

SANDIA REPORT

SAND2004-6428
Unlimited Release
Printed February 2005

SIERRA Framework Version 4:
Solver Services

Alan B. Williams

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy�s
National Nuclear Security Administration under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNT Digital Library

https://core.ac.uk/display/71320252?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Issued by Sandia National Laboratories, operated for the United States Department of Energy by
Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any of
their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors. The
views and opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865)576-8401
Facsimile: (865)576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from

U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800)553-6847
Facsimile: (703)605-6900
E-Mail: orders@ntis.fedworld.gov
Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

2

SAND2004-6428
Unlimited Release

Printed February 2005

SIERRA Framework Version 4: Solver Services

Alan B. Williams
Advanced Computational Mechanics Architectures Dept.

Sandia National Laboratories
P.O. Box 5800

Albuquerque, NM 87185-0826

Abstract

Several SIERRA applications make use of third-party libraries to solve systems of linear
and nonlinear equations, and to solve eigenproblems. The classes and interfaces in the SIERRA
framework that provide linear system assembly services and access to solver libraries are col-
lectively referred to as solver services. This paper provides an overview of SIERRA’s solver
services including the design goals that drove the development, and relationships and interac-
tions among the various classes. The process of assembling and manipulating linear systems
will be described, as well as access to solution methods and other operations.

3

Acknowledgement

The format of this report is based on information found in [17] and the example material at [2].

4

Contents

1 Introduction. 7
1.1 Organization of Paper . 8

2 Design Goals . 8
2.1 Solver-library Abstraction . 8
2.2 Mapping Degrees-of-freedom to Algebraic Equations . 8
2.3 Parallel Communications . 9

3 The Big Picture . 9
4 Assembly of Linear Systems. 10

4.1 Fmwk::LinearSystem Overview . 12
4.2 Fmwk::AlgorithmLinSys Interfaces Overview . 14
4.3 Linear System Stencils . 16
4.4 Regular Contributions . 16
4.5 Arbitrary Contributions . 17
4.6 Regular Constraints and Arbitrary Constraints . 17
4.7 Enforcement of Boundary Conditions . 18

5 Finite Element Interface to Linear Solvers. 19
5.1 Constraint Reduction . 20

6 Mathematical Operations . 21
6.1 Fmwk::Solver Support . 21
6.2 Solver Option Parsing . 23
6.3 Supported Solver Libraries . 23

7 Miscellaneous Topics . 24
7.1 Sharing and Reusing Matrix, Matrix Graph . 24
7.2 Assembling Multiple Matrices . 25

8 Nonlinear Solvers, Eigensolvers . 25
8.1 Fmwk::NonLinearSolver . 25
8.2 EigenSolver . 25

References . 28

Appendix

A Parser Support and Class Instantiation . 29
B Parsing Solver Options . 31
C Dependencies and Third-Party-Library Management . 33

C.1 Introduction . 33
C.2 Framework, FEI and solver libraries . 34

Figures

1 Major solver services components. 10
2 Trivial mesh, and matrix graph. 11
3 AlgorithmLinSys interfaces inherit Algorithm . 15
4 Library-specific implementations of Fmwk::Solver Support. 22
5 Interactions between Fmwk::NonLinearSolver and other entities. 26
C.1 Conflict in ’diamond-shaped’ dependency . 33

5

C.2 SIERRA, FEI, and solver dependencies . 34

6

SIERRA Framework Version 4: Solver
Services

1 Introduction

Sparse systems of linear equations arise in several SIERRA applications, and the solution of linear
systems is often the most computationally intensive portion of the application. The SIERRA frame-
work provides services to assist with the assembly and manipulation of linear systems, and provides
interfaces for accessing a number of third-party solver libraries. Services are also provided to as-
sist in using nonlinear solvers and eigensolvers. This paper will give an overview of these services
including design goals and descriptions of how to use the various classes and interfaces. However,
specific details of method arguments and data types will be avoided in most cases as that informa-
tion is best obtained from documentation generated directly from class header files. Developers are
referred to the doxygen-generated documentation on the SIERRA web site [4, 3].

To set a context for the discussion that follows, we will first establish the notation for the linear
systems that SIERRA’s solver services are aimed at assembling and solving. Many implicit finite-
element formulations, as well as finite-volume and others give rise to a linear system denoted by

Ku � f � K � ℜNxN
� u� f � ℜN (1)

where N is the number of degrees of freedom in the problem being solved, K is often referred to
as the global “stiffness” or “system” matrix, f is referred to as the “load” vector, “forcing term” or
more generally the “right-hand-side” and u is the solution being sought. (Note that linear systems
are often denoted by Ax � b in mathematical literature.) When an analysis includes constraints (e.g.,
due to contact and/or adaptive mesh refinement), it is often necessary to solve the linear problem
subject to a system of constraint relations, denoted by

Cu � g� C � ℜNcxN
� g � ℜNc (2)

where Nc is the number of constraint relations. If constraints are imposed using a lagrange multiplier
formulation, a logically partitioned linear system arises

�
K CT

C 0

��
u
λ

�
�

�
f
g

�
(3)

and notably, the matrix is indefinite which is an important consideration if choosing an iterative
solution method. Alternative formulations for imposing constraints are available, including a penalty
approach, as well as a form of static condensation which will be described in section 5.

An enormous body of literature exists on matrix computations and methods for the solution of
linear systems. A few noteworthy examples are Golub and Van Loan [12], Saad [19], Freund and
Nachtigal [11], and Saad and Schultz [20].

Applications written using the SIERRA framework depend on the framework for many services,
including data management. The framework owns and manages solution data defined at mesh ob-
jects, etc. SIERRA’s solver services provide infrastructure for taking data from the mesh database
and using it to assemble linear systems. The application directs the linear system assembly process,

7

but the solver services manage the details, including making call-backs into application-provided
algorithms, and passing data into solver-library data structures, etc. The purpose of this document
is to describe the classes and components that make up SIERRA’s solver services.

1.1 Organization of Paper

In section 2 the design goals that drove the development of SIERRA’s solver services will be de-
scribed. Section 3 describes the relationships and roles of the major classes that provide solver
services. Section 4 describes linear system assembly and manipulation, and section 5 provides a
brief review of the Finite Element Interface to Linear Solvers (FEI). Section 6 covers available
mathematical operations (such as system solution, residual calculations, etc.). Section 7 covers mis-
cellaneous topics such as using multiple linear systems, and section 8 describes the interfaces to
nonlinear solvers and eigensolvers.

2 Design Goals

The benefits of using the solver services and abstraction layers provided by the framework are de-
scribed in the context of the design goals in the following subsections. Strictly speaking, SIERRA
applications could use solver libraries directly, without the help of framework solver services. How-
ever, it is hoped that the advantages provided by the solver services make that an unattractive option.

2.1 Solver-library Abstraction

Depending on the spectrum of problems addressed by an application, there may be no single solver
package capable of solving all of the linear systems that arise. For this reason, a major design goal for
solver services in SIERRA has been to provide access to a large number of different solver libraries,
and to allow applications to easily switch between them. Applications may switch from one solver
library to another at run-time, i.e., without altering any application code or recompiling. Due to the
wide variety of interfaces and data formats associated with different libraries, it is necessary to insert
abstraction layers between the applications and the solver libraries in order to support this design
goal. Some aspects of the abstraction are provided by the SIERRA framework and others by the
Finite Element Interface to Linear Solvers (FEI).

2.2 Mapping Degrees-of-freedom to Algebraic Equations

Another design goal (which arises in part due to the goal of allowing easy switching of solver li-
braries) is to allow applications to address matrices and vectors (specify locations) using mesh-object
identifiers and field- variables (e.g. “temperature field on node 9876”), rather than using algebraic
equation numbers and indices. In other words, applications are relieved of the task of mapping
degrees-of-freedom to a globally consistent algebraic equation space. This is more significant for

8

analyses which use multiple fields and different types of mesh-objects (e.g. nodes, edges, etc.) than
it is for “topologically simple” analyses which solve a single scalar field at each node.

2.3 Parallel Communications

A third major design goal is to insulate applications from some of the parallel communications issues
that arise when assembling data into matrices and vectors in a distributed-memory multi-processor
setting. For example, when assembling data for finite-element nodes that are shared among multiple
processors, the application may contribute each node’s data on the local processor and the data is
automatically sent to the processor that uniquely owns the corresponding equations in the linear
system.

3 The Big Picture

Solver services in the SIERRA framework are provided by a small number of significant components
or entities:

� Fmwk::LinearSystem This is the class which orchestrates the creation and assembly of
linear systems. This class does most of the translation of data from SIERRA objects such
as regions, mesh-object registrars and field variables, into the form needed by the FEI for
assembly into the underlying linear system.

� Fmwk::Solver Support Implementations of this abstract interface provide factories for
instantiating FEI objects and coupling them with solver-library-specific data objects, as well
as uniform interfaces for accessing library-specific solution methods, etc.

� FEI This subsystem provides uniform interfaces (i.e., independent of which solver library is
being used) for creating and manipulating linear system data objects.

� Solver-Libraries Generally referred to as “third-party” libraries, they provide the actual data
structures and solution methods for working with and solving linear systems.

Figure 1 shows the major classes and libraries which make up the solver services in the SIERRA
framework. The dependence arrows indicate “uses” or “accesses” relationships. The abstraction
layer which facilitates solver-library independence, is comprised of Fmwk::SolverSupport and the
FEI. The implementation code for SIERRA applications, as well as Fmwk::LinearSystem, can be
completely independent of the run-time type of underlying linear system objects.

Fmwk::Solver Support is an abstract class (contains pure virtual methods). There is a separate
implementation of Fmwk::Solver Support for each solver library. At run-time, when Fmwk::Li-
nearSystem is constructed, it is matched with the appropriate implementation of Fmwk::Sol-
ver Support according to input-file parameters specifying which solver is to be used. During the
creation and assembly of linear systems, Fmwk::LinearSystem can request instances of data ob-
jects such as matrices and vectors, which are created by factories that originate in a library-specific

9

+initialize()
+load()
+...()

Fmwk::LinearSystem

+create()
+solve()
+matvec()
+...()

«interface»
Fmwk::Solver_Support

Solver Libraries

FETI-DP
HYPRE
ISIS++
PETSc
Prometheus
SPOOLES
Trilinos

FEI

fei::VectorSpace
fei::Vector
fei::MatrixGraph
fei::Matrix

fei::LinearSystem

fei::Factory

SIERRA App

Implementations of:
Algorithm
Region
Mechanics
etc. ...

Figure 1. Major solver services components.

Fmwk::Solver Support implementation. These data objects are contained in generic FEI inter-
faces which serve as thin containers to be passed through various library-independent code-scopes.
The FEI interfaces also provide generic data input/output and mechanisms for manipulating the
underlying data objects.

4 Assembly of Linear Systems

This section describes the classes and interfaces used to assemble linear systems. Usually appli-
cations assemble linear systems as a unit that includes a matrix and two vectors (right-hand-side
and solution) but it is also possible to obtain and work with individual matrix and vector objects.
The linear system assembly services support assembly from, and return solutions for, any scalar or
vector field associated with any of the mesh-object types supported by the framework (e.g., nodes,
edges, faces, etc.). Depending on the physics and the formulation involved, the mapping of degrees
of freedom to a globally consistent algebraic equation space can range from trivial to very complex.
Linear system assembly includes defining sets of indices that induce vector-spaces, interactions and
connectivities that define matrix-graphs, and contribution/manipulation of coefficients in the matrix
and vector objects.

Consider the trivial 5-element mesh of 2D quads in figure 2. Assuming a finite-element appli-
cation with 1 scalar degree of freedom per node, the element stiffness matrices are of size 4x4, and
the assembled matrix has coefficients in the positions marked by ’X’ in the figure. This example
is trivially simple in order to illustrate several points in the process of linear system assembly. In

10

E0

E1 E2

E3 E4

2 3

4 5

6

7 8 9

10

0
1
2
3
4
5
6
7
8
9

10

0 1 2 3 4 5 6 7 8 9 10

X X X X
X X X X
X X X X
X X X X

X X X

X X X
X X X
X X X

X X X

X
XXXX

X

X

X
X
X X

X X X X

X X X X

X
XX

X

X X X X

X
X
X X

X

11

11

X X X

X
X

X

10

Figure 2. Trivial mesh, and matrix graph.

general, we are constructing sparse matrices from unstructured meshes. The creation of a sparse
matrix in SIERRA takes a specific sequence as follows.

1. Accumulate structural data (e.g., element-node connectivities) that defines the matrix-graph
(the locations of the nonzero coefficients in the matrix).

2. Allocate memory (depending on the underlying solver library being used – most require pre-
allocation of matrix storage) for the matrix.

3. Load the coefficient data into the matrix.

This sequence requires making two distinct passes over the mesh: once to obtain the structural data,
and again to obtain the associated coefficient data. The reason for this is that many solver libraries
store the matrix coefficients in a single “flat” array, and the size of the array can’t be known until
after the matrix-graph is fully defined.

In the trivial example of figure 2, it is easy to see that the structure of the matrix consists of
blocks that correspond to the elements in the mesh. The nodal connectivity list for element “E0” is
[0,1,2,3], which translates to the structurally symmetric 4x4 region of the matrix in rows 0 to 3 and
columns 0 to 3, where the coefficients for that element’s stiffness matrix will be stored. Node 6 is
referred to as a “hanging” or “mid-side” node, and we impose a constraint-relation to ensure that the
solution at that node lies on a “straight line” between the solutions at nodes 2 and 3. Note that the

11

matrix-graph shown has coefficients in row 11 and column 11. These are the positions occupied by
constraint-weights if a lagrange multiplier constraint is used to constrain node 6, and the result is an
example of the partitioned matrix in equation (3). If this constraint were imposed using a penalty
formulation instead of a lagrange multiplier formulation, then the matrix would only have 11 rows
and columns, instead of the 12 that are shown.

Assembling and accessing a linear system involves a number of classes and interfaces which are
listed here and then described individually in more detail in the following subsections.

� Fmwk::LinearSystem: This is the primary class that an application interacts with to coordi-
nate the initialization and assembly of a linear system.

� Fmwk::AlgorithmLinSys interfaces: This is a family of four interfaces (abstract classes) that
define call-back mechanisms for providing linear system contributions and constraint defini-
tions. Application-implementations of these interfaces can be registered with the Fmwk::Lin-
earSystem class, which then calls methods on them as a way of requesting data at appropriate
points in the linear system assembly process. This leaves the application in charge of looping
over mesh-objects for which contributions are to be made, etc.

� Fmwk::LinearSystem::BCSet interface: This is an interface which can be implemented by
applications in order to define dirichlet or essential boundary condition sets, i.e., sets of mesh-
objects for which boundary conditions are to be imposed. Like the AlgorithmLinSys inter-
faces, this is a call-back mechanism whereby the Fmwk::LinearSystem class can request the
boundary condition data from the application at the appropriate point in the linear system
assembly.

� Fmwk::LinearSystem::GeneralBCSet interface: This is very similar to the BCSet interface
described above, but is better suited to applying boundary conditions to vector fields. The
BCSet interface is the best choice if scalar fields are being used.

During and after the assembly process, the Fmwk::LinearSystem class holds the matrix-graph,
matrix and vector objects in containers that may be accessed by the application (these containers are
FEI objects, which will be described in section 5). This allows the application to control the process
of calculating residuals, passing the linear system to a solver, etc.

4.1 Fmwk::LinearSystemOverview

Usage of the Fmwk::LinearSystem class can be divided into a number of distinct phases:

1. Construction: In addition to creating a Fmwk::LinearSystem instance, the construction phase
also includes registration of algorithms for contributions, constraints and boundary condition
sets. Note that implementations of the AlgorithmLinSys* interfaces are registered with the
Fmwk::LinearSystem instance when they are constructed. This is done by the constructor
for each of those base classes, no explicit action is needed by the derived class.

2. Initialization: The method Fmwk::LinearSystem::initialize() performs the initializa-
tion of vector-space and matrix-graph objects. During the execution of this method, call-backs
are made to application implementations of the AlgorithmLinSys* interfaces, etc.

12

3. Loading: This phase involves the loading of coefficient data into the linear system (again, via
call-backs to application implementations of AlgorithmLinSys* interfaces), enforcement of
boundary conditions, etc.

In addition to these phases, there are also a variety of methods for accessing and manipulating the
linear system objects, returning solution data to the associated Fmwk::Region, etc.

Following are the methods on the Fmwk::LinearSystem class which are relevant to applica-
tion usage. They are listed in approximately the order in which they would be called by a typical
application, except for the query methods listed at the end, which may be called almost any time.

� register bc set() Registers implementations of the Fmwk::LinearSystem::BCSet in-
terface, which will be described in section 4.7.

� initialize()Orchestrates the initialization of the linear system’s matrix graph and vector
space objects, by calling the init() methods on the registered algorithm instances to define
connectivity lists for contributions and constraints.

� load(), load contributions(), load constraints(), load bc(), load-
complete()The load() method internally calls load algorithms(), load constraints(), load bc()

and load complete() in that order. Alternatively, applications may make those individual
method calls themselves rather than calling the load() method.

� set initial guess(),set rhs() These methods load specified data into the linear
system’s solution vector or right-hand-side vector, respectively.

� zero matrix rows()

� load complete() Signals that all coefficient data has been loaded into the linear system.
At this point the underlying library may finish assembling the linear system, by completing
boundary condition enforcement, communicating shared data to the appropriate processors,
etc.

� solve() There are several overloadings of the solve() method, some of which have output
arguments such as initial and final residual norms, number of iterations taken, etc. These
are helper methods which call through to the solve and residual-calculation methods on the
Fmwk::Solver Support interface, which will be described in section 6.

� residual norm() Like the solve() methods, this method calls through to the correspond-
ing method on the Fmwk::Solver Support interface.

� scatter(),get lagrange multipliers() These methods are for returning solu-
tion data after the linear system has been solved. The scatter() method copies data from
the solution vector to the owning Fmwk::Region class, while the get lagrange multipliers()
method returns the lagrange multiplier solutions directly to the caller in a container of double
precision values.

� copy vector to region(),copy region to vector()These methods provide func-
tionality that can be equivalent to what is done by the scatter() and set initial guess() methods.
The distinction is that these methods take an argument specifying which vector is to be copied
to/from, rather than automatically using the linear system’s solution vector.

13

� reset(),reset rhs(),reset cr() These methods set zeros throughout the linear
system’s matrix and vectors. reset cr(), however, is a special case. It attempts to reset only the
portion of the linear system associated with constraints. This operation is not supported by all
solver libraries.

� deallocate() Destroys the internal linear system components, such as matrix-graph, ma-
trices and vectors, etc.

� get matrix graph(), set matrix graph(), get linear system(), set-
linear system(), get fei factory() These methods are used to share or swap

components of the linear system among different instances of Fmwk::LinearSystem. Note
that the components of the linear system don’t exist until after intialize() and/or the load meth-
ods have been called, depending on which component is being requested.

� region() Query for the Fmwk::Region object with which this Fmwk::LinearSystem in-
stance is associated.

� elapsed cpu time(), elapsed wall time(), reset cpu timer(), reset-
wall timer()Timer access methods are for measuring the amount of time spent in various
Fmwk::LinearSystem methods.

4.2 Fmwk::AlgorithmLinSys Interfaces Overview

The “AlgorithmLinSys” interfaces are a set of four interfaces for making coefficient contributions
(e.g., element stiffness and loads) and for defining constraint relations. As an example, nodal
finite-element applications need to define a matrix-graph structure using element-node connectiv-
ity lists, and contribute coefficients for element-stiffnesses and load vectors. These applications
define an algorithm which implements the appropriate one of these interfaces and which can loop
over the elements and produce the connectivity lists and coefficient contributions when directed to
do so via calls to the methods defined on the interface. Note that the SIERRA framework pro-
vides an implementation (Fmwk::LinSysWorksetAlgorithm) that makes connectivity and coef-
ficient contributions, given specified workset variables. This is created as a nested algorithm for
application-implementations of WorksetAlgorithm which are to make linear-system contributions.
Figure 3 depicts the four AlgorithmLinSys interfaces, along with the framework implementation
LinSysWorksetAlgorithm, and shows their inheritance relationship to WorksetAlgorithm and
Algorithm.

The four interfaces are:

� Fmwk::AlgorithmLinSysRegularContributionBlocks of self-homogeneous con-
tributions. For example, a block of element-contributions for elements having the same topol-
ogy and field layout. Or, an algorithm that strides over some set of mesh-objects and makes
any contribution that conforms to the same stencil each time.

� Fmwk::AlgorithmLinSysArbitraryContribution Blocks of contributions that
may vary in size and shape from one to the next, i.e., using a different stencil for each contri-
bution. (The LinSysStencil class is described in the next section.)

14

+execute()
+...()

Algorithm «interface»
AlgorithmLinSysRegularContribution

«interface»
AlgorithmLinSysArbitraryContribution

«interface»
AlgorithmLinSysRegularConstraint

«interface»
AlgorithmLinSysArbitraryConstraint

+gather()
+scatter_assemble()
+...()

WorksetAlgorithm

LinSysWorksetAlgorithm

Figure 3. AlgorithmLinSys interfaces inherit Algorithm

� Fmwk::AlgorithmLinSysRegularConstraintBlocks of constraint relations which
are self-homogeneous. In other words, constraints which each constrain the same field on a
fixed number of the same types of mesh-object.

� Fmwk::AlgorithmLinSysArbitraryConstraintBlocks of constraint relations for
which the connectivity list may change size and the constrained field may change from one
constraint to the next.

As mentioned earlier, Fmwk::LinearSystem loops over registered instances of these interfaces at
the appropriate point in linear system assembly, and directs them to provide their contributions. The
pattern used is a double call-back approach which works as follows. Each of these interfaces declares
an init() method and an apply() method, which are pure-virtual methods to be implemented by the ap-
plication derived class. The init() method will be called from Fmwk::LinearSystem::initialize(),
at which point the implementation is expected to stride through its set of contributions and provide
each connectivity list via calls to the init connectivity() method. The init connectivity() method is a
non-virtual method on the algorithm interface, and it relays the connectivity list to Fmwk::Linear-
System. During the course of the linear system initialization, this process will be repeated for each
algorithm that is registered on the Fmwk::LinearSystem instance. Later during the coefficient load-
ing stage, the apply() method will be called from one of the Fmwk::LinearSystem load methods
(either Fmwk::LinearSystem::load contributions() or Fmwk::LinearSystem::load cons-
traints() as appropriate). At this point the implementation is expected to stride through its set of
contributions again, this time providing coefficients by calling the apply coefficients() method. The
apply coefficients() method is another non-virtual method on the algorithm interface which relays
the data to the Fmwk::LinearSystem instance. The methods declared by these interfaces are listed
here.

� init() This method is pure virtual, must be provided by implementations of the interface.
This method will be called from within the Fmwk::LinearSystem class.

15

� init connectivity() (Takes an argument which is an array of mesh-objects.) This
method is non-virtual (implementation is provided by the SIERRA framework). It is expected
to be called repeatedly from within the init() method as the implementation loops over the
mesh extent for which contributions are being made. Each of the connectivity lists are relayed
to the Fmwk::LinearSystem object by this method.

� apply() This method is pure virtual, must be provided by implementations of the interface.
This method will be called from within the Fmwk::LinearSystem class.

� apply coefficients() (Takes arguments which are coefficient arrays.) This method
is non-virtual (implementation is provided by the SIERRA framework). It is expected to be
called repeatedly from within the apply() method as the implementation loops over the mesh
extent and produces coefficients to be contributed. The implementation must loop over the
mesh extent in the same order now as it did in the init() method. Each of the coefficient
contributions are relayed to the Fmwk::LinearSystem object by this method.

4.3 Linear System Stencils

The class Fmwk::LinSysStencil is used as an argument in several of the Fmwk::Algorithm-
LinSys constructors and methods. It provides a mechanism for mapping degrees of freedom to
contribution coefficients. LinSysStencil is a specialization of the C++ standard library vector, and
contains pairs. Each pair contains an ordinal and a pointer to a field argument. For the example of
a block of element-contributions, the stencil would list the ordinals of connected mesh-objects (e.g.
nodes) and pair them with associated nodal fields. This allows the LinearSystem object to unpack
the coefficients and map them to the correct global indices in the matrix and/or vector.

Example 1.: Consider the solution of a single nodal scalar field ’u’ with contributions from linear
hexahedral elements. In this case the stencil would be

��0�u���1�u���2�u���3�u���4�u���5�u���6�u���7�u��

where the first coordinate is the local node ordinal (e.g., offset into the element’s connected nodes)
and the second coordinate is a reference to the field variable.

Example 2.: Consider a 2D mesh with triangular elements and two fields u and v. Group by
nodes:

��0�u���0�v���1�u���1�v���2�u���2�v��

Group by fields:
��0�u���1�u���2�u���0�v���1�v���2�v��

LinSysStencils may become very complex with multiple fields or contributions from more than one
type of mesh-object (e.g. nodes, edges, etc.). Note that the type of the mesh-objects is not explicitly
held in the LinSysStencil, except via the association of the fields.

4.4 Regular Contributions

Regular contributions are homogeneous within each instance of the Fmwk::AlgorithmLinSys-
RegularContribution interface. An example is a block of elements in a finite-element analysis

16

which all have the same topology and layout of field variables. Each element is a contribution (con-
nectivity list and stiffness/load coefficients) and the extent of the algorithm instance is limited to the
block of similar elements. The size and layout of each contribution’s degrees of freedom are de-
scribed using a Fmwk::LinSysStencil argument when the algorithm instance is constructed, and
that stencil then applies to all contributions made by the algorithm instance.

4.5 Arbitrary Contributions

Arbitrary contributions are not required to be homogeneous, each individual contribution may be
a different size and shape. For this reason, no Fmwk::LinSysStencil argument is provided when
an implementation of Fmwk::AlgorithmLinSysArbitraryContribution is constructed, but two
Fmwk::LinSysStencil arguments are provided with each contribution. One stencil describes the
contribution’s layout in the row dimension, the other describes its layout in the column dimension.

4.6 Regular Constraints and Arbitrary Constraints

The distinction between regular and arbitrary constraints is the same as the distinction between
regular and arbitrary contributions. Regular constraints are homogeneous within the entire block of
constraints, while arbitrary constraints may have different numbers of constrained mesh-objects and
different constrained fields for each constraint. The names of these two interfaces are Algorithm-
LinSysRegularConstraint and AlgorithmLinSysArbitraryConstraint (both are in the Fmwk
namespace).

Each constraint is defined by a list of constrained mesh-objects, the field to be constrained at
each mesh object, a list of coefficient weights and a right-hand-side value. If the solution field at the
i-th constrained mesh object is denoted by ui, and the i-th coefficient weight is denoted by wi then
the constraint enforces the relationship

u0w0 �u1w1 � � � ��unwn � rhsvalue (4)

where n is the number of mesh-objects in the constraint.

If a penalty formulation is used to enforce the constraint, then new nonzeros may or may not
be added to the matrix-graph, depending on whether couplings among the mesh-objects in the con-
straint already exist due to other interactions in the analysis. The contribution that is made to the
linear system for a penalty constraint is described by the following pseudo-code. Let the matrix be
denoted by A, and the right-hand-side by b. Note that the array “index” contains mappings from
the constrained mesh-objects and fields, to the corresponding indices in the global equation space.

for(i=0; i<n; ++i) {
b[index[i]] += w[i] * rhsvalue * penaltyvalue;

for(j=0; j<n; ++j) {
A[index[i],index[j]] += w[i] * w[j] * penaltyvalue;

}
}

17

If a lagrange multiplier formulation is used, then a row and column is added to the global ma-
trix for each constraint. In a distributed-memory parallel setting, constraint rows and columns are
appended to the local portion of the global matrix on each processor.

4.7 Enforcement of Boundary Conditions

Enforcement of essential or Dirichlet boundary conditions is accomplished via the interfaces Fmwk::-
LinearSystem::BCSet and Fmwk::LinearSystem::GeneralBCSet. These are abstract interfaces
which are expected to be implemented by applications. Instances of these interfaces are registered
with the Fmwk::LinearSystem class, which later calls methods on these instances to request the
boundary condition data from the application at the appropriate time during the assembly of the
linear system.

The Fmwk::LinearSystem::BCSet interface defines methods for passing the following infor-
mation to specify boundary conditions.

� mesh-object type Whether the boundary condition is being applied to nodes, edges, etc.

� variable The field for which a value is being prescribed.

� size Number of mesh-objects in the boundary condition.

� identifiers Array of length ’size’, of the mesh-object identifiers in the boundary condition.

� values Array of length ’size’ of coefficient values being prescribed.

For cases where boundary conditions need to be imposed on more than one field or on more than
one type of mesh-object, separate instances of the interface need to be used.

The Fmwk::LinearSystem::GeneralBCSet interface is very similar to the BCSet interface,
but is better suited to applying boundary conditions to vector fields. The differences are aimed at
allowing values to be prescribed for more than one component of a vector field, or for different
components of the field on each mesh-object in the boundary condition set.

Essential boundary conditions are enforced in the linear system as follows. The corresponding
rows and columns in the global matrix are zeroed and 1’s are placed on the diagonal. (Before a
column is zeroed, its coefficients are multiplied by the boundary condition’s prescribed value and
subtracted into the appropriate positions in the right-hand-side.) Then, the prescribed values are
placed in the right-hand-side. Naturally this can result in the boundary condition being enforced only
as accurately as the tolerance which was set on the solver. If the user wishes to ensure exact boundary
condition enforcement they can specify that an alternate approach is taken whereby zeros are placed
in appropriate positions in the right-hand-side before the system is solved, and the prescribed values
are explicitly placed in the solution vector afterwards. (This is specified at run-time, by placing the
line-command ’bc enforcement = exact’ in the solver-block of the input file.)

18

5 Finite Element Interface to Linear Solvers

The Finite Element Interface to Linear Solvers (FEI) provides an abstraction layer for assembling
linear systems (see [22]). The FEI is the primary mechanism through which Fmwk::LinearSystem
creates and fills matrices and vectors, as the FEI abstraction allows the code in Fmwk::Linear-
System to be independent of the solver-library being used. Originally the FEI’s interface was ex-
pressed using a single class (called “FEI”) and had a heavy orientation towards nodal finite-element
formulations (see [7]). Recently, the FEI has been augmented with a group of several smaller inter-
faces in order to make it more flexible and more general. These interfaces now reside in a namespace
called ’fei::’. The original interface is still maintained however, to ease the process of switching to
the new ones. The new interfaces share some implementation code with the old interface, but there
is also a lot of new code. When the new interfaces were initially phased in, there were some use
cases handled by the original FEI that the new interfaces couldn’t handle. For this reason we re-
tained the ability to choose between the old and new fei at run-time. The new interfaces are used by
default for most cases at the time of this writing, but the user may choose the original FEI by using
the command ’select fei = old’ in the solver-block of their input file. One of the reasons for adding
the new interfaces was to allow the assembly of data from arbitrary mesh-object types, rather than
just nodes. So in some cases, if the user attempts to force the use of the old FEI it will cause an
error. Additionally, the new implementation code substantially improves the performance of matrix
assembly, so the intent is to completely switch to the new code and phase the old code out entirely.

In SIERRA the fei interfaces are predominantly used by Fmwk::LinearSystem for assembling
data into matrices and vectors, and as containers for passing matrix and vector arguments to and from
Fmwk::Solver Support methods. They may also be used directly by applications in circumstances
where specific operations are not supported by Fmwk::LinearSystem and other SIERRA framework
classes.

Classes in the fei:: namespace are all abstract interfaces, with implementations that reside in
a snl fei:: namespace. The following interfaces are members of the fei:: namespace.

� VectorSpace Maps sets of degrees of freedom to a globally consistent algebraic equation
space. In SIERRA a degree of freedom is fully specified by a mesh-object identifier and an
associated field (and an offset into the field if it is a vector field). The same concepts exist
in the fei interfaces but with slightly different terminology. SIERRA enumerates the various
mesh object types with Fmwk::MeshObj::DerivedType, while fei has integer identifier-types
which are user-specified. In SIERRA a field is described by Fmwk::Field, while fei has inte-
ger field-identifiers which are user-specifiable in terms of size (number of scalar components),
etc. One of the tasks performed by a Fmwk::LinearSystem instance is to establish mappings
between Fmwk::MeshObj::DerivedTypes and fei identifier-types, and to map the relevant
Fmwk::Fields to a set of fei field-identifiers with associated sizes, etc. fei::VectorSpace
can answer queries such as: given a particular mesh-object identifier (e.g. node 9876) and
associated field (e.g. temperature), return the corresponding global equation number. fei
equation numbers are globally zero-based.

� MatrixGraphAccumulates connectivity lists and generates an algebraic matrix graph. Con-
nectivity lists may include element-to-node connectivities, constraint-relation connectivities,
etc.

19

� Vector Thin container that provides an abstraction layer for library-specific vector objects.
The abstract fei::Vector class is implemented by snl fei::Vector, which is a template.
snl fei::Vector is templated on the type of the underlying library-specific vector. Thus,
it is easy to get the underlying vector from fei::Vector using dynamic cast in code scopes
that know which type to cast to.

� Matrix Thin container that provides an abstraction layer for library-specific matrix objects.
Like fei::Vector, fei::Matrix is implemented by a template in the snl fei:: names-
pace.

� LinearSystem Container that binds a matrix and two vectors (solution and right-hand-
side) for the purposes of essential boundary condition enforcement, etc. Also convenient for
passing a linear system as a single argument between various code scopes.

� Factory The run-time type of instances of this interface vary depending on the underlying
linear algebra library being used. Its purpose is to produce new instances of objects such as
fei::Matrix and fei::Vector, the run-time type of which is consistent with other objects
already in use.

5.1 Constraint Reduction

One of the data-filtering services provided by the FEI is the removal of ”master-slave” constraints
during linear system assembly. As mentioned in section 1, solution of a linear system subject to
constraint relations can require solving the partitioned system shown in equation (3). The matrix in
equation (3) is indefinite, and can be difficult to solve or precondition effectively.

The approach used for projecting the constrained system into a reduced space is described in a
paper by Saint-Georges et al [21] and is briefly summarized here.

If the constraints represent master-slave relations (one degree of freedom is slaved to a linear-
combination of other degrees of freedom), the constraint matrix C from equation (2) can be ex-
pressed as

C � � D �I � (5)

and D is referred to as the dependency matrix. The solution vector u can be split into dependent and
independent unknowns and written as an expression involving D,

ud � Dui �g (6)

and the global stiffness matrix K can be partitioned according to dependent and independent vari-
ables as follows.

K �

�
Kii Kid

Kdi Kdd

�
(7)

Then a reduced matrix Kr of size N �Nc (N degrees-of-freedom, Nc constraints) is given by

Kr � Kii �KidD�DT Kdi �DT KddD (8)

and if K is symmetric and positive definite, then so is Kr. A reduced right-hand-side fr is given by

fr � fi �DT fd (9)

20

and the problem of solving equation (1) subject to equation (2) is equivalent to solving the reduced
system

Krui � fr (10)

which is usually much easier to solve with an iterative method. In some cases SIERRA applications
have been able to solve the reduced system when the unreduced system couldn’t be solved. The
reduction can be carried out by the FEI using local operations during element-wise assembly of the
linear system. It is completely transparent to the user, and the solution data is returned in the original
unreduced space.

6 Mathematical Operations

Once a matrix and/or vectors have been assembled, operations may be performed such as calculating
residual norms

��r��p� r � b�Ax (11)

(where p is user-selectable), as well as matrix-vector products and linear system solutions.

These types of operations generally involve library-specific code, as each library has a different
interface for constructing and/or accessing solver and preconditioner objects and other methods.
This is where the abstraction layer provided by Fmwk::Solver Support is utilized. The run-time
type of the Fmwk::Solver Support implementation need not be known to the application, but the
implementation of its methods must be library-specific.

6.1 Fmwk::Solver Support

Fmwk::Solver Support is a class which defines methods for interacting with the underlying solver
library to perform tasks such as system solutions, residual calculations, etc. There are several im-
plementations of this interface provided by the framework, one for each supported solver library
(see figure 4). Thus, the run-time type of the Fmwk::Solver Support instance associated with the
Fmwk::LinearSystem object is specific to the solver library being used. The matrix, vector and lin-
ear system arguments passed to and from the methods on this class are generic FEI objects, which
constitute thin containers from which the library-specific Fmwk::Solver Support implementation
may easily extract the underlying library-specific data object. The methods currently defined by this
interface which are relevant to application needs are:

� solver type name() Returns the name of the underlying solver library, such as “Trili-
nos”, ”PETSc”, etc.

� solver method name() Requires an argument of type Fmwk::Parameters. Returns a
name describing the solution method specified in the input-file solver-block that produced the
contents of the Fmwk::Parameters object. Example: “Aztec AZ gmres AZ jacobi”.

� is option set(),set option() Both of these methods require Fmwk::Parameters
arguments. They query and set, respectively, the specified option.

21

+get_library_entry()
+is_option_set()
+set_option()
+solver_type_name()
+create()
+solve()
+residualNorm()
+residual()
+matvec()

«interface»
Fmwk::Solver_Support

Solv_Aztec_Support

Solv_FETI_Support

Solv_Hypre_Support

Solv_Isis_Support

Solv_Petsc_Support

Solv_Prometheus_Support

Solv_Spooles_Support

Solv_Trilinos_Support

Figure 4. Library-specific implementations of
Fmwk::Solver Support.

� solve()Requires arguments including containers holding the linear system, specified solver-
control parameters, as well as an optional preconditioning matrix. In general, iterative solvers
solve the preconditioned system

M�1
1 AM�1

2 y � M�1
1 b� y � M2x (12)

where the preconditioning matrix is denoted by M � M1M2 and M is some approximation to
A. The inversion and/or splitting of the preconditioning matrix, when performed, is typically
done internally by the solution method and is transparent to the user. In many cases the
preconditioning matrix M is calculated from A, and this calculation is done internally by the
solver. But SIERRA allows for the case where the user assembles and provides a separate
preconditioning matrix.

� residualNorm(), residual() residualNorm() calculates the norm ��r��p (with p
specified by the caller), while residual() calculates the vector r.

� matvec() There are a couple of overloadings of the matvec() method, which take an
fei::Matrix object, and vector arguments as fei::Vector objects or as raw coefficient
arrays.

22

6.2 Solver Option Parsing

The various implementations of the Fmwk::Solver Support class in figure 4 play another role,
which is the parsing of options and control parameters to be passed to the underlying library.

When a SIERRA application is run, a solver-block in the input file specifies which solver-library
is to be used, and also specifies control parameters such as the solution method to be employed (e.g.,
CG versus GMRES, etc.), as well as convergence tolerance, iteration limits, etc. Naturally each
library has not only a different set of possible options, but also a different method for setting them.
Some libraries accept strings while others accept integers, etc.

The SIERRA parser subsystem converts the contents of the input file into a combination of
enumerations and other values (including floating-point numbers, strings, etc.) and these are given to
the parser-handlers in the various Fmwk::Solver Support implementations such as Solv Aztec-
Support. These library-specific parser-handlers are then responsible for mapping these values to

library-specific values. This process is mostly transparent to SIERRA users as well as application
code-developers, but it is worth describing in order to avoid confusion due to the way a “singleton”
pattern is employed in combination with static methods, etc.

The solver-support implementations are singletons which, upon construction, install parser sup-
port for the use of input-file solver-blocks that specify a given library. For example, the Solv Aztec-
Support singleton installs parser-support for the Aztec library. The methods that parse Aztec op-

tions and control parameters are static methods. These methods add the resulting parameters to
instances of the Fmwk::Parameters class. Note that an input file may contain multiple distinct
Aztec solver-blocks (in cases where separate application regions have separate linear systems, etc.),
and a separate Fmwk::Parameters instance is associated with each of those solver-blocks. Each
Fmwk::Parameters object is associated with a Fmwk::LinearSystem instance. This way if several
LinearSystem instances are being used, they may all use the Aztec library and yet they may each
specify different control parameters.

6.3 Supported Solver Libraries

The solver libraries available to SIERRA applications at the time of this writing are listed below. For
the most part we won’t detail the specific characteristics of each library, but references are provided
for each one. Trilinos is somewhat of a special case, since it is a framework containing several
packages that provide distinctly different services. These libraries predominantly provide iterative
solution methods for sparse linear systems. The SPOOLES library provides a direct solution method.

� FETI-DP [16, 10]

� HYPRE [9]

� ISIS++ [8]

� PETSc [6]

� Prometheus [1, 5]

23

� Trilinos [13, 14] Contained within Trilinos are several distinct packages which are listed be-
low (note that this is not a complete list of Trilinos packages). Usage of these separate pack-
ages is mostly transparent to SIERRA users. If a Trilinos solver-block is included in the input
file, the result is that matrix and vector data is assembled into Epetra objects, solution methods
in the AztecOO package are used, along with preconditioners from the IFPACK package (if
incomplete factorization is requested).

– AztecOO Krylov solvers and various preconditioners.

– Amesos Interfaces to direct solvers. Available to SIERRA in Trilinos versions 3.2.0 and
later.

– Epetra Matrix and Vector classes, and other data objects.

– IFPACK Incomplete Factorization Package.

– ML Multi-Level methods. Available to SIERRA in Trilinos versions 3.2.0 and later.

– NOX Nonlinear solver package.

– TSF Trilinos Solver Framework (system of abstract classes). This particular package
may be used by the SIERRA framework in the future for generalizing interactions be-
tween linear solvers, nonlinear and eigensolvers, etc.

There is a library-specific implementation of Fmwk::Solver Support for each of these solver
libraries in the SIERRA framework as shown in figure 4. These classes provide code for parsing
library-specific options from input files, as well as library-specific code for accessing solution meth-
ods, etc.

7 Miscellaneous Topics

Some SIERRA applications assemble and solve several linear systems per timestep, or solve an
“aggregate” linear system where the matrix and right-hand-side may be linear combinations of other
matrices and vectors. This section describes some aspects of these cases.

7.1 Sharing and Reusing Matrix, Matrix Graph

When several linear systems are solved per timestep, a couple of slightly different approaches are
available. One approach is to only instantiate a single Fmwk::LinearSystem instance and repeat-
edly load and reset it, avoiding some costs such as memory use. This approach is not suitable
for situations in which the separate linear systems are loaded by separate algorithms and applica-
tion mechanics. In that case, it is better to use separate instances of Fmwk::LinearSystem, each
with its own registered algorithms. However, it is possible to share a single set of underlying fei
objects (fei::MatrixGraph, fei::Matrix, fei::Vector, fei::LinearSystem) among multi-
ple instances of the Fmwk::LinearSystem class. This is accomplished via the methods on the
Fmwk::LinearSystem class for getting and setting the matrix-graph and the linear-sytem container.
There are a couple of limitations. Firstly, the structure (size, connectivities, etc.) of the linear sys-
tems being shared must be identical. Secondly, the Fmwk::LinearSystem instances must be bound

24

to the same underlying solver library (e.g., Trilinos, PETSc, etc.) otherwise the run-time types of
the underlying data objects won’t be the same. Once the method Fmwk::LinearSystem

7.2 Assembling Multiple Matrices

It is possible to assemble several matrices Ai and vectors b j and then solve an aggregate linear system
Ax � b where

A � A0 �A1 � � � ��An� b � b0 �b1 � � � ��bm (13)

and n is the number of matrices and m is the number of vectors. This is done using a single
instance of Fmwk::LinearSystem, and carries the requirement that the individual matrices must
have identical size and structure. If this feature is to be utilized, it must be specified when the
Fmwk::LinearSystem object is constructed. Consult the doxygen-generated API documentation
for the Fmwk::LinearSystem class.

8 Nonlinear Solvers, Eigensolvers

The SIERRA framework also supports the use of nonlinear solver and eigensolver packages, al-
though these capabilities are somewhat less mature than the linear-solver services (meaning the
framework interfaces to nonlinear and eigensolvers are still subject to change). In general the goal
is to allow the same kind of flexibility with respect to choice of libraries as with linear-solver ser-
vices. However, we currently only have one nonlinear solver library and one eigensolver, and so the
abstraction layers are not yet completely specified.

8.1 Fmwk::NonLinearSolver

The Fmwk::NonLinearSolver class is the main point of interaction for applications using a non-
linear solver. See figure 5. It defines abstract interfaces which applications may implement in order
to provide residual evaluations and preconditioning operations that get called during the solution
process. Fmwk::NonLinearSolver also allows the application to register a Fmwk::LinearSystem
instance. This allows for user-assembled preconditioning matrices to be used within the nonlinear
solver. Currently the only nonlinear solver package available in SIERRA is the NOX package which
resides within the Trilinos [14, 13] library.

8.2 EigenSolver

The eigensolver that is currently available in SIERRA is PARPACK [18, 15]. PARPACK is a library
written in Fortran77 that implements Arnoldi methods for solving eigenvalue problems.

There is currently not a well-developed abstraction for eigensolvers in the SIERRA framework.
The current approach for using the eigensolver is for an application to assemble a matrix using

25

Fmwk::LinearSystem

«interface»
Fmwk::Solver_Support

Trilinos

NOX
Epetra
AztecOO

FEI

fei::VectorSpace
fei::Vector
fei::MatrixGraph
fei::Matrix

fei::LinearSystem

fei::Factory

SIERRA App+register_fields()
+register_residual()
+initialize()
+solve()
+...()

Fmwk::NonLinearSolver

Figure 5. Interactions between Fmwk::NonLinearSolver and
other entities.

the Fmwk::LinearSystem class, and then use the class Solv EigenSolver ARPACK, which pro-
vides methods that take fei::Matrix objects and return eigenvalues and eigenvectors. The eigenvec-
tors are in the form of fei::Vector objects. The Solv EigenSolver ARPACK class creates the
fei::Vector objects using an fei::Factory which must be supplied by the application (it can be
obtained from the Fmwk::LinearSystem instance).

SIERRA’s interface to PARPACK will soon be replaced by an interface to the Trilinos package
Anasazi. As of this writing (June 2004), that interface has not yet been developed.

26

References

[1] Prometheus web site. http://www.cs.berkeley.edu/˜madams/Prom_intro.html.

[2] Sand report example web page with notes and example files.
http://www.cs.sandia.gov/˜rolf/SANDreport/index.html.

[3] Sierra’s internal web page. http://www.engsci.sandia.gov/sierra/sierraweb/fem/index.html.

[4] Sierra’s new web site. http://sierra.sandia.gov.

[5] M. F. Adams. Multigrid Equation Solvers for Large Scale Nonlinear Finite Element Simula-
tions. PhD thesis, University of California, Berkeley, 1998. Tech. Report UCB//CSD-99-1033.

[6] S. Balay, K. Buschelman, W. Gropp, D Kaushik, M. Knepley, L. Curfman McInnes, B. Smith,
and H. Zhang. Petsc 2.0 users manual. Technical report ANL-95/11 - Revision 2.1.6, Argonne
National Laboratory, August 2003.

[7] R. Clay, K. Mish, I. Otero, L. Taylor, and A. Williams. An annotated reference guide to the
finite element interface specification version 1.0. Technical Report SAND99-8229, Sandia
National Laboratories, Albuquerque, New Mexico 87185 and Livermore, California 94550,
1999.

[8] R. Clay, K. Mish, and A. Williams. Isis++ reference guide version 1.0. Technical report
SAND97-8535, Sandia National Laboratories, Albuquerque, New Mexico 87185 and Liver-
more, California 94550, 1997.

[9] R.D. Falgout and U. M. Yang. Hypre: A library of high performance preconditioners. Techni-
cal Report UCRL-JC-146175, Lawrence Livermore National Laboratory, Livermore, Califor-
nia 94550, 2002.

[10] C. Farhat and K. Pierson. The second generation of feti methods and their application to the
parallel solution of large-scale linear and geometrically nonlinear structural analysis problems.
Computer Methods in Applied Mechanics and Engineering, 184:333–374, 2000.

[11] R. Freund and N. Nachtigal. Qmr: A quasi-minimal residual method for non-hermitian linear
systems. Numer. Math., 60:315–339, 1991.

[12] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins, 1996.

[13] M. A. Heroux et al. An overview of trilinos. Technical report SAND2003-2927, Sandia
National Laboratories, Albuquerque, New Mexico 87185 and Livermore, California 94550,
August 2003.

[14] M. A. Heroux and J. M. Willenbring. Trilinos users guide. Technical report SAND2003-2952,
Sandia National Laboratories, Albuquerque, New Mexico 87185 and Livermore, California
94550, August 2003.

[15] R. B. Lehoucq, D. C. Sorensen, and C. Yang. ARPACK Users guide: Solution of Large-Scale
Eigenvalue Problems with Implicitly Restarted Arnoldi Methods. SIAM, 1998.

[16] M. Lesoinne and K. Pierson. Feti-dp: An efficient, scalable and unified dual-primal feti
method. 12th International Conference on Domain Decomposition Methods, 2001.

27

[17] Tamara K. Locke. Guide to preparing SAND reports. Technical report SAND98-0730, Sandia
National Laboratories, Albuquerque, New Mexico 87185 and Livermore, California 94550,
May 1998.

[18] Kristi Maschhoff and Danny Sorensen. A portable implementation of arpack for distributed
memory parallel architectures. Preliminary proceedings, Copper Mountain Conference on
Iterative Methods, 1996.

[19] Y. Saad. Iterative Methods for Sparse Linear Systems. PWS, 1996.

[20] Y. Saad and M.H. Schultz. Gmres: A generalized minimal residual algorithm for solving
nonsymmetric linear systems. SIAM J. Scientific and Stat. Comp., 7:856–869, 1986.

[21] P. Saint-Georges, Y. Notay, and G. Warzee. Efficient iterative solution of constrained finite
element analyses. Comput. Methods Appl. Mech. Engrg., 160:101–114, 1998.

[22] A. Williams. Finite element interface to linear solvers (fei) 2.9: Users guide and reference
manual. Technical report SANDXX-XXXX, Sandia National Laboratories, Albuquerque, New
Mexico 87185 and Livermore, California 94550, 2004.

28

A Parser Support and Class Instantiation

This appendix describes the ’plugging-in’ of parser handlers for the solver support classes, and the
creation of Fmwk::LinearSystem instances.

Getting solver support up and running in an application requires a couple of steps which are
described here.

1. Start the solver-support’s parser handler. In an application’s ’main’, or in some function that
will be executed before the ’run sierra()’ function is called, the appropriate solver-support
class’ factory method needs to be called to instantiate the class and activate its parser handler.
Example:

Solv_Trilinos_Support::factory();

(These solver-support classes are singleton classes. Several different solver-support factories
may be started, but only one of each.) Starting the Trilinos-support factory allows for Trilinos
solver-blocks to be parsed from the input file:

Begin Trilinos EQUATION SOLVER some_solver_name
$ set some options and control parameters...
End Trilinos EQUATION SOLVER some_solver_name

Input-file solver-blocks are the mechanism by which application users specify parameters that
control solver behavior, such as iteration limits, residual tolerances, preconditioner choices,
etc.

2. The application region’s parser code should include a handler that will construct an instance
of Fmwk::LinearSystem in response to an input-file directive such as:

USE LINEAR SOLVER some_solver_name

The region’s parser handler will have access to the string “some solver name”, and this must
be passed as a constructor argument to Fmwk::LinearSystem. The constructor uses this string
to obtain the correct container of parsed solver options, and couples it with the Fmwk::Linear-
System instance along with a pointer to the Solv Trilinos Support object. The Fmwk::Lin-
earSystem constructor takes a second string argument which will be used as the name of the
Fmwk::LinearSystem instance. The reason for having two string arguments is to allow for
the scenario where multiple Fmwk::LinearSystem instances are constructed sharing a single
set of solver parameters.

29

30

B Parsing Solver Options

This appendix describes the connections between XML files and C++ source code that enable input-
file commands to be translated into library specific option values to be passed to a linear-solver
library. Consider an example. The command

Begin Trilinos EQUATION SOLVER flow_solver
solution method = cg

End Trilinos EQUATION SOLVER flow_solver

in an input file specifies that the Conjugate Gradient method should be used with the Trilinos equa-
tion solver instance “flow solver”. This command must result in the pair of values “AZ solver,AZ cg”
(which are macros) being passed to the AztecOO solver in the Trilinos library.

Input file equation solver commands such as this are defined in XML files that reside in the
parser directory of the SIERRA framework repository. In particular, the file parser/apublic/Apub-
SolvGeneric.xml defines line-commands such as “SOLUTION METHOD”, along with enumer-

ations for valid values such as “CG”, “GMRES” and other possible solution methods. When the
SIERRA application runs, its parser code reads this command and passes the corresponding enu-
merated values for “SOLUTION METHOD” and “CG” to the Trilinos parser handler (method
on the class Solv Trilinos Support), provided that the Trilinos parser support singleton has
been activated within the application. Unfortunately, the enumerations defined in XML files can’t
be directly used in C++ source code. For instance, the XML file enumeration for “SOLUTION
METHOD” is 101, and the enumeration for “CG” is 0. So the Trilinos parser handler receives
the pair of integer values 101 and 0. A corresponding set of enumerations usable in C++ source
code is defined in the header include/solver/Solv Support Enums.h, and for instance, 101 is
mapped to the name solv solution method and 0 is mapped to the name solver cg. This way the
Trilinos parser handler can be written in terms of the symbol “solv solution method” instead
of the cryptic “101”. Obviously the need to maintain dual sets of enumeration mappings causes the
potential for errors, so care must be taken when making updates or changes.

Finally, the parser handler in Solv Trilinos Support maps the pair of symbols “solv solu-
tion method,solver cg” to the Aztec-defined pair of macros “AZ solver,AZ cg” in preparation
for setting up the AztecOO solution object.

Not all of the line-commands defined in Apub SolvGeneric.xml are valid for all of the dif-
ferent solver libraries. To handle this, the block-command for each library has its own XML
file which declares which of the generic solver line-commands are valid. For example, the file
parser/solver/Solv Trilinos.xml declares which line-commands may be used inside “Begin
Trilinos EQUATION SOLVER” blocks.

31

32

C Dependencies and Third-Party-Library Management

C.1 Introduction

The SIERRA framework makes use of a variety of third-party libraries for solution of systems of
linear equations, and other tasks. The dependence of the framework on third-party libraries gives
rise to some software construction issues that must be resolved when altering or updating any of the
libraries, or the framework.

There are two kinds of dependencies, namely compile-time and link-time dependencies. When
a library is altered or updated, the updates are not made available to dependent executables unless
some combination of re-linking and re-compiling is done. Examples of link-time dependencies in-
clude the BLAS and LAPACK libraries. To switch an executable from one BLAS library to another,
it is only necessary to re-link the executable. Compile-time dependencies occur when a header from
a library is used by code outside that library. If the header is changed during a library update, then
dependent code must be re-compiled before executables are re-linked.

Performing a correct build in the SIERRA framework is complicated by the fact that dependen-
cies exist not only between the framework and libraries, but also among the libraries themselves.
The tools used to build SIERRA products make use of a system of XML files which express the
dependence of a product on other products and on third-party libraries. Furthermore, XML files
located within each third-party-library’s source directory specify that library’s name and version, as
well as its dependence on other libraries. Since there are many products and libraries, an application
can have a complex dependency graph, including ’diamond-shaped’ dependence where it depends

Application

Depends on libA and libB

libA

Depends on version 1
of libX

libB

Depends on version 2
of libX

libX

Multiple versions exist:
Version 1
Version 2

Figure C.1. Conflict in ’diamond-shaped’ dependency

on two separate libraries, each of which in turn depend on a third library. Each dependence specifies
both a name and a version, so the tools can detect situations where, for instance, different versions
of a library appear in a dependency graph, causing a conflict for an application as is shown in fig-
ure C.1. Note that if the situation illustrated in figure C.1 occurs, then the application is in a ’broken’
state because the tools will not allow a build to complete if there is a conflict in the dependencies.

This note specifically addresses the dependencies between the SIERRA framework, the FEI

33

library, and third-party solver libraries.

C.2 Framework, FEI and solver libraries

The SIERRA framework uses several different solver libraries, and linear-system assembly is man-
aged through abstractions provided by the FEI library. The way this is accomplished, is as follows.
The FEI library publishes interfaces for SIERRA to use, in FEI.h and other headers. The SIERRA
framework passes linear-system data to the FEI interface, and the FEI implementation relays the
data to either of two (internally defined/used) abstract interfaces named LinearSystemCore and Fini-
teElementData. These interfaces provide the mechanism for coupling the FEI implementation with
an underlying solver-library, so for each solver library that is to be used with the FEI, there must be
a solver-specific implementation of either LinearSystemCore or FiniteElementData. This way any
one of several solver libraries may be coupled with the FEI implementation at run-time.

Figure C.2 shows the dependencies among the SIERRA framework, the FEI and the solver-

fei_interface

LinearSystemCore.h
FiniteElementData.h

FEI libs

FEI.h
libfei_base.a
libfei_aztec.a
libfei_isis.a
libfei_petsc.a
libfei_spooles.a
libfei_trilinos.a

FETI-DP

FETI_DP_FiniteElementData

SIERRA Fmwk, libSolv.a

Solv_Aztec_Support
Solv_FETI_Support
Solv_Hypre_Support
Solv_Isis_Support
Solv_NOX_Support
Solv_Petsc_Support
Solv_Prometheus_Support
Solv_Spooles_Support
Solv_Trilinos_Support

Prometheus

Prom_LinSysCore

Trilinos

Amesos
AztecOO
Epetra
IFPACK
NOX

SPOOLES

HYPRE

PETSc

ISIS++

FEI executables

feiTester
poisson
cube

Figure C.2. SIERRA, FEI, and solver dependencies

libraries. The LinearSystemCore.h and FiniteElementData.h headers reside in their own ”library”,
which is called fei interface. FEI ”libs” and ”executables” are shown as separate entities even though
they reside in a single repository. This is because they have separate XML files, so that the SIERRA

34

framework can depend on ”FEI libs” without inheriting all dependencies downstream of ”FEI exe-
cutables”.

The SIERRA framework has direct dependencies on FETI-DP and Prometheus, but not on most
other solver libraries (such as SPOOLES, etc.). This is due to the location of the solver-specific Lin-
earSystemCore implementation or FiniteElementData implementation. FETI-DP and Prometheus
contain their own implementations of these interfaces. In the case of SPOOLES and several other
libraries, the LinearSystemCore implementation resides in the FEI library. This is due to the fact
that those implementations were written by us, rather than by the library authors themselves.

The headers that define the LinearSystemCore and FiniteElementData interfaces rarely need to
be changed. But occasionally a change is necessary and a series of coordinated updates is required
to propagate the change up to the SIERRA framework.

In the SIERRA system there is a policy that installed libraries are not to be altered. If a library
needs to be altered or updated in any way, it must be done by installing a new version of the library
containing the update, and then switch all dependent libraries, products and applications from the
old version to the new version.

At this point it is worth noting that some of the third-party libraries used by SIERRA are devel-
oped within the SIERRA tools. Releases of these libraries are created by branching the repository
and labeling the branch with a version. But the branch may continue to be modified by checkins,
at the developer’s discretion (technically violating the above-mentioned policy against altering in-
stalled libraries). The FEI library and the FETI-DP library are both developed within the SIERRA
tools. The Prometheus library is treated as a ”true” third-party library. It is developed elsewhere
and new versions are imported as tar-files, unpacked, installed and then write-protected, thereby
preventing subsequent modification.

In the case of modifying a header in the ”fei interface” product, a series of updates is required,
including re-compiling the FEI library as well as the Prometheus and FETI-DP libraries, before
finally re-building the SIERRA framework. As soon as any of these updates is done, the SIERRA
framweork is in a broken state until all of the updates are done. Since some of the libraries are
developed under the SIERRA tools, it is tempting to make changes like this by simply performing a
checkin and modifying the appropriate library in place. However, in the case of a header change in an
fei interface header, this causes mis-matched header errors in upstream libraries (Prometheus, FEI
and FETI-DP) until all have been re-compiled. The only way to do the updates without temporarily
breaking dependent libraries, is by creating a new version of each and finally switching SIERRA to
all of those new versions at once.

In some cases it has been judged preferable to change libraries in place and accept the fact that
other products are broken temporarily, rather than go through the more onerous process of creating
the series of new library versions and then switching the SIERRA XML files. If done late in the
day, it may be possible to complete the updates and restore the system to working order without
impacting other developers. However, this is not advisable. Another policy in SIERRA is that no
change should be committed without running tests for dependent products to verify that the change
doesn’t have any negative side-effects. If libraries are changed in-place, it is difficult to detect
and correct negative side-effects before other developers are impacted. The only safe and correct
approach is to create new versions of libraries to be updated, so that dependent products can be
tested against the new versions before XML changes are committed and the new version is thrust

35

upon the rest of the developer community.

36

Distribution:

Internal:

1 MS 0384 T.C. Bickel 9100
1 MS 9003 K.E. Washington 8900
1 MS 0384 H.S. Morgan 9140
1 MS 0382 J.R. Stewart 9143
1 MS 0382 E.A. Boucheron 9141
1 MS 0380 K.F. Alvin 9142
1 MS 0823 J.D. Zepper 9324
1 MS 1110 D.E. Womble 9214
1 MS 9917 S.W. Thomas 8962
1 MS 9915 M.L. Koszykowski 8961

1 MS 0382 H.C. Edwards 9143
1 MS 0382 K.D. Copps 9143
1 MS 0382 G.D. Sjaardema 9143
1 MS 0382 J.R. Overfelt 9143
1 MS 0382 K.N. Belcourt 9143
1 MS 0382 K.M. Aragon 9143
1 MS 0382 D.M. Brethauer 9143
1 MS 0382 M.E. Hamilton 9143

10 MS 0382 A.B. Williams 9143

1 MS 0382 S.W. Bova 9141
1 MS 0382 S.P. Domino 9141
1 MS 0382 T.O. Okusanya 9141
1 MS 0382 C.K. Newman 9141
1 MS 0382 R.R. Lober 9141
1 MS 0382 A.A. Lorber 9141
1 MS 0382 S.R. Subia 9141
1 MS 0380 J.D. Hales 9142
1 MS 0380 K.H. Pierson 9142
1 MS 0380 M.K. Bhardwaj 9142
1 MS 0380 G.M. Reese 9142
1 MS 0834 M.M. Hopkins 9114
1 MS 0382 P.K. Notz 9114

1 MS 9159 M.F. Adams 9214
1 MS 1110 M.A. Heroux 9214
1 MS 0316 R. Hooper 9233
1 MS 0316 J.N. Shadid 9233
1 MS 0316 T.M. Smith 9233
1 MS 0370 R.A. Bartlett 9211

1 MS 9018 Central Technical Files 8945-1
2 MS 0899 Technical Library 9616

External:

37

Evi Dube
Lawrence Livermore National Laboratory
Livermore, CA 94551-0808

38

	SIERRA Framework Version 4: Solver Services
	Abstract
	Acknowledgement
	Contents
	Appendix
	Figures
	1 Introduction
	1.1 Organization of Paper

	2 Design Goals
	2.1 Solver-library Abstraction
	2.2 Mapping Degrees-of-freedom to Algebraic Equations
	2.3 Parallel Communications

	3 The Big Picture
	4 Assembly of Linear Systems
	4.1 Fmwk::LinearSystem Overview
	4.2 Fmwk::AlgorithmLinSys Interfaces Overview
	4.3 Linear System Stencils
	4.4 Regular Contributions
	4.5 Arbitrary Contributions
	4.6 Regular Constraints and Arbitrary Constraints
	4.7 Enforcement of Boundary Conditions

	5 Finite Element Interface to Linear Solvers
	5.1 Constraint Reduction

	6 Mathematical Operations
	6.1 Fmwk::Solver Support
	6.2 Solver Option Parsing
	6.3 Supported Solver Libraries

	7 Miscellaneous Topics
	7.1 Sharing and Reusing Matrix, Matrix Graph
	7.2 Assembling Multiple Matrices

	8 Nonlinear Solvers, Eigensolvers
	8.1 Fmwk::NonLinearSolver
	8.2 EigenSolver

	References
	A Parser Support and Class Instantiation
	B Parsing Solver Options
	C Dependencies and Third-Party-Library Management
	Distribution

