
An objective comparison test of workload management

systems

Igor Sfiligoi1 and Burt Holzman1

1Fermi National Accelerator Laboratory, Batavia, IL 60510, USA

E-mail: sfiligoi@fnal.gov

Abstract. Grid resources are distributed among hundreds of independent Grid sites, requiring

a higher level Workload Management System (WMS) to be used efficiently. There are several
ways to design and implement a WMS, and indeed in recent years several WMSes have been
developed. The purpose of this paper is to show how some of these different WMS-es behave
under realistic load conditions. We present benchmark test results for three general-purpose
WMSes, namely ReSS, gLite WMS and glideinWMS. The results presented have been
measured using the same tools for all the tested WMSes, comparing those results against a
baseline obtained by using plain Condor-G submissions.

1. Introduction
With millions of jobs coming from thousands of users, and tens of thousands resources deployed to
run them, a higher level Workload Management System (WMS) is essential for the Grid[1] be used
efficiently. However, there are several ways to design and implement a WMS, and indeed in recent
years several WMSes have been developed. Most of them have been developed by groups for their own
specific needs, but there are a few that claim to be general enough to serve a wide variety of users.

Having multiple products to choose from is obviously a major advantage for the users. But
objective data is needed to help users choose the right one. In this paper we present benchmark test
results for four of them, namely Condor-G, ReSS, gLite WMS and glideinWMS. The latest version
available at the end of August 2007 was used for all the WMSes.

The test suite used was developed specifically for these tests. It uses the same benchmarking
logic for all of the tested WMSes, with WMS-specific plugins for job submission and job monitoring.
Only pre-WS GRAM[1] grid submissions have been tested, as we have the most experience with it.

A summary functionality overview of the WMSes is also given, but it is by no means complete.
WMS-specific documentation should be consulted for more detailed information about the product
functionality.

FERMILAB-CONF-07-494-CD

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNT Digital Library

https://core.ac.uk/display/71320271?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:sfiligoi@fnal.gov

2. Description of Workload Management Systems

2.1. Condor-G
Condor[2] is a multi-featured batch system provided by the Condor team at the University of
Wisconsin-Madison. It contains a submission mode called “Condor-G”, which provides a translation
layer that presents grid resources in a manner similar to that of a local batch system. It translates
Condor job description files into grid specific commands, handling job submission, staging of input
and output, and monitoring. It submits multiple grid submission protocols, including among others
pre-WS GRAM, WS-GRAM and Nordugrid.

Condor-G is used both for direct submission from final users, and as the underlying submission
mechanism by many WMSes. In this work, we used Condor-G to determine a raw baseline.

2.2. ReSS
The Resource Selection Service (ReSS)[3] is an Open Science Grid (OSG) endorsed matchmaking
system for jobs submitted via Condor-G. It allows users to specify the target grid Compute Elements
(CEs) in terms of logical attributes, like the operating system, and ReSS will make the actual decision.
Once a decision is taken, the job is submitted by the local Condor-G itself.

ReSS collects information about CEs by subscribing to the CEMon service, deployed on most OSG
CEs. OSG also provides a centrally-managed ReSS information system that can be used to populate a
local one. Support for other grids is currently not envisioned.

2.3. gLite WMS
The gLite Workload Management System (gLite WMS)[4] is an Enabling Grids for e-Science (EGEE)
endorsed product. It is a portal solution -- users submit their jobs to a WMS server using dedicated
gLite-specific client tools, and the WMS handles submission, resource brokering, input/output staging,
and job monitoring internally. Users specify the target grid compute elements (CEs) in terms of logical
attributes, as in the ReSS case.

The gLite WMS can collect information about CEs in a variety of ways. The most commonly used
method is based on the BDII service, deployed both on EGEE and OSG CEs.

The gLite WMS can internally use various job submission mechanisms, but Condor-G is used for
pre-WS GRAM based CEs.

2.4. glideinWMS
The glideinWMS[5] was developed by the CMS collaboration based on the previous work done by the
CDF collaboration, but it is meant to be general enough to be used outside the high energy physics
domain. It is based on the pilot philosophy and uses Condor as the base batch system.

In glideinWMS, users submit to a local Condor scheduler, and are never exposed to the grid.
Instead, pilot jobs containing Condor daemons are submitted to various grid CEs. Once a pilot job
starts, the local environment is discovered, and that information is used to select the appropriate user
job. From the user point of view, it is like running in a virtual private local pool.

The information about the grid CEs is statically configured by the glideinWMS administrator; the
administrator itself can use any other information system, including the above mentioned CEMon and
BDII services.

The pilot jobs are submitted using Condor-G.

3. Test results
CMS has set up shadow pools at a few of its OSG production grid sites. A shadow pool is a batch
system pool overlayed over an existing production pool. While the worker nodes are the same for both
pools, the submission point and the control services are separate.

In order not to interfere excessively with the production pool, only sleep jobs with a small sandbox
were being run on those shadow pools for the purpose of these tests.

3.1. Condor-G
Condor-G showed significant slowdown when more than approximately 7000 jobs are in the queue, so
all results in table 1 were obtained by keeping below that limit. In this setup, we were easily able to
saturate our test grid CE with its 5000 batch slots.

While we had no problem submitting 20000 jobs, when the threshold of 7000 was exceeded,
Condor-G started to use 100% of the available CPU and the submission rate to the test CE was
reduced to almost zero. Indeed, letting it run for a long time, the system stabilized with just 200
running jobs on the grid side.

Condor-G has a lot of configuration parameters, so we decided to tried them out. The one that had
a significant impact is GRIDMANAGER_MAX_JOBMANAGERS_PER_RESOURCE. The default is
10, so we repeated our tests by setting it to 100; the results are shown in table 2. As can be seen, the
remote job rates doubled; however, the load on the test grid CE increased by a factor of 10(!) While
trying to remove 5000 running jobs at once, the CE become completely unresponsive; we had to
manually remove the jobs from both the local and the remote queues, after trying to stabilize it for a
full day without success.

Querying the queue about job status was easy and fast. With 20000 jobs in the queue, the query
request returned within a second.

Table 1. Results from Condor-G tests

with default settings

Table 2. Results from Condor-G tests with
GRIDMANAGER_MAX_JOBMANAGERS_PER_RESOURCE = 100

Test Rate (per minute) Test Rate (per minute)

Job submission rate 250 Job submission rate 250

Job startup rate 30 Job startup rate 60

Local removal rate O(10000) Local removal rate O(10000)

Remote removal rate 30 Remote removal rate 60

Query rate O(10000) Query rate O(10000)

Job success rate varied significantly among the sites. On well-behaving sites, all the jobs ran fine
and returned a significant output; on misconfigured sites, all the jobs failed, and no output was
returned. There also were intermediate cases, where only a fraction of the jobs failed.

A major issue is identifying bad sites; once we tested the same site twice in two days, and one day it
was working fine, but the next day all jobs failed. The root cause was a misconfiguration by the remote

site administrator. Unfortunately, there was no way a user to know this without actually trying to run
some jobs.

3.2. ReSS
The tests we performed with ReSS showed exactly the same behavior as the Condor-G tests shown in
table 1. Query times and job success rates were also essentially the same.

No ReSS-specific limitations were found. However, by using a single type of jobs, resource
matching capabilities of the ReSS were not really stressed.

3.3. gLite WMS
The initial gLite WMS submission tests proved that it cannot be used in single submission mode. We
were able to submit only 100 jobs in 20 minutes. We did not perform any other tests in this mode, as
we deemed this mode unusable for any practical purpose.

The gLite WMS supports a so called “collection mode” submission. In this mode, multiple jobs are
submitted in a single transaction. This indeed speeds up the submission rate quite a bit, as we were
able to submit a collection of 5000 jobs in 5 minutes, while a 20000 job collection took 23 minutes.
However, trying to submit several collections in a short amount of time proved to be tricky; we were
unable to serially submit 8 consecutive collections of 5000 jobs each in a row, and 8 parallel
submissions of the same-size collections resulted in only one of them being submitted, and all the
others failing. After adding a few minute delay between submissions, 4 collections of 20000 jobs each
did succeed.

Querying the gLite WMS proved to be difficult, too. We found no easy way to obtain the list of all
the jobs that we owned on the portal, except by parsing the output printed at submission time.
Moreover, the queries often failed, claiming the portal was overloaded at that particular moment.
When the queries did succeed, they returned the status of a 5000 job collection in 40 seconds and the
status of 20000 job collection in 3 minutes.

Removal speeds depended on portal load. The fastest we observed was a 20000 job collection being
removed in 30 seconds; the worst was a 5000 job collection being removed in 1 minute. Both of those
numbers are for local removal only; we have no numbers for how long would it take to remove the jobs
from the grid CE queues.

Similarly, we have no numbers regarding the startup times on the grid CE side; we were unable to
interface our test pool with the gLite WMS instance we were using in the time alloted for the tests.

The above results are summarized in table 3.

Table 3. Results of gLite WMS tests

Test Rate (jobs per minute)

Job submission rate (single mode submission) 5

Job submission rate (bulk mode submission) O(1000)

Local removal rate 100-400

Query rate 100

Job success rates were essentially the same as with Condor-G and ReSS.

3.4. glideinWMS
We set up glideinWMS with each daemon running on a separate machine, and all the measurements
were taken on the submit machine.

The results are presented in table 4. An interesting point regards the startup rates: job startup in a
freshly installed system is significantly slower than job startup in a running system. The reason for this
disparity is the underlying pilot submission: since Condor-G is used for pilot submission, they are
limited by the submission speed of Condor-G. However, once the pilots are running, they can start jobs
much faster.

We were able to queue 80000 jobs in the queue with no noticeable degradation of performance, and
up to 5000 running jobs. Two limits have been observed:

• Each running job uses 1.3MB of memory on the submit machine. Our 8GB machine could not
have handled more than 5000 running jobs.

• When the Condor GCB service was needed, due to firewalls or NATs, the system was stable
only to about 600 pilots per GCB.

Both of the above problems could be addressed by installing more machines, but are real limits if
more hardware is not an option.

Job queries were easy and fast as with Condor-G, but much more information was provided about
the jobs' status. The queries provided the exact worker node name where the job was running, as well
as a wealth of information about the node itself, including available memory and disk space, updated
every few minutes with real time values.

Table 4. Results of glideinWMS tests

Test Rate (jobs per minute)

Job submission rate 450

Job startup rate (cold start) 30

Job startup rate (steady state) 200

Local removal rate O(10000)

Remote removal rate 120

Query rate O(10000)

The job success rate was above 99.99%, even in the presence of misbehaving grid resources. In

case of a problem with a grid resource, either the pilot would fail before starting a job, or the job
would be restarted on a different node if the job was killed after starting.

 4. Summary
The four WMSes tested each take a different approach to solving the job management problem, and
each has its strong points and its disadvantages. See table 5 and table 6 for an overview.

Table 5. Comparison of the test WMS' installation features

WMS Site selection Client Server

Condor-G User Light daemon None

ReSS CEMon Light daemon One light daemon node

gLite WMS BDII, CEMon None Two heavy daemon nodes

glideinWMS Admin Heavy daemon Several heavy daemon nodes

Table 6. Scalability limits and functionality of the tested WMSes

WMS Single client scalability Server scalability Functionality

Condor-G Up to 7000 queued jobs N/A Just submission

ReSS Up to 7000 queued jobs None observed Submission and site selection

gLite WMS Requires grouping of
jobs in big collections

Suffers with 20000 queued
jobs, but no limits found

when using retries

Portal solution, site selection

glideinWMS Memory limited, 1.3MB
per running job

None found, but needs one
GCB server for every 600

running jobs

Pilot solution:
• just-in-time scheduling
• node validation
• active job management

Acknowledgements
The authors gratefully acknowledge the support of the CMS experiment and the Department of
Energy. We also would like to thank Terrence Martin (UCSD), Michael Thomas (Caltech), and
Daniele Cesini (CNAF) and their respective institutions for allowing us the use of their resources.

References

[1] Foster I and Kesselman C 1998 The Grid: Blueprint for a New Computing Infrastructure. (San
Francisco, CA: Morgan Kaufmann Publishers)
[2] Thain D, Tannenbaum T and Livny M 2005 Distributed Computing in Practice: The Condor

Experience Concurrency - Practice and Experience 17 2-4 323-56

[3] https://twiki.grid.iu.edu/twiki/bin/view/ResourceSelection/WebHome
[4] http://glite.web.cern.ch/glite/packages/R3.0/deployment/glite-WMS/glite-WMS.asp
[5] http://home.fnal.gov/~sfiligoi/glideinWMS/

https://twiki.grid.iu.edu/twiki/bin/view/ResourceSelection/WebHome
http://home.fnal.gov/~sfiligoi/glideinWMS/
http://glite.web.cern.ch/glite/packages/R3.0/deployment/glite-WMS/glite-WMS.asp

