections of the MiniBooNE Z axis and the target production

line is visible in (d). The ∼ 3◦ upward inclination of the target production line is visible in

the cos θY distribution in (c).
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G.1.1 NuMI flux predictions and Monte Carlo simulation

Flux prediction

A FLUKA[147] based simulation of the NuMI target produces a table of particles

escaping the target surface which is passed to a GEANT3 based simulation of the

beamline geometry (gnumi-v19 [176]) that includes the propagation in the magnetic

field of the two-horn system and subsequent decay of mesons and muons in the decay

pipe. Since neutrinos of lower energies than those typically observed in the MINOS

detectors are be visible to MiniBooNE, a reduction of the kinematic threshold to

track particles in the simulation was implemented.

In the FLUKA portion of the simulation this modification consisted in reduc-

ing the threshold on hadrons produced at the target from the standard 0.5 GeV in

MINOS, to 10 MeV, leaving the threshold for neutrons at 19.6 MeV as indicated in

the FLUKA manual pages3. The threshold reduction in the gnumi-v19 part of the

simulation is implemented in the input card file definition and is set to cut hadrons

with momenta lower than 1 eV.

MINOS collaborators 4 produced a special beam simulation with the above modifi-

cations. The produced gnumi-v19 ntuples were translated into the format that is out-

put by the MiniBooNE beam Monte Carlo programs BooNEG4Beam and BooBeamNTN.

The gnumi-v19 ntuples contain the momentum of the decayed meson in the

laboratory frame and the energy of its daughter neutrino in the meson rest frame. A

random neutrino direction is chosen by boosting into the parent meson rest frame and

randomly throwing a neutrino vector uniformly in a spherical casquet large enough to

3 The modification occurs in the parameter PART-THR in the input definitions file

target 2 .inp, F.Yumiceva private comm.
4S. Kopp and Z. Pavlovich, University of Texas, Austin.
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Figure G.5: Illustration of the random throw of neutrino vectors. For a given parent (here

a K+) and its decay neutrino: first boost into the meson rest frame and throw vectors

uniformly over a spherical casquet shown as the dashed circle in the square on the right.

Only vectors that hit the detector area are kept and boosted back to the laboratory frame,

where the throws are no longer uniform.

enclose the Lorentz-contracted detector ellipse in this frame. As illustrated in Figure

G.5 a vector is kept only if it points to the inside of the detector and is used to form

the neutrino momentum vector for that particular decay. The neutrino directions

are isotropic in the parent rest frame but will not be so in the laboratory frame.

The algorithm described above takes care of this without needing to transform the

detector solid angle between the center of mass and laboratory frame. Details of

the processing chain to generate neutrino event rates using the standard MiniBooNE

software tools can be found elsewhere [175].

The predicted neutrino flux at the MiniBooNE detector from the decay of mesons

produced in the NuMI target, beamline, and dump is shown in Figure G.6, where the

contribution from νμ, νe, νμ and νe are separately displayed. The prominent peak at

∼ 2 GeV is dominated by the off-axis decays of K+ into νμ, while the peak around
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∼ 200 MeV is dominated by the decays of π+ into νμ, as can be seen in Figure G.7(a).

The location of both peaks corresponds to what is expected for a detection location

of 110 mrad away from the beam axis [177]. The composition of the neutrino flux as

predicted by the simulation is shown in Table G.5.

Mesons from the target moving along the decay pipe decay into neutrinos with an

energy spectrum determined by the off-axis angle of the detector. For kaons moving

parallel to the beamline axis, there is a tight correlation between the energy Eν and

angle θ of the neutrino produced in the two-body decay K+ → μ+νμ:

Eν =
0.96EK

1 + γ2θ2
(G.1)

where γ = EK/mK is the Lorentz boost factor, and Ek and mk are the energy and

mass of the parent kaon respectively. For two-body pion decays π+ → μ+νμ, one

replaces the 0.96 by 0.43. For non-zero θ, and above a moderate energy threshold,

the values of EK map into a narrow Eν interval. In this way, positive kaons (pions)

of various energies being focused by the NuMI horns contribute to the neutrino flux

with energies around ∼ 2 GeV (∼ 200 MeV). Note that the enhancing effect is absent

for νμ from π− and K− decays, whose contribution to the flux is shown in Figure

G.7(c).

More details on the simulation of NuMI events and a thorough study of the νμ

CCQE and νe CCQE samples can be found in Ref.[178].
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Table G.5: Predicted contributions to the neutrino fluxes from the NuMI beam in Figure

G.7 per secondary particle produced at the target. Each neutrino type comes from a chain

that ends with the indicated process.

Neutrino flavor Process Contribution

pC → (. . .) → π+ → νμ 84.7 %

νμ (66.7%) pC → (. . .) → K+ → νμ 14.8 %

pC → (. . .) → K0
L → νμ <0.5 %

pC → (. . .) → π+ → νe 12.5 %

νe (2.0%) pC → (. . .) → K+ → νe 38.3 %

pC → (. . .) → K0
L → νe 49.2 %

pC → (. . .) → π− → νμ 91.4 %

νμ (30.7%) pC → (. . .) → K− → νμ 7.8 %

pC → (. . .) → K0
L → νμ 0.9 %

pC → (. . .) → π− → νe 6.9 %

νe (0.7%) pC → (. . .) → K− → νe 28.3 %

pC → (. . .) → K0
L → νe 64.8 %
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Figure G.6: Total predicted neutrino flux from the NuMI beamline at the MiniBooNE

detector.
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Figure G.7: Predicted flux from the NuMI beam in the MiniBooNE detector as a function of

neutrino energy for each neutrino type. The components from different secondary particles

produced at the target are shown. The percent contribution of these various sources is

shown in table G.5.



Appendix H

Geometry of the NuMI and

MiniBooNE Beamlines

This section contains calculations of geometrical relations between the NuMI and

MiniBooNE beamline based on the Fermilab’s ”SITE” coordinates of the elements

considered. Position vectors and rotation matrices are calculated as well.

H.1 Positions of elements in site coordinates

The positions of the relevant objects are given in Table H.11. The origin of the NuMI

coordinate system is defined as the insertion point of the first horn (MCZERO),

and the Z axis of the NuMI coordinate frame points towards a point in the NuMI

beam DUMP (also denominated DENCU by MINOS people). The NuMI Y axis

runs perpendicular to the Z axis and towards the sky. The X axis is such that the

coordinate frame is right handed.

1 From survey data: Virgil B. (09/26/2005), and Ray Stefanski (MiniBooNE).
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Table H.1: Site Coordinates in feet (1 ft = 0.3048 meters)

Element Shorthand X(easting) Y(northing) Z(elevation)

NuMI Near Detector NEAR 97305.82 99374.69 416.31

MiniBooNE Detector MB 98097.99 98860.11 729.22

MiniBooNE Target MBTGT 99222.64 97485.55 723.00

NuMI Target NUMITGT 100308.90 97790.20 614.15

NuMi Beam Stop DUMP 98221.11 98891.75 476.25

The MiniBooNE beamline coordinate system has its origin inside the MiniBooNE

horn at a point on the target axis. The Z axis runs towards the MiniBooNE detector,

and the Y axis is pointed upwards. The X axis is such that the coordinate system is

right handed.

H.2 Definition of vectors

We first define a set of vectors between the different points in Table H.1 and use them

to define the NuMI and MiniBooNE beamlines, as well as some auxiliary lines.

Table H.2: Definition of vectors. Long and Perp refer to the longitudinal and perpendicular

components along the NuMI beam line.

Vector Origin End Point length (ft) long (ft) perp (ft)

Q NUMITGT MB 2458.87 2443.80 271.80

V NUMITGT DUMP 2364.59 2364.59 0.0

P DUMP MB 283.11 79.21 271.80

R MBTGT MB 1776.03 1632.97 698.34

We define the target production line as the vector from NuMI target to MB detector
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(vector Q in Table H.2). A large fraction of the neutrinos reaching the tank will be

produced in the vicinity of the NuMI target, making this line a good approximation

to the neutrino direction. Vector V in Table H.2 defines the NuMI beamline. The

NuMI Beamline is inclined downwards to point to the far detector at Soudan MN

with a tilt angle relative to the horizontal of -0.058 rad, as calculated from table H.2

Another production line can be considered for neutrinos produced at the NuMI beam

dump. This line is defined by vector P in Table H.2. The MiniBooNE detector is at a

distance of 283.11 ft from the NuMI beam dump. Looking along the NuMI beamline

up to the location of the MB detector, it subtends an angle of:

Off-axis angle of MB wrt. NuMI beamline = 0.1108 rad

We calculate the angle between the two beamlines using the dot and cross prod-

ucts of vectors R and V. The absolute angle between the beamlines (NuMI Z and

MB Z in SITE coordinate system) is:

Absolute angle between beamlines: α = 23.15◦

H.3 Aereal view projections of the beamlines

In a plain or aereal view of the Fermilab site, the NuMI and MiniBooNE beamlines

intersect at a point slightly north-east of the MiniBoNE detector. Table H.3 shows

the easting and northing dimensions of the two beamlines as defined earlier, and their

length in the aereal projections.

Taking the dot product of the aereal view projections of R and V yields the value

Rp · V p= 5555379.92 ft2, from which the angle between the beamlines in the aereal

view is extracted using the norm of both vectors:

Angle between beamlines in aereal view projection: α = 22.89◦
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Table H.3: Dimensions in site coordinates X(easting), Y(northing) of the aereal view

projections of the vectors defining the NuMI and MB beamlines. Lengths are in feet.

Vector ΔX (ft) ΔY (ft) length of projection (ft)

R -1124.65 1374.56 1776.02

V -3003.08 1584.48 3395.45

H.4 MiniBooNE position in NuMI coordinates

Using dot and cross products of vectors R and V we calculate the MB position in the

NuMI coordinate system.

MiniBooNE detector location in NuMI coordinates

X = 26.041 meters

Y = 78.647 meters

Z = 744.871 meters

Check: From the calculated coordinates get the distance from the NuMI origin to

MB: Distance NUMITGT to MB = 2458.87 ft

Perpendicular distance = 271.80 ft

which match the norm of the vector Q and its perpendicular component calculated

in Table H.2.

Define the vector RMBTGTtoNEAR from MB target to NuMI near det:

Distance MBTGT to NEAR = 825.615 meters

H.5 Basis transformation Matrices

The following matrices have as columns the components of the basis unit vectors of

the NuMI and MB frames respectively, expressed in SITE coordinates.
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Matrix to transform from SITE coordinates to NuMI coordinates:

TMnumi(i,j)=

-0.466645367 -0.0515797363 -0.882939201

-0.884444516 0.0272141944 0.465851141

-1.13942832E-18 0.998298011 -0.0583187926

Matrix to transform from SITE coordinates to MiniBooNE coordinates:

TMmb(i,j)=

-0.773955535 0.0022177138 -0.633236063

-0.633239946 -0.00271052368 0.773950789

1.54245475E-19 0.999993867 0.00350216977

To convert a vector from SITE coordinates to either NuMI or MB coordinates multiply

the transpose of the previous matrices times the vector in SITE coordinates.

H.5.1 Examples

Using matrix TMnumi: (TMnumi)T × Q

MB Det coordinates in NuMI frame:

X = 26.041 meters

Y = 78.647 meters

Z = 744.871 meters

Let N be the vector from NUMITGT to MBTGT.

Using matrix TMnumi: (TMnumi)T × N

MB Tgt coordinates in NuMI frame:

X = 236.631 meters

Y = 47.672 meters

Z = 247.140 meters
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H.6 Production line vectors in MB coordinates

First we calculate in MB coordinates the components of the unit vector pointing from

NUMITGT to MB:

Using the matrix TMmb: (TMmb)T × Q

Coordinates of prod. line vector in MB frame (unit norm)

X = 0.42037005, Y = 0.0436241162, Z = 0.906303458,

with direction defined by the polar angles:

θ = 87.50◦ , φ = 24.88◦

Now we calculate in MB coordinates the components of the unit vector pointing

from DUMP to MB:

Using matrix TMmb: (TMmb)T × P

Coordinates of DUMP prod line in MB frame (unit norm)

X = 0.407340799 , Y = 0.892864152 , Z = 0.192008017 ,

with direction defined by the polar angles:

θ = 26.76◦ , φ = 64.76◦

H.7 Rotation matrices in polar angle format

Polar angle format of rotation matrices is used for example in GEANT3 to rotate

elements with respect to their mother volume. The rotation matrices defined here

rotate from SITE coordinates to either NuMI or MB frames. They are constructed

by giving the polar coordinates of the 3 axes of the corresponding frame with respect

to the SITE coordinate system.
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Table H.4: Polar angles of NuMI and MiniBooNE coordinate axes in SITE coordinates.

Axis θ φ

NuMI X 89.99999750 242.18323884

NuMI Y 3.34331757 152.18324135

NuMI Z 93.34331506 152.18324135

MiniBooNE X 89.99999750 219.28956537

MiniBooNE Y 0.20065995 309.28956787

MiniBooNE Z 89.79933754 129.28956787

The parameters of a GEANT3 rotation matrix are given as a vector of 6 entries:

(θx, φx, θy, φy, θz, φz).

H.8 Transformation matrix from NuMI to MB:

We calculate the transformation matrix from NuMI to MB using the matrices TMn-

umi and TMmb that transform SITE coordinates to either coordinate system. The

matrix TMnumi to mb is simply:

TMnumi to mb = (TMmb)T × TMnumi

Note that as opposed to TMnumi and TMmb, TMnumi to mb has the unit vectors

of the MB frame expressed in NuMI coordinates as rows, not columns. Hence to

transform a vector from NuMI coordinates to MB coordinates we do not take the

transpose:

If Xnumi(i) is expressed in NuMI coordinates, then Xmb(i) obtained by:
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Xmb(i) = 0

do k=1,3

Xmb(i) = Xmb(i) + TMnumi to mb(i,k)*Xnumi(k)

enddo

**(NOTE NO TRANSPOSING IN THIS MATRIX)

is the same vector expressed in MB coordinates. The matrix TMnumi is given by:

TMnumi to mb(i,j)=

0.921228362 0.0226873074 0.38836013

0.00136242193 0.998103735 -0.061539242

-0.389019856 0.0572208054 0.919450559

H.8.1 MiniBooNE frame axes in NuMI coordinates

Finally, we calculate the polar angle format of the rotation matrix from the NuMI

frame to the MiniBooNE frame.

Table H.5: Polar angles of MiniBooNE coordinate axes in NuMI coordinates.

Axis θ φ

MB X in NuMI 67.14749780 1.41075143

MB Y in NuMI 93.52816554 89.92178821

MB Z in NuMI 23.15411018 171.63238370

As before, these define the parameters for a GEANT3 rotation.
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Figure H.1: GEANT4 rendering of the NuMI and MiniBooNE beamlines. To make this

drawing the geometry files from the two simulations were combined in a single one. To

position and rotate the MiniBooNE beamline relatively to the NuMI beamline, the matrices

and vectors described in this note were used. Shown are parallel projections onto the NuMI

XY, XZ, and YZ planes. The dark arrow represents the trajectory of a neutrino from the

MiniBooNE beamline to the detector. The light gray line represents the trajectory of a

typical neutrino from the vicinity of the NuMI target to the MiniBooNE detector. The

axes and labels were added by hand.
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