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Abstract

ALEGRA is an arbitrary Lagrangian-Eulerian finite element code that emphasizes
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ALEGRA-MHD: Version 4.6

1 Introduction to ALEGRA-MHD

This manual describes the additional features found within ALEGRA to simulate resis-
tive magnetohydrodynamic (MHD) environments (hereafter referred to as ALEGRA-MHD).
MHD environments require a wide range of physics phenomena to be modeled. This in-
cludes hydrodynamics, solid mechanics, transient magnetics, thermal conduction, and ra-
diation emission. This manual provides a supplement to the ALEGRA User’s Manual [4]
and follows the pattern set therein. The manual is primarily intended as a reference guide
and not as a tutorial or self-contained user’s manual, however input deck examples have
been provided for clarity.

ALEGRA-MHD includes only those physics capabilities which might be needed to sim-
ulate solid- & hydrodynamic environments subjected to magnetic field effects such as
Lorentz forces and Joule heating. A simple radiation emission model is included for pur-
poses of radiating excess energy. The thermal transport model is included as well as a
means of smoothing the highly localized energy sources which can develop due to Joule
heating. Applications which require true radiation transport coupled with MHD are referred
to the ALEGRA-HEDP code.

The 2D version of ALEGRA-MHD supports both Cartesian (XY) and cylindrical (RZ)
geometries. In 2D Cartesian (XY) MHD modeling [9, 10] the magnetic field

�
B � �

Bx � By �
may be in the plane of the mesh and the current density Jz is orthogonal to the plane, or else
the magnetic field Bz may be orthogonal to the plane of the mesh and the current density�
J � �

Jx � Jy � is in the plane. For 2D cylindrical (RZ) MHD modeling, the magnetic field Bθ
may only be orthogonal to the plane of the mesh and the current density

�
J � �

Jr � Jz � is in
the plane. The 2D code supports unstructured quadrilateral grids.

The 3D version of ALEGRA-MHD supports 3D Cartesian (XYZ) MHD modeling on un-
structured grids. The 3D code implements a magnetic diffusion solution based on edge and
face elements [2]. A discrete, divergence free property is maintained both in the magnetics
solve and during a constrained transport algorithm in the remap phase. The magnetic flux
density is represented in terms of face elements with the element magnetic flux on faces as
degrees of freedom. The 3D code supports unstructured hexahedral grids.

Self-consistent transfer of energy to and from external lumped element circuit equations
may be modeled. Coupled circuit equations allow a set of differential-algebraic equations to
be coupled to the transient magnetic or MHD simulations. This is useful in situations where
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the simulation is driven by a known voltage source (most magnetic boundary conditions
require knowledge of the current) or where the dynamics of the system being modeled
feeds-back into the electrical response of the external circuit. This feature is fully described
in Section 6.6 on page 67.

The TRANSIENT MAGNETICS package uses the Aztec library [28] to solve the discrete
partial differential equation that governs its physics. Aztec is an iterative solver library
with many options for solving linear systems of equations. Aztec includes a number of
Krylov iterative methods such as conjugate gradient (CG), generalized minimum resid-
ual (GMRES), and stabilized biconjugate gradient (BiCGSATB). An algebraic multigrid
option [27] for the edge element diffusion formulation in 3D and node-centered 2D formu-
lations are available. These features are fully described in Section 9 on page 88.

An implicit thermal transport modeling capability is available. The current discretiza-
tion is based on a support operator technique implemented by Kent Budge which has fun-
damental unknowns as thermal fluxes on faces. The THERMAL CONDUCTION package also
uses the Aztec library. No multigrid capability is available in this case, but it is generally
unnecessary.

Significant progress has been made at Sandia with respect to conductivity modeling in
the solid-liquid-vapor transitions regions. Mike Desjarlais has been the principal theoretical
lead in this effort. The LMD models are currently seen as the preferred capabilities. The
user is advised to stay abreast of these rapidly advancing development as results are highly
dependent on proper models [5, 6].

Radiation emission and opacity models are available. The emission model accounts for
re-absorption by reducing the emission rate by a factor equal to one minus the probability
of escape. For one group emission, the XSN opacity model can be made more accurate at
lower temperatures through the use of the DYNAMIC INTEGRATION option for determining
group bounds and the HAGEN RUBENS option. See Section 10.6.2 on page 119 for details.

1.1 New for Version 4.6

ALEGRA-MHD Version 4.6 is an update release compatible with the release of the base
ALEGRA code [4]. This section briefly describes the new features added since Version 4.0.

A new preferred method of initializing magnetic field has been incorporated into ALE-
GRA. The INITIAL B FIELD, USER DEFINED, [A|B] keyword replaces many of the
previous INITIAL B FIELD keywords. The new method employs user defined C-language
code included in the input deck. A special runtime compiler reads the user defined code,
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evaluates the expressions, stores the result into the appropriate ALEGRA variables.

One feature among many MHD computer codes that is unique to ALEGRA, is the ability
to run simulations using ”void.” Void is that fraction of a mesh elements volume that is not
occupied by any real material. One difficulty encountered in simulating MHD instabilities
is that the growth of instabilities cannot saturate when using void. Other MHD codes
circumvent this difficulty by using a low-density background material and suitable density
floors to suppress unwanted physical phenomena. The ALEGRA-MHD user now has the
ability to set select density floors akin to other MHD codes.

New HYDRO FORCE DENSITY FLOOR and LORENTZ FORCE DENSITY FLOOR keywords
can be used in lieu of the MATERIAL FRACTION FORCE LIMITER to limit the calculation of
forces on vertices with very little mass, thereby prohibiting mesh elements from becoming
inverted and causing the calculation to terminate.

The JOULE HEAT DENSITY FLOOR is another feature that is built into ALEGRA al-
lowing the ability to selectively turn off Joule heating for low-density materials. The
ELECTRICAL CONDUCTIVITY DENSITY FLOOR and THERMAL CONDUCTIVITY DENSITY FLOOR
keywords can limit the diffusion of the magnetic field and the material temperature in re-
gions of the mesh with very little mass. These features allow low density regions to behave
akin to void.

Finally, the DENSITY FLOOR keyword allows the user to specify a minimal material
density in the mesh. One keyword applies to all materials. This keyword forces ALEGRA

to boost cell densities up to the specified DENSITY FLOOR when they would otherwise fall
below this value.

Two new materials have been added to the list of materials defined for the LMD electrical-
thermal conductivity model: gold (Z = 79) and air (MATERIAL = ’air’). New keywords
also have been added to the LMD model: PRESSURE IONIZATION PREFACTOR, PRESSURE
IONIZATION EXPONENT, DIPOLE ALPHA, EXTERNAL ZBAR, TUNED ALUMINUM, and MATERIAL.

New keywords have been added to the XSN opacity model: EXTRA ELECTRONS PER
NUCLEUS, EXTRA Z SQUARED PER NUCLEUS, OPACITY MULTIPLIER, and DYNAMIC INTEGRATION.

Documentation of the global output variables associated with the CIRCUIT SOLVER is
included in this manual. See Table 41 in Section 11 for details.

A new MAXIMUM ENERGY CHANGE keyword has been added to the emission model. This
optional keyword allows the user to limit the maximum change in the material specific
internal energy due to emission.
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2 General Input

2.1 Format and Syntax

ALEGRA takes as input a text file containing free format lines built around keywords or
keyword groups. With few exceptions, the keywords or keyword groups may be in any
order the user finds convenient. This section repeats some of the syntax rules from the pri-
mary ALEGRA User’s Manual [4]. For additional input syntax, such as common parameter
constructs, see the ALEGRA User’s Manual.

2.1.1 Keywords

A keyword is a short sequence of English words denoting some action or quantity. For
example,

TITLE
MAGNETOHYDRODYNAMICS CONDUCTION
LORENTZ FORCE DENSITY FLOOR
MATERIAL FRACTION FORCE LIMIT

are all examples of keywords.

The input routines are case insensitive and only enough characters of each word of a
keyword need be entered to uniquely identify it. The number of words per keyword is
significant and varies according to the specific keyword or keyword group.

In the input syntax descriptions that follow, all keywords will be presented in UPPER
CASE, while common grammatical constructs and numerical parameters whose values are
supplied by the user will be shown in lower case. Optional keywords, constructs, or
parameters will be enclosed in [square brackets]. Alternative choices for a keyword may
be enclosed � curly braces � and separated by an OR symbol ( � ), as in � ABC � DEF � , meaning
ABC or DEF.

2.1.2 Delimiters

Keywords may or may not require a numeric field or other grammatical construct to follow
it. Adjacent keywords must be separated by a comma (,), colon (:), semicolon (;), equals
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sign (=), or newline; a blank is sufficient ONLY to separate a keyword from a numeric
field, not one keyword from another. (These delimiters may not always appear explicitly
in the command descriptions that follow.) The user may optionally separate keywords
and numeric fields using blanks, commas, colons, semicolons, equal signs, or newlines as
seems appropriate. The number of characters on an input line is limited to 160. Placing
more characters on a line can lead to platform-dependent results.

2.1.3 Comments

Users may enter comments at any point by using a dollar sign ($) or asterisk (*). All text
that follows a dollar sign on a line is ignored. Any line may be continued and lines may be
combined. For example:

$$$$$$$$$$$$$$$$$$$$ material models $$$$$$$$$$$$$$$$$$$$

material 1 "W"
model = 11 $ EOS
model = 12 $ ionization
model = 13 $ electrical conductivity
model = 14 $ opacity

density 1.6230 $ kg/mˆ3
temperature 1.0 [ev] $ K (1 ev)

end
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3 Execution Control

Execution control refers to keywords that appear outside the PHYSICS ... END block.
As such they are not specific to any particular physics such as TRANSIENT MAGNETICS
or THERMAL CONDUCTION. Typically these include the TITLE and UNITS keywords, START
TIME and TERMINATION TIME, various EMIT PLOT and EMIT OUTPUT commands, the PLOT
VARIABLES ... END block, as well as MATERIAL and material MODEL input. This section
provides a supplement to the ALEGRA User’s Manual [4]. Keywords for AZTEC input are
located in a separate section.

3.1 Job Initiation and Termination

3.1.1 Units

UNITS, � CONSISTENT | SI | CGS | CGSEV | GAUSSIAN �

Default units for ALEGRA are CGS units. However, the UNITS keyword may be used to
change the default units to SI, CGSEV, or GAUSSIAN units. Systems of units can be a subject
of some confusion. The source of the confusion is that the number of fundamental units
and of the dimension of physical quantities is arbitrary [15, 16].

For mechanical quantities (density, velocity, acceleration, force, energy, etc.), all quan-
tities can be expressed in terms of three fundamental units (time, length, and mass). Any
simulations involving only these basic mechanical quantities can be run using any CONSISTENT
set of units, as well as the other explicit sets of units.

Default temperatures are always Kelvin unless CGSEV units are specified. For high
temperature applications where the temperature is above the thousands of Kelvin range,
it is common to express the temperature in units of energy by combining Boltzmann’s
constant, kB, with the temperature (kBT has dimensions of energy and 1 eV is equivalent to
11605.67 K). In the CGSEV units case, eV are the temperature units.

For THERMAL CONDUCTION, quantities such as the specific heat and the thermal conduc-
tivity are defined in terms of the fundamental mechanical units (time, length, and mass).
Thus THERMAL CONDUCTION problems may be run using any CONSISTENT set of units, as
well as the other explicit sets of units.

For TRANSIENT MAGNETICS a variety of electrical units may be associated with input
and output quantities. This is accomplished by defining values for six units-dependent
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constants, κ1 to κ6, at simulation start up. These constants are defined in Table 8 on page 35.

For SI units, only one choice is available because the Ampere is defined to be a fun-
damental unit and the electrical quantities default to the standard SI units. Only SI is
fully implemented at this time for 3D simulations. SI, CGS, and GAUSSIAN are in general
supported in 2D TRANSIENT MAGNETICS simulations.

For CGS-related units, many choices are available in principle, however in ALEGRA-
MHD only two of these choices have been made available to the user. The default CGS
units are also called Practical CGS units. Practical CGS units are a combination of SI
and CGS units as found in Knoepfel’s monograph [16]. Densities, lengths and velocities
are expressed in CGS-like units of g/cm3, cm and cm/s. Charge, currents and voltages are
expressed in SI-like units of coulombs, amperes and volts. Current densities, electric fields
and conductivities are expressed in mixed units of amperes/cm2, volts/cm and ohm-cm.
Magnetic fields are in gauss. The other CGS-related set of units is the GAUSSIAN system.

The units associated with common variables are outlined in Table 1. Additional systems
of units may be found in many textbooks such as Knoepfel’s monograph [16] or the NRL
Plasma Formulary [13].

3.2 I/O Control

3.2.1 Plot Variables

PLOT VARIABLES
name [, conversion] [, AS "string"]
name [, conversion] [, AS "string"]

END

This section describes additional PLOT VARIABLES available with this version of ALE-
GRA. Other basic plot variables for hydrodynamics, solid dynamics, and materials are listed
in the ALEGRA User’s Guide [4].

In Tables 2 through 4 the variable types are listed as being scalar, vector, or material.
Scalar variables have only one component and may be located at the mesh cell (or element)
centers or located at the mesh nodes (or vertices).

Vector variables have two or three components depending on dimensionality and may
be located at the mesh cell (or element) centers or located at the mesh nodes (or vertices).
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Table 1. Dimensions associated with variables for various sys-
tems of units.

Variable SI CGS CGSEV GAUSSIAN

t , time s s s s
�

x, position m cm cm cm
�

v, velocity m/s cm/s cm/s cm/s
m , mass kg g g g
ρ , mass density kg/m3 g/cm3 g/cm3 g/cm3

�

F , force N (Newton) dyne dyne dyne
E , energy J (Joule) erg erg erg
e , specific internal energy J/kg erg/g erg/g erg/g
T , temperature K (Kelvin) K eV K
Cv , specific heat J/(kg*K) erg/(g*K) erg/(g*eV) erg/(g*K)
q , particle charge C (Coulomb) C C esu

�

B, magnetic induction T (Tesla) G (Gauss) G (Gauss) G (Gauss)
�

J, current density A/m2 A/cm2 A/cm2 statampere/cm2
�

E, electric field V/m V/cm V/cm statvolt/cm
σ , electrical conductivity (Ohm-m) �

1 (Ohm-cm) �

1 (Ohm-cm) �

1 (statohm-cm) �

1

k , thermal conductivity J/(m*s*K) erg/(cm*s*K) erg/(cm*s*eV) erg/(cm*s*K)
τa , absorption opacity m �

1 cm �

1 cm �

1 cm �

1

τs , scattering opacity m �

1 cm �

1 cm �

1 cm �

1

In 3D Cartesian, vectors have three components. Each component appears individually
in the output files and is labeled with a suffix of X, Y, or Z. In 2D, vectors have only
two components. Each component appears individually and is labeled with a suffix of X
or Y in Cartesian geometry, or with a suffix of R or Z in cylindrical geometry. Vector
components orthogonal to the mesh are still necessary for 2D simulations. These variables
are assigned to their own scalar variable and are listed as such in Table 2.

Material variables are associated with material properties and generally are located at
the mesh cell (or element) centers. In general, all MATERIAL variables for each MODEL
may be plotted by listing the variable name (with or without underscores) within the PLOT
VARIABLES keyword construct. These variables are listed in the material model ”Registered
Plot Variables” tables for each model (see Table 14, Table 16, Table 20, Table 34, up
through Table 36, for example.)
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Table 2: Plot Variables for TRANSIENT MAGNETICS.

Variable Name Type Description

AZ or
ATHETA

scalar (2D) Az or Aθ component of the vector potential orthogo-
nal to the mesh for 2D magnetics calculations

AJXB vector Lorentz force for 3D/2D MHD calculations
B vector Node-based magnetic field for 3D/2D magnetics cal-

culations
BE vector Element-centered magnetic field for 3D/2D magnet-

ics calculations
BZ or
BTHETA

scalar (2D) Node-based Bz or Bθ component of the magnetic field
orthogonal to the mesh for 2D magnetics simulations

BEZ or
BETHETA

scalar (2D) Element-centered Bz or Bθ component of the mag-
netic field orthogonal to the mesh for 2D magnetics
calculations

DIVB scalar (3D) Divergence of the magnetic field for 3D magnetics
calculations. Should always be exactly zero to round-
off.

PHI scalar (2D) Node-based product of rAθ for 2D cylindrical simu-
lations using the FIFE R SCALED formulation

PSI scalar (2D) Node-based product of rBθ for 2D cylindrical simu-
lations using the FIFE R SCALED formulation

E vector Node-based electric field for 3D/2D magnetics cal-
culations

EZ or
ETHETA

scalar (2D) Node-based Ez or Eθ component of the electric field
orthogonal to the mesh for 2D magnetics calculations

J vector Node-based current density for 3D/2D magnetics cal-
culations

JE vector Element-centered current density for 3D/2D magnet-
ics calculations

JZ or
JTHETA

scalar (2D) Node-based Jz or Jθ component of the current density
orthogonal to the mesh for 2D magnetics calculations

JEZ or
JETHETA

scalar (2D) Element-centered averaged current density orthogo-
nal to the mesh for 2D magnetics calculations

VVOL scalar Vertex volume for magnetics calculations
ECON material Electrical conductivity

Additional TRANSIENT MAGNETICS plot variables other than those listed in Table 2 are
available. They are not listed in the table because they typically are not of use to the user.
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These variables are particular to the details of solution formulations and are primarily of
use in debugging the solution method.

Table 3. Plot Variables for THERMAL CONDUCTION.

Variable Name Type Description

THERMAL CON material Thermal conductivity
THERMAL CON PAR material Thermal conductivity component parallel to B field
THERMAL CON PERP material Thermal conductivity component perpendicular to B

field

Table 4. Plot Variables for EMISSION.

Variable Name Type Description

EMITTED POWER scalar
array

Radiation power (energy per time) emit-
ted from each mesh element. Tallied by
radiation energy group (gg identifier) and
material (mm identifier). Tallies are also
summed over energy groups and material,
if there is more than one group or mate-
rial.

EMITTED POWER total power
EMITTED POWER Mmm Ggg by group and material
EMITTED POWER Ggg summed over materials
EMITTED POWER Mmm summed over groups
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4 General Physics Input

The physics option keywords specify the physics module(s) to use for a calculation. MHD
related options are listed in Table 5. Many options are actually combinations of the physics
modules implemented in ALEGRA. The preferred syntax is to use the name of the de-
sired physics module, followed by nested blocks of keywords specific to the parent physics
modules, and terminated with a corresponding END keyword. For example:

magnetohydrodynamics conduction
$ mhdcon is a child class formed by combining
$ the following 3 parent classes
hydrodynamics
no displacement, x, nodeset 1
[other hydrodynamics keywords]
...

end

transient magnetics
[transient magnetics keywords]
...

end

thermal conduction
[thermal conduction keywords]
...

end

[mhdcon specific keywords]
...
[block keywords]
...
[function keywords]
...

end

[other non-physics keywords]
...

Keywords pertaining to parent modules of a particular physics module are included

23



in the problem specification by placing the keywords in an END-block introduced by the
name of the parent module. Thus, a NO DISPLACEMENT keyword, which is specific to
HYDRODYNAMICS (actually DYNAMICS), appears immediately within the HYDRODYNAMICS
... END-block.

This new syntax offers certain advantages to ALEGRA code development teams. For
users of ALEGRA, it offers the advantage of grouping related keywords with the particular
physics module to which they are relevant.

4.1 Physics Choices

Physics modules included in ALEGRA-MHD, along with their keywords and parent classes,
are listed in Table 5. The parent classes that are listed refer to the specific input sections
that are contained in the base ALEGRA User’s Manual [4].

Table 5: Physics Options and Parent Classes.

Physics Option Parent Classes Description

HYDRODYNAMICS ENERGETICS
MECHANICS
DYNAMICS

Deformation with zero stress
deviators.

SOLID DYNAMICS ENERGETICS
MECHANICS
DYNAMICS

Deformation with nonzero
stress deviators.

TRANSIENT MAGNETICS ENERGETICS Transient magnetics diffusion
in non-moving media.

THERMAL CONDUCTION ENERGETICS Thermal conduction in non-
moving media.

MAGNETOHYDRODYNAMICS TRANSIENT MAGNETICS
SOLID DYNAMICS

Transient magnetics diffusion
coupled with solid dynamics.

MAGNETOHYDRODYNAMICS
CONDUCTION

TRANSIENT MAGNETICS
SOLID DYNAMICS
THERMAL CONDUCTION

Transient magnetics diffusion
coupled with solid dynamics
and thermal conduction.

HYDRODYNAMICS
CONDUCTION

THERMAL CONDUCTION
HYDRODYNAMICS

Thermal conduction coupled
to hydrodynamics.

SOLID DYNAMICS
CONDUCTION

THERMAL CONDUCTION
SOLID DYNAMICS

Thermal conduction coupled
to solid dynamics.
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In addition to the various physics options, there are options available that modify or
enhance the physics options. These modifiers are listed in Table 6.

Table 6. Physics Option Modifiers.

Physics Option Parent Class Modified Description

EMISSION ENERGETICS Uses a radiation emission model.
Applicable to all above physics op-
tions.
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4.2 Block Input

BLOCK int
[subkeyword-list]

END

The BLOCK keyword group allows the user to specify the materials that are contained in
a block and the type of mesh movement desired in the block. The default is for a block to
be a voided Lagrangian block (i.e., if all subkeywords are omitted).

The specification of LAGRANGIAN, MMALE, SMALE, or EULERIAN initially sets the mesh
movement for the block to these types. In particular for MMALE and SMALE meshes, addi-
tional physics based subkeywords have been defined to weight the node positions when
remapping a particular block. MHD specific ALEGRA BLOCK subkeywords are described
in Table 7. These subkeywords supplement the BLOCK subkeywords found in the primary
ALEGRA User’s Manual [4].

Table 7. BLOCK Remap Sub-Keywords.

Sub-Keyword Type Description

B MAG TRIGGER
J MAG TRIGGER
B MAG GRADIENT TRIGGER
J MAG GRADIENT TRIGGER

real Nodes will be flagged for remesh TRANSIENT
MAGNETICS quantities.

Triggers for remesh controlled by when the
magnitude of the vector quantity at the node
exceeds the input threshold value.

B MAG WEIGHT
J MAG WEIGHT
B MAG GRADIENT WEIGHT
J MAG GRADIENT WEIGHT

real Weights for remesh controlled by TRANSIENT
MAGNETICS quantities.

The remesh algorithm will use the maxi-
mum of the nodal value or the user specified
value to bias the Tipton remesh method. The
algorithm will tend to pull mesh nodes into
regions where the selected physics parameter
(or its gradient) are greatest.

4.3 Aztec Set

AZTEC SET int
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This keyword may appear as many times as desired, but if more that one type of physics
is specified, then this keyword MUST appear within the specific physics input sections. For
example, TRANSIENT MAGNETICS and THERMAL CONDUCTION solvers typically use differ-
ent AZTEC control sets, therefore one must specify different AZTEC SET int keywords in
the specific physics input sections.

The default AZTEC SET is 0 which defaults to the conjugate gradient algorithm with
symmetric diagonal scaling and other default options. Omission of the AZTEC SET id
keyword from a physics input block that requires the use of Aztec will cause that physics
to use the default set. The settings for this default set may be changed by including an
AZTEC SET 0 ... END block in the input file. See Section 9 for a descriptions of possible
options.

Example:

magnetohydrodynamics conduction
conduction

...
scale, 1.0e10 $ do not use explicit conduction time step
$ no explicit AZTEC SET keyword

end
transient magnetics

...
aztec set, 1

end
end

aztec 0 $ do NOT use ML for thermal conduction control
solver, cg
scaling, sym_diag
conv norm, rhs
precond, none
output, none
tol, 1.e-8
max iter, 5000

end

aztec 1 $ 2D Mag example for AZTEC/ML solver options
solver, cg
scaling, sym_diag $ default = sym_diag
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conv norm, rhs $ default = r0
tol, 1.e-8
output, none
multilevel $ These settings may be overkill

fine sweeps = 1
fine smoother = GAUSS SEIDEL
coarse smoother = lu
interp algorithm = AGGREGATION

end
end
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5 Magnetohydrodynamics Input

This section provides a list of supplemental keywords relevant to the magnetohydrody-
namics section of the ALEGRA User’s Manual [4]. The set of single-fluid hydrodynamics
equations solved by ALEGRA-MHD are:

∂ρ
∂t

� ∇ � �
ρ

�
v � � 0 (1)

ρ
�

∂
�
v

∂t
� � �

v � ∇ � �
v � � � ∇p

� � ρqκ1

�
E � � κ2

�
J 	 �

B (2)

ρ
�

∂e
∂t

� � �
v � ∇ � e � � � p

�
∇ � �

v � � ∇ � �
Q � � κ1ρq

�
v � �

E � � κ1η
�
J � �

J (3)

where ρ is the mass density, ρq is the charge density,
�
v is the velocity, p is the scalar

pressure (for simplicity we ignore tensor pressures), e is the specific internal energy,
�
B is

the magnetic field,
�
E is the electric field,

�
J is the current density,

�
Q is the heat flux, and η

is the resistivity.

Equations 1 to 3 utilize two of a set of unit dependent constants, κ1 and κ2. The sole
purpose of these constants is to allow the equations to be valid for a variety of sets of units.
These are described further in Section 6 on page 34. The equations show the coupling to
magnetics through the Lorentz force, κ2

�
J 	 �

B, and Joule heating, κ1η
�
J � �

J, and to thermal
conduction through the heat flux, � ∇ � �

Q. In the MHD limit, it is assumed that the plasma
is charge neutral (ρq � 0), and high-frequency phenomena are ignored ( ∂ �D

∂t is neglected),
therefore the terms and equations in [square brackets] are ignored.

5.1 Algorithm Control

MAGNETOHYDRODYNAMICS
...
... [hydrodynamics keywords] ...
...
[DENSITY FLOOR real]
[HYDRO FORCE DENSITY FLOOR real]
[LORENTZ FORCE DENSITY FLOOR real]
[MATERIAL FRACTION FORCE LIMIT real]
...

END
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Due to numerical approximation, some physics options may compute external forces
that are inordinately large compared to the material present in a mixed material/void cell,
hence the user may want to limit the forces in this case. Limiting only the forces associated
with that physics may introduce its own set of problems. The options listed here turn off
all forces, both internal and external, and accelerations.

5.1.1 Density Floor

DENSITY FLOOR real (0.0)]

When using various density floors to limit hydrodynamic forces, Lorentz forces, etc.,
it is possible to reduce the material density far below any specified density floor. This
can occur because one side of a cell may zero the forces, whereas the other side may
not, and material may then be advected out of the cell. Having the density fall too far
below a density floor may be detrimental, especially when it is desired to have the limited
feature turn back on as densities would rise back above the density floor. This keyword
forces ALEGRA to boost cell densities up to the specified DENSITY FLOOR when they fall
below this value. If this option is employed, the user should monitor the global mass
tallies MASSTOT, NODEMASS, and MASSERR, to ensure that too much mass is not added to the
simulation.

5.1.2 Hydrodynamic Force Density Floor

HYDRO FORCE DENSITY FLOOR real (0.0) [POWER real (0.0)]

Problems can arise in the calculation of forces on vertices with very little mass. The ef-
fective accelerations can become much too large causing mesh elements to become inverted
and the calculation to terminate. The HYDRO FORCE DENSITY FLOOR keyword condition-
ally or gradually turns off the nodal forces.

As an alternative to the MATERIAL FRACTION FORCE LIMIT, the HYDRO FORCE DENSITY
FLOOR keyword allows the user to limit the force acting on materials based upon the nodal
mass density. The densities of attached elements are averaged. If the average density is
less than the specified density floor, the nodal force is limited, otherwise the force is not
changed. The multiplier (h f d f ) of the nodal force used when the average density (ρ) is
less than the specified ρ f loor is given by the following expression where p is the specified
POWER.
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Figure 1. Hydrodynamic & Lorentz Force Density Floor Multi-
plier.

h f d f �

�
0 � p � 0�

ρ
ρ f loor � p

� p � 0
(4)

For p � 0 the limiter is a step function, for p � 1 the limiter is linear, for p � 1 the
limiter drops rapidly near the threshold, and for p � 1 the limiter drops rapidly near 0.
Graphically the multiplier can be displayed as in Figure 1.

Both the HYDRO FORCE DENSITY FLOOR and the MATERIAL FRACTION FORCE LIMIT
may be specified simultaneously, but note that the HYDRO FORCE DENSITY FLOOR will su-
persede the MATERIAL FRACTION FORCE LIMIT. The MATERIAL FRACTION FORCE LIMIT
will be ignored. Like MATERIAL FRACTION FORCE LIMIT, this keyword limits all forces,
both internal (e.g., pressure) and external (e.g., gravity and Lorentz).

5.1.3 Lorentz Force Density Floor

LORENTZ FORCE DENSITY FLOOR real (0.0) [POWER real (0.0)]

Problems can arise in the calculation of Lorentz forces on vertices with very little mass.
The effective accelerations can become much too large causing mesh elements to become
inverted and the calculation to terminate. The LORENTZ FORCE DENSITY FLOOR keyword
conditionally or gradually turns off the Lorentz forces.

As an alternative to the MATERIAL FRACTION FORCE LIMIT, the LORENTZ FORCE DENSITY
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FLOOR keyword allows the user to limit the Lorentz force acting on nodes based upon the
nodal mass density. The densities of attached elements are averaged. If the average density
is less than the specified density floor, the nodal force is limited, otherwise the force is not
changed. The multiplier (l f d f ) of the nodal force used when the average density (ρ) is
less than the specified ρ f loor uses the same expression found for the hydrodynamic force
limiter.

Both the LORENTZ FORCE DENSITY FLOOR and the MATERIAL FRACTION FORCE LIMIT
may be specified simultaneously, but note that the HYDRO FORCE DENSITY FLOOR will su-
persede the MATERIAL FRACTION FORCE LIMIT. The MATERIAL FRACTION FORCE LIMIT
will be ignored.

5.1.4 Material Fraction Force Limit

MATERIAL FRACTION FORCE LIMIT real (0.0) [POWER real (0.0)]

Problems can arise in the calculation of forces on vertices with very little mass. The
effective accelerations can become much too large causing mesh elements to become in-
verted and the calculation to terminate. The MATERIAL FRACTION FORCE LIMIT keyword
allows the user to limit the force acting on mixed material/void elements. This difficulty
arises because the force on the material in a mixed material/void element might not scale
proportionately with the amount of material present in the element. In the limit that the
material fraction (i.e., mat f rac � 1 � void f rc) tends to zero, the forces on the nodes sur-
rounding the element may be disproportionately large compared to the mass of the node.
In this case the acceleration of the nodes may become large causing the mesh to tangle by
inverting elements. This keyword is intended to rectify this situation by limiting the forces
on the nodes.

The material fractions of attached elements are averaged. If the average material frac-
tion is less than the specified limit, the nodal force is limited, otherwise the force is not
changed. The multiplier of the nodal force used when the average material fraction (mat f rac)
is less than the specified limit is given by the following expression where p is the specified
POWER.

m f f l �

�
0 � p � 0�

mat f rac
limit � p

� p � 0
(5)

For p � 0 the limiter is a step function, for p � 1 the limiter is linear, for p � 1 the
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Figure 2. Material Fraction Force Limiter for MHD.

limiter drops rapidly near the threshold, and for p � 1 the limiter drops rapidly near 0.
Graphically the multiplier can be displayed as in Figure 2.

Note that TRANSIENT MAGNETICS has the same MATERIAL FRACTION FORCE LIMIT
keyword. The difference in usage is that in TRANSIENT MAGNETICS this keyword limits the
Lorentz force only. In HYDRODYNAMICS this keyword limits all forces, both internal (e.g.,
pressure) and external (e.g., gravity and Lorentz).
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6 Transient Magnetics Input

TRANSIENT MAGNETICS
...
... [transient magnetics keywords] ...
...

END

The TRANSIENT MAGNETICS input controls the magnetics capability in this version of
ALEGRA. This allows for modeling electromagnetic effects in the quasi-neutral, quasi-
static magnetic field approximation. The set of Maxwell’s equations in the single-fluid
limit are:

∇ � �

E � � κ3
∂

�
B

∂t
(6)

∇ � �
H � � κ4

∂
�
D

∂t � � κ5

�
J (7)

η
�
J � �

E
� κ3

�
v � �

B (8)

� ∇ � �
D � κ6ρq � (9)

∇ � �
B � 0 (10)

� �
D � ε

�
E � (11)

�
B � µ

�
H or

�
H � ν

�
B (12)

where ρq is the charge density,
�
v is the velocity,

�
B is the magnetic field,

�
E is the electric

field,
�
J is the current density, η is the resistivity, and ε is the permittivity, and µ is the

permeability.

Equations 6 to 12 utilize a set of unit dependent constants, κ1 to κ6. The sole purpose
of these constants is to allow the equations to be valid for a variety of sets of units. Units
in the context of electromagnetics is a topic of considerable discussion [15, 16]. While six
constants are used for convenience, we note that the constants are not all independent. It
can be shown that κ2

� κ1κ3 by comparing the dimensionality of the Lorentz force with
the dimensionality of Faraday’s Law (Eq. 6). From the conservation of charge it follows
that κ5

� κ4κ6. Finally, from the electromagnetic wave equation in a vacuum one has
c2 � �

κ3κ4εµ � �

1. Table 8 defines the κ factors for five systems of units.
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Table 8. Values of Constants for Various Systems of Units

Constant SI Practical
CGS

CGS
Gaussian

CGS
EMU

CGS
ESU

κ1 1 107 1 1 1
κ2

� κ1κ3 1 1
10

1
c 1 1

κ3 1 10 �

8 1
c 1 1

κ4 1 108

c2
1
c 1 1

κ5
� κ4κ6 1 4π

10
4π
c 4π 4π

κ6 1 4πc2

109 4π 4π 4π
ε (permittivity) 107

4πc2 F/m 1 1 c �

2 1
µ (permeability) 4π10 �

7 H/m 1 1 1 c �

2

In the MHD limit, it is assumed that the plasma is charge neutral (ρq � 0), and high-

frequency phenomena are ignored ( ∂ �D
∂t is neglected), therefore the terms and equations in

[square brackets] are ignored. Additional discussion can be found in several references [24,
9, 10].

While most input keywords are similar in 3D and 2D, there are some differences. These
are noted in the following keyword descriptions. Various magnetic units are supported. See
the UNITS keyword in Section 3.1.1 for more information.

3D Example:

transient magnetics
formulation, whitney $ select algorithm
delta time = 5.e-6 $ implicit timestep

$ boundary conditions
e tangent bc, sideset 10, 0., x 1. y 0. z 0.

cyl axial slot bc, sideset 11, 1.0e6,
x 0. y 0. z 0.,
x 0. y 0. z 1.,
0.00075, 0.001, 0.002, 0.00225

uniform h bc, sideset 20, 0., x 0. y 0. z 1.
uniform h bc, sideset 30, 0., x 1. y 0. z 0.
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void conductivity, 1. $set void conductivity
current density, projected $method for current density computation

end

2D Example:

transient magnetics
start = 0.
stop = 100.e-9
delta time = 0.15e-9

rz cyl radial slot bc, sideset 1, function 1, scale 1.,
r 0.0, z 0.0, -2.0, -1.0, 1.0, 2.0

centerline bc, sideset 3, 0.0,

aztec set, 1
end

6.1 Formulation

FORMULATION, WHITNEY (3D)
FORMULATION, {FIFE | FIFE R SCALED} (2D)

This keyword defines the solution formulation. In 3D, it is unnecessary as there is only
one option.

In 2D, default value is geometry dependent. In 2D Cartesian geometry, the two methods
are equivalent, hence FIFE (Fully Integrated Finite Element) is chosen automatically as the
default. The difference is manifested in 2D cylindrical geometry, where FIFE R SCALED is
the preferred method and is chosen automatically as the default. FIFE solves for Bθ or Aθ as
the fundamental variable (depending on boundary conditions) and FIFE R SCALED solves
for Ψ � rBθ or Φ � rAθ as the fundamental variable (depending on boundary conditions).
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6.2 Time Step Control

6.2.1 Start

START real ( � ∞) (2D only)

This keyword indicates the simulation time to start the magnetic field solution, if dif-
ferent from the problem START TIME. Field values are set equal to zero prior to this time.
It has no effect in 3D.

6.2.2 Stop

STOP real (
� ∞) (2D only)

This keyword indicates the simulation time to stop the magnetic field solution, if dif-
ferent from the problem TERMINATION TIME. Field values are set equal to zero after this
time. It has no effect in 3D.

6.2.3 Delta Time

DELTA TIME real (1.e-6) [FIXED | MAGNETIC DIFFUSION | MAGDIFF] (3D)

DELTA TIME real (1.e-6) [FIXED | MAGNETIC DIFFUSION | MAGDIFF |
AUTOSTEP, TOLERANCE real, BMIN real ] (2D)

The minimum of the mechanics time step and this DELTA TIME value is used as the
actual magnetohydrodynamics time step. Otherwise this is the time step for the transient
magnetics physics. The specified value provides an upper bound on the time step when
using the non-fixed options described below. This value may also be used to give a time
scale for the differential algebraic equation solver at CIRCUIT SOLVER initialization. The
overall magnetics time step is reported in the DT MAG global variable. This is the net result
after considering all options described below.

The optional FIXED parameter causes transient magnetics to choose a fixed time step.
This is the default.
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The optional MAGNETIC DIFFUSION or MAGDIFF parameter adjusts the time step based
upon the magnetic diffusion coefficient, D. Mesh element that are less than 1% material
are excluded from consideration.

∆t � h2

4D
(13)

where D � 1 � �
κ2κ5σµ0 � , σ is the electrical conductivity, µ0 is the permeability, and h is a

characteristic cell size. The individual result of the magnetic diffusion time step is reported
in the DT MAGDIFF global variable.

The optional AUTOSTEP parameter is valid only in 2D and adjusts the time step by
estimating a relative truncation error and adjusting the time step to keep the error below
the specified TOLERANCE. The BMIN parameter omits mesh cells with a magnetic field value
below this value from consideration.

∆tnew
� ∆told

�
tolerance

relerr
(14)

where relerr � � ∆B
B � . Both the MAGNETIC DIFFUSION and AUTOSTEP options may be spec-

ified simultaneously.

Another factor, the Alfven speed, may control the time step when hydrodynamics is
enabled. In this case, the Alfven speed is combined with a material wave speed, e.g., the
sound speed, and used in a Courant condition. Keywords affecting the Alfven speed are
described below. The individual result of the Alfven speed time step is reported in the
DT ALFVEN global variable.

∆t � h�
V 2

hydro
�

V 2
Al f ven

(15)

where VAl f ven
� B�

µ0ρ in SI units.

Example 1:

transient magnetics
...
delta time 0.5e-6, magnetic diffusion
...

end
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Example 2:

transient magnetics
...
delta time 1., autostep, tol 0.01, bmin 1.e-4, magdiff
...

end

6.2.4 Alfven Density Floor

ALFVEN DENSITY FLOOR real (0.0)

If this keyword is present then the Alfven speed is artificially set to zero in any element
with a density below ALFVEN DENSITY FLOOR. This avoids the problem of very small time
steps due to anomalously large Alfven speeds in low-density regions.

Example:

transient magnetics
...
alfven density floor 0.01 $ gm/cmˆ3
...

end

6.2.5 Alfven Velocity Maximum

ALFVEN VELOCITY MAXIMUM real (0.)

If this keyword is present then the Alfven speed is artificially set to zero in any ele-
ment with a Alfven wave speed greater than ALFVEN VELOCITY MAXIMUM. This avoids the
problem of very small time steps due to anomalously large Alfven speeds.

Example:

transient magnetics
...
alfven velocity max 1.0e7 $ m/s
...
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end

6.3 Algorithm Control

6.3.1 A Rezone

A REZONE, {CT VAN LEER (default) | CT DONOR | CT HARMONIC |
CT MONOTONIC | MONOA (2D only)} (2D,3D)

The CT options indicate the constrained transport reconstruction option for the magnetic
flux in 3D or the vector potential in 2D Cartesian. The CT options take an optional ISO and
EH arguments for use by developers. CT VAN LEER is the default in 2D, but MONOA is still
available as an example of a not so good algorithm. This keyword can also be used in 3D,
but MONOA is not permitted.

6.3.2 Alpha

ALPHA real (0.) (2D only)

Variable weight of lumped versus consistent mass matrix. A value of 1.0 implies use of
a fully consistent mass matrix and the default value of zero implies use of a lumped mass
matrix. This is only active in 2D. In 3D a fully consistent vector edge element mass matrix
is used.

The effect of this option can be seen in certain magnetic diffusion simulations. Use of
the consistent mass matrix can result in small negative magnetic field values where none
are expected. Use of the lumped avoids this behavior, thus it is the default.

6.3.3 Aztec Set

AZTEC SET int (0)

This defines the id-number of the Aztec parameter set which the magnetic solver will
use.
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For 2D MAG or MHD, the equations solved are formulated to always produce sym-
metric positive definite matrices, hence the recommended settings for Aztec parameters
are:

AZTEC int
SOLVER, CG
SCALING, SYM_DIAG $ (or SYM_ROW_SUM)
PRECOND, SYM_GS $ (used if no MULTILEVEL)
CONV NORM, RHS $ (or ANORM or NOSCALED)
OUTPUT, NONE
TOL, 1.E-12 $ (< 1.E-8)
MAX ITER, 1000 $ (>500)
MULTILEVEL

FINE SWEEPS = 5
FINE SMOOTHER = GAUSS SEIDEL
COARSE SWEEPS = 1 $ (because it is LU)
COARSE SMOOTHER = LU
MULTIGRID LEVELS = 10
INTERP ALGORITHM = AGGREGATION

END
END

These settings for the solver, scaling and preconditioner are appropriate for symmetric
positive definite matrices. A convergence norm setting of R0 is not recommended because
2D TRANSIENT MAGNETICS uses the old solution as the initial guess and this norm can
easily remain greater than the tolerance, especially if the solution approaches steady state.
Tighter tolerances typically produce a more accurate answer and should be the first param-
eter changed if the answer is not approaching the expected solution, especially for high
resolution meshes. Note however that tight tolerances may cause Aztec to report conver-
gence warnings. These appear because Aztec converges for the scaled matrices, but not
necessarily for the unscaled matrices or for the convergence norm. To eliminate these
messages the user can try setting the SCALING and the PRECONDITIONER to NONE to force
convergence of the unscaled matrices. Finally, the iterative solver typically should not re-
quire an exceptional number of iterations. One case where high iteration counts may be
necessary is if the applied boundary conditions cause a strong step function change to the
solution during the initial time step.
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6.3.4 Conserve Memory

CONSERVE MEMORY

If this keyword is found then the magnetic solver code releases back to the system
temporary memory utilized in setting up and solving the linear equations. Otherwise, this
memory is only allocated once.

6.3.5 Magnetic Field

MAGNETIC FIELD, � PROJECTED | CONSISTENT �

Variations on implementations of deriving the magnetic field from the vector potential
by solving the equation

�

B � ∇ �

�

A. The default is PROJECTED in 3D and CONSISTENT in
2D. The CONSISTENT option is available in 2D only.

PROJECTED solves the curl equation by treating the LHS as a lumped diagonal matrix
and evaluating the RHS by a single point integration using the value of the curl at the cell
center.

CONSISTENT employs a finite element approach to calculate the nodal magnetic field di-
rectly from the nodal vector potential while skipping the element-centered magnetic field as
an intermediary. The LHS is treated as a lumped diagonal matrix and the RHS is evaluated
by Gaussian integration of the curl using finite element basis functions.

6.3.6 Magnetic Force

MAGNETIC FORCE, � TENSOR | PJXBV | PJXPBPV | NOBFORCE �

Variations on implementations of the magnetic force. Default is PJXPBPV in 3D and
TENSOR in 2D. Both the PJXPBPV and PJXBV options first compute the magnetic field and
current density at the mesh vertices and then form the cross product to determine the mag-
netic force. The TENSOR option computes the magnetic stress tensor at the element centers
and then computes a surface integral around each mesh vertex to determine the magnetic
force. NOBFORCE turns off the magnetic force term in MHD simulations. Primarily for
developers.
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6.3.7 Current Density

CURRENT DENSITY, � PROJECTED | CONSISTENT �

Various implementations of deriving the current density from either the magnetic field
by solving

�

J � ∇ �
1
µ

�

B or from the vector potential by solving
�

J � ∇ �
1
µ∇ �

�

A. The default
is CONSISTENT in 2D. Only PROJECTED is available in 3D.

PROJECTED solves
�

J � ∇ �
1
µ

�

B by treating the LHS as a lumped diagonal matrix and
evaluating the RHS by a single point integration using the value of the curl at the cell center.

CONSISTENT solves
�

J � ∇ �
1
µ∇ �

�

A by treating the LHS as a lumped diagonal matrix
and evaluating the RHS by Gaussian integration using finite element basis functions. The
RHS also integrates the double curl once to incorporate the boundary conditions.

6.3.8 Joule Heat

JOULE HEATING, � STANDARD | MAXSIGMA | NOHEAT �

Default is STANDARD. Joule heating is based on a fully-integrated, finite-element-based
rate consistent with the discrete magnetic diffusion equations. In multi-material mesh cells,
the Joule heat is partitioned among materials according to the conductivity fraction. For a
simple steady state problem this gives the correct Joule heating in mixed cells.

MAXSIGMA limits Joule heating in the multi-material and mixed-void-material elements
by effectively limiting the electric field by the ratio of the average conductivity to the max-
imum conductivity in the element. This prevents overheating of materials in mostly void
cells and may allow calculations to run longer than using the STANDARD option.

Q̇Joule
� σave � E � 2 � σave �

�
�
�

σave

σmax
E �

�
�
�

2

(16)

NOHEAT turns off the Joule heating term.

Another feature that is built into ALEGRA is the ability to selectively turn off Joule heat-
ing for specific materials. Occasionally simulations are run with non-conducting materials,
i.e., insulators. The electrical conductivity model should return a small, but finite, conduc-
tivity so that very little current flows in the insulator. Even though the conductivity and
current density are small, the Joule heating, J2 � σ, may be non-negligible. Joule heating
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Figure 3. Joule Heat Density Floor.

in these materials may be disabled if the conductivity of the material is below the VOID
CONDUCTIVITY. This feature also disables Joule heating of materials with no conductivity
model.

6.3.9 Joule Heat Density Floor

JOULE HEAT DENSITY FLOOR real (0.0) [POWER real (0.0)]

Problems can arise in the calculation of the Joule heating in elements with very little
mass. The effective heating can become much too large causing the material temperatures
to become too high and the calculation to terminate. JOULE HEAT DENSITY FLOOR condi-
tionally or gradually turns off the Joule heating term.

If the element mass density is less than the specified density floor, the Joule heating
is limited, otherwise the Joule heating not changed. The multiplier ( jhd f ) of the Joule
heating used when the average density (ρ) is less than the specified ρ f loor is given by the
following expression where p is the specified POWER.

jhd f �

�
0 � p � 0�

ρ
ρ f loor � p

� p � 0
(17)

For p � 0 the limiter is a step function, for p � 1 the limiter is linear, for p � 1 the
limiter drops rapidly near the threshold, and for p � 1 the limiter drops rapidly near 0.
Graphically the multiplier can be displayed as in Figure 3.
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Figure 4. Electrical Conductivity Density Floor.

6.3.10 Electrical Conductivity Density Floor

ELECTRICAL CONDUCTIVITY DENSITY FLOOR real (0.0) [POWER real (0.0)]

Problems can arise in the diffusion of the magnetic field and hence the calculation of
Lorentz forces in regions of the mesh with very little mass. ELECTRICAL CONDUCTIVITY
DENSITY FLOOR conditionally or gradually reduced down to the VOID CONDUCTIVITY.
This feature allows these regions to behave akin to void.

If the element mass density is less than the specified density floor, the electrical conduc-
tivity is limited, otherwise the electrical conductivity is not changed. The multiplier (ecd f )
of the electrical conductivity used when the average density (ρ) is less than the specified
ρ f loor is given by the following expression where p is the specified POWER. In all cases, the
electrical conductivity will be greater than or equal to the VOID CONDUCTIVITY.

ecd f �

�
0 � p � 0�

ρ
ρ f loor � p

� p � 0
(18)

For p � 0 the limiter is a step function, for p � 1 the limiter is linear, for p � 1 the
limiter drops rapidly near the threshold, and for p � 1 the limiter drops rapidly near 0.
Graphically the multiplier can be displayed as in Figure 4.
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6.3.11 Void Conductivity

VOID CONDUCTIVITY real (default 1.e-6)

This keyword defines the isotropic void conductivity as well as the default for materials
if a conductivity model is missing. It is not a required input. The default is set to 1.E-6
(Ω-m) �

1, except for the 2D vector potential formulation, in which case the default is zero.

Under certain circumstances, the value of the void conductivity can be used to disable
Joule heating in select materials (see Section 6.3.8 on page 43). This feature also disables
Joule heating of materials with no conductivity model.

6.3.12 Void Reluctivity

VOID RELUCTIVITY real (default 7.957747e+5)

This keyword defines the isotropic void reluctivity, i.e. the inverse of the permeability,
as the default for materials if a reluctivity models is not defined. It is not a required input.
The default is set to 1/(4π*10 �

7 H/m).

6.4 Boundary Conditions

Magnetic field distributions (and subsequently current density) are generated using proper
magnetic field initial conditions as well magnetic diffusion from boundary conditions. If
not set properly, non-physical results may occur. Users are highly encouraged to first create
a sketch of their experiment and identify the computational domain and relevant boundary
conditions before setting up the grid. Default boundary conditions for the 2D RZ code are
zero current density tangent to the boundary (current inflow or outflow). Default boundary
conditions for the 2D XY and 3D code are zero tangent magnetic field.

6.4.1 Uniform H BC

UNIFORM H BC, sideset, function-set, vector, [LENGTH real]

Apply
�

H �

�

B � µ0 boundary conditions to the given sideset assuming the vector is
tangential to the sideset. If it is not then the tangential component will be imposed. The
function-set specifies the magnitude of the magnetic field H when no LENGTH keyword
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is present. If a LENGTH is given then the function-set is assumed to be a current rather
than a magnetic field and LENGTH is used to change current to magnetic field units according
to:

B
�
t � � µ0H

�
t � � µ0I

�
t �

L
(19)

In 2D, a vector is specified as:

[X real, Y real,] [Z real] (Cartesian geometry)
[R real, Z real,] [THETA real] (cylindrical geometry)

depending upon geometry. The first two components or third component may be optional.

It is often useful to specify SCALE = 7.957747e5 in the function-set, especially when
working in SI units when the magnetic induction B is specified. This SCALE is 1 � µ0 and
scales H � B � µ0.

3D Examples:

uniform h bc, sideset 10, 1.0, scale 7.957747e5, x 0. y 0. z -1.
uniform h bc, sideset 11, 1.0, scale 7.957747e5, x 0. y 0. z 1.

2D Example (1 Tesla magnetic field in the boundary plane of a Cartesian mesh):

uniform h bc, sideset 10, 1.0, scale 7.957747e5, x 0. y -1.

2D Example (1 Tesla magnetic field orthogonal to the boundary plane of a Cartesian mesh):

uniform h bc, sideset 20, 1.0, scale 7.957747e5, z 1.

6.4.2 E Tangent BC

E TANGENT BC, sideset, function-set, vector

Apply tangential electric field boundary conditions to set the tangential components of
the electric field.
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vector is the electric field direction which the code normalizes to unit magnitude and
function-set gives the magnitude.

3D Example:

e tangent bc, sideset 100, 0.0, x 1. y 0. z 0.

2D Example:

e tangent bc, sideset 2, 200.0, r 0. z 1.

Typically, E tangent boundary conditions of zero are used to specify that current density
is traveling orthogonal (into or out of) the specified boundary.

6.4.3 Cylindrical Axial Slot BC

CYLINDRICAL AXIAL SLOT BC, sideset, {function-set | CIRCUIT},
vector1, vector2, r0, r1, r2, r3 (3D)

{XY|RZ} CYLINDRICAL AXIAL SLOT BC, sideset, {function-set | CIRCUIT},
[vector1,] r0, r1, r2, r3 (2D)

This boundary condition can be utilized to approximate current inflow and outflow
through a boundary in a manner similar to current flow into a device via an anode-cathode
(AK) gap or COAX cable feeds. The user must apply the axial slot boundary condition to
a sideset which must be a planar sideset cutting a cylindrical region. The prefix XY or RZ
is needed in 2D to distinguish between Cartesian and cylindrical geometries.

The user begins by sketching the computational domain and identifying key boundary
locations (see Figure 5). A coordinate system must first be established, thereby defining
a cylindrical axis and radial points from it (the cylinder does not necessarily have to be
aligned with the coordinate axes of the mesh).

The vector1 defines a point on the axis of the cylinder and may displace the cylinder
from the origin and also defines the r � 0 location. In 2D, it is used only in Cartesian
geometry and is omitted in cylindrical geometry. The vector2 is used only in 3D and
defines the direction of the cylindrical axis. Given a point

�
P on the sideset, z � � �

P �

�
V1 � �
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Figure 5. Geometry for the Cylindrical Axial Slot boundary con-
dition.

�
V2 and r � �

�
P �

�
V1

�

�
z �

�
V2 � � , assuming vector2 is normalized to unity (ALEGRA will do

this).

The real parameters r0, r1, r2, and r3 specify the radial range over which this boundary
condition applies. The total current is assumed to flow uniformly into the mesh between
r0 and r1 and out of the mesh between r2 and r3 so that there is no net accumulation of
electrical charge. In other words, the axial current density is assumed constant between r0
and r1, constant and of the opposite sign between r2 and r3, and zero elsewhere on the
sideset.

The function-set keyword may be used to drive the simulation with a prescribed
current source. The direction (polarity) of the current flow can be reversed by changing the
sign of the function-set (i.e., setting SCALE = -1.0). The CIRCUIT keyword may be used
instead of a function-set to couple the simulation to an external circuit.

Relative to the axis of the cylinder the magnetic field in the sideset is specified by

Hθ
� f

�
r � I

�
t �

2πr
(20)
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Figure 6. Current density streamlines from 3D cylindrical axial
slot application. A large anode-cathode (AK) gap has been placed
in the top plate where the boundary condition was applied. Using
the cylindrical axial slot BC, the current can now flow down the
side of the can, along the bottom, back up the inner (blue) wall and
back out the domain as if the slot was connected to a much larger
experimental apparatus which did not need to be incorporated into
the simulation.

where

f
�
r � �

���������
� ���������

0 � r � r0
r2

�

r2
0

r2
1

�

r2
0

� r0 � r � r1

1 � r1 � r � r2
r2
3

�

r2

r2
3

�

r2
2

� r2 � r � r3

0 � r3 � r�

(21)

In many instances the user may wish to allow the current to diffuse naturally into the
inner and outer conductors. This may be accomplished by letting the slot (or gap) between
r1 and r2 be its own sideset. r0 and r1 may be equal to each other and less than the inner
radius of the gap. r2 and r3 may be equal to each other and greater than the outer radius
of the gap. Because the extent of the sideset is limited to the gap, the boundary condition
will be applied only in the gap. ALEGRA will then naturally diffuse the magnetic field and
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Figure 7. Current density streamlines from a periodic 3D cylin-
drical axial slot application in a wedge domain similar to that in
Figure 6. In this example, the core of the domain has been re-
moved.

current into the inner and outer conductors.

3D Example (this example specifies a constant 1 MA current flow through the mesh):

cyl axial slot bc, sideset 11, 1.e6,
x 0. y 0. z 0.,
x 0. y 0. z 1.,
0.00075, 0.001, 0.002, 0.00225

2D Cylindrical Example:

rz cyl axial slot bc, sideset 1, function 2, scale 0.8,
0.0, 0.0, 1.0, 2.0

Note that ”scale” in this example is actually part of the ”function-set” keyword.

2D Cartesian Example:

xy cyl axial slot bc, sideset 300, circuit,
x 0.0 y 0.0, 1.0, 1.0, 2.0, 2.0
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Figure 8. Current density streamlines from 3D cylindrical axial
slot application. Individual axial slot boundary conditions are ap-
plied to each post, similar to COAX cable feeds. The top mesh
plate has been removed in order to see the interior of the computa-
tional domain. The scale option can be used to appropriately scale
the current at each post to a prescribed total current function.

6.4.4 Cylindrical Radial Slot BC

CYLINDRICAL RADIAL SLOT BC, sideset, {function-set | CIRCUIT},
vector1, vector2, z0, z1, z2, z3 (3D)

{XY|RZ} CYLINDRICAL RADIAL SLOT BC, sideset, {function-set | CIRCUIT},
vector1, [z0, z1, z2, z3] (2D)

Apply a current boundary condition to the given sideset which must be of cylindrical
shape. The prefix XY or RZ is needed in 2D to distinguish between Cartesian and cylindrical
geometries.

The function-set keyword may be used to drive the simulation with a known current
source. The direction of the current flow can be reversed by changing the sign of the
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Figure 9. Geometry for the Cylindrical Radial Slot boundary
condition.

function-set (i.e., setting SCALE = -1.0). The CIRCUIT keyword may be used instead of
a function-set to couple the simulation to a set of circuit equations.

The vector1 defines a point on the axis of the cylinder and may displace the cylin-
der from the origin and also defines the z � 0 location. In 2D cylindrical geometry, it
only defines the z � 0 location. The vector2 is used only in 3D and defines the di-
rection of the cylindrical axis. Given a point

�
P on the sideset, z � � �

P �

�
V1 � �

�
V2 and

r �
�
�
�

�
P �

�
V1

�
�
z �

�
V2 � �

�
�

, assuming vector2 is normalized to unity (ALEGRA will do this).

The real parameters z0, z1, z2, and z3 specify the axial range over which this boundary
condition applies. The total current is assumed to flow uniformly into the mesh between
z0 and z1 and out of the mesh between z2 and z3 so that there is no net accumulation of
electrical charge. In other words, the radial current density is assumed constant between
z0 and z1, constant and of the opposite sign between z2 and z3, and zero elsewhere on the
sideset.

Relative to the axis of the cylinder the magnetic field in the sideset is specified by

Hθ
� f

�
z � I

�
t �

2πr � (22)
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where

f
�
z � �

�������
� �������

0 � z � z0
z

�

z0
z1

�

z0 � z0 � z � z1

1 � z1 � z � z2
z3

�

z
z3

�

z2
� z2 � z � z3

0 � z3 � z �

(23)

In many instances the user may wish to allow the current to diffuse naturally into the
lower and upper conductors. This may be accomplished by letting the slot (or gap) between
z1 and z2 be its own sideset. z0 and z1 may be equal to each other and less than the lower
height of the gap. z2 and z3 may be equal and greater than the upper height of the gap.
Because the extent of the sideset is limited to the gap, the boundary condition will be
applied only in the gap. ALEGRA will then naturally diffuse the magnetic field and current
into the lower and upper conductors.

In situations where the upper and lower conductors are not explicitly modeled, z0 and
z1 may be below the mesh and z2 and z3 may be above the mesh to model a current that
effectively flows into the bottom and out of the top of the mesh.

3D Example:

cyl radial slot bc, sideset 30, function 1,
x 0.0 y 0.0 z 0.0,
x 0.0 y 0.0 z 1.0,
-10.0, -1.0, 1.0, 10.0

2D Cylindrical Example:

rz cyl radial slot bc, sideset 1, function 2, scale 0.8,
r 0.0 z 0.0, -2.0, -1.0, 1.0, 2.0

Note that ”scale” in this example is actually part of the ”function-set” keyword.

2D Cartesian Example:

xy cyl radial slot bc, sideset 300, circuit,
r 0.0 z 0.0
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Figure 10. Geometry for the E Normal Current Return boundary
condition.

6.4.5 E Normal Return Current BC

E NORMAL RETURN CURRENT BC, real,
CATHODE BLOCK id-list, ANODE BLOCK id-list,
{function-set | CIRCUIT} (2D XY only)

E NORMAL RETURN CURRENT BC, real,
CATHODE MATERIAL id-list, ANODE MATERIAL id-list,
{function-set | CIRCUIT} (2D XY only)

This boundary condition allows the modeling of a cross-section of a cathode-anode
configuration where the normal current in the cathode is balanced by the return current
in the anode. Specification of the cathode and anode may be accomplished using either
block-ids or material-ids. Block and material specifications may not be mixed in a
single simulation, however.

The first real is the length of the return current in the Z direction orthogonal to the
plane of the mesh. IMPORTANT: The region keyword VOLUMETRIC SCALE FACTOR must
also be set to the product of this length and any planar geometrical symmetries. This
is because the code divides the volumetric scale factor by this normal length in order to
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compute the planar symmetry for scaling the current.

If the block specification is used, the cathode and anode id-lists need to include all
blocks which may contain cathode or anode material during the course of the calculation.
It is desirable to have void (blocks not specified in the cathode or anode lists and having no
material) separating the two regions. The code will give warning messages if any material
enters these void regions. The code cannot otherwise determine if the anode and cathode
regions physically touch, causing an electrical short and thus invalidating the modeling
assumptions.

If the material specification is used, the cathode and anode id-lists must be distinct.
If the cathode and anode materials are the same, two MATERIAL keyword groups must still
be defined, but may reference the same set of MODEL subkeywords. The number of mesh
blocks is immaterial. No separating void blocks are needed. Cathode and anode materials
may coexist in the same mesh block. Other materials may be present in addition to the
anode and cathode materials. These materials may represent insulators or perhaps electri-
cally isolated conductors. The code will abort should cathode and anode materials coexist
in the same mesh cell. This situation indicates an electrical short and again invalidates the
modeling assumptions.

The function-set is representative of a voltage drop driver. Alternatively the mesh
may be coupled to an external CIRCUIT model.

Finally, this boundary condition is incompatible with H-tangent boundary conditions
such as the CYLINDRICAL AXIAL SLOT BC, CYLINDRICAL RADIAL SLOT BC, or UNIFORM
H BC.

Example 1:

e normal return current bc, 1.0,
cathode block 5, anode block 1 2 3 4, function 1

Example 2:

e normal return current bc, 0.036,
cathode material 11 12, anode material 13, circuit

The equations which describe this boundary conditions and the coupling to an external
circuit equation have been documented [18].
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6.4.6 Centerline BC

CENTERLINE BC, {sideset | NONE} (2D RZ only)

Zero the magnetic field or the vector potential along the given sideset. In 2D cylindri-
cal geometry, the value of the magnetic field Bθ, the vector potential Aθ, and their products
with the radius r are identically zero along the centerline of the mesh. Multiple occurrences
of this command are allowed when the centerline is comprised of more than one sideset.

This is the only boundary condition for magnetic field simulations that can be known
a priori and was historically provided for the user. The method devised to implement the
boundary condition, however, is rather inefficient for large meshes, requiring a loop over
the entire mesh every time step. The historic method is still used in cylindrically sym-
metric problems when no CENTERLINE BCs are specified. Use of this boundary condition
suppresses the historic method.

This boundary condition is valid along the inner edge of cylindrical meshes that do not
extend to the centerline, but still have the field equal to zero because there is no enclosed
current. It is also valid along the outer edge of cylindrical meshes where there is zero net
current (i.e., there may be oppositely directed currents that cancel one another).

The keyword NONE specifies that there is no such applicable boundary condition. Such
may be the case if there is an interior current-carrying conductor that is not explicitly mod-
eled. The intent of the NONE keyword is to suppress the historic method in cases where
there is no zero-field inner boundary.

2D RZ Examples:

centerline bc, sideset 11
centerline bc, sideset 12

6.5 Magnetic Flux Density Initial Conditions

Generally speaking magnetic flux density initial conditions must be used with care and
consideration. In most real problems the interior magnetic field should be generated as a
consequence of boundary conditions. However, sometimes it is convenient to input ini-
tial conditions and then view the evolution of the field from that point on. The DIFFUSE
INITIAL FIELD option can also be used to smooth the initial conditions if desired before

57



the actual start of the simulation. The general format for initial magnetic flux density initial
conditions is

INITIAL B FIELD, [block-id,] � option �

This specifies the application of an initial condition by block-id. The block-id deter-
mines the mesh block to which the initial condition applies. If omitted, the initial condition
will apply to all mesh blocks. block-ids are required to be positive.

The option keyword allows the user to choose from the following initial conditions. If
no initial conditions are specified, then the initial magnetic field is set equal to zero.

If multiple initial conditions are specified, then the fields are added according to the
superposition principle.

6.5.1 Diffuse Initial Field

DIFFUSE INITIAL FIELD, [real]

This options invokes a transient magnetics solve before startup whereby the relevant
magnetic field distribution may be computed for a given span of time based on the boundary
conditions implemented. This option is particularly useful in establishing a potentially non-
trivial magnetic field distribution before the simulation start time.

The real number represents the time interval for the magnetic field diffusion. The
size of the time interval relative to the magnetic diffusion time, τd

� l2 � 4D, where D �

1 �
�
κ2κ5σµ0 � , determines the amount of diffusion that takes place. Currently this option

performs only one magnetic solve. The user should be aware that setting the time interval
too high may result in lack of convergence of the iterative solver.

6.5.2 Uniform Initial Field

INITIAL B FIELD, [block-id,] UNIFORM, vector1,
[symtensor], [CONSTANT vector2] (3D)

INITIAL B FIELD, [block-id,] UNIFORM, vector1,
[CONSTANT real] (2D)
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Uniform magnetic flux density value. block-id specifies the input block to which the
field applies. If block-id is missing the field applies to all blocks.

The value,
�

B, vector1, specifies the magnitude and direction of the initial magnetic
field. Units for the magnitude are Tesla in SI units, or Gauss in practical CGS units, or
Gauss in GAUSSIAN units.

In 3D the symtensor,
�

�

S, contributes an extra term to the vector potential to give certain
continuity properties to the vector potential at block boundaries. It does not affect the
magnetic field density except at block boundaries. The vector2,

�

C, is a constant vector
offset to the vector potential available to match the vector potential across block boundaries.

�

A � �
C

�
� 5

� ��
S

�
x

�
�
B �

�
x � (24)

In 2D, a vector is specified as

[X real, Y real,] [Z real] (Cartesian geometry)
[R real, Z real,] [THETA real] (cylindrical geometry)

depending upon geometry. The first two components or third component may be optional.
The CONSTANT is an offset to the vector potential component to match the vector potential
across block boundaries.

6.5.3 Uniform Planar Current

INITIAL B FIELD, UNIFORM PLANAR CURRENT, vector1, vector2, vector3
(Cartesian only)

This keyword defines a planar magnetic flux density generated by a planar sheath of
uniform current density. The magnetic field is zero on one side of the sheath (called the
negative side), is uniform on the other side of the sheath (called the positive side), and
varies linearly within the sheath. This initial condition applies to all mesh blocks and is not
meaningful in 2D cylindrical geometry.

vector1 specifies a point on the negative face of the sheath. vector2 orients the sheath
normal. Its magnitude equals the thickness of the sheath. Its direction points toward the
positive side of the sheath where the magnetic field is non-zero. vector3 defines the di-
rection and magnitude of the magnetic field.
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Figure 11. Geometry for the Uniform Planar Current initial con-
dition.

In 2D, vector1 and vector2 have only (X,Y) components, while vector3 may have
all three components and is specified as:

[X real, Y real,] [Z real]

The analytic formulas for this initial condition are as follows. Given a point
�
P in the

mesh, the coordinate relative to the negative face of the sheath is x � � �
P �

�
V1 � �

�
V2 � �

�
V2 � . The

magnetic field and vector potential are:

�
B

�
x � � B0

�
V3

�
�
V3 �

��
� ��

0 � x � 0

x � �
�
V2 � � 0 � x � �

�
V2 �

1 � �
�
V2 � � x

(25)

�
A

�
x � � B0

�
V2 �

�
V3

�
�
V2 �

�
V3 �

��
� ��

0 � x � 0
� x2 �

�
2 �

�
V2 � � � 0 � x � �

�
V2 �

� 1
2 �

�
V2 � �

�
x � �

�
V2 � � � �

�
V2 � � x

(26)

where B0
� �

�
V3 � has been called out for clarity.
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For example in 2D Cartesian geometry, a 0.5 mm sheath perpendicular to the x axis and
centered at 2.0 cm and with a 200 T magnetic field on its positive side is specified using SI
units as:

initial b field, uniform planar current,
x 0.01975 y 0., $ sheath face
x 0.0005 y 0., $ sheath normal/thickness
z 200. $ magnetic field

6.5.4 Uniform Axial Current

INITIAL B FIELD, [block-id,] AXIAL CURRENT,
[R0 real] [R1 real] [B0 real] [B1 real] [CONSTANT vector,]
vector1, vector2, z0, z1, z2, z3 (3D)

INITIAL B FIELD, [block-id,] AXIAL CURRENT,
[R0 real] [R1 real] [B0 real] [B1 real] [CONSTANT real,]
vector1, [z0, z1, z2, z3] (2D)

This keyword defines an azimuthal magnetic flux density generated by a uniform axial
current. All optional parameters default to zero if they are not specified.

block-id specifies the input block to which the field applies. If block-id is missing
the field applies to all blocks.

R0 and R1 specify the inner and outer radii of the annular region where the axial current
flows. The current density is assumed to be uniform for R0 � r � R1 and zero elsewhere.
B0 and B1 specify the magnitude of the azimuthal magnetic field at the radii R0 and R1,
respectively.

The optional CONSTANT keyword is added to the vector potential to allow continuity of
the vector potential across block boundaries.

vector1 defines a point on the axis of the cylinder which displaces the annular region
from the origin and defines the z � 0 point along the axis. vector2 defines the direction
of the axis of the region in 3D (ALEGRA will normalize vector2). These parameters are
similar to the CYLINDRICAL RADIAL SLOT BC boundary condition (see Figure 12).

The real numbers z0, z1, z2, and z3 define the axial extent of the initial field. The
magnetic field is modified by a factor f

�
z � that increases linearly from zero to one between
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Figure 12. Geometry for the Axial Current initial condition.

z0 and z1, is unity between z1 and z2, and decreases linearly back to zero between z2 and
z3. It is zero outside this range. This models a positive uniform current density entering
the mesh through a cylindrical slot between z0 and z1 and exiting the mesh through a
cylindrical slot between z2 and z3. z0 and z1 can be below the mesh and z2 and z3 above
the mesh to model a current that flows into the bottom and out of the top of the mesh.

f
�
z � �

�������
� �������

0 � z � z0
z

�

z0
z1

�

z0 � z0 � z � z1

1 � z1 � z � z2
z3

�

z
z3

�

z2 � z2 � z � z3

0 � z3 � z �

(27)

In 2D, vector1 is a point on the axis of the cylindrical region. In Cartesian geometry
it can be used to displace the center of the region from the origin. In cylindrical geometry,
it defines the z � 0 point along the axis. No second vector is needed because the direction
of the cylindrical axis can only be parallel to the z axis. The real numbers z0, z1, z2, and
z3 are only needed in 2D for cylindrical geometry and have the same meaning as in 3D.

The analytic formulas for this initial condition are as follows. Given a point
�
P in the

mesh, the location along the axis is z � � �
P �

�
V1 � �

�
V2 and the radial distance from the cylin-

drical axis is r � �
�
P �

�
V1

�
�
z �

�
V2 � � . The azimuthal magnetic field and vector potential
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are:

Bθ
�
r � �

���
� ���

0 � r � R0

1
r

�
R0B0

R2
1

�

r2

R2
1

�

R2
0

�
R1B1

r2
�

R2
0

R2
1

�

R2
0 � � R0 � r � R1

B1
R1
r � R1 � r

(28)

�
A

�
r � � �

A0
� �

n

����
� ����

0 � r � R0

R0B0
�

R1B1
2

�
r2

�

R2
0

R2
1

�

R2
0 � �

�
R0B1

�

R1B0 � R0R1

R2
1

�

R2
0

ln
�

r
R0 � � R0 � r � R1

R0B0
�

R1B1
2

�
�
R0B1

�

R1B0 � R0R1

R2
1

�

R2
0

ln
�

R1
R0 � � R1B1 ln

�
r

R1 � � R1 � r

(29)

where
�
A0 is the optional CONSTANT and

�
n is the unit vector in the direction of vector2.�

A0 is added to the vector potential to allow continuity of the vector potential across block
boundaries. Quite often, R0

� 0 and/or B0
� 0 and the above expressions simplify tremen-

dously. In 2D,
�
A0 and

�
n have only a z component.

For example, if block 3 is an annular region located between two perfect cylindrical
conductors at radii 0.002 meters and 0.02 meters and 1000 Amperes of current flows on
the inner conductor and -1000 Amperes flows on the outer conductor, the magnetic field in
block 3 is described in 3D by:

$ calculate A as a superposition of fields
$ block 1 (inner conductor) defaults to zero
$ block 2 (outer conductor)

initial b field, block 2, axial current, r1 0.02, b1 0.0,
constant, x 0., y 0., z -5.605e-4,
x 0., y 0., z 0., x 0., y 0., z 1., -2., -1., 1., 2.

$ block 3 (annular region)

initial b field, block 3, axial current, r1 0.002, b1 0.1,
x 0., y 0., z 0., x 0., y 0., z 1., -2., -1., 1., 2.

or in 2D cylindrical by:

$ Btheta (not Atheta) is the fundamental variable
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$ blocks 1 and 2 (inner and outer conductors) default to zero
$ block 3 (annular region)

initial b field, block 3, axial current, b 0.1, r 0.002,
r 0., z 0., -2., -1., 1., 2.

6.5.5 Mean Initial Field

INITIAL B FIELD, MEAN, vector

This keyword is intended to be used for vector potential solutions on periodic meshes.
One cannot represent a constant magnetic field with a periodic vector potential. In 2D, this
means that the magnetic field must be in the plane of the mesh, orthogonal components
are not allowed. The vector is a magnetic field vector that is constant in both space and
time. There is no block-id subkeyword with this command. To be constant in space, this
command must apply to all blocks. This keyword is typically used in conjunction with
other initial fields and/or boundary conditions to represent the total magnetic field.

In 3D, the vector is specified as:

X real, Y real, Z real (Cartesian geometry)

In 2D, the vector is specified as either:

X real, Y real (Cartesian geometry)
R real, Z real (cylindrical geometry)

Orthogonal components to the mesh are not allowed. Only a non-zero Z component makes
physical sense in cylindrical geometry.

Example:

initial b field, block 1, uniform, x 0.0 y 0.001120998243 $ left
initial b field, block 2, uniform, x 0.0 y -0.001120998243 $ right

initial b field, mean, x 0.0008407486825 y 0.0
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uniform h bc, sideset 21, 0.001120998243, scale 7.957747e5,
x 0.0 y 1.0 $ left

uniform h bc, sideset 22, -0.001120998243, scale 7.957747e5,
x 0.0 y 1.0 $ right

6.5.6 User Defined

INITIAL B FIELD, [block-id] USER DEFINED, (A or B)

[END]

This option provides the user with substantial flexibility in establishing a magnetic field
based upon an analytic function using basic functions. The user may specify the vector
potential field (A) in 3D or the scalar potential (Az) for 2D xy simulations. The magnetic
flux density is given by the curl of A. For 2D xy or rz simulations the field value is the
scalar magnetic flux density (Bz or Bθ). This option is the preferred method of initializing
magnetic field configurations that are not covered by other options. The C code which
is implemented must abide by the special rules given in the file README.txt in the ale-
gra/tools/rtcompiler directory of the ALEGRA distribution. Three examples are provided:

INITIAL B FIELD, [block-id,] USER DEFINED, A,
$ quoted C code with:
$ coord[0..1] as the input point in the field and
$ field[0] as the output vector potential scalar field.
$ For example, specify a 2D xy vector potential field
"field[0] = -3.*coord[0]*cos(coord[1]);"

[END]

INITIAL B FIELD, [block-id,] USER DEFINED, B,
$ quoted C code with:
$ coord[0..1] as the input point in the field and
$ field[0] as the output magnetic flux density field.
$ For example, specifies the magnetic flux density field in 2D rz.
"field[0] = -3.*coord[0]*cos(coord[1]);"

[END]

INITIAL B FIELD, [block-id,] USER DEFINED, A,
$ quoted C code with:
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Figure 13. Magnetic field streamlines from 3D user defined mag-
netic field example.

$ coord[0..2] as the input point in the field and
$ field[0..2] as the output vector potential field.
$ For example, specify a 3D xyz vector potential field for a coil of radius L1
$ with magnitude B1.

"
double pi = acos(-1.0);
double radius = sqrt( coord[0]*coord[0] + coord[1]*coord[1] +

coord[2]*coord[2] );
double theta = atan2( sqrt( coord[0]*coord[0] +

coord[1]*coord[1] ), coord[2] );
double phi = atan2( coord[1], coord[0] );
double aphi = {B1*L1*L1}*radius*sin(theta) /

( ({L1*L1}+radius*radius+{2.0*L1}*radius*sin(theta))*
sqrt(({L1*L1}+radius*radius+{2.0*L1}*radius*sin(theta)))
);

field[0] = -aphi*sin(phi)/2.0;
field[1] = aphi*cos(phi)/2.0;
field[2] = 0.;

"
[END]
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6.6 Coupled Circuit Equations

If required, the user can setup an external circuit (represented as a set of differential-
algebraic equations) to be coupled to the transient magnetic or MHD simulations. This
is useful in situations where the simulation is driven by a known voltage source (most mag-
netic boundary conditions require knowledge of the current) or where the dynamics of the
system being modeled feeds back into the electrical response of the external circuit. The
circuit solver may be used in both 2D and 3D, and in either SI or CGS (Practical CGS) units.
An explanation of the global output variables associated with the circuit solver is given in
Table 41 on page 130.

The circuit equations are solved using DASPK [19, 7, 22]. DASPK is describe further
in Section 6.6.1 below.

Coupled circuit equations are fairly simple to set up and the method is outlined using
the following steps.

1. Sketch a diagram of the equivalent circuit (see Figure 14).

2. Label the junctions between the circuit components with numbers. Each junction
becomes a CIRCUIT NODE in the input deck. The numerical labels become the node
numbers in the input deck. Circuit nodes can connect more than two circuit elements,
that is, parallel circuits are allowed.

3. Each circuit component becomes a CIRCUIT ELEMENT in the input deck. Most circuit
elements connect two nodes and these are designated as the input and output nodes.
A few circuit elements connect three nodes. Positive currents flow from the input
node to the output node. If the order of the nodes happen to be mislabeled, no matter,
ALEGRA will report a negative current flowing in the element.

4. ALEGRA will automatically construct a set of equations consistent with Kirchhoff’s
laws for the equivalent circuit, namely that the sum of the voltages around a loop is
zero, ∑V � 0, and that the sum of the currents into a node is zero, ∑ I � 0.

For example, the Z accelerator in the Pulsed Power Center at Sandia National Labo-
ratories can be modeled using an equivalent circuit. The simplest such model has only a
time-dependent voltage source, an external resistance and an external inductance. The Z
pinch load is modeled using the magnetohydrodynamics features of ALEGRA. As the Z
pinch plasma (load) collapses and stagnates onto its axis, the inductance of the load rises
dramatically causing a current drop in the external circuit. Voltage monitors along the ac-
celerator reliably measure the voltage at a significant distance from the load. The actual
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Figure 14. Simple circuit model for the Z accelerator.

current through the load is not known to the same accuracy. Both of these aspects can be
modeled using a coupled circuit equation.

Example:

$ external circuit loop
circuit solver, relerr 1.e-4, abserr 1.e-4

circuit node, 1, fixedv 0. $ ground
circuit node, 2
circuit node, 3
circuit node, 4, function 1 $ source voltage

$ circuit element, 1 4 $ represented by source voltage
circuit element, 4 3, resistor 0.120 $ ohms
circuit element, 3 2, inductor 12.05e-9 $ henrys
circuit element, 2 1, mesh

rz cyl radial slot bc, sideset 300, circuit,
r 0. z 0., -10., -1., 1., 10.

6.6.1 Circuit Solver

CIRCUIT SOLVER, [RELERR real (0.01)] [ABSERR real (0.01)]
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Circuit solver error criteria passed to DASPK. The error values typically used range
from 1.E-4 to 1.E-6. The DASPK solution procedure is somewhat sensitive. The DASPK
solver is an adaptive differencing type of code which uses divided difference to estimate
accuracy. It is the contention of the authors that the user cannot push the tolerances too low
or else one will end up with roundoff problems. If the user gives some reasonable happy
medium tolerance the package will be reasonably robust. It is recommended that the user
adjust these error parameters to gain a feel for solution response and carefully monitor the
actual solutions obtained.

6.6.2 Circuit Node

CIRCUIT NODE node_#
[sideset]
[ STARTV real |

FIXEDV real |
function-set |
DAMPED SINUSOID amplitude damping_rate frequency phase |
DOUBLE EXPONENTIAL A_amplitude a_exponent B_amplitude b_exponent]

This input defines a circuit node and associated voltage. A node may be attached to one
or more CIRCUIT ELEMENTs. According to Kirchhoff’s law the sum of the currents flowing
from each circuit element into the node must sum to zero. If a node connects to only one
circuit element then that node must have its voltage specified.

The sideset, if specified, is constant potential surface in the ALEGRA mesh. The
voltage at this surface is defined by one of the following voltage options. The potential is
linked to the ALEGRA simulation through an E TANGENT BC boundary condition.

The remaining set of optional keywords allow a choice of the voltage behavior of the
node. Note that the user is not required to specify a voltage option. In that case, the voltage
is allow to vary and the values are computed by the circuit model.

STARTV sets the initial voltage of the node. Subsequent voltage values are computed by
the circuit model. This option is useful for specifying an initial voltage across a capacitor
element.

FIXEDV fixes the voltage of the node at a constant value. At least one node must have a
constant zero voltage. This node provides the ground for the circuit model.

function-set or FUNCTIONV specifies a tabular voltage input for the node. The table #
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refers to a standard ALEGRA FUNCTION and the optional SCALE parameter is a voltage
multiplier.

DAMPED SINUSOID requires four real values and specifies a time dependent voltage of the
form

V
�
t � � A � e �

a � t � sin
�
ω � t

� θ � � (30)

where A is the voltage amplitude, a is the damping rate, ω is the frequency (radi-
ans/second) and θ is the phase (radians).

DOUBLE EXPONENTIAL requires four real values and specifies a time dependent voltage of
the form

V
�
t � � A � e �

a � t � B � e �

b � t
� (31)

6.6.3 Circuit Element

CIRCUIT ELEMENT input_node output_node
{ MESH |

CAPACITOR real_capacitance |
INDUCTOR real_inductance |
RESISTOR real_resistance |
SOURCE, function-set |
SWITCH, function-set |
VARISTOR real_vref real_iref real_alpha |
ZFLOW, {function-set} real_gmin real_gmax }

This line defines each circuit element and its characteristics. Many circuit element input
values are order dependent and have no keywords.

The input node and the output node are integer numbers correspond to nodes defined
by the CIRCUIT NODE keyword. A positive current flows through the circuit element from
the input node to the output node.

One of the remaining keywords is required to specify the type of circuit element. Valid
options are specified in the following list.
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MESH specifies that this circuit element represents the mesh. This circuit element couples
to a TRANSIENT MAGNETICS boundary condition that specifies the CIRCUIT keyword such
as the CYLINDRICAL RADIAL SLOT BC.

CAPACITOR specifies a standard electrical capacitor with a capacitance value of real capacitance.

INDUCTOR specifies a standard electrical inductor with a inductance value of real inductance.

RESISTOR specifies a standard electrical resistor with a resistance value of real resistance.

SOURCE specifies a prescribed current source defined by the function-set.

SWITCH specifies a resistor with a time dependent resistance value given by a function-set.

ZFLOW specifies a Zflow resistor with a Zflow value given by the function-set. Minimum
and maximum conductance values are also required. The first node in the element node list
specifies the Zflow loss node. The model requires that the Zflow loss node have a circuit
element connectivity of 3. The conductance for the Zflow element is given by

Iupstream
� Idownstream

Z f low

�
I2
upstream

� I2
downstream

(32)

Example:

circuit solver, relerr=1.e-4, abserr 1.e-4

$ mesh loop
$ capacitor-mesh $ mesh has inductance and resistance

circuit node 1 fixedv 0.
circuit node 2 startv 1. $ initial capacitor voltage

circuit element, 1 2, capacitor 5.e-6 $ Farads
circuit element, 2 1, mesh

xy cyl radial slot bc, sideset 300, circuit,
r 0. z 0.

$ test loop - independent of mesh
$ capacitor-inductor-resistor
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circuit node 3 fixedv 0.
circuit node 4 startv 1. $ initial capacitor voltage
circuit node 5

circuit element, 3 4, capacitor 5.e-6 $ Farads
circuit element, 4 5, inductor 18.64e-9 $ Henrys
circuit element, 5 3, resistor 5.09e-2 $ Ohms

This example is from a problem that computes the behavior of a section of coaxial cable
(the mesh) driven by the voltage stored in a capacitor. This is represented by nodes 1 and
2 and the associated circuit elements. For comparison a simple test RLC circuit is also
modeled by node 3, 4, and 5, and the associated elements. Note that this test circuit is
completely independent of the mesh demonstrating the flexibility of the circuit model.

6.7 Current Tally

CURRENT TALLY, int,
sideset1 [SYMMETRY FACTOR real] [sideset2 ...]

END (3D/2D)

CURRENT TALLY, int,
block-id1 [SYMMETRY FACTOR real] [block-id2 ...]

END (2D only)

This option allows the user to tally the total current flowing through a collection of
sidesets or blocks as a function of time. Multiple sidesets may be included in a single tally.
The int is used to identify the tally in the EXODUS and HISPLT output files. In 2D, the
user may specify a set of blocks to tally the total current flow perpendicular to the mesh.
sidesets and block-ids may not be mixed in the same tally, although both may appear
in separate CURRENT TALLY commands in the same input deck. Both the incoming and
outgoing currents are reported for each tally. The names of the tallies in the output files are
I IN int and I OUT int.

The optional SYMMETRY FACTOR keyword allows the user to individually scale the cur-
rent tally of each sideset or block in situations where a symmetry is present and a reduced
simulation is modeled. This keyword is necessary because sidesets (which are areas) may
not scale in the same manner as volumes (e.g., the VOLUMETRIC SCALE FACTOR keyword).
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Coding internal to ALEGRA attempts to force the user to specify a completed set of
tallies. The code checks to see that the incoming and outgoing currents are equal, or else
that one is zero in the case of a partial tally. If the two values differ by more than some
tolerance (currently 1.E-5), a warning message is issued.

Assuming the specified tallies represent the total current, ALEGRA also reports the total
current in the variable CURRENT, the total mesh inductance in the variable INDUCTANCE, and
the total mesh resistance in the variable RESISTANCE.

Examples:

current tally, 1, sideset 3, sideset 4, end
current tally, 2, block 12, end
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7 Thermal Conduction Input

THERMAL CONDUCTION
...
... [thermal conduction keywords] ...
...

END

The THERMAL CONDUCTION keyword group specifies controls for the implicit thermal
solver routines.

ρCv
∂T
∂t

� ∇ �
�
k∇T � (33)

where T is the temperature, ρ is the density, Cv is the specific heat, and k is the thermal
conductivity.

7.1 Time Step Control

The thermal conductivity time step is given by

∆tcon
� f min

�
∆tk � ∆tc � (34)

where

∆tk � ρCvh2

k
(35)

where h is a characteristic cell size and

∆tc � ∆t
�

� 05 � � T
�

Tmin � � � T � Told � (36)

7.1.1 Time Step Scale, f

TIME STEP SCALE real (default 10.)

The keyword TIME STEP SCALE can be set to control the scale, f , applied to the time
step. The time step is calculated using an explicit criteria, but can be increased by any
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desired factor f since the actual calculation is implicit, by use of the TIME STEP SCALE
keyword. The default value is 10.

The thermal conduction time step is reported in the DT CON global variable. Note that
this time step is reported in the output file without the TIME STEP SCALE factor.

7.1.2 Minimum Temperature, Tmin

MINIMUM TEMPERATURE real (default 1000 K) Tmin is the cutoff temperature for tem-
perature change control.

7.1.3 Minimum Density , ρmin

MINIMUM DENSITY real (default 0.) ρmin is the cutoff thermal conductivity density.
This keyword is needed when the thermal solves are taking too many iterations due to
a stiffness rather than mass dominated matrix corresponding to extremely high thermal
diffusion speeds. This can happen for very small densities occurring in the problem. No
multigrid is available for the face centered discretization employed so to make progress
this keyword can be employed to essentially turn off diffusion in very low density regimes.
This is accomplished internally in the code by setting the thermal conductivity k to very
small values.

7.2 Algorithm Control

7.2.1 Aztec Set

AZTEC SET int

This keyword sets the identification number of the Aztec parameter set which the im-
plicit thermal solver will use. The actual parameters used are specified by the AZTEC key-
word group. The default value is 0.

7.2.2 Conserve Memory

CONSERVE MEMORY
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Requests that all solver memory for conduction be returned to the system and reallo-
cated the next cycle. By default the memory is retained across cycles. WARNING: It is
possible that excessive allocations and deallocations can have a detrimental effect on code
performance.

7.2.3 Thermal Conductivity Density Floor

THERMAL CONDUCTIVITY DENSITY FLOOR real (0.0) [POWER real (0.0)]

Problems can arise in the diffusion of the material temperature in regions of the mesh
with very little mass. THERMAL CONDUCTIVITY DENSITY FLOOR conditionally or gradu-
ally reduces the thermal conductivity down to zero. This feature allows low density regions
to behave akin to void.

If the element mass density is less than the specified density floor, the thermal conduc-
tivity is limited, otherwise the thermal conductivity is not changed. The multiplier (ecd f )
of the thermal conductivity used when the average density (ρ) is less than the specified
ρ f loor is given by the following expression where p is the specified POWER.

tcd f �

�
0 � p � 0�

ρ
ρ f loor � p

� p � 0
(37)

For p � 0 the limiter is a step function, for p � 1 the limiter is linear, for p � 1 the
limiter drops rapidly near the threshold, and for p � 1 the limiter drops rapidly near 0.
Graphically the multiplier can be displayed as in Figure 15.

7.3 Boundary Conditions

7.3.1 No Heat Flux

NO HEAT FLUX, sideset

This keyword allows the user to specify zero heat flux through a surface defined by the
sideset argument.

76



�

�

1

tcd f

ρ f loor ρ

p � 1

p � 1

p � 1 p � 0

Figure 15. Thermal Conductivity Density Floor.

7.3.2 Prescribed Heat Flux

PRESCRIBED HEAT FLUX, sideset, function-set

This keyword allows the user to prescribe the heat flux on a surface defined by the
sideset keyword as a function of time.

7.3.3 Temperature BC

TEMPERATURE BC, sideset, function-set

This keyword allows the user to specify the temperature on a surface defined by the
sideset keyword as a function of time.
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8 Emission Input

EMISSION
{BLACKBODY | PLANCK | BREMSSTRAHLUNG}
GROUP BOUNDS

...
END
[EMISSION ENERGY FLOOR, 0.0]
[MAXIMUM EMISSION DENSITY, 0.0]
[MINIMUM TEMPERATURE, 0.0]
[NEWTON | BISECT]
[MAXIMUM NEWTON ITERATIONS, 1]
[TOLERANCE, 1.0e-6]

END

The emission model is a way to keep material heating under control by radiating pho-
ton energy using an approximate radiation emission model. The net radiation emission is
typically a balance between energy emitted and energy absorbed,

dem

dt
� � ∑

g

�
R

�
Tm � g � � A

�
g � � � fρ � fT (38)

for each group g and each material m. Here dem
dt is the time rate of change of the material

specific energy, Tm is the material temperature, g is the group number, R
�
Tm � g � is a radiation

emission rate function, and A
�
g � is a radiation absorption rate function. fρ and fT are

density and temperature dependent multipliers described below. Simple one-dimensional
considerations allow us to approximate the probability of escape after a distance x as e �

τagd

where τagd is known as the optical depth, τag is the absorption opacity, and the distance d
is the mean distance to void. We approximate the absorption rate as the emission rate times
the probability of reabsorption (i.e., not escaping).

A
�
g � � �

1 � e �

τagd � R
�
Tm � g � (39)

Thus, the net emission rate becomes the total emission rate reduced by the probability
of escape.
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dem

dt
� � ∑

g
e �

τagdR
�
Tm � g � � fρ � fT (40)

Because ALEGRA is an energy-based code, the actual discrete algorithm approximates
the material temperature variation in terms of the specific energy.

T n � 1
m

� T n
m

�
�
en � 1

m
� en

m �
Cn

v
(41)

where Cv is the material heat capacity. The first Newton iterate is used to calculate the
change in em. The derivative of R

�
Tm � g � with respect to temperature is then required. The

Newton correction is intended to provide a mechanism for avoiding excessive cooling.

8.1 Emission Model Options

There are currently two emission options within ALEGRA:

� BLACKBODY or PLANCK - Blackbody emission model using the Planck function

� BREMSSTRAHLUNG - thermal Bremsstrahlung emission model

One or the other emission model must be specified.

8.1.1 Planck Emission

� BLACKBODY | PLANCK �

These two keywords both refer to the same emission model. The BLACKBODY or PLANCK
emission model defines the radiation emission rate function in units of energy � mass � time
as

R
�
Tm � g � � σagB

�
Tm � g � � τag

ρ
B

�
Tm � g � (42)

where σag is the group absorption cross section in units of area � mass, τag
� ρσag is the

group absorption opacity in units of 1 � length (τag is the variable that ALEGRA stores), ρ is
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the mass density, and B
�
Tm � g � is the Planck function integral in units of energy � area � time

given by

B
�
Tm � g � � 4π

� εg � 1

εg

B
�
ε � Tm � dε � 4π

� εg � 1

εg

2
h3c2

ε3

exp
�

ε
kTm � � 1

dε (43)

This emission model requires that all MATERIALs have an opacity model specified. Scat-
tering opacity values are ignored. See ”Opacity Models” in Section 10.6.

8.1.2 Bremsstrahlung Emission

BREMSSTRAHLUNG

The Bremsstrahlung emission model is pertinent to astrophysical X-ray cluster cool-
ing flows and is defined by the White and Sarazin prescription for a half-solar abundance
cooling function [14]. The radiation emission rate function is given by

R
�
Tm � g � � 10 �

35ρ�
µmp � 2

������������
� ������������

2 � 35 � e � � Tm
3 � 5 � 105 � 4 � 5

� 5 � � e � � Tm
2 � 8 � 106 � 4 � 4

T 0 � 17
m

� 0 � 05 � e � � Tm
1 � 55 � 107 � 4

T 0 � 08
m

�
2 � 4 � 10 �

5 	 Tm

� Tm � 105

3 � 18
�

Tm
105 � 1 � 6 � 150

Tm � otherwise

(44)

It is recommended that the BISECT option be enabled for this emission model since the
cooling function is not monotonic with temperature.

BREMSSTRAHLUNG does not require any opacity models and should only be called with
a single energy group. The limits of this group are irrelevant. Use of the probability of
escape does require an opacity model however, unless the OPTICAL MULTIPLIER is set to
zero.
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8.2 Group Boundaries

GROUP BOUNDS
LOG real TO real BY int, [SCALE real (1.0)]
LINEAR real TO real BY int, [SCALE real (1.0)]
...

END

This required keyword defines the photon energy group bounds in Kelvin, unless oth-
erwise specified. The photon energy spectrum is divided into regions. The package further
subdivides regions into the actual photon groups using either LINEAR or logarithmic (LOG)
intervals within the region. The optional SCALE keyword is used as an opacity multiplier.
Its default value is 1.0

For example, a specification of

group bounds
log 1. [ev] to 32. [ev] by 5

end

will cause the spectral region from 1.0 to 32.0 eV to be divided into five photon groups
whose bounds are 1.0 to 2.0, 2.0 to 4.0, 4.0 to 8.0, 8.0 to 16.0, and 16.0 to 32.0 eV.

The GROUP BOUNDS input is required for both models.

8.3 Algorithm Control

8.3.1 Emission Multiplier

EMISSION MULTIPLIER real (1.0)

If this optional keyword is present then the net emission rate is scaled by this factor.
The main purpose of this factor is to allow the user to perform sensitivity studies relative to
the natural emission rate.
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8.3.2 Optical Multiplier

OPTICAL MULTIPLIER real (1.0)

If this optional keyword is present then the optical depth τagx in the probability of
escape is scaled by this factor. This factor may be used for sensitivity studies or to adjust
the estimate of the mean-distance-to-void x should there be a systematic error.

8.3.3 Mean Distance to Void

MDTV, � RMS (default) | MIN MAX �

This optional keyword selects the method used to estimate of the mean-distance-to-void
d. The default method is RMS.

The RMS method computes the root-mean-square size of the material and the mesh about
the mean material and mesh locations for each orthogonal coordinate, respectively. The
RMS mesh sizes are used as weights for the RMS material sizes in the standard distance
formula to account for one-dimensional simulations.

d � 2
�

w2
xx2

rms
�

w2
yy2

rms
�

w2
z z2

rms (45)

wx
� Xrms � �

X2
rms

�
Y 2

rms
�

Z2
rms

wy
� Yrms � �

X2
rms

�
Y 2

rms
�

Z2
rms

wz
� Zrms � �

X2
rms

�
Y 2

rms
�

Z2
rms

where xrms, yrms, and zrms are the root-mean-square size of the material, and Xrms, Yrms, and
Zrms are the root-mean-square size of the mesh.

The MIN MAX method uses the difference between the maximum and minimum mate-
rial coordinates and the difference between the maximum and minimum mesh coordinates
as the size of the material and mesh respectively. The min-max mesh sizes are used as
weights for the min-max material sizes in the standard distance formula to account for
one-dimensional simulations.
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d �

�
w2

x
�
xmax

� xmin � 2 �
w2

y
�
ymax

� ymin � 2 �
w2

z
�
zmax

� zmin � 2 (46)

wx
� �

Xmax
� Xmin � � � �

Xmax
� Xmin � 2 � �

Ymax
� Ymin � 2 � �

Zmax
� Zmin � 2

wy
� �

Ymax
� Ymin � � � �

Xmax
� Xmin � 2 � �

Ymax
� Ymin � 2 � �

Zmax
� Zmin � 2

wz
� �

Zmax
� Zmin � � � �

Xmax
� Xmin � 2 � �

Ymax
� Ymin � 2 � �

Zmax
� Zmin � 2

where xmin, ymin, zmin, xmax, ymax, and zmax are the minimum and maximum values where
material is present, and Xmin, Ymin, Zmin, Xmax, Ymax, and Zmax are the minimum and maxi-
mum values of the mesh.

For uniform meshes the RMS method yields a smaller mean-distance-to-void than the
MIN MAX method. The MIN MAX method is better for highly non-uniform meshes.

8.3.4 Emission Energy Floor

EMISSION ENERGY FLOOR real (0.0)

If this optional keyword is present then the available energy in an element will not drop
below the percentage given by the EMISSION ENERGY FLOOR. This floor may help to avoid
the problem of an element obtaining a negative temperature by emitting more energy than is
available. The available energy is defined by a linear extrapolation of the material specific
internal energy down to zero temperature.

eavail
� em

�
Tm � � em

�
0 � � Cv

�
Tm

� 0 � � CvTm (47)

For example, to keep the energy available in an element from dropping below 1% of its
starting value, one would use the EMISSION ENERGY FLOOR as follows:

emission
...
emission energy floor 0.01

end

Emission down to this energy floor is allowed.
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Figure 16. Maximum Emission Density Multiplier.

8.3.5 Maximum Emission Density

MAXIMUM EMISSION DENSITY real (0.0) [POWER real (0.0)]

If this optional keyword is present and the density value is non-zero, then only material
densities less than the input value will emit at the prescribed rate. A zero value implies
emission at all densities. The assumption is that above this density the material is optically
thick and some portion of the emitted energy is immediately reabsorbed. The multiplier
of the net emission rate when the density is greater than the specified limit is given by the
following expression where p is the specified POWER.

fρ
�

���
� ���

1 � ρ � ρmax

0 � ρ � ρmax � p � 0�
ρmax

ρ � p
� ρ � ρmax � p � 0

(48)

Graphically the multiplier can be displayed as in Figure 16. This option should only be
used when the probability of escape factor is insufficient to limit the net emission rate at
high densities.

Example:

emission
...
max emission density 0.1

end
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Figure 17. Minimum Emission Temperature Multiplier.

8.3.6 Minimum Emission Temperature

MINIMUM TEMPERATURE real (0.0) [POWER real (0.0)]

The optional MINIMUM TEMPERATURE specification is such that if emission model would
cool an element below this temperature, the emission model turns itself off. Emission down
to this minimum temperature is allowed. If the temperature value is non-zero, then only
material temperatures greater than the input value will emit at the prescribed rate. A zero
value implies emission at all temperatures. The assumption is that the material is too cold to
emit. The multiplier of the net emission rate when the temperature is less than the specified
limit is given by the following expression where p is the specified POWER.

fT
�

���
� ���

1 � T � Tf loor

0 � T � Tf loor � p � 0�
T

Tf loor � p
� T � Tf loor � p � 0

(49)

Graphically the multiplier can be displayed as in Figure 17. This option should only be
used when the probability of escape factor is insufficient to limit the net emission rate at
low temperatures.

Example:

emission
...
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min temperature 933. $ Kelvin
end

8.3.7 Maximum Energy Change

MAXIMUM ENERGY CHANGE real (0.90)

This optional keyword allows the user to limit the maximum change in the material
specific internal energy due to emission. This is accomplished by limiting the simulation
time step so that the amount of energy radiated in a given simulation cycle complies with
this constraint. The hope is that by limiting the energy change, other material properties
can also change sufficiently rapidly, thereby resulting in a more accurate simulation. The
default value allows a 90% change in the specific internal energy. The time step computed
by this feature is reported in the global tally DT EMISSION.

Example:

emission
...
max energy change 0.40 $ fraction

end

8.3.8 Solution Method

� NEWTON (default) | BISECT �

If the NEWTON keyword is present, it explicitly forces use of the default Newton iteration
method.

If the BISECT keyword is present then the Newton algorithm will incorporate a bisection
step into it. Use this for the BREMSSTRAHLUNG emission option as the cooling function is
non-monotonic. This option does not need to be specified for the BLACKBODY or PLANCK
option.

8.3.9 Maximum Newton Iterations

MAXIMUM NEWTON ITERATIONS int (1)
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Optionally specifies the maximum number of Newton iterations. A warning will oc-
cur if the maximum number of Newton iterations is exceeded and the solution tolerance
remains less than the tolerance specified by the TOLERANCE keyword. Quite often it is
sufficient to give this parameter a value of just 2.

8.3.10 Newton Iteration Tolerance

TOLERANCE real (1.0e-6)

Optional accuracy level setting for Newton iteration solution of emission energy equa-
tion. The default value is 1.0e-6.
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9 Aztec Input

AZTEC [int]
...

END

Both the TRANSIENT MAGNETICS and the THERMAL CONDUCTION packages use the Aztec
library [28] to solve the discrete partial differential equations that govern their physics.
Aztec is an iterative solver library with many options for solving linear systems of equa-
tions. Aztec includes a number of Krylov iterative methods such as conjugate gradi-
ent (CG), generalized minimum residual (GMRES), and stabilized biconjugate gradient
(BiCGSATB).

The AZTEC keyword set may appear as many times as desired. Different physics pack-
ages may utilize different AZTEC control sets as specified by using

AZTEC SET id(integer)

in the specific physics input section. The default AZTEC SET id-number is 0 which
defaults to the conjugate gradient algorithm with symmetric diagonal scaling and other
default options described below. The developers do not recommend that you blindly use
the default settings as they are most likely not optimal for your particular simulations.
Multigrid technology found in the associated ML package is required to achieve scalable
solve times for very large problems. The Aztec [28] and ML [27] documentation give a
descriptions of options. The three-dimensional magnetic field discretization and multigrid
solution research and development can be reviewed in several references [1, 2, 3, 12, 24].

Most but not all AZTEC options have been implemented in the ALEGRA interface. How-
ever only the most important and useful options are listed in this section.

Example:

aztec 1 $ 3D simulation ONLY, mag control
solver = cg
scaling = none
conv norm = rhs
output = none
max iter = 1000 $ something is wrong after a few hundred iterations
tol = 1.e-10 $ this may need to be reduced (problem specific)
multilevel
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fine sweeps = 1
fine smoother = Hiptmair
coarse smoother = LU
multigrid levels = 10
interpolation algorithm = AGGREGATION
hiptmair subsmoother = GAUSS SEIDEL $ for serial runs

$ hiptmair subsmoother = MLS $ for parallel runs > 4PE
SMOOTH PROLONGATOR

end
end

In the descriptions below the first listed option is the ALEGRA default. These are not
necessarily the same as the AZTEC defaults.

9.1 Basic Aztec Input

AZTEC [int]
[basic aztec keyword]
...

END

This section describes the basic (non-multilevel) Aztec control options.

Solver

SOLVER, {CG (default) | GMRES | CGS | TFQMR | BICGSTAB | LU |
GMRESR | FIXED PT | SYMMLQ}

Note that CG (conjugate gradient) is applicable only to physics packages which are
based on symmetric operators. These include 2D and 3D TRANSIENT MAGNETICS, and the
THERMAL CONDUCTION package. The LU option uses the familiar LU-decomposition direct
solution method, which is only available in serial mode and will likely quickly exhaust
memory for sizable problems. For small serial test simulations, LU is a good option. CG by
itself will not work effectively for 3D TRANSIENT MAGNETICS solutions.
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Scaling

SCALING, {SYM_DIAG (default) | NONE | JACOBI | BJACOBI | ROW_SUM |
SYM_ROW_SUM}

The SYM DIAG option is only available for physics packages based on symmetric op-
erators, such as 2D TRANSIENT MAGNETICS and the THERMAL CONDUCTION package. It is
highly recommended for these.

Preconditioner

PRECONDITIONER, {NONE (default) | JACOBI | NEUMANN | LS | SYM_GS |
DOM_DECOMP}

The SYM GS option has proven quite effective for those physics packages that are based
on symmetric operators. However, it has been discovered that it is possible for the actual
solution accuracy to vary significantly with the preconditioner option for a given fixed
tolerance value. In particular the JACOBI and SYM GS preconditioners used with conjugate
gradient may cause a significantly less accurate answer than would be obtained without the
preconditioner for the same tolerance value. See the ignore scaling option.

Subdomain Solver

SUBDOMAIN SOLVER, {LU | ILUT (default) | ILU | RILU | BILU | ICC}

ICC can be used with symmetric operators.

Convergence Norm

CONVERGENCE NORM, {R0 (default) | RHS | ANORM | NOSCALE | SOL |
expected values}

Various norm options are available. Users of the code MUST ensure that their solutions
are accurate relative to the chosen convergence norm and the chosen tolerance value. (The
AZTEC weighted option is not supported in ALEGRA).
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Output

OUTPUT, {NONE (default) | ALL | WARNINGS | LAST | int>0}

Note that no Aztec output is the default for ALEGRA. You must specifically request
Aztec output if you want Aztec to tell you about the iterative solve. Transient magnetics
will output Aztec information to the HISPLT file.

Maximum Iterations

MAXIMUM ITERATIONS, int>0 (500)

Tolerance

TOLERANCE, real (1.e-12)

WARNING! This default may not be appropriate for some CONVERGENCE NORM options
and physics problems. The user is responsible to convince himself that the tolerance spec-
ified is sufficient for an otherwise FIXED set of AZTEC options. See the discussion under
preconditioners.

9.2 Multilevel Input

AZTEC [int]
[basic aztec keyword]
...
MULTILEVEL

[multilevel keyword]
...

END
END

This section describes the multilevel Aztec control options.
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Multigrid Levels

MULTIGRID LEVELS, int (10)

Fine Sweeps

FINE SWEEPS, int (2)

The number of pre and post smoother sweeps to apply at each level.

Fine smoother

FINE SMOOTHER, {GAUSS SEIDEL | JACOBI | LU | AZTEC int (0) |
HIPTMAIR (Hcurl only) | MLS}

Default is automatically determined depending on matrix type. This is the type of
smoother applied on each of the fine levels. The AZTEC int is the AZTEC SET int id to
be used by the fine smoother.

Coarse Sweeps

COARSE SWEEPS, int (2)

Number of solver sweeps to apply at the coarse level if the coarse smoother is an itera-
tive solver.

Coarse smoother

COARSE SMOOTHER, {GAUSS SEIDEL | JACOBI | LU (default) | AZTEC int (0) |
HIPTMAIR (Hcurl only) | MLS}

The AZTEC int is the AZTEC SET int id to be used by the coarse smoother.
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Interpolation Algorithm

INTERPOLATION ALGORITHM, {UC AGGREGATION | MIS AGGREGATION |
UC MIS AGGREGATION (aka AGGREGATION, default)}

Verbose

VERBOSE, int (0)

Positive integer gives level of multigrid verbose output. Value ranges from 0 to 10.
Used primarily to debug ML.

Smooth Prolongator

SMOOTH PROLONGATOR (off)

Smooth Reitzinger/Schoeberl prolongator for Hiptmair. A useful option for 3D mag-
netics.

Hiptmair Subsmoother

HIPTMAIR SUBSMOOTHER, {GAUSS SEIDEL (default) | MLS}

This is the subsmoother uses by Hiptmair smoothing.
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10 Materials and Material Models Input

10.1 Materials

The MATERIAL keyword is explained fully the basic ALEGRA manual [4]. In this version of
ALEGRA, some of the material models get some of their information from the MATERIAL
keyword block, namely the atomic composition as defined by the NUMBER OF ELEMENTS
keyword. This allows each material to be treated consistently and with a minimum of input
required from the user. Currently, QEOS requires the material composition to be entered
here. The XSN material composition may be entered here or under the XSN model. The
material input format is:

MATERIAL int [string]
MODEL int
[MODEL int]
variable_name real
[variable_name real]
[NUMBER OF ELEMENTS int

ELEMENT int, MASS real, FRACTION real
...

END]
END

Example of material input:

block 1
material 201 $ see BLOCK input for this item

end

material 201 "Air"
model 11 $ EOS
model 12 $ XSN
number of elements 3

element 7, mass 14.007, fraction 0.7809
element 8, mass 16.000, fraction 0.2095
element 18, mass 39.948, fraction 0.0096

end
end
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10.2 Material Models

MODEL int model_name
parameter [int|real]
parameter = [int|real]
...

END

The following sections describe the various material models that support MHD appli-
cations. In each of the material model descriptions that follow, two tables are presented for
each MODEL. The first table lists and defines the user specifiable input parameters. These
parameters are to be listed withing the MODEL ... END keyword block in the input deck.
The second table lists the registered code variables input to and output from the various
models. These variables are available for plotting and are to be listed within the PLOT
VARIABLES ... END keyword block in the input deck.

A list of the currently available models is provided in Table 9. The models are catego-
rized into general model types.

Table 9. Material Model Types and Model Names.

General Material Model Type Model Name

Combined Electrical/Thermal Conductivity LMD
SPITZER

Electrical Conductivity EC ANOMALOUS
EC KNOEPFEL

Thermal Conductivity CONSTANT THERMAL CONDUCTIVITY
PLASMA
POLYNOMIAL

Opacity KRAMERS FITTED
XSN

Ionization State SAHA IONIZATION

The material models listed in Table 10 are considered to be obsolete and may be deleted
from ALEGRA in the near future.
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Table 10. Obsolete Material Model Types and Model Names.

General Material Model Type Model Name

Electrical Conductivity KEC SESAME
Thermal Conductivity KTC SESAME
Ionization State KZB SESAME
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10.3 Combined Electrical and Thermal Conductivity Models

Electrical conductivity models are used by TRANSIENT MAGNETICS to close the coupled set
of hydrodynamics and Maxwell’s equations by using Ohm’s law which relates the current
density

�

J to the electric field
�

E and the cross product of the velocity
�

v and magnetic field
�

B,

�

J � σ
� �

E
� κ3

�

v �
�

B � � (50)

where σ is the electrical conductivity. This is the simplest form of Ohm’s law.

THERMAL CONDUCTION physics solves the thermal heat conduction equation. The heat
flux

�

q is related to the temperature gradient by

�

q � � k∇T � (51)

where the constant of proportionality k is the thermal conductivity. The heat flux
�

q has
dimensions of energy/area/time, the temperature has dimensions of Kelvin (K), so the ther-
mal conductivity k has dimensions energy/length/time/K.

Some models provide both electrical and thermal conductivities. Others provide only
one or the other. The user must provide a set of models which will uniquely provide the
required parameters for the physics which is requested. NOTE: If overlapping models are
requested in the sense that two models provide the same output, then the code will use the
last model listed to provide that given output.

10.3.1 LMD Conductivities

MODEL model_id_number LMD
[parameter = value]
...

END

The Lee-More-Desjarlais (LMD) model [5, 6] is an extension of the Lee-More model [17]
that provides much better agreement with measured electrical conductivities in the vicinity
of the metal-insulator transition and yet smoothly blends with the Lee-More model away
from this regime. The conductivities generated by the two models can differ by several
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orders of magnitude with the largest differences occurring for densities one to two orders
of magnitude below solid density and temperatures below 2 eV. The model also outputs
the thermal conductivities, as well as the ionization state, so that no separate thermal con-
ductivity need be computed. This conductivity model also includes the effect of magnetic
fields on the conductivity. The conductivities returned are those parallel and perpendicu-
lar to the magnetic field. The proper coordinate transformation between this magnetically
oriented system and the computational coordinates needs to be ensured. The most signif-
icant changes in this model, relative to the Lee-More model, are an improved ionization
model and a new expression for the minimum allowed collision time. The new ionization
model blends the Thomas-Fermi ionization with a first-ionization Saha model. The Saha
contribution is non-ideal in that a pressure ionization term is used to reduce the ionization
energy near solid densities. The ionization state calculated with this model is a signifi-
cant improvement over the Thomas-Fermi ionization in the vicinity of the metal-insulator
transition, particularly for temperatures below 3 eV or so. The new expression for the
minimum allowed collision time introduces a power law dependence on density through
the P2 parameter. This dependence is in agreement with the measured conductivities at
low temperatures and densities below solid and effectively bridges the metal, liquid, and
plasma conductivity regimes. It is anticipated that for most applications the user will make
use of predefined parameter sets for each material of interest, linked to the Z for the mate-
rial. These parameters may be overridden if the user wishes to experiment with modeling
unsupported materials. The model is sufficiently robust that if the user supplies Z, A, RHO
SOLID, TMELT, and XIEV, and accepts the defaults for the other parameters, reasonably good
metallic conductivities will be generated.

In place of the P2, P3, and P4 parameters of the generic Lee-More model, we now have

p2
� min � p2a

� p2b

pT
�

V̄e�
2EF � me

� na

2 � 1022 � 2 � pT � � (52)

p3
�

p3a

2

�
1

� �
Tm

T
� p3b � r f act � � and (53)

p4
�

p4a

2

�
1

� �
Tm

T
� p3b � r f act � (54)

where

pT
� 1

�
exp

�
T � 25000

10000
� � and (55)
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r f act
�

���� 2 � � �
ρ
ρs

� 2 � �
ρs

ρ
� 2 �

� (56)

Tm is the melt temperature and ρs is the material solid density. These constructions for
P3 and P4 are used primarily for fine tuning the solid density conductivity as a function of
temperature, including the drop in conductivity at melt which is determined by the relation:

τliq
�

τBG

p4

T
T

�
p5

(57)

for T � Tm. The net effect of these changes to P3 and P4 are relatively minor. Note the new
parameter P5 which is useful for matching the conductivity above melt for some materials,
notably aluminum.

The correct parameters for some materials have been incorporated into the model. For
these materials, one needs only to specify the atomic number, Z, or in the case of deuterium,
also specify the atomic mass, A as 2. The code will set the remaining parameters correctly.
Currently featured materials include those found in Table 11.

Table 11. Predefined Materials for LMD.

Z A Symbol Material

1 2. D Deuterium
13 - Al Aluminum
22 - Ti Titanium
29 - Cu Copper
47 - Ag Silver
73 - Ta Tantalum
74 - W Tungsten
79 - Au Gold
- - - Air
- - - LXN (i.e., lexan)

Certain materials have been researched through quantum molecular dynamics (QMD)
simulations and the LMD model has been specifically ”tuned” for these materials. The tuned
materials are listed in Table 12 and are accessed by using the ”TUNED” keyword listed in
the table. Setting the Z parameter is optional.
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Table 12. Tuned Materials for LMD.

Z A Symbol Keyword

13 - Al TUNED ALUMINUM
74 - W TUNED TUNGSTEN

Note: there is no option for reverting to the original Lee More model for comparison pur-
poses.

� Modules: material libs/ec

– ec lmd.h

– ec lmd.C

– lmd setup.h

– lmd.F

– coulomb logarithm.C

� Physics:

– transient magnetics

– all magnetohydrodynamics physics options

Table 13: Input Parameters for LMD.

Parameter Name Type Description

Z real Atomic number (this is the only required pa-
rameter)

A real Atomic mass
RHO SOLID real Material solid density
TMELT real Specifies the solid density melt temperature.

This scales the usual Cowan melt temperature
calculation so that the melt temperature will
be correct at solid density, but is still a func-
tion of density. Calculated if TMELT .le. 0.

XIEV real The energy of the first ionization in eV
continued on next page
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continued from previous page
LOG LAMBDA MIN real The minimum allowed value of the Coulomb

logarithm
G0, G1 real The spin level degeneracy factors

�
2J

�
1 � for

the ground state and first ionization, respec-
tively

P1 real Multiplier on the average distance between
ions R0

� �
4πρ � 3Ami � �

1 � 3, used when com-
paring to the Debye-Huckel screening length
and choosing the larger value to be the maxi-
mum impact parameter for the Coulomb log-
arithm

P2A, P2B real Used to construct the multiplier P2 on the
minimum electron relaxation time which is
equal to the average distance between ion di-
vided by the mean electron thermal velocity,�
3kT � me � 1 � 2

P2C, P2D, P2E real Default: P2C = 25000.0, P2D = 2.0E22,
P2E = 2.0

P3A, P3B real Used to construct the multiplier P3 on
the electron relaxation time in the Bloch-
Gruneisen regime (below the melt tempera-
ture).

P4A, P4B real Used to construct the multiplier P4 on
the electron relaxation time in the Bloch-
Gruneisen regime (above the melt tempera-
ture)

P5 real Used to fine tune the solid density conductiv-
ity above melt

EC FLOOR real Minimum electrical conductivity value (de-
fault = 0.)

EC MULTIPLIER real Electrical conductivity multiplier (default =
1.)

TC FLOOR real Minimum thermal conductivity value (default
= 0.)

TC MULTIPLIER real Thermal conductivity multiplier (default = 1.)
continued on next page
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continued from previous page
ANOMALOUS real If greater than 0., will enable an anomalous

collisionality in low density, high temperature
regions. A value of 1.0 is nominal. See the
SPITZER model for details. (default = 0.)

TEMPERATURE CUTOFF real The minimum temperature used to evaluate
the conductivities (default = 0.)

USE PARALLEL CONDUCTIVITY real The LMD model returns the values of the con-
ductivities perpendicular to the magnetic field
by default. If not equal to 0., the LMD model
will return the values of the conductivities
parallel to the magnetic field. (default = 0.)

PRESSURE IONIZATION
PREFACTOR

real (default = 1.5)

PRESSURE IONIZATION
EXPONENT

real (default = 1.5)

DIPOLE ALPHA real (default = 50.0)
EXTERNAL ZBAR none Allows LMD to use a zbar other than the in-

ternally calculated one. NOTE: A zbar cal-
culating model MUST be called before LMD.
(default = off)

TUNED ALUMINUM real Allows the QMD aluminum specific coding
to be called. This must be used in addition to
Z = 13. (default = off)

MATERIAL string This can be used to call default mixed mate-
rial settings. NOTE: This option will override
the Z parameter, but none of the other param-
eters.

Examples:

model 1 lmd
z = 13.
tuned aluminum

end

model 1 lmd
z = 74.

end
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Table 14. Registered Plot Variables for LMD.

Variable Name Type Mode Description

DENSITY real INPUT Material density
TEMPERATURE real INPUT Material temperature
ECON real OUTPUT Electrical conductivity used
ECON PAR real OUTPUT Electrical conductivity parallel to the mag-

netic field
ECON PERP real OUTPUT Electrical conductivity transverse to the mag-

netic field
THERMAL CON real OUTPUT Thermal conductivity used
THERMAL CON PAR real OUTPUT Thermal conductivity parallel to the magnetic

field
THERMAL CON PERP real OUTPUT Thermal conductivity transverse to the mag-

netic field
ZBAR real OUTPUT Average ionization state

model 1 lmd
material = ’air’

end

103



10.3.2 Spitzer Conductivities

MODEL model_id_number SPITZER
[parameter = value]
...

END

The SPITZER conductivity model [26] is valid for high temperature plasmas above 1 eV
temperature. The model computes electrical conductivity components parallel and perpen-
dicular to the magnetic field.

σ �
�
ρ � T � � �

γE � 2
�
2kT � 3 � 2

π3 � 2m1 � 2
e Ze2c2 lnΛ

� 1
fanom

(58)

σ �
�
ρ � T � �

�
3π
32

� 2
�
2kT � 3 � 2

π3 � 2m1 � 2
e Ze2c2 lnΛ

� 1
fanom

(59)

By default, the model returns the values of the perpendicular electric conductivity.

The model also computes thermal conductivity components parallel and perpendicular
to the magnetic field.

κ �
�
ρ � T � � �

δT � 20

�
2
π

� 3 � 2 �
kT � 5 � 2k

m1 � 2
e e4Z lnΛ

� 1
fanom

(60)

κ �
�
ρ � T � � 8

3

�
πmik � 1 � 2n2

i Z2e2c2 lnΛ
T 1 � 2B2

� fanom (61)

� 8
3

�
πmamuk � 1 � 2N2

Ae2c2
�

ρ2Z2 lnΛ
A3 � 2T 1 � 2B2

� � fanom

By default, the model returns the minimum of these two thermal conductivities.

In low-density, high-temperature plasmas in a strong magnetic field, the electrical con-
ductivity may be reduced by an anomalous factor, fanom � 1 [25]. This factor also enhances
the value of the perpendicular thermal conductivity, and reduces the value of the parallel
thermal conductivity as shown in the above formulas. These anomalous conductivities are
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enabled by setting the input parameter ANOMALOUS � 0., where a value of 1.0 is nominal.
A value greater than 1 increases this effect and a value less than 1 reduces this effect. In
CGS units with the electron temperature expressed in eV, then the anomalous factor is:

fanom
� 1

�
Panomalous

ν �

νei
(62)

ν �
� Ωe

� �
Z̄me � � �

Amamu � �
Vd � Vth � 2

νei
� 2 � 9 � 10 �

6 �
Z̄2Ni logΛ � � �

T 3 � 2
e �

Vd
� �

�
J � � �

Z̄eNi �
Vth

� � �
2kBTi � � �

Amamu �

where Panomalous is the ANOMALOUS input parameter, ν � is an anomalous collision frequency,
νei is the electron-ion collision frequency, Ωe

� �
e �

�
B � � � �

mec � is the electron cyclotron fre-
quency, Vd is a drift velocity, Vth is the ion thermal velocity, Z̄ is the average ionization
state, A is the atomic mass, and Ni is the ion number density.

The parameters COLD ECON and COLD TCON are a simplified attempt to extend the
SPITZER model below the Spitzer regime. A better approach is to use the LMD model.
If these parameters are non-zero and if the ionization state Z̄ is less than 1, this model
model will use Z̄ to linearly interpolate between the cold value and the Spitzer value with
Z̄ � 1.

σ �
� �

1 � Z̄ � σcold
�

Z̄σSpitzer � Z̄ � 1

σSpitzer � Z̄ � 1
(63)

κ �
� �

1 � Z̄ � κcold
�

Z̄κSpitzer � Z̄ � 1

κSpitzer � Z̄ � 1
(64)

� Modules: material libs/ec

– ec spitzer.h

– ec spitzer.C

– coulomb logarithm.C

� Physics:
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– transient magnetics

– all magnetohydrodynamics physics options

Table 15: Input Parameters for SPITZER.

Parameter Name Type Description

A real Atomic mass
Z real Atomic number
FIXED ZBAR real Overrides any ionization model with a con-

stant value for the ionization state (optional)
FIXED COULOG real Overrides the coulomb logarithm calculation

with a constant value (optional)
EC MULTIPLIER real May be used to scale the electrical conductiv-

ity (optional)
TC MULTIPLIER real May be used to scale the thermal conductivity

(optional)
COLD ECON real Electrical conductivity value when ZBAR

� 1.0
(optional)

COLD TCON real Thermal conductivity value when ZBAR
� 1.0

(optional)
ANOMALOUS real If greater than 0., will enable an anomalous

collisionality in low density, high temperature
regions. A value of 1.0 is nominal. (default =
0.)

TEMPERATURE CUTOFF real Model is called with the maximum of the ma-
terial temperature or the cutoff temperature.
(optional)

USE PARALLEL CONDUCTIVITY real Setting this parameter to be non-zero causes
the parallel value of the conductivity will be
used. (optional)

USE PERPENDICULAR
CONDUCTIVITY

real Setting this parameter to be non-zero causes
the perpendicular value of the conductivity
will be used. (optional)
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Table 16. Registered Plot Variables for SPITZER.

Variable Name Type Mode Description

DENSITY real INPUT Material density
TEMPERATURE real INPUT Material temperature
ECON real OUTPUT Electrical conductivity
ECON PAR
ECON PERP
THERMAL CON real OUTPUT Thermal conductivity
THERMAL CON PAR
THERMAL CON PERP
COULOG real OUTPUT Coulomb logarithm
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10.4 Electrical Conductivity Models

10.4.1 EC Anomalous Conductivity

MODEL model_id_number EC ANOMALOUS
[parameter = value]
...

END

This is a density and temperature independent model that returns one of two user spec-
ified values for the conductivity depending upon the value of the cell-centered current den-
sity, JE . This model is given by

σ
�
ρ � T � �

�
σ0 � �

�
JE � � Janom

σ1 � �
�
JE � � Janom

(65)

The model is parametrized by the constants σ0, σ1, and the magnitude of the current
density Janom. The orientation of the current density is inconsequential.

� Modules: material libs/ec

– ec anomalous.h

– ec anomalous.C

� Physics:

– transient magnetics

– all magnetohydrodynamics physics options

Table 17. Input Parameters for EC ANOMALOUS.

Parameter Name Type Description

SIGMA0 real Reference conductivity, σ0

SIGMA1 real Reference conductivity, σ1

JANOM real Threshold current density , Janom
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Table 18. Registered Plot Variables for EC ANOMALOUS.

Variable Name Type Mode Description

DENSITY real INPUT Material density
TEMPERATURE real INPUT Material temperature
ECON real OUTPUT Electrical conductivity

10.4.2 EC Knoepfel Conductivity

MODEL model_id_number EC KNOEPFEL
[parameter = value]
...

END

A low temperature model called the Knoepfel model [16] is reasonable for metals from
about 100 K up to the melting point. This model is given by

σ
�
ρ � T � � max

�
σ0

1
� βCv

�
T � T0 �

�
ρ
ρ0

� α

� σmin � (66)

The model is parametrized by the constants σ0, ρ0, α, and βCv. A constant conductivity
may be obtained by setting α � 0 and βCv

� 0. A reasonable guess for α given no other
information is twice the Gruneisen coefficient for the material. At a minimum this model
can achieve a drop in conductivity with temperature. It cannot deal with the melt transition
however. The conductivity floor is not part of the model given by Knoepfel, but is added
for additional flexibility.

� Modules: material libs/ec

– ec knoepfel.h

– ec knoepfel.C

� Physics:

– transient magnetics

– all magnetohydrodynamics physics options
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Table 19. Input Parameters for EC KNOEPFEL.

Parameter Name Type Description

SIGMA0 real Reference conductivity, σ0

RHO0 real Model reference density, ρ0

T0 real Model reference temperature, T0

ALPHA real Density exponent, α
BETACV real Temperature coefficient, βCv

SIGMAMIN real Minimum conductivity, σmin

TEMPERATURE CUTOFF real Model is called with the maximum of the ma-
terial temperature or the cutoff temperature

Table 20. Registered Plot Variables for EC KNOEPFEL.

Variable Name Type Mode Description

DENSITY real INPUT Material density
TEMPERATURE real INPUT Material temperature
ECON real OUTPUT Electrical conductivity

10.4.3 KEC Sesame Conductivity

MODEL model_id_number KEC SESAME
[parameter = value]
...

END

Electrical conductivity as found in tabular form in Kerley Sesame format [11]. Inter-
nally this is the 602 Sesame table. This is not really a model. It is a software interface. The
origins of any table used here must be carefully researched and understood.

� Modules: material libs/kerley eos/sesame

– sec mig.h

– sec mig.C

– secmig.F

� Physics:
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– transient magnetics

– all magnetohydrodynamics physics options

Table 21. Input Parameters for KEC SESAME.

Parameter Name Type Description

FEC string Table file name
NEC integer Table Number
TEMPERATURE CUTOFF real Model is called with the maximum of the ma-

terial temperature or the cutoff temperature.

Table 22. Registered Plot Variables for KEC SESAME.

Variable Name Type Mode Description

DENSITY real INPUT Material density
TEMPERATURE real INPUT Material temperature
ECON real OUTPUT Electrical conductivity

Example:

model, 2, kec sesame
fec = ’ses600’
nec = 3109

end
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10.5 Thermal Conductivity Models

10.5.1 Constant Thermal Conductivity

MODEL model_id_number CONSTANT THERMAL CONDUCTIVITY
[parameter = value]
...

END

The CONSTANT THERMAL CONDUCTIVITY model allows the user to specify a simple
constant conductivity.

κ
�
ρ � T � � κ0 (67)

� Modules: material libs/thermal con models

– constant con.h

– constant con.C

� Physics: thermal conduction and its derivatives

Table 23. Input Parameters for CONSTANT THERMAL
CONDUCTIVITY.

Parameter Name Type Description

THERMAL CONSTANT real Constant thermal conductivity, κ0

Table 24. Registered Plot Variables of CONSTANT THERMAL
CONDUCTIVITY.

Variable Name Type Mode Description

TEMPERATURE real INPUT Material temperature
DENSITY real INPUT Material density
THERMAL CON real OUTPUT Thermal conductivity
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10.5.2 Plasma Thermal Conductivity

MODEL model_id_number PLASMA
[parameter = value]
...

END

The PLASMA thermal conductivity model is a simple power law of the form:

κ
�
ρ � T � � AρBTC

� (68)

Similar to the SPITZER conductivity model if B � 0 and C � 5 � 2, it can be used to
study deviations from pure Spitzer-like behavior. It can also be used to specify a constant
conductivity.

� Modules: material libs/thermal con models

– plasma.h

– plasma.C

� Physics: thermal conduction and its derivatives

Table 25. Input Parameters for PLASMA.

Parameter Name Type Description

A real Thermal conductivity coefficient (note that conduc-
tivities obtained from tables may need to be scaled if
B or C are nonzero)

B real Density exponent
C real Temperature exponent

10.5.3 Polynomial Thermal Conductivity

MODEL model_id_number POLYNOMIAL
[parameter = value]
...

END
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Table 26. Registered Plot Variables of PLASMA.

Variable Name Type Mode Description

DENSITY real INPUT Material density
TEMPERATURE real INPUT Material temperature
THERMAL CON real OUTPUT Thermal conductivity

The POLYNOMIAL thermal conductivity model is a simple power law model that
depends only on temperature:

κ
�
ρ � T � � A0

�
A1 � T N1 �

A2 � T N2 �
A3 � T N3

� (69)

� Modules: material libs/thermal con models

– polynomial con.h

– polynomial con.C

� Physics: thermal conduction and its derivatives

Table 27. Input Parameters for POLYNOMIAL.

Parameter Name Type Description

A0 real Constant coefficient
A1 real Coefficient of first temperature term
A2 real Coefficient of second temperature term
A3 real Coefficient of third temperature term
N1 real Power of first temperature term
N2 real Power of second temperature term
N3 real Power of third temperature term

10.5.4 KTC Sesame Thermal Conductivity

MODEL model_id_number KTC SESAME
[parameter = value]
...

END
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Table 28. Registered Plot Variables of POLYNOMIAL.

Variable Name Type Mode Description

DENSITY real INPUT Material density
TEMPERATURE real INPUT Material temperature
THERMAL CON real OUTPUT Thermal conductivity

Thermal conductivity as found in tabular form in Kerley Sesame format [11]. Internally
this is the 603 Sesame table. This is not really a model. It is a software interface. The
origins of any table used here must be carefully researched and understood.

� Modules: material libs/kerley eos/sesame

– stc mig.h

– stc mig.C

– stcmig.F

� Physics: thermal conduction and its derivatives

Table 29. Input Parameters for KTC SESAME.

Parameter Name Type Description

FTC String Table file name
NTC int Table Number
TEMPERATURE CUTOFF real Minimum temperature

Table 30. Registered Plot Variables of KTC SESAME.

Variable Name Type Mode Description

DENSITY real INPUT Material density
TEMPERATURE real INPUT Material temperature
THERMAL CON real OUTPUT Electrical conductivity
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model, 4, ktc sesame
ftc = ’ses600’
ntc = 3109

end
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10.6 Opacity Models

Opacity models calculate radiation absorption and emission coefficients for radiation and
radiation hydrodynamics simulations. Currently recognized opacity model names are listed
in Table 9 on page 95.

If possible and if needed or requested, ALEGRA’s opacity models compute both the av-
erage Planck absorption opacity τag and average Rosseland opacity τrg in units of (1/length).
These opacities are defined according to

τag
�

ρ
� Eg � 1

Eg
σa

�
E � B

�
Tm � E � dE

� Eg � 1
Eg

B
�
Tm � E � dE

(70)

and

1
τrg

�
� Eg � 1

Eg

1
σt

�
E �

∂B
�
Tm � E �
∂T dE

ρ
� Eg � 1

Eg

∂B
�
Tm � E �
∂T dE

(71)

where B
�
Tm � E � is the blackbody function, σa

�
E � is the absorption cross section, σt

�
E � �

σa
�
E � � σs

�
E � is the total cross section (both in units of (length2/mass)), and integrations

are computed over the group boundaries. The Planck average involves only the absorption
cross section is used for the radiation emission and absorption rates of materials. The
Rosseland average involves the total cross section and is used for the diffusion coefficient
of radiation transport methods.

10.6.1 Kramers Fitted Opacity

MODEL model_id_number KRAMERS FITTED
[parameter = value]
...

END

The Kramers fitted opacity [29] uses the simple analytic expressions

τa
� ρσa

� Caρa � 1T bνc (72)

τs
� ρσs

� Csρd � 1T eν f (73)
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to calculate the true absorption σa and scattering σs mass coefficients (units are area per
mass). For multi-group cases, the frequency (actually energy) is set to the lower group
bound.

For Kramers fitted opacity, the Rosseland opacity is set equal to the sum of the absorp-
tion and scattering opacities.

τr
� τa

� τs (74)

� Modules: material libs/opac models

– kramers fitted.h

– kramers fitted.C

� Physics:

– emission

– radiation and all derived physics classes

Table 31. Input Parameters for KRAMERS FITTED.

Parameter Name Type Description

KAP COEF real Ca - Coefficient of true absorption
KAP RHO EXP real a - Density exponent for absorption
KAP T EXP real b - Temperature exponent for absorption
KAP NU EXP real c - Photon energy exponent for absorption
SIG COEF real Cs - Coefficient of scattering
SIG RHO EXP real d - Density exponent for scattering
SIG T EXP real e - Temperature exponent for scattering
SIG NU EXP real f - Photon energy exponent for scattering

For example, free-free absorption and Thompson scattering in a completely ionized plasma
could be specified as:

model 1 kramers fitted
kap coef = 2.22e32
kap rho exp = 1.0
kap t exp = -0.5
kap nu exp = -3.0

118



Table 32. Registered Plot Variables for KRAMERS FITTED.

Variable Name Type Mode Description

DENSITY Scalar INPUT Density
TEMPERATURE Scalar INPUT Temperature
NU(j) Scalar INPUT Left frequency bound in j-th group
OLD DENSITY Scalar OUTPUT Previous density (not used)
OLD TEMP Scalar OUTPUT Previous temperature (not used)
OPACITY A Opacity OUTPUT τa - Absorption opacity - units of 1

length

OPACITY R Opacity OUTPUT τr - Rosseland opacity - units of 1
length

OPACITY S Opacity OUTPUT τs - Scattering opacity - units of 1
length

sig coef = 3.99
sig rho exp = 0.0
sig t exp = 0.0
sig nu exp = 0.0

end

This model is particularly useful for calculations where the opacity in the regime of in-
terest can be approximated reasonably well by the above analytical form and computational
speed is desired.

10.6.2 XSN Opacity

MODEL model_id_number XSN
NUMBER OF ELEMENTS int

ELEMENT int, MASS real, FRACTION real
END
[parameter = value]
...

END

XSN [20, 21, 23] provides frequency-dependent emission and absorption coefficients
for a material that may or may not be in LTE (local thermodynamic equilibrium). The
model assumes an average ion approximation and can handle the case of multiple elements
in a composite material. The XSN package is highly compute intensive compared to other
opacity models.
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In LTE, the required inputs are the mass density ρ, the atomic molar fraction fa, and
the electron temperature Te.

In non-LTE, additional inputs are needed (see below).

Material composition information listed under the XSN model will override the compo-
sition information listed under the MATERIAL model.

� Modules: material libs/opac models

– xsn.h

– xsn.C

– xsn interface.h

– xsn interface.C

� Physics:

– emission

– radiation and all derived physics classes

Table 33: Input Parameters for XSN.

Parameter Name Type Description

Commonly Used XSN Options

NUMBER OF ELEMENTS
ELEMENT int, MASS real,

FRACTION real
END

int Specification of the atomic composition (op-
tional). XSN will use the composition speci-
fied in the MATERIAL keyword block if omit-
ted here, otherwise the XSN will override
the MATERIAL specification for this model if
present here. (default = 0, maximum = 5)

ATOMIC VOLUME MULTIPLIER real Fudge factor for atomic volumes (default =
1.0)

DYNAMIC INTEGRATION none Changes the group bounds to g0
� 0 � 12299Tm

and g f
� 11 � 6088Tm and uses these bounds

to calculate the opacity. The user must set
NUMBER OF GROUPS = 1

continued on next page
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continued from previous page
HAGEN RUBENS none This is NOT an ice cream sandwich with

corned beef. Modifies the low photon energy
opacities using the value of the electrical con-
ductivity and is recommended primarily for
metals [8]. Note! The user must specify the
electrical conductivity model before the XSN
model in the MATERIAL ... END block of the
input deck!

DENSITY CHANGE real Fractional density change necessary before
recomputing opacities. If the fractional den-
sity change, ∆ρ � ρold , is less than this value,
then the old opacity value is used again. ρold

is the density at which the opacity was last
computed. (default = 0.0)

DENSITY FLOOR real Minimum density used in a call to XSN (de-
fault = 0.0, code units)

TEMPERATURE CHANGE real Fractional temperature change necessary be-
fore recomputing opacities. If the fractional
temperature change, ∆T � Told , is less than
this value, then the old opacity value is used
again. Told is the temperature at which the
opacity was last computed. (default = 0.0)

TEMPERATURE CUTOFF real Minimum temperature used in a call to XSN
(default = 0.0, code units)

COLD OPACITY real Value of the cold opacity to be used be-
low the COLD OPACITY THRESHOLD temper-
ature. This option allows the user to specify
an opacity value at lower temperatures where
XSN may not compute accurate values, and
when the HAGEN RUBENS option is not usable.
The same value is used for both the Planck
and Rosseland opacities. The user must set
NUMBER OF GROUPS = 1 (default = 0.0,
code units, i.e., 1

length )
COLD OPACITY THRESHOLD real Temperature value below which the COLD

OPACITY will be used. (default = 0.0, code
units)

continued on next page
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continued from previous page
Other XSN Options

BOUND BOUND MULTIPLIER real Fudge factor for bound-bound opacity (de-
fault = 1.0)

CONTINUUM LOWERING
MULTIPLIER

real Fudge factor for continuum lowering (default
= 1.0)

CONTINUUM LOWERING TYPE int Continuum lowering model to use:
1 = use no continuum lowering (default)
2 = ion-sphere model

DOPPLER WIDTH OPTION int Use Doppler line width model (default = 0)
ENERGY LEVEL TYPE int Energy level model to use:

1 = Bohr with Pauli corrections (default)
2 = Dirac energy levels

FREE BOUND MULTIPLIER real Fudge factor for free-bound emission (default
= 1.0)

LINE OPTION int (default = 0)
LINE WIDTH MULTIPLIER real Fudge factor for line widths (default = 1.0)
MINIMUM NUCLEAR Z real (default = 10.0)
MAXIMUM DENSITY real Cutoff density for bound-bound opacity

fudge factor (default = 100.0)
NUMBER OF LEVELS int (default = 7, maximum = 10)
NUMBER OF SUBGROUPS PER
GROUP

int (default = 100, maximum = 560)

OPACITY AVG LIMIT int (default = 1)
PLANCK OPACITY OPTION int (default = 1)
STRAIGHT OPACITY AVERAGE int (default = 1)
TWO BAND OPTION int (default = 0)
EXTRA ELECTRONS PER
NUCLEUS

real (default = 0.0)

EXTRA Z SQUARED PER
NUCLEUS

real (default = 0.0)

OPACITY MULTIPLIER real Multiplies all groups by a single constant (de-
fault=1.0)

DYNAMIC INTEGRATION uses the fact that 99% of the energy in the black body function
is within the bounds of 0 � 12299 T � T � 11 � 6088 T . When calculating the opacities in
XSN, there are a maximum of only 100 integration points, and this is an attempt to ensure
a greater probability of having those points land on transition lines. This is especially true
for lower temperatures where the black body function is very narrow.
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Table 34. Registered Plot Variables for XSN.

Variable Name Type Mode Description

DENSITY Scalar INPUT Material density
TEMPERATURE Scalar INPUT Material temperature
OLD DENSITY Scalar OUTPUT Old density
OLD TEMP Scalar OUTPUT Old temperature
OPACITY A Opacity OUTPUT τa - Absorption opacity - units of 1

length

OPACITY R Opacity OUTPUT τr - Rosseland opacity - units of 1
length

OPACITY S Opacity OUTPUT τs - Scattering opacity - units of 1
length

For example,

material 1 DDGAS
...
model = 14

end

model 14 xsn $ DD-GAS
number of elements 1

element 1, mass 2.0, fraction 1.0
end

end

material 3 CH
...
model = 36

end

model 36 xsn $ CH + 5% O + 0.25% Br
number of elements 4

element 1, mass 1.0079, fraction 0.47375
element 6, mass 12.0110, fraction 0.47375
element 8, mass 15.9994, fraction 0.05
element 35, mass 79.9040, fraction 0.0025

end
end
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10.7 Ionization Models

10.7.1 Saha Ionization

MODEL model_id_number SAHA IONIZATION
[parameter = value]
...

END

The SAHA IONIZATION model [29] solves for the relative abundance of nuclei in ad-
jacent charge states and for the average ionization state, Z̄, of a hot material. This model
obtains its necessary information from the NUMBER OF ELEMENTS ... END block of the
MATERIAL specification.

The ionization state is found by solving a nonlinear set of equations relating the frac-
tional number of ions in each ionization state.

αm � 1αe

αm

� CSaha

�
A
ρ

� �
um � 1

um
� �

T 3 � 2 � exp

� � Im � 1

T
� (75)

1 �

Z

∑
m � 0

αm and αe
�

Z

∑
m � 0

mαm (76)

where αm
� Nm � N represents the fraction of ions in the mth charge state and N � ρNA � A

is the number density of nuclei. Nm represents the number density of nuclei in the mth

charge state. αe
� Ne � N represents the ratio of free electrons to nuclei and also the average

ionization state, Z̄. A is the atomic mass, ρ is the density in g/cm3, um is essentially the
electronic partition function (assumed to be equal to the statistical weight of the statistical
weight of the ground state, i.e., 2 for the two electron spin states), T is the temperature in
keV, and Im is the ionization potential of the mth charge state also in keV.

CSaha
�

2
NA

�
2πmekB

h2 � 3 � 2
� 317 � 013 (77)

where NA is the Avogadro’s number, me is the electron mass, h is Planck’s constant, and kB

is essentially Boltzmann’s constant converting the temperature from keV to ergs.
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� Modules: material libs/ec

– matmod saha.h

– matmod saha.C

– saha equation.F

� Physics: any physics requiring ionized materials

Table 35. Input Parameters for SAHA IONIZATION.

Parameter Name Type Description

TEMPERATURE CUTOFF real Minimum temperature used to evaluate the
ionization state

Table 36. Registered Plot Variables of SAHA IONIZATION.

Variable Name Type Mode Description

DENSITY real INPUT Material density
TEMPERATURE real INPUT Material temperature
ZBAR real OUTPUT Ionization state

Example:

model, 5, saha ionization
$ no parameters necessary

end

10.7.2 KZB Sesame Ionization

MODEL model_id_number KZB SESAME
[parameter = value]
...

END

Ionization state as found in tabular form in Kerley Sesame format [11]. Internally this
is the 601 Sesame table. This is not really a model. It is a software interface. The origins
of any table used here must be carefully researched and understood.
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� Modules: material libs/kerley eos/sesame

– szb mig.h

– szb mig.C

– szbmig.F

� Physics: any physics requiring ionized materials

Table 37. Input Parameters for KZB SESAME.

Parameter Name Type Description

FZB String Table file name
NZB int Table Number

Table 38. Registered Plot Variables of KZB SESAME.

Variable Name Type Mode Description

DENSITY real INPUT Material density
TEMPERATURE real INPUT Material temperature
ZBAR real OUTPUT Ionization state

Example:

model, 5, kzb sesame
fzb = ’ses600’
nzb = 3109

end
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11 Diagnostics

11.1 Global Diagnostic Variables

In many problems of interest it is often desirable to know the energy budget. How much
energy is related to a given physical process? What are the values of the kinetic, internal,
magnetic, and radiation energies? How much energy is supplied by a given source or is lost
to a given sink? How fast does energy change from one form to another? A global energy
balance can be constructed as follows.

Eerror
�
t � � Etot

�
t � �

�
Etot

�
0 � �

Esources
�
t � � Elosses

�
t � � � 0 (78)

where
Etot

�
t � � Eint

�
t � �

Ekin
�
t � �

Emag
�
t � (79)

Ideally the error in this energy balance should be zero, or at least small compared to most
energy tallies. Deviations from zero are typically due to missing energy tallies, numerical
inaccuracies, or perhaps too large of a time step.

Table 39. Global Tallies for All Physics Options.

Global Variable Name Explanation

ETOT
PTOT*

Total of the kinetic internal, magnetic, and radiation energies
and the rate of total energy change.

Table 40: Global Tallies for TRANSIENT MAGNETICS.

Global Variable Name Explanation

DT MAG Overall limiting time step for TRANSIENT MAGNETICS
DT MAGDIFF Suggested limiting time step for resolving magnetic diffu-

sion. It is essentially one e-folding time for problems where
the magnetic field varies exponentially in time. In SI units,
τmagdi f f

� �
µσh2 � � 4, where µ is the permeability, σ is the

conductivity, and h is a characteristic cell size.
DT ALFVEN Limiting time step based upon Alfven wave speed.
CURRENT Current flowing in the mesh as tallied by the CURRENT

TALLY boundary conditions. Present only if CURRENT TALLY
commands are specified.

continued on next page
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continued from previous page
INDUCTANCE Inductance of the mesh computed from the total magnetic

field energy, EMAG, and the total CURRENT tally. Present only
if CURRENT TALLY boundary conditions are specified. In SI
units, 1

2LI2 � Emag
� 1

2µ0

�
B2dV .

RESISTANCE Resistance of the mesh computed from the total joule heat-
ing rate, PJOULE, and the total CURRENT tally. Present only
if CURRENT TALLY boundary conditions are specified. In SI
units, RI2 � PJoule

�

�
ηJ2dV .

EMAG
PMAG

Magnetic field energy and rate of change.

EJOULE
PJOULE

Cumulative tally of the energy transferred to the material via
Joule heating and rate of heating.

EJOULV
PJOULV

Cumulative tally of the energy transferred to the void via
Joule heating and rate of heating as a consequence of small,
but finite, void conductivities. This energy and power should
be small compared to other energies and powers for a valid
solution.

EUDJXB
PUDJXB

Cumulative tally of the energy transferred to the material via
work done by

�

J �

�

B forces and rate of change.
EMAGHYDRO
PMAGHYDRO

Cumulative tally of the change in magnetic field energy due
to Lagrangian motion of the mesh and rate of change. (2D
only)

EMAGWORK
PMAGWORK

Cumulative tally of the energy transferred to the material via
work done by forces and rate of change. Typically these tal-
lies equal the sum of the EUDJXB and EMAGHYDRO tallies (2D
only)

EPOYNT
PPOYNT

Cumulative tally of the energy transferred to the system via
Poynting flux through the boundary of the mesh and rate of
change. Since this tally typically represents a source of en-
ergy, it should be added to the energy balance equation. This
tally is positive if energy is added to the mesh and negative
if energy is lost from the mesh.

ETDERR
PTDERR

Time discretization energy and rate of change. This en-
ergy error originates naturally when constructing the fully-
implicit numerical algorithm used to solve the MHD equa-
tions. It should be small compared to other energies and
powers for a valid solution. (2D only)

continued on next page
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continued from previous page
EMAGRZERR Error in the magnetic field energy as a result of advection,

i.e., remap. It should be small compared to other energies
for a valid solution. There is no corresponding power.

Table 41 explains the key to decipher the output names for the circuit model as it is
implemented. All circuit output variables are in SI units even though the circuit model may
be used with a simulation that is in either SI or CGS units. Circuit model output names are
composed of three parts: a prefix, a root, and a suffix. The root part designates the type of
circuit component, either a circuit node or a circuit element. The prefix indicates the type
of information represented by the tally. The suffix identifies the particular circuit node or
circuit element for the tally.

The ”I ” current tallies are associated with circuit elements. Circuit elements are at-
tached to circuit nodes. The sum of all currents coming into a circuit node should be zero
(unless it is a voltage source or ground node). Kirchhoff’s law for currents is enforced.
If a circuit node is attached to the output of a circuit element, then the element current is
added to the sum. If a circuit node is attached to the input of a circuit element, then the
element current is subtracted from the sum. Any discrepancies in the sum are stored in the
”IG NODE ” variables, nominally referred to as a ”current to ground.” These ”IG NODE ”
variables can indicate a bad DASPK solve if they are not small compared to other currents.
Ideally they would be zero.

The ”V ” voltage tallies are associated with circuit nodes. The difference in voltages
between two adjacent circuit nodes should match the corresponding ”DV ” tally for the
circuit element that connects the nodes. Kirchhoff’s law for zero voltage drop around a
closed loop is enforced in this piecewise manner.

The ”E ” energy variables are the energy stored in circuit elements in the case of capac-
itors and inductors, the energy dissipated in the case of resistors, and the Poynting energy
in the case of the mesh circuit element.

The ” MQSMESH ” variables and the circuit solution depend upon the correctness of any
symmetry factors should they be required, i.e., the VOLUMETRIC SCALE FACTOR input key-
word.

External inductances, resistances, and capacitances are typically constants.

For example, the MQS element having an input node 2 and an output node 1 represent-
ing the mesh has the following variables present in the EXODUS and HISPLT output files:
DV MQSMESH 2 1, I MQSMESH 2 1, E MQSMESH 2 1, L MQSMESH 2 1, and R MQSMESH 2 1.
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Table 41: Global Tallies for CIRCUIT SOLVER.

Global Variable Name Explanation

Prefix
V Circuit node voltage (Volts).
IG Circuit node current to ground (Amperes).
I Circuit element current (Amperes).
L Circuit element inductance (Henrys).
R Circuit element resistance (Ohms).
E Circuit element energy (Joules).
DV Circuit element voltage drop between input and output nodes

(Volts).
Root

NODE Circuit node.
MQSMESH Mesh element (MQS = magnetoquasistatics).
RES Resistor element.
IND Inductor element.
CAP Capacitor element.
ZFLOW Zflow resistor element.
CS Current source element.

DET Detonator resistor element.
SW Switch resistor element.
TSW Tracer switch element.
VAR Varistor resistor element.

Suffix
nn Node identifier.
ii oo Element identifier (ii = input node, oo = output node).

Table 42. Global Tallies for THERMAL CONDUCTION.

Global Variable Name Explanation

DT CON Overall limiting time step for THERMAL CONDUCTION. The
reported time step does not include scaling by the TIME
STEP SCALE keyword so the user may readily see the time
step that thermal conduction would normally employ.
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Table 43. Global Tallies for EMISSION.

Global Variable Name Explanation

DT EMISSION Limiting time step for EMISSION. This time step is factored
into the DT HYDRO time step.

ERADEMIT
PRADEMIT*

Cumulative tally of the radiation energy emitted by the ma-
terial and the rate of emission due to the EMISSION model.
Since this tally represents a gain to the radiation energy, it
should be added to the initial radiation energy in energy bal-
ance equations.

DIST TO VOID A report of the mean-distance-to-void used to compute the
reabsorption factor in the emission model.

OPTICAL DEPTH MIN
OPTICAL DEPTH MAX

A report of the minimum and maximum optical depth used to
compute the reabsorption factor in the emission model. The
optical depth is defined to be the absorption opacity times
the mean-distance-to-void.
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