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Abstract 

It is well known that at present exact averaging of the equations of flow and transport in 

random porous media have been realized for only a small number of special fields. 

Moreover, the approximate averaging methods are not yet fully understood. For example, 

the convergence behavior and the accuracy of truncated perturbation series are not well 

known; and in addition, the calculation of the high-order perturbations is very 

complicated. These problems for a long time have stimulated attempts to find the answer 

for the question: Are there in existence some exact general and sufficiently universal 

forms of averaged equations? If the answer is positive, there arises the problem of the 

construction of these equations and analyzing them. There are many publications on 

different applications of this problem to various fields, including: hydrodynamics, flow 

and transport in porous media, theory of elasticity, acoustic and electromagnetic waves in 

random fields, etc. Here, we present a method of finding some  general form of exactly 

averaged equations for flow and transport in random fields by using (1) some general 

properties of the Green’s functions for appropriate stochastic problems, and (2) some 

basic information about the random fields of the conductivity, porosity and flow velocity. 

We present general forms of exactly averaged non-local equations for the following 

cases:(1) steady-state flow with sources in porous media with random conductivity, (2) 

transient flow with sources in compressible media with random conductivity and 

porosity; and (3) Nonreactive solute transport in random porous media. We discuss the 

problem of uniqueness and the properties of the non-local averaged equations for cases 

with some type of symmetry (isotropic, transversal isotropic and orthotropic), and we 

analyze the structure of the nonlocal equations in the general case of stochastically 

homogeneous fields. 
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1.INTRODUCTION   

Recently the methods of analyzing flow and transport in random media are finding ever-

widening applications in fields involving various physical processes. An effective 

description of flow and transport in irregular porous media entails interpreting porosity 

and permeability fields as random functions of the spatial coordinates and flow velocity 

as a random function of the spatial coordinates and time. Such a description also involves 

averaging of the stochastic system of flow and transport equations containing these 

functions (conservation laws, Darcy’s law and closing relations). The averaging problem 

consists of finding the relations between the non-random functionals of the unknown and 

the given fields – means, variations, distributions, densities, etc., or a closed set of 

equations that contain these functionals. The certain interest attaches to the equations for 

the averaged functionals that are the laws of conservation of mass, momentum, and 

energy that are invariant with respect to some set of conditions that uniquely determine 

the process (for example, the initial and boundary conditions). This is fundamentally 

possible, for example, in cases where the length scale of  heterogeneity is extremely small 

and the fields of local space averaged pressure, flow velocity, etc., are weakly variable 

and measurable. In physics literature, this phenomenon some time is referred to as self-

averaging ( Lifshits et al.,1988). 

It is apparent that (in general) this is impossible because in practical situations the process 

depends on a set of parameters that are usually not small and thus an averaged description 

is used for computing the nonrandom characteristics (functionals) of random flow and 

transport processes for estimating the uncertainty of the processes. Different variations of  

stochastic approach and many results have been widely developed. For example see 

books by Shvidler (1964, 1985), Matheron (1967), Bakhvalov and Panasenco (1984, 

1989), Dagan (1989), Gelhar (1993) and Zhikov et al. (1993, 1994). 

Many related studies have been published for a number of different applications. They 

include hydrodynamics, theory of elasticity, acoustic and electromagnetic waves in 

random fields (e.g.: Batchelor, 1953: Monin and Yaglom, 1965, 1967; Tatarsky, 1967; 

Saffman, 1971; Klyatskin, 1975, 1980; Shermergor, 1979 ). 

 2



 It is possible to select an investigation strategy from the following three approaches.                              

Use of a perturbation technique: Usually the methods of averaging are approximate. It 

should be noted that the approximate methods of averaging and derivation of averaged 

equations of flow and transport are related to the method of perturbation in one way or 

another, using either Lagrangian or Eulerian approach, in real or frequency domain. 

Every so often one can use the series expansion of small parameters, which (for example) 

specifies the deviation of some given fields from their mean values. This approach 

usually utilizes analytical techniques. Although it is possible to achieve many results, it 

should be pointed out that it involves significant difficulties. Even in a problem of a 

comparatively simple structure, we can usually find only the first few terms of 

expansions, because the analytical difficulties grow very quickly with the number of the 

terms. Moreover, the convergence of the expansion is not studied. For this reason even if 

we can write full perturbation expansion (for example see Herring, 1960; Kudinov and 

Moizhes, 1972, 1979; Shermergor, 1979; Shvidler, 1985; King, 1987; Teodorovich, 

1997) there still exist the open question: is the similar expansion the exact solution of an 

appropriate problem?  

Recently, there have been some studies in which the perturbation technique in Fourier 

space was extensively used for analysis of flow in an unbounded domain (Indelman and 

Abramovich, 1994, Indelman, 1996; and others). The authors reduce the problem to a 

Fredholm second kind integral equation for the Fourier transformation of random 

hydraulic head. Note that the meaning of this equation is not clear because the classical 

Fourier transformation of head and fluctuation of conductivity does not exist.  For 

example, the fluctuations of conductivity of stochastically homogeneous field do not 

decrease at infinity and the flow velocity in any space dimension decreases slowly. As is 

well known in similar cases we must use the generalized Fourier transformation (see 

Section 4 and appropriate references). 

The aforementioned studies assume that the Fourier transformation for the fluctuation of 

conductivity is small and thus solve the resulting Fredholm integral equation by iteration 

(Liouville-Neuman`s method). It is well known -see for example Yosida (1978)- that the 

Neuman`s series converges if the norm of the kernel for the appropriate integral operator 

is sufficiently small. In these works, the kernel of the operator depends linearly on the 
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Fourier transformed fluctuation of conductivity that is a generalized function. There are  

reasons to suspect that in this case Neuman`s series does not always converge. 

One approach is to utilize a distinctive space scale for fast oscillating fields as a small 

parameter. This approach, so-called homogenization, was largely developed for 

investigating processes with periodical structures. Many rigorous results were obtained 

that justify the method, although the computation of the results is highly laborious. For 

random structures, which is the focus of the present paper, some results have been 

obtained, but the constructive theory is still absent. 

It should be pointed out that there exist many problems that do not contain parameters 

naturally considered as small. Later we will analyze some similar problems. 

Numerical approach: This is the approach by which appropriate equations for 

representative sets of random fields realizations are numerically solved - sometimes 

called the Monte Carlo technique. Information obtained in this way makes it possible to 

find the highest moments together with the local and mean fields of pressure, velocity, 

etc. However, this approach is restricted by the exceptionally large volume of calculation, 

as well as the difficulty of generalizing the results and finding the relations between the 

known and the unknown functionals.  

Exact analytical approach: In this context it is difficult to overestimate the value of the 

exact solutions that are derived using the averaging theory. Specifically, these include 

exactly averaged flow and transport equations and an exact asymptotic estimation of 

averaged concentration field for small and large times. In the latter case, it must be 

remembered that the notation of small and large times for the fields with time dependent 

sources of solute needs some refinement, because the solute particles  that enter the field 

at different times have different “ages”, and hence they can have significantly different 

parameters of dispersion. 

It has been established that the exact analytical averaging of the equations of flow and 

transport in random porous media that turns out well can be realized only for a small 

number of special fields. In the case of steady-state flow the effective conductivity for 

stratified systems and for two-dimensional systems with special symmetry (Keller, 1964, 

Matheron, 1967, Dychne, 1970) are well known. The exact effective conductivity for a 

three-dimensional case is not known. Some examples of exact averaging of one- 
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dimensional transport were described by Indelman and Shvidler (1985) , Indelman 

(1986), Cvetcovic et al., (1991), and Shvidler and Karasaki (2003a, 2003b). Quasi one-

dimensional transport in stratified media was described by Matheron and de` Marsily 

(1980). In the multi-dimensional case the exact classical Einstein-Fokker-Plank diffusion-

advection averaged equation is only valid if the flow-velocity is a delta -correlated 

Gaussian random field in time (for example see Klyatskin, 1980; Rytov et al., 1989). 

Generally speaking, direct averaging as well as defining the functionals and the relations 

between them is exceptionally complicated. However, the fundamental information 

contained in the local equations and their structure has not been sufficiently utilized. 

Later in this paper, we will show that investigation in this direction can lead to finding 

the forms for the exact relations between average fields. We show that this is possible in 

some cases without actually solving the appropriate stochastic equations - only by using 

the existence of the solutions and some of their general properties. 

The following question has for a long time stimulated attempts to find the answer: Are 

there in existence some exact general and sufficiently universal forms of averaged 

equations for transport of mass, momentum, energy, etc? If the answer is positive, then 

there begins the quest to construct the equations and to analyze them. 

We present a method of finding the general form of exactly averaged equations by using 

(1) some general properties of the Green`s functions for appropriate stochastic problems, 

(2) some information about the random fields of the conductivity, porosity, and flow 

velocity. We present a general form of the exactly averaged non-local equations for the 

following cases: (1)steady-state flow with sources in porous media with random 

conductivity, (2) transient flow with sources in compressible media with random 

conductivity and porosity, and (3) non-reactive solute transport in random porous media. 

In this paper, we discuss the properties of the non-local averaged equations. Case (1) is 

presented in detail and for the other cases we present only basic results. 

We discuss the problem of uniqueness and the properties of the non-local averaged 

equations for the cases with some type of symmetry (isotropic, transversally isotropic, 

and orthotropic). We also present and analyze nonlocal equations for the general case of 

stochastically homogeneous fields. 
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In the present paper we further develop the approach and some of the results that were 

presented briefly in the earlier works by Shvidler and Karasaki (1999, 2001). 

2. STEADY-STATE FLOW WITH SOURCES IN AN UNBOUNDED 

DOMAIN 

We consider the steady flow with sources and sinks that are local or continuous, 

distributed in a single-connected heterogeneous d-dimensional, porous, unbounded 

domain. It should be noted that studying random flow in bounded and much less multiply 

connected domains is quite difficult. If the scale of heterogeneity is finite, the averaged 

description depends on the kind of external and internal boundaries. Because this 

problem is important for such applications as flows to wells, we will discuss the subject 

later in Appendix to this paper. We assume that liquid and rock are incompressible. 

The local condition of mass conservation is given by the Equation: 

( ) ( )l

l

v
f

x
∂

=
∂

x
x  (1) 

Here 1( ,..., )dx x=x  is a d-dimensional vector with components lx ( )1,...,l d= , ( )v x is 

the D’arcy’s velocity vector, the function ( )f x  is the given density of sources and sinks 

which we assume is an integrable and compactly supported function or distribution with 

bounded support. In this case ( ) dq f dx
∞

−∞

= <∫ x ∞  where   .  1...
d

ddx dx dx=

The Darcy`s velocity vector , tensor of conductivity ( )v x ( )σ x , hydraulic field intensity- 

vector  and reduced pressure (or hydraulic head) ( )h x ( )u x  obey the Darcy`s  Law  

( ) ( ) ( )=v x σ x h x   ,  (2)   

( ) ( )u= −∇h x x                                                                                                                  (3) 

and because the  is a potential vector, we can write relation ( )h x

( ) 0rot =h x                                                                                                                        (4) 
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When  is reduced pressure ( )u x ( ) ( )p p ρ∗ = −x x gx , the reduced conductivity 

is ( ) ( ) / µ=σ x k x , and when ( )u x  is the head ( ) /p gρ∗ x , the conductivity is 

( ) ( ) /gρ µ=σ x k x . Here  is pressure, ( )p x ( )k x -tensor of permeability, constµ =  and 

constρ =  are liquid viscosity and density respectively, g  is acceleration of gravity 

vector.   

We assume that conductivity ( ) ( ){ }lmσ=σ x x  is the second rank tensor symmetric by 

subscripts and is a positive definite and limited local tensor, i.e., for any vector x and ξ , 

the conditions  ( )2 2 , ( 0, 0)m lm lν ξ σ ξ θ θ ν≤ ≤ >ξ x ξ >  are satisfied. The left 

inequality denotes that the tensor ( )σ x  is elliptic and the right denotes that it is bounded. 

In this case a unique and positive definite limited tensor ( ) ( )1−=r x σ x  exists and we can 

write the conservative form of  Darcy`s Law as a condition for momentum balance: 

( ) ( ) ( )=r x v x h x                                                                                              (5)                          

It is evident from Equations (2), (3), (4) and (5) that the fields ( )v x  and  are one-

to-one vector-functions. 

( )h x

We can use the Equations (1)-(5) and the conditions for the function , to derive 

some estimations for the functions 

( )f x

( ) ( ),v x h x  and ( )u x  for large x . Indeed, 

integrating Equations (1) over a spherical volume that includes the area where ( ) 0f ≠x , 

assuming that the radius of the sphere x  is significantly larger than the maximal scale of 

the area, and using the theorem of divergence, for 2,3d = , we can write 

    1~ 2 d d
lv q   x lx x . It is clear from Equation (3) that ( )h x  for large x  has the same 

order. Now we estimate the function ( )u x : If 3d = , we can write  1
3~u c qx   x C , for 

 we have 2d =   2~ lnu c q x  x C , and for 1d = , if ( )u x C→  when  for large 

positive  we have . Here , and  are certain constants and C  is 

an arbitrary constant. 

x →−∞

x   1~u x c qx C 1 2,c c 3c
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Contrary to the boundary-value problems in bounded domains the conditions for the 

solution at infinity cannot be arbitrarie assigned. These conditions must be consistent 

with the equations, that is, they must be consistent with present estimations. For example, 

if  for the functions  and 3d = ( )v x ( )h x , we have the conditions: 

( ) ( )0, 0= =v x h x   for →∞x  (6) 

 The function  for ( )u x →∞x  can be an arbitrary constant. It is easy to see that without 

a loss of generality, this constant can be defined as zero. Thus, we have  

( ) 0u =x  for →∞x  (7) 

We can demonstrate that the conditions (6) and (7) ensure a unique solution for the 

system of Equations (1), (2) and (3). Indeed, let the problem have two different solutions: 

{ ( ) ( ) ( )}1 1 1, ,u x v x h x  and ( ){ ( ) ( )}2 2 2, ,u x v x h x . Then, the functions 

( ) ( ) ( ) ( ) ( ) ( )3 1 2 3 1 2,u u u= − = −x x x v x v x v x  and ( ) ( ) (3 1 2= −h x h x h x)  are also a 

solution of the system of Equations (1) and (2) in which the function . In this 

case, since the tensor 

( ) 0f ≡x

( )σ x  is elliptic, the energy dissipation 

( ) ( ) ( ) ( ) ( ) ( )3 3 3 3 3e = =x h x v x h x σ x h x >0. But, this is impossible because if ( ) 0f ≡x , 

the energy does not enter in the field, and, therefore, there cannot be the any dissipation 

of energy. This contradiction indicates that the first and second solutions are not 

different. So,  and ( ) ( )3 30, 0u ≡ ≡x v x ( )3 0≡h x . The solution of system (1), (2) and (3), 

which satisfies the conditions (6) and (7), is unique. 

In the two-dimensional case ( 2d = ), the estimation showed that if  and 0q ≠ →∞x , 

then functions  and ( ) 0→v x ( ) 0→h x  but ( )u →∞x . The solution of the system of 

equations (1), (2), and (3) is not unique. On the other hand, we can reformulate the 

problem and find the solution of the system (1), (2) and (4). This system is closed with 

respect to the vector-functions ( )v x  and ( )h x . As we showed earlier, these functions 

vanish at infinity, and the solution of Equations (1), (2) and (4) is unique. 
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 In the one-dimensional case ( )1d =  we have the relation ( ) ( )v v q+∞ − −∞ =  and if at 

least one of the velocity at infinity is non- zero, the function h (x) is not limited at infinity 

and ( )u x →∞ . 

It should be noted that if  but ( ) 0f ≠x 0q = , the vector-functions ( )v x ,  will tend 

to zero at infinity for . In these two cases without loss of generality we can write 

 for  and the system of Equations (1), (2) and (3) has a unique solution. 

If the flow is one-dimensional (

( )h x

2,3d =

( ) 0u =x x →∞

1d = ), we have ( ) ( )v v+∞ = −∞ , and if flow at infinity is 

zero, again without loss of generality we can write ( ) 0u ±∞ = . In this case the solution is 

also unique. 

Next we consider in detail a three-dimensional flow and we will return to the steady-state 

flow in two-dimensional and one-dimensional spaces in section 7.  

3. STOCHASTIC FORMULATION 

We assume that the tensor  is a stochastically homogeneous random field in three-

dimensional space. That is, for any vector x and for an arbitrary vector a, all the finite-

dimensional probability distributions for the random field 

( )σ x

( )+σ x a  doesn’t depend on 

the arbitrary vector a. Let  be a given, non-random density function. We introduce 

a random Green`s  function  and a random vector- functions and , 

for the problem described in Equations (1), (2), (3), and (7), so that for almost all 

realizations of the differentiable field 

( )f x

( ,g x y) )( ,γ x y ( ),s x y

( )σ x , the functions ( ),g x y  and satisfy the 

following Equations: 

( ,γ x y)

( ) ( ),l

lx
γ

δ
∂

= −
∂

x y
x y , ( ) ( ) ( ), ,l lm msγ σ=x y x x y , ( ) ( ),

,m
m

g
s

x
∂

= −
∂

x y
x y                          (8)                               

( ), 0 forg = →x y x ∞   (9) 

Below, we name ( ),γ x y  and  as random Green`s velocity and hydraulic intensity  

vector-functions, respectively. 

( ,s x y)
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For the case in which the conductivity tensor components ( )lmσ x  are piecewise smooth 

functions, the Green`s function ( ),g x y  satisfies the integral identity 

( ) ( ) ( ) ( )3,
lm

m l

g
dx

x x
ϕ

σ ϕ
∂ ∂

=
∂ ∂∫

x y x
x y , where ( )ϕ x

)

 is an arbitrary testing function  that is 

infinitely differentiable and tends to zero at infinity. It is well known that in this case, the 

generalized solution  satisfies the Equations (8) and (9) at all points where ( ,g x y ( )σ x  

is smooth. On the surface where tensor ( )σ x  is disconnected, the function  and 

normal component of velocity-vector 

( ,g x y)

( ),γ x y  are uninterrupted.   

Now we can convey the random solution for the problem of Equations (1), (2), (3), and 

(4) through density function  and the random solution of the system of Equations 

(8) and (9) and write:     

( )f x

( ) ( ) ( ) 3,u g f dy= ∫x x y y ( ), ( ) ( ) 3,m m f=h s dy∫x x y y ( ) ( ) ( ) 3,l l f dyγ=v, ∫x x y y

)

 (10) 

where the integration is over the entire unbounded 3-D space. Note that although the 

functions  and ( ) (, , ,g x y s x y ( ),γ x y  are integrable in any bounded domain in 3R  and 

vanish at infinity, they are not integrable in a full three-dimensional space. But the 

integrals in Equations (10) make sense, because the function  is compactly 

supported. 

( )f x

We introduce the averaged fields over the ensemble of realizations of the random 

function :  ( )σ x

( ) ( ) ( ) ( ) ( ) ( ), ,U u= = =x x V x v x H x h x ,  (11) 

( ) ( ) ( ) ( ) ( ) ( ) ( ), , , , , , , ,xG g G= = = −∇ =x y x y S x y s x y x y Γ x y γ x y,   

As long as  is a stochastically homogeneous field, the mean Green’s function ( )σ x

( ),G x y , the mean Green`s velocity-vector ( ),Γ x y  and mean hydraulic intensity vector-

functions  are invariant over translation in space, and therefore, depend only on ( ,S x y)
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the difference . Hence, after averaging the Equation (10) over the ensemble, we 

have: 

−x y

( ) ( ) ( ) 3U G f d= −∫x x y y ( )y  , ( ) ( ) 3f dy= −∫H x S x y y

dy

 (12)  

Then, we can write the equation for mean velocity as 

( ) ( ) ( ) 3,l lV f= Γ −∫x x y y                                                                                           (13) 

( ) ( ) ( ) ( ) ( ),
,l lm m lm

m

g
s

x
σ σ

∂
Γ − = = −

∂
x y

x y x x y x  (14) 

Thus the functions  and ( ) ( ),U x H x ( )V x are presented as convolutions which have 

sense because the function  has bounded support.  ( )f x

After averaging the equations (1) and (3) we have:  

( ) ( )l

l

V
f

x
∂

=
∂

x
x , ( ) ( )

l
l

U
H

x
∂

= −
∂

x
x                                                                                 (15)          

 and after averaging the first equation from (8) we find the relation of compatibility for 

the components ( )lΓ −x y : 

( ) ( )l

lx
δ

∂Γ −
= −

∂
x y

x y            (16)  

Therefore, the mean pressure ( )U x , mean hydraulic intensity  and the mean 

velocity  are convolution integrals of the source density 

( )H x

( )V x ( )f x  and the mean 

Green’s function , mean intensity ( )G x ( )S x  and the Green`s vector-function ( )Γ x , 

respectively. 

Equations (12), (13), and (15) make up a  system of equations for the averaged fields 

,  and . This system contains the kernels, ( )U x ( )H x ( )V x ( )G −x y , , and ( −S x y)

( )−Γ x y  which are non-random functional from the random conductivity field  and 

the random Green’s function 

( )σ x

( ),g x y . Of course, explicit definitions of the functionals 

G , S and are very difficult to obtain in the general case (for any random field Γ  ( )σ x ). 
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Fo e rmin

15) are a part of. Later in this 

h convolutions in all space we consider the classical Fourier 

r now th existence of these functionals in itself is sufficient. It is possible to dete e 

some of their features that help find a general form of the 

 averaged equations, of which Equations (12), (13) and (

paper we will find them in different forms. 

4. FOURIER ANALYSIS 

For analyzing equations wit

transform FT  of a ( )ϕ x  that is absolute integrable in full space function and it`s inverse 

Fourier transform 

( )

1
FT −  : 

( ) ( ) ( ) 3p 2 j dxπ ϕ= − ⋅⎡ ⎤⎣ ⎦∫ x k x   (17)  exFT ϕ ϕ=⎡ ⎤⎣ ⎦x k

( ) ( ) ( ) ( )1 3exp 2FT jϕ ϕ π ϕ− = = ⋅⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∫k x k x k dk       

where 

  (18)  

1j = − . 

e funct s  and Since th ion  ( )G x ( )U x , ( )S x  and ( )H x , ( )Γ x  and ( )V x  slowly vanish at 

 this case th

mation 

infinity, they are not integrable in full space. In e integrals in (17) for these 

functions differ, and so-called generalized Fourier transformation of similar functions or 

distributions should be used (for example, see L.Schwartz, 1962; R.Courant, 1962; 

I.Gelfand and G.Shilov, 1964; K. Yosida, 1978; and A.H.Zemanian, 1987). 

The definition of this transformation is: The generalized Fourier transfor FT  of 

distribution (functional) q  over A-space testing functions ϕ  is a distribution (functional) 

q  over B-space functions [ ]Fϕ ϕ= Τ . So, for [ ]Fq q=Τ  and [ ]1
Fq q−= Τ  we have equality 

r scalar products fo [ ]( ) ( )q, ,FT q  that is ϕ ϕ=

( ) ( ) 3q dkϕ ϕ( ) ( ) 3q dx∗ ∗ x x                                                                          (19) 

Here, the star-superscript indicates 

d inverse Fourier 

=∫ ∫k k

the complex conjugate.  

It is known that the relation (19) is the definition of generalized direct an

transformations, and if ( )g x is an absolute integrable function, the Equation (19) is 

equivalent to (17) and (18). 

 12



The commonly used examples of testing functions spaces are: (1) ( )ϕ x is the so-called 

testing function of  functional space S∞ , which includes all infinitely differentiable 

functions that decrease more rapidly at infinity than any power of 1/ x ; (2)- ( )ϕ x  

belongs to K functional space of infinitely differentiable functions with finite support. 

It is known (see, for example L.Schwartz (1962), A.H Zemanian (1987)) that a 

generalized Fourier transformation for arbitrary distribution does not exist. But this 

definition is valid for some special distributions : for example, so- called slow growth or 

tempered distributions. Any local integrable function that does  grow more rapidly at 

infinity than any power function, is tempered. The generalized functions with bounded 

support are tempered. For example with (19) we can find: 

( ) ( ) ( )1 , 2
m

m
F F m

l

T T
x
δ

δ π
⎡ ⎤∂

⎡ ⎤ = =⎢ ⎥⎣ ⎦ ∂⎣ ⎦

x
x ljk                                  (20)  

[ ] ( ) ( ) ( ) ( )2
2

21 , exp ,F F l l l l F l
l l

T T ja x k a T x
k
δ

δ δ
∂

⎡ ⎤⎡ ⎤= = +⎣ ⎦ ⎣ ⎦ ∂∏
k

k = −        (21) 

Above, for scalar functions ( ) ( ),G Ux x  and vector-functions ( ) ( ) ( ) ( ), , ,S x H x Γ x V x  

we write a system of equations,  part of which contains convergent convolutions. Now we 

apply to all these equations the generalized Fourier transformation defined with equations 

(19). Taking into account that the functions ( ) ( ),G Ux x  and ( )Γ x  are tempered (they 

even decrease at infinity) and the function ( )f x  has bounded support, we can present the 

generalized Fourier transformation of the convolutions as a product of  generalized 

Fourier transformations of appropriate functions and ( ) 0f ≠k . As a result, from 

Equations (12), (13), (15) and (16) we can write the following  system of linear algebraic 

equations in k-space 

( ) ( ) ( )U G f=k k k   (22) 

( ) ( ) ( ) ( )2f j Uπ= =H k S k k k k                                                                                    (23)               

( ) ( ) ( )l lV f= Γk k k   (24)  

( ) ( )2 l ljk V fπ =k k  (25)  
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( )2 l ljkπ Γ =k 1                                                                                                                 (26) 

If we assume that the functions ( )G k , ( )Γ k  and ( )f k  are known, the Equations (22)-

(25) are a closed system with respect to functions ( )U k , ( )H k , and ( )lV k .           

After eliminating ( ) 0f ≠k  from the Equations (22) and (24) we find equations that bind 

the scalar field ( )U k  and the vector field ( )V k :   

( ) ( ) ( )l lV = Πk k U k                                                                                                       (27)                               

( ) ( ) ( ) 1

l l G
−

⎡ ⎤Π = Γ ⎣ ⎦k k k  (28)  

From (26) and (28) we obtain the condition of compatibility for the components of 

vector ( )Π k : 

( ) ( ) 1
2 l ljk Gπ

−
⎡ ⎤Π = ⎣ ⎦k k  (29)   

The scalar function ( ) ( )G G− = −x y y x  and the vector-function ( ) (− = − −Γ x y Γ y x)  

and their generalized Fourier transformations ( )G k  and ( )Γ k  are real-even and 

imaginary-odd functions of k , respectively. The vector-function ( )Π k  is also 

imaginary-odd. The Equations (22) and (27) are also a closed system with respect to 

functions ( )U k  and ( )lV k . 

It easy to see that the exact averaged Equation (27) is reversible. If we know the scalar  

field ( )U k , from (27) we can directly define the vector field ( )V k  and vice versa. If we 

know the field ( )lV k , using (27) we can write ( ) ( ) ( )/l lU V= Πk k k  for any l. 

It is interesting to note in a simple case when the porous media is nonrandom and 

homogeneous, the correct result is evident after the entire stage of mathematical 

operations: the averaged equations will be the same as the local equations. Of course, we 

miss the averaging stage, but we can in detail see some difficulties associated with the 

Fourier transformation of distributions (functionals). 
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So, let . In this case the function ( )lm lm constσ σ= =x ( )G k , the vectors ( )lΓ k , and 

( )lΠ k and the kernel-vector  are: (lΠ −x y)

( ) ( ) ( )
124 , / 2l lm m l lm m l lm mG k k j k kπ σ σ π σ

−
= Γ = −k k k   (30) 

( ) ( ) ( )2 ,l lm m l lm
m

j k
x
δ

π σ σ
∂

Π = − Π = −
∂

x
k x   (31) 

( ) ( ) ( ) ( )2l lm m ml l mV j k U or r V jk Uπ σ π= − = −k k k 2 k                                                   (32)   

As we can see in this example, the function ( )G k  diminishes more rapidly than ( )Γ k  

and therefore the vector-function ( )Π k  is a tempered function (in this case-linear 

function). 

Since the function  has bounded support and Green`s function  is a tempered 

distribution, we can use the theorem of convolution with equation (22) and write 

( )f x ( )G x

( ) ( ) ( ) 3U G f= −∫x x y y dy                                                                                              (33)    

Similarly, because  is a tempered function and ( )U x ( )Π x  is a distribution with local 

support, we have from Equation (27) 

( ) ( ) ( ) 3U dy= −∫V x Π x y y                                                                                            (34)                            

We then have  

( ) ( ) ( ) ( ) ( ) ( )3 3
l lm lm lm

m m

U U
V U dy dy

mx y
δ

σ σ δ
∂ − ∂ ∂

= − = − − = −
∂ ∂∫ ∫
x

x
σ

∂
y y x

x y y x             (35)     

and similarly we have the conservative form of  Darcy`s equation            

( ) ( )
ml l

m

U
r V

x
∂

= −
∂

x
x                                                                                                          (36)                   

Now, let us compare the approaches for solving the direct and inverse problems when we 

use the local description of flow introduced with the system of Equations (1)-(4) and the 
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averaged description presented above, with the system of Equations (22)-(26) or (27)-

(29). 

It is evident that when we know the non-random density-function  and a second 

rank random tensor-function , we can find a unique scalar field  and vector-

field  for almost all realizations. The inverse problem of finding the density- 

function  and the tensor  is more complicated and requires a special approach. 

If we know some velocity-field 

( )f x

( )σ x ( )u x

( )v x

( )f x ( )σ x

( )1v x , we can compute the function  from the 

Equation (1). The tensor  is symmetric, and we have nine unknown components in a 

three-dimensional space and three conditions of symmetry 

( )1f x

( )σ x

( ) (lm mlσ σ=x )x . Both fields 

 and  depend on the same density- function ( )1u x ( )1v x ( )1f x , which makes it possible 

to use the Darcy`s  Law in (2) to obtain a system of three scalar linear equations. Each of 

them contains three unknown components. Thus, we have an underdetermined system of 

6 linear algebraic equations with nine unknown components. It is clear that if we use two 

linearly independent pairs, ( ) ( ){ }1 1,u x v x  and ( ) ( ){ }2 2,u x v x , we can add to the system 

three independent equations, that is Darcy`s Law for the second pair of fields. In this 

case, we have a closed system of nine equations for nine components. Since the local 

fields  and  depend on the density-function ( )iu x ( )iv x ( )if x  in all x-space, in order for 

the pairs ( ) ( ){ },i iu x v x  to be linearly independent, the functions ( )if x  must be linearly 

independent. 

When analyzing the averaged description, the direct problem is to define the fields ( )U k  

and ( )V k  under a known scalar function ( )f k  and a vector-function ( )Π k . It is 

evident that we can find from Equation (29) the function ( )G k  and then find the field 

( )U k from Equation (22). Finally, we find the field ( )V k from Equation (27), and after 

using the generalized Fourier transformation definition (19) we can find the fields ( )U x  

and . Thus, the direct problem is fully defined. Remember that to fully define the ( )V x
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direct local problem we need to use the scalar function ( )f x  and the tensor-function 

. ( )lmσ x

The inverse problem under the averaged descriptions is to define the scalar function 

( )f k  and vector-function ( )Π k . It is evident that if we know the scalar-field ( )U k  and 

the vector-field ( )V k , the appropriate function ( )f k  can be found from the Equation 

(24) and vector ( )Π k  from Equation (27). Note that if we only know the vector-field 

( )V k , we can only find the function ( )f k . If in addition we know the scalar-function 

( )G k , we can find the field ( )U k  from the Equation (22) after computing ( )f k . 

It is clear that if we know only the fields ( )U k  and ( )G k , we can only find the function 

( )f k . Thus, contrary to a local model, the inverse problem is fully defined if we know 

one pair of fields ( ) ( ){ },U k V k . 

Notice that the equations for an averaged steady-state flow are associated with non-

random functionals of random fields and thus are not as detailed as the local models. 

Similar to any variant of upscaling, we lose some information about flow, but in return, 

we have simpler tools to study the important property of the process. As we show here, 

instead of the second rank tensor ( )σ x , the random media characteristic in local model, it 

is sufficient to use the first rank tensor, i.e., the vector - ( )Π k  for the description of  the 

averaged model.  

5. GLOBAL SYMMETRY 

We continue the analysis of the averaged equations and assume that the random field 

 satisfies some symmetry conditions that are related to the structural properties of 

the field as a whole. We shall call this type of symmetry global.  

( )σ x

ISOTROPY: Let the random conductivity tensor ( )σ x  be an isotropic field. In this case 

the imaginary vector ( )Π k  in any orthogonal coordinate system is proportional to the 

uniquely defined vector 2 jπ k  in frequency space. It is invariant for any rotation and 
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reflection on the coordinate planes 0lk =  and the proportionality coefficient depends 

entirely on k = k  only. We can write 

( ) ( ) ( ) ( )2ii
l l k j lkπ∗Π = −Πk   (37)  

Where ( ) ( )i
l∗Π k  is a scalar and positive even function, such that ( ) ( ) ( ) ( )

1 2 3
i i i i
∗ ∗ ∗ ∗Π = Π = Π =Π . 

Then 

( ) ( ) ( ) ( )i
l lm mV k H= Βk k   , ( ) ( ) ( ) ( )i i

lm lmk k δ∗Β = Π , ( ) ( )2m mH jkπ= −k U k   (38)  

and therefore in x-space, if appropriate convolutions converge,  we have the relations: 

( ) ( ) ( ) ( ) 3i
l lm

m

U
V dy

y
∂

= − Β −
∂∫

y
x x y ( ) ( )  , or  ( ) ( ) 3i

l
l

U
y

y∗

∂
= − Π −

∂∫
y

x x yV d   (39)  

Here ( ) ( )iB x  is a unique spherical tensor and ( ) ( )i
∗Π x is a unique scalar function. 

It is evident that the Equation (38) is reversible and we can write: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1

,i i
ml l m ml mlR k V H R k ki δ

−

∗
⎡ ⎤= = Π⎣ ⎦k k   (40)      

In - space, if an appropriate convolution converges; we have the non-local averaged 

condition of the momentum balance with unique kernel: 

x

( ) ( ) ( ) ( )3i
ml l mR V dy H− =∫ x y y x    (41)  

Here the isotropic resistance tensor ( ) ( )1
FT − ⎡ ⎤= ⎣ ⎦R x R k . 

Note again that non-local equations (39) and (41) are meaningful only when appropriate 

integrals (convolutions) converge. Of course, in the framework of the approach used here 

the proof of convergence or divergence in a general case is hardly possible because we 

utilize only the existence of Green`s function and Green`s velocity and some simple 

properties of them. Then we again describe a partial case of global isotropic porous 

media and, in addition, use the information on the asymptotic behavior of mean Green`s 

function  for large and small ( )G x x . 
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  Inserting into Equation (29) the expression ( ) ( )12 kπ −= −Π k kR , we find 

( ) ( )2 24ml mlR k k G kπ δ=  or in x-space we have ( ) ( )2
ml mlR x G x δ= −∇ . Installing the last 

formula in Equation (41) yields 

( ) ( ) ( )2 3
m mG V dy H− ∇ − =∫ y x y x

)

            (42) 

If the field  is differentiable, the convergence of the convolution in (42) 

depends on the behavior of the integrand at 

( −V x y

0=y  and →∞y . An investigation of the 

asymptotic behaviors of function ( )G y  (see Shvidler, 1966, 1985) showed that if scale 

heterogeneity is finite and when y  is very small the principal part of Green`s function is 

( ) ~ 1/ 4G yπσ∗y . Here 
11σ σ
−−

∗ =  is the mean harmonic conductivity. For very 

large y , it was also shown that ( ) ~ 1/ 4G yπσ ∗y , where σ ∗  is an effective conductivity. 

In the Section 2 for very large , we present the estimates of velocity 

that vanish but are not integrable. It is convenient to transform the 

tensor 

y

( ) 2 3~ / 4m mV qy πy y

( )mlR k in the form ( ) ( ) ( )2 2 24 4ml ml r rp p mlR k k G k k G k kπ δ π δ δ= = . Using equation 

(41), we can write 
( ) ( ) ( )3m

m
l l

G V
dy H

y y
∂ ∂ −

=
∂ ∂∫

y x y
x . Now we can see that for small , 

we have estimation 

y

  
3~

4
l

l

G y y
y    

 
 

 y
, and because 

( )m

l

V
y

∂ −
∂

x y
 is bounded, the 

integral converges at y=0. For very large y, we use the following estmations 

    2

3 5

3~ , ~
4 4

ml lm l my y

l l

G Vy yq
y y y y

 
    

     
  

y y
 and 

 
2 6~

16
m m

l l

G V qy
y y y   

   
  

y y
. 

Now we see that boht singularities in the integrand are integrable. A consideration 

convolution like the one in equation (42) does exist.  

ORTHOTROPY: If the field ( )σ x  is globally orthotropic, then there exists some 

orthogonal coordinate system such that all the stochastic multipoint moments of the 

random field are invariant to the reflection on the planes 0lk = . In this case, the 

components ( )lΠ k  can be written as 
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( ) ( ) ( ) ( )2o o
l l ljkπ∗Π = −Πk k   (43) 

(summation o s not implied!) 

 

ver l i

The functions ( ) ( )o
l∗Π k  are positive and even of k, therefore depends on 1 2 3, ,k k k . In 

the global orthotropic system, the averaged equations are in the forms: 

( ) ( ) ( ) ( )l ko
l lV H∗= Πk k   ,   ( ) ( )2l lH jk Uπ= −k k  (44) 

(no summation over l!) 

  

( ) ( ) ( ) ( )o
l ml mV H= Βk k k

nsor

  (45)  

 ( ) ( )oΒ kwhere the components te  takes the form: 

( ) ( ) ( ) ( )o o
ml ml mδ ∗Β = Πk k   

which means that the

(46)  

(no summation over m!) 

( )oΒ  is diagonal.  tensor 

In x -space, if appropriate convolutions converge, in the corresponding coordinate system 

we have non-local equations with unique kernels 

( ) ( ) ( ) ( ) 3o
l l

l

V dy
y∗= − Π −
∂∫ x y  , ( ) ( ) ( ) ( )U∂ y

x 3o
l lmV B dy

y
= − −

∂∫x x y    (47)  
m

U∂ y
         

Evidently, Equation (45) is reversible, and the averaged equation has the form: 

( ) ( ) ( ) ( )o
ml l mR V H=k k k   (48)  

where ( ) ( ) ( ) ( )
1o o −

⎡ ⎤= ⎣ ⎦R k Β k  is the diagonal orthotropic tensor of resistance. 

In -space, in the corresponding coordinate system, we have a nonlocal averaged 

( )

x

condition of the momentum balance with a unique kernel: 

( ) ( ) ( ) 3
l

m

R V dyo
ml

U
x

∂
− = −

∂
x

   ∫ x y y     (49)   
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TRANSVERSAL ISOTROPY: In the case of global transversal isotropy, the equations 

are invariant relative to the rotation around only one axis of the coordinate system, for 

example, for 3k , and reflection on any planes 0lk = . Then we have ( ) ( ) ( )
1 2 3∗ ∗ ∗Π = Π ≠ Π , 

where the scalar functions 

t t t

( ) ( )t
l∗Π k  stays invariant over rotation around axis 3k  and 

reflections on any planes that are perpendicular to axis 1 2 3,k k and k . In this ca

symmetry, 

se of 

( ) ( ) ( ) ( )2t t
l l ljkπ∗Π = −Πk k   (50)  

(no summation over l!) 

The function ( ) ( )t
l∗Π k is positive and even, and depends on ( )1/ 22 2

1 2 1 2 3, , , andk k k k k+ . 

In the transversal isotropic system, the averaged equations are: 

( ) ( ) ( ) ( ) ( ) ( ), 2tV H H k Uπ= Π = −k k k k  l l l l l∗ k  (51)  

(no summation over l!) 

( ) ( ) ( ) ( )2t
l lm mV jπ= −Βk k k U k   (52)  

( )tΒ are: where the components of the tensor 

( ) ( ) ( ) ( )t t
lm lm lδ ∗Β = Πk k   

It is evident that the tensor 

(53)  

( )tΒ  is diagonal and ( ) ( ) ( ) ( ) ( ) ( )11 22 33
t t tΒ = Β ≠ Βk k k . In -space, 

if appropriate convolution converge, in the corresponding coordinate system we have 

 w

x

non-local averaged equations ith unique kernels 

( ) ( ) ( ) ( ) 3t
l l

l

U
V dy

y∗

∂
= − Π −

∂
y

x x y    , ( ) ( ) ( )∫
( ) 3t

l lm

U
V B dy

∂
= − −

y
x x y     (54)   

my∂∫

The averaged equation (52) is reversible and has the form 

( ) ( ) ( ) ( )2t
ml l mR V k Uπ= −k k k      (55)     

where is the diagonal transversal tensor of resistance. ( ) ( ) ( ) ( )
1t t −

⎡ ⎤= ⎣ ⎦R k B k
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In x -space coordinate system we have the non-local condition of the momentum balance 

with a unique kernel in corresponding coordinate system: 

( ) ( ) ( ) ( )3t
ml l

U
R V dy

y
∂

− = −
m∂

(56)     

In summary, for any orthogonal coordinate systems in the case of isotropy the aver

equation is reversible and the tensors 

∫
x

x y y    

aged 

( ) ( )i kΒ and ( ) ( )iR k  are spherical. In the case of 

e axis tation, 

transversal isotropy if the orthogonal coordinate system is oriented so that one of the 

axes, for example, k , coincides with th of ro and the other two are oriented 

arbitrarily, the averaged equation is reversible, the tensors 

3

( ) ( )tΒ k and ( ) ( )tR k are 

diagonal, and ( ) ( ) ( ) ( ) ( ) ( )11 22 33

reversible and the tenso

t t tΒ = Β ≠ Βk k k . Finally, in the case of orthotropy, if the ax f 

the orthogonal coordinate system are the orthotropy axes, the averag

r

es o

ed equation is also 

s ( ) ( )oΒ k  and ( ) ( )o are diagonal. However, we shall bear in 

mind that in each of the studied cases of symmetry, the components of the tensors 

R k

( ) ( )kαΒ , where , ,i t oα = , re n to the superscript main invariant in relatio α . Thus, in all 

three basic cases of symmetry ( , , )i t oα =  with a suitable orientation of the coordinate 

 averaged equation is axes, the

( ) ( ) ( ) ( ) ( )l lm m
α αV H= Βk k k  (57) 

where 

( ) ( ) ( ) ( )lmΒ k lm m
αα δ ∗= Π  , k ( ) ( ) ( ) ( )

1

ml ml mR α αδ
−

∗
⎡ ⎤= Π⎣ ⎦k k      (58)  

(no summations assumed in (58) over subscript m!) 

Equation (57) is reversible and for any α  we have 

( ) ( ) ( ) ( )ml l mR V Hα =k k k     (59)     

In -space in corresponding coordinate system, if appropriate convolutions converge, we 

have the non-local equations with unique kernels 

x

 22



( ) ( ) ( ) ( ) ( ) 3
l lm

m

U
V B dy

y
α α ∂

= − −
∂∫

y
x x y ( ) ( ) ( ), 

( )3
ml l

m

U
R V dy

x
α ∂

− = −
∂∫

x
x y y    (60)  

Now we will consider in detail the tensors ( ) ( )αB k  and ( ) ( )αB x .  Because ( ) ( )l
αΠ k  are 

imaginary and odd functions of vector k, the components of  vector ( ) ( )αΠ k  and 

diagonal tensor ( ) ( )αΒ k  are even and real functions. Now we write the component 

( ) ( )llB α k  in the following form: 

( ) ( ) ( ) ( ) ( )ˆ
ll ll llFα α αΒ = Βk k%   (61)  

 Here ( ) ( ) ( )ˆ limll llB Bα α ε= k%  where a positive dimensionless number 0ε → , the variables 

 and functions l lk = ∆%
lk ( ) ( )llF α k%  are dimensionless as well ( l∆  are linear scales of the 

random field , for example, the correlation scales).  It is evident that the ratios 

between the scales of heterogeneity remain in the limit, which is the condition of special 

similarity. Assuming the existence of a Taylor`s expansion of the function 

( )σ x

( ) ( )llF α k% , we 

can write: 

( ) ( ) ( )
( ) ( )

31 2 1 2

1 2 3

1 2 3 1 2 3
0 1 2 3

01ˆ
!

n
ll nn n n n

ll ll
n n n n

F
k k k

n k k k

α
α α

∞

= + + =

∂
Β = Β ∆ ∆ ∆

∂ ∂ ∂∑k
% % %

3n   (62)  

Substituting (62) into (57) and taking into account that all the odd derivatives of ( ) ( )llF α k%  

at  are zero, we can write the expansions for the mean velocity 0=k% ( ) ( )lV α x  in x-space: 

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( )31 2

31 231 2
1 2 3

22 2 2 2 1
1 2 3

2 22 222 2
0 1 2 31 2 3

1 0ˆ
2 ! 2

n nn n n n
ll

l ll n nn nnn n
n n n n l

F U
V B

x x x xk k kn

α
α α

π

+∞

= + + =

− ∆ ∆ ∆ ∂ ∂
= −

∂ ∂ ∂ ∂∂ ∂ ∂∑
x

x
% % %

  (63)  

                                      

( ) ( ) ( )
( ) ( )

( )
( )31 2

31 2
1 2 3

22 2 2 1
1 2 3 , 1 2 3

22 2
0 1 2 3

, ,ˆ
2 !

nn n n
ll n

l ll nn n
n n n n l

n n n U
V

n x x x

α
α α

+∞

= + + =

∆ ∆ ∆ Ι ∂
= −Β

∂ ∂ ∂ ∂∑
x

x
x

                  (64) 

Here, the power moment of the dimensionless function ( ) ( ) ( ) ( )1
ll F llF T Fα α− ⎡= ⎣

⎤
⎦y k%%  of the 

dimensionless variables  is /l ly x= ∆% l
( ) ( ) ( ) ( )31 2 22 2 3

, 1 2 3 1 2 3, , nn n
ll n lln n n y y y F dyα αΙ = ∫ y% % % % % . 
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It is evident that from the equation (61) we have ( ) ( )0llF α 1=  and then ( ) ( ),0 0,0,0 1ll
αΙ = .         

The important question is: What is the behavior of the expansions (63) or (64) in the 

limiting case when , and for any l and m the ratio 0l∆ → /l m const∆ ∆ = , that 

corresponds to the theory of homogenization and the concept of effective conductivity 

(see Bakhvalov and Panasenko, 1984; Zhikov et al., 1993)? We should note that in the 

first terms of both expansions (n=0), the coefficients of the derivatives do not contain l∆  

explicitly. By setting some restrictions to the density ( )f x , the behavior of the leading 

derivatives of can be sufficiently limited. All the other terms of these expansions 

tend to zero for . In this limiting case we have the averaged equation: 

( )U x

0l∆ →

( ) ( ) ( ) ( ) ( ) ( )ˆ ,l ll l l
l

U
V H H

x
α α ∂

= −Β = −
∂

x
x x x   (65)  

where ( )ˆ
ll constαΒ =  are the diagonal components of the effective conductivity tensor. 

Notice that according to the theory of homogenization, the tensor of the effective 

conductivity exists and is constant in all Euclidian space 3R . This is true if, for any 

limited domain , the source density function 3Q R⊂ ( )f x  belongs to Sobolev functional 

space  or to the square integrable functional space ( )1H Q− ( )2L Q , that is embedded in 

 space. Furthermore, if in any orthogonal coordinate system, the tensor of the 

local random conductivity is symmetric and positive definite, the tensor of the effective 

conductivity is also symmetric and positive definite, the so-called elliptic (see Zhikov et 

al., 1993). Thus, the principal part of the expansions (63) and (64) corresponds with the 

theory of homogenization limit and can be used for computing the effective conductivity. 

In the cases of symmetry: isotropic 

( )1H Q−

( )iα = , transversal isotropy ( )tα =  and orthotropy 

for appropriate coordinate systems, the averaged equation has the form: ( oα = )

( ) ( ) ( ) ( )α α
∗=V x B H x  ,  ( ) ( ) ( )α α

∗ =R V x H x   (66)                               
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where the diagonal tensors of the effective conductivity ( ) ( )ˆ
ml ml ll
α αδ∗Β = Β  and effective 

resistance ( ) ( )
1ˆ

lm lm llR B αα δ
−

∗
⎡ ⎤= ⎢ ⎥⎣ ⎦

 are 

( )

( )

( )

( )

11

22

33

ˆ 0 0
ˆ0 0

ˆ0 0

α

α α

α

∗

⎛ ⎞Β
⎜ ⎟
⎜ ⎟= Β
⎜ ⎟
⎜ ⎟Β⎜ ⎟
⎝ ⎠

Β ,   ( )

( )

( )

( )

1

11

1

22

1

33

ˆ 0 0

ˆ0 0

ˆ0 0

B

B

B

α

α α

α

−

−

∗

−

⎛ ⎞⎡ ⎤
⎜ ⎟⎢ ⎥⎣ ⎦
⎜ ⎟
⎜ ⎟⎡ ⎤= ⎢ ⎥⎜ ⎟⎣ ⎦
⎜ ⎟

⎡ ⎤⎜ ⎟⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

R           (67) 

Clearly the principal axes for all tensors ( ) ( )αΒ k , ( )α
∗Β and ( ) ( )αR k , ( )α

∗R  for any , for 

each 

k

α  are identical to the respective coordinate axes. 

Here we underline that Abramovich and Indelman (1994) presented equations (15) and 

(16) that resemble the first equations in (60) and (66) in the present paper. However, they 

are not equivalent but are dissimilar. In the first place, as we discussed in Section 1, the 

variant of perturbation method developed by Abramovich and Indelman (1994) is 

ineligible for finding the exact solution. Secondly, the definition of effective conductivity 

used by them as the conductivity of stochastically homogeneous media for mean uniform 

flow is senseless for any dimensional unbounded media, because the uniform flow in this 

media does not exist. 

Up to this point, we have studied the fields with some symmetry in special orthogonal 

coordinate systems. If the orthogonal coordinate axes lx ′  and lk′  are oriented arbitrarily 

and lmβ  is the cosine of the angle between the axes lx′  and mx , the effective conductivity 

tensor in the new coordinate system is ( ) ( ) 1α α −
∗ ∗′ =Β β Β β . This tensor is symmetric and 

positive definite (elliptic). The averaged equations in the arbitrary coordinate system lx′  

have the forms ( ) ( ) ( ) ( )Uα α
∗′ ′ ′ ′ ′= − ∇V x Β x , ( ) ( ) ( ) ( )Uα α

∗′ ′ ′ ′= −∇R V x x  and in the -space 

we have 

′k

( ) ( ) ( ) ( )ˆ 2l lm mV B jk Uα α π′ ′ ′ ′ ′= −k k′  and ( ) ( ) ( ) ( )ˆ 2ml l mR V jk Uα α π∗′ ′ ′ ′ ′= −k ′k . Evidently 

for ( ) ( )l
α′Π k′  we have a linear expression ( ) ( ) ( )ˆ 2l lm mB jkα α π∗′ ′ ′Π = −k ′

But what if the diagonal tensor 

. 

( )α
∗Β is unknown? Or to put it more precisely, what if we 

know that there exists some symmetry but the orientation of the principal axes is 
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unknown and the parameter α  is unknown? In this case, we return to the Equation (27), 

which is valid for any stochastically homogeneous positive definite random fields ( )σ x , 

and study the vector ( )l′ ′Π k  ain and its formal Taylor expansion about 0′ =k : ag

( )( ) 31 2

32
1 2 3

1 2 3
0 !

n
l nn n

l nn
n n n n

k k k
n k= + + =

′ ′ ′ ′ ′Π =
′ ′∂∑k  

1
1 2 3

01
nk k

∞ ′∂ Π
′∂ ∂

 (68)  

The component ( )l′ ′Π k  is an odd function of ′k  and therefore at point  all  

derivatives are zero. Thus, 

0′ =k even

( )
( )( ) 31 2

31 2 1 2 3
1 2 3!

l nn n
nn n k k k

k k k
′ ′ ′ ′ ′Π =

′ ′ ′∂ ∂ ∂∑k   (69)  

The linear part of this expansion on variable 

1 2 3

2 1

2 1 1

01
2 1

n

l
n n n n n

−∞

− = + + =

′∂ Π
−

′k  is: 

( ) ( )1 0l
l m

mk′∂
k

′∂Π
′ ′ ′Π =k   (70)  

Inserting (70) in (27), we can write the linear approximation on ′k  for ( )lV ′ ′k : 

( ) ( )01 ′⎡ ∂Π ⎤
  (71)  

By imposing some restrictions on the density 

2 ( )
2

l
l m

m

V jk U
j k

π
π

′ ′ ′ ′ ′= − −⎢ ⎥′∂⎣ ⎦
k k   

( )f x  as discussed earlier, the leading 

terms of the expansions of ( )lV ′k  vanish in the homogenization limit. In this case, we 

have the averaged equation: 

( ) ( )
l lm

m

U
x∗

′ ′∂
V ′ ′ ′= −Β

′∂
x

x   (72)  

and in the general case from (71), we find the real tensor of the effective conductivity, 

that is symmetric and positive definite 

( )01
2

l
lm

mj kπ∗

′∂Π
′Β = −

′∂
  (73)  

Thus, if we know the components ( )l′ ′Π k , we can from Equation (73) find the effective 

conductivity tensor; and by using the standard method, we can find its real eigenvalues 
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and the orthogonal eigenvectors. Transition to a new orthogonal system associated with 

the eigenvectors and transformation of the tensor lm∗′Β to the new coordinates lead to a 

diagonal tensor ml∗Β , whose components are the eigenvalues for tensor lm∗′Β . As we 

mentioned earlier, for each α  in the new coordinate system the tensor ( )lmΒ k  is 

diagonal with the following components: 

( ) ( ) / 2ll l ljkπΒ = −Πk k  , ( ) 0lmB =k , if  l m≠  4) (7

(no summation over l!)  

It is clear that the diagonal tensor ( )B k is unique and reversible. 

6. DIFFERENT APPROACH 

Majority of the works related to the present subject used a different approach. From the 

 connections (algebraic or, more general, operator outset, many attempted to find the

related) between the averaged flow velocity field and the gradient of mean pressure 

(head). To examine the validity of this approach, we return to the Equation (27). To 

recast it to the form like the Darcy`s  Law, we introduce some tensor ( )lmB k  that 

satisfies the equation: 

( ) ( )2l lm mB jkπΠ = −k k   (75) 

and after inserting Equ

 

ation (75) into (27) we have the following equation: 

( ) ( ) ( ) (76)  2l lm mV B jk U kπ= −k k                               

In x -space, if the convolution converges, we have  

( ) ( ) ( ) 3

m

dy
y∂

                                    (77)   l lm

U
V B

∂
= − −∫

y
x x y                                                               

  If we insert Equation (76) into (29), the condition of compatibility for components 

vector ( )Π k , we obtain the condition of compatibility for the components of tensor 

( )lmB k  

( ) ( )24 1G k kπ =   (78) l lm mBk k  
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( )B kAssuming that tensor  is nonsingular, we can rewrite the equation (75) in the form 

( ) ( ) 2 jπ= −R k Π k k   , ( ) ( ) 1−
⎡ ⎤= ⎣ ⎦k B k                                                                      (79)R     

Multiply the first equation from (79) by ( )U k , and taking into account the equation (27), 

we can write the averaged equation 

( ) ( ) ( )2 j Uπ= −R k V k k k    (80) 

In -space, if the convolution converges, we have the conservative averaged equatio

m

)= −∇ x    (81) 

The definition of the Fourier tran ation 

n of x

mo entum balance 

( ) ( )− −∫R x y V x y (3dy U

sform ( )Β k with the system (75) or ( )R k  with 

system (79) leads to three linear algebraic equations for each k and each ation 

contains three from nine unknown components 

 equ

( )mlB k  or ( )lmR k . In the x -space, this 

problem amounts to three differential equations with nine unknown function-components 

( )lmB x or three operator equations for the unknown nine functions ( )lmR x . 

(( ) )lmB∂
= −

x
  , ( ) ( )l

mx
Π

∂
x 3R dylm l

mx
∂

− Π = −
∂∫ x y y          (82) 

Both systems of Equation (75) and (79) and systems of Equations (82) are 

underdetermined and in general have unlimited sets of solutions. 

It is well known that ( )⊗B k  -the general solution (all infinite set of solutions) for a 

stem singular non-uniform sy of linear algebraic equations can be presented as a sum of 

any particular solution of system ( )0B k  and ( )∗B k , which is any solution of the 

uniform system ( ) 0∗ =B k k  (The ge c sens e uniform system is that all three 

vector-rows for 

ometri e of th

the tensor ( )∗B k  are orthogonal to the vector k). For this reason as 

indicated by Indelman and A ovich, 1994, any of the solutions bram ( )∗B k  in Equation 

(76) with known vector ( )2 j Uπ k k , (i.e., Fourier-transformation o ( )x ) do not 

affect the computation of 

f U∇ 

( )V k .  
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When tensors ( )⊗B k  are not singular, we can obtain the tensors ( ) ( ) 1−
⊗ ⊗⎡ ⎤= ⎣ ⎦R k B k , 

the general solutions of Equation (79), which are also not unique. In this case ( )⊗R  

be written as a sum of any particular solution 

k  can

( )0R nd k  a ( )∗R - any solution of 

uniform system 

k  

( ) ( ) 0∗ =R k Π k . (The geometric sense of the uniform system is that all 

vector-rows of the tensor ( )∗R k  are orthogonal to the vector ( )Π k ). If we select any 

particular solution ( )0B k , we can find ( ) ( ) 1
0 0

−
⎡ ⎤= ⎣ ⎦R k B k . The corresponding tensor 

( ) ( ) ( ) ( ) ( ) 1
0 0

−

∗ ∗ ⎡= − +⎣R k R k B k B k B k∗ ⎤⎦ does not affect the computation of 

 from Equation (80) or ( )2 j Uπ k k ( )U∇ x  from Equation (81). 

On the other hand, in the case of global symmetry as shown above, in corresponding 

coordinate system, the number of unknown functions reduces to three or less, and it is 

possible to find a unique solution, the diagonal tensor ( )0Β k . In fact, if symmetry is 

global, the tensor ( )∗B k  is diagonal also, and therefore ( ) 0.∗ =B k  Even if there is no 

reason to believe that the types of the global symmetry discussed above exist, the fact 

remains that if the stochastically homogeneous field of the local random conductivity 

tensor  is symmetric and elliptic, the tensor of the effective conductivity ( )mlσ x ˆ
mlΒ  is 

symmetric and elliptic as well. In this general case the “eigen” orthogonal coordinate 

system exists in which the tensor Β̂  is diagonal. 

In a general case it would seem reasonable to find (for this coordinate system) special 

solutions to the system of Equation (75) and the uniform system as diagonal tensors for 

all k, that are simple and convenient for matching and identification. Then, we select 

solutions ( ) 0=B k%  for the uniform system. In this case, we find diagonal tensors ( )B k  

and ( ) ( ) 1−
⎡ ⎤= ⎣ ⎦R k B k  to be: 

( ) ( ) ( )/ 2 , 0ll l l lmB jk Bπ= −Π =k k k if l m≠   

( ) ( )2 /ll l lR jkπ= − Πk k  , ( ) 0lmR =k   if  l m≠         (83) 

(no summation over l!)   
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Note that if we use any orthogonal coordinate system lk ′′  that is different from the 

“eigen” system, and write: 

( ) ( ) ( )/ 2 , 0ll l l lmjkπ′′ ′′ ′′ ′′ ′′ ′′ ′′Β = −Π Β = ≠k k k if l m   (84) 

(no summation over l!)  

which is also an exact solution of the system defined by Equation (75), we can see that 

the limit of  ( )ll ′′Β k  does not exist when 0′′→k . In fact, inserting the linear part of the 

expansion ( )l ′′Π k  in the form of (70) into (72), we have: 

( ) ( )01
2

l m
ll

m l

k
j k kπ

′′∂Π ′′
′′ ′′Β =

′′ ′∂
k

′
  (85)  

(Here, the summation over m only is implied!)  

Because ( )0
0l

mk
′′∂Π

≠
′′∂

 for  and because the l m≠ l′′k  coordinate system is not eigen, as 

 the 0′′→k ( )lim ll′′ ′′Β k  does not exist. 

Therefore in Equation (83) we have solutions that are exact, continuous, and reversible 

with the formulated constrains. 

To find the continuous, exact, and reversible tensor- solution of system (75) in any  

orthogonal coordinate system, it should be from Equation (73): Compute the tensor of the 

effective conductivity and find the eigenvalue and eigenvectors and -a matrix of 

transition from original coordinate system to eigen system. Then we need to find the 

diagonal tensor of the effective conductivity 

∗β

ˆ
∗B  within “eigen” system and, from the 

system of Equations (83) find components for the diagonal tensor ( )B k . Finally, we 

return to the initial coordinate system using the matrix 1−
∗β . 

 As we showed in Section 5, this method in the case of global symmetry leads to exact, 

unique, and reversible solution. The difference here lies in the fact that in the case of 

global symmetry, the components of the diagonal tensor are dependent on invariants, 

which are related to the type of symmetry. It is evident that finding the solutions 
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( )B k and ( )R k , we cannot assume that for any k, these tensors must be elliptic when 

k .  0≠

Now let us compare the approaches discussed above and estimate their adequacy and 

utility for describing averaged flow and studying appropriate direct and inverse problems. 

We shall call the approach presented in the paper ‘’P’’and the different approach ‘’D’’. 

1. Describing averaged flow in Fourier-space k leads to linear algebraic equations 

for fields ( )V k and ( )U k  that contain the vector ( )Π k  in P-approach and 

tensor ( )B k in D-approaches. 

2. Under P, for each conductivity field there exists a unique vector ( )Π k  or vector-

operator ( )Π x  in x -space. 

3. Under D, for each conductivity field an unlimited set of tensors ( )B k  or 

operators  in x-space exists. Any of them can be used to compute the exact 

mean velocity vector. Actually for this operation, we utilize the P. 

( )B x

4. In x-space, P leads to the equation that relates the mean velocity field to the 

pressure (head) field. But D relates the mean velocity field with the gradient of 

mean pressure (head). 

5. These equations are nonlocal, contain convolutions, and are valid if the 

convolutions converge. The kernels are a vector-operator  in P and a 

tensor-operator 

( )Π x

( )B x in D. 

6. In P, to solve the inverse problem for finding the vector ( )Π k  exactly and 

uniquely, it is sufficient to know a pair of fields, ( )U k  and ( )V k , which are 

consistent with the density ( )f k . 

7. In D, the inverse problem for finding tensor ( )B k  in general is ill-posed. 
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7. Two-Dimensional and One-Dimensional Steady-State Flow 

in an Unbounded Domain 
In Section 2, we briefly discussed the case of two-dimensional and one-dimensional flow.  

Now we will examine it in detail. 

We consider the system of equations, that does not contain the function : ( )u x

( ) ( )l

l

v
f

x
∂

=
∂

x
x                                                                                                                (86)                       

( ) ( ) ( )l lm mv σ=x x h x              (87)          

( ) 0rot =h x               (88)     

In two-dimensional space, this system includes four scalar independent equations for four 

scalar functions and is closed. In an unbounded domain, we consider conditions 

( )lim 0lv =x  if             (89)      x →∞

and therefore we have from equation (87) 

( )lim 0lh =x  if              (90)       

It is evident that if  function  is integrable and has bounded support, the system has 

a unique solution. 

x →∞

( )f x

Now we consider an auxiliary system for Green`s velocity ( ),∗v x y and intensity 

( ),∗h x y : 

( ) ( ),l

l

v
x

δ∗∂
= −

∂
x y

x y                          (91)     

( ) ( ) (, ,l lm mv hσ∗ ∗=x y x x y)              (92)    

( ) ( )1 2

2 1

, ,
0

h h
x x

∗ ∗∂ ∂
−

∂ ∂
x y x y

=              (93) 

( ) ( )lim , 0 , lim , 0l lv h∗ ∗= =x y x y    if  x           (94)  →∞

and we can write 

( ) ( ) ( ) ( ) ( ) ( )2, , , 2f dy f dy
∗ ∗

= =∫ ∫h x h x y y v x v x y y          (95)  
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After averaging the vector-functions ( ) ( ), , ,∗ ∗h x y v x y , and taking into account that the 

tensor-field  is assumed to be stochastically homogeneous, we have ( )σ x

( ) ( ) ( ) ( ), , ,∗ ∗ ∗ ∗= − = −h x y H x y v x y V x y                     (96)       

Thus, after averaging the equations in (95) we can write 

( ) ( ) ( ) ( ) ( ) ( )2 , 2f dy f dy∗∗
= − = −∫ ∫H x H x y y V x V x y y                    (97)  

Although the fields ( ) ( ),∗H x H x  and ( ) ( ),∗V x V x  vanish at infinity, they are not 

absolute integrable in all space. Nevertheless the convolutions in (97) converge because 

the function  has bounded support. Now, using the generalized Fourier transform 

(19) for equations (97) we have 

( )f x

( ) ( ) ( ) ( ) ( ) ( ),f f∗ ∗= =H k H k k V k V k k                     (98)    

Because the components of the vectors ( )lH∗ x  and ( )lV∗ x  are odd functions of  x , the 

components ( )lH∗ k  and ( )lV∗ k  are imaginary functions of k . Then, 

( ) ( ) ( ) ( ),j∗ ∗ ∗ ∗= =H k H k V k V kj
) )

          (99)    

Here ( )∗H k
)

 and ( )∗V k
)

 are real vectors. 

For any function  we can write ( )f x ( ) ( ) (1 2f f f= +x x )x

⎤⎦

 where 

 is an even function and ( ) ( ) ( )1 / 2f f f⎡= + −⎣x x x ( ) ( ) ( )2 / 2f f f⎡ ⎤= − −⎣ ⎦x x x  is an 

odd function. Then we have ( ) ( ) ( )1 2f f j f= +k k k
)

 where ( )1f k  is a real even function 

and ( )2f k
)

 is an odd real function. Now we have the system 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2,j j= + = +H k H k H k V k V k V k
) )

                 (100)   

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2
1 2,f f∗= = −H k H k k H k H k k∗

)) ) ) )
       (101)   

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2
1 ,f∗= = −V k V k k V k V k k2f∗

)) ) ) )
       (102)   

According to the plus or minus sign of the function ( )1f k , the vectors ( )∗H k
)

 and 

( ) ( )1H k
)

 and (similarly) vectors ( )∗V k
)

 and ( ) ( )1
∗V k
)

 are parallel or antiparallel. 
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Therefore, for any k, the angle ( )β k  between the vectors ( )∗H k
)

 and ( )∗V k
)

 is the same 

as the angle ( ) ( )1β k  between vectors ( ) ( )1H k
)

 and ( ) ( )1V k
)

. From the equations (101) 

and (102) we then have 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1/ /V H V H λ∗ ∗= =k k k k k
) ) ) )

         (103)  

where ( )λ k  is a positive scalar function. 

Now we introduce the right-hand rotation from vector ( )∗H k
)

 to vector ( )∗V k
)

- real 

tensor ( )α k : 

( )
( ) ( )
( ) ( )

cos sin

sin cos

β β

β β

⎛ ⎞−
= ⎜ ⎟⎜ ⎟
⎝ ⎠

k k
α k

k k
                     (104)         

where ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2
1 1 2 2cos H V H V H Vβ − −
∗ ∗ ∗ ∗ ∗ ∗

⎡ ⎤= +⎣ ⎦k k k k k k k
) ) ) ) ) )

  and 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2
2 1 1 2sin H V H V H Vβ − −
∗ ∗ ∗ ∗ ∗ ∗

⎡ ⎤= −⎣ ⎦k k k k k k k
) ) ) ) ) )

   

Multiplying  ( ) ( )jλ αk k  by the vector ( ) ( )1H k
)

, we find  

( ) ( ) ( ) ( ) ( )1 1=V k B k H k
) ) )

  , ( ) ( ) ( )λ=B k k α k
)

        (105)   

Repeating a similar operation for fields ( ) ( )2H k
)

 and ( ) ( )2V k
)

, we have 

( ) ( ) ( ) ( ) ( )2 2=V k B k H k
) ) )

                      (106)     

Combining (105) and (106) with (100), we have two equivalent forms of averaged 

equations 

( ) ( ) ( )=V k B k H k
)

 ,   ( ) ( ) ( ) ( ) ( )
1

,
−

⎡ ⎤= = ⎣ ⎦R k V k H k R k B k
)

                            (107)             

It should be noted that using the left hand coordinate system and left hand rotation tensor 

leads to different tensors ( )B k
(

and ( )R k
(

, but does not affect calculation of ( )V k  or 

( )H k . Consequently, we can write the two equivalent forms of averaged equations as 

( ) ( )2 j fπ =kV k k  or ( ) ( ) ( )2 fπ =kB k H k k
)

        (108)    

and add an equation- that is corollary to equations (93), (95), (96) and (97): 
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( ) ( )1 2 2 1 0k H k H−k k =            (109) 

We then have a closed system of averaged equations. 

Eliminating ( )lV k  from the system, we find ( )lH k and then ( )lV k ; 

( ) ( ) ( )2l lH k fπ= − Φk k k   ,    ( ) ( )1 24 l lm mk B kπ− k kΦ =                   (110)      

( ) ( ) ( ) ( )2l lm mV jB k fπ= − Φk k k k           (111)    

Using the inverse Fourier transformation for the vector ( )H k  , we can find vector  

( )H x  , and for any two points A and B, we can write 

( ) ( ) ( )BA
AB

U U∆ = − = ∫B A H x dx           (112)       

It is well known that the difference AB∆  does not depend on the path that connect  A and 

B. It easy to see that if ( ) 1f =k , we have ( ) ( )∗=H k H k , and from Equation (110) we 

obtain the following conditions for the tensors ( )R k  and ( )R x : 

( ) ( )2ml r r mlR jk Hπ δ∗=k k  , ( ) ( )r
ml ml

r

H
R

x
δ∗∂

=
∂

x
x                   (113)    

If an appropriate convolution exist we can write the averaged non-local equation 

( ) ( ) (2r
m

r

H
V dy H

y
∗∂

− =
∂∫

y
x )my x           (114) 

Now, as in the case of  d=3, we transform the tensor ( )mlR k  in the form 

( ) ( )2ml r rp p mlR jH kπ δ δ∗=k k   and write the convolution equation that equally matches 

the equation (114): 

( ) ( ) ( )2m
l

l

V
H dy

y∗

∂ −
−

∂∫
x y

mH=y x           (115)  

Taking into account the estimation  ( ) 2/ 2l lH y πσ∗ y y∗  for small , and the 

differentiability of the flow velocity 

y

( )−V x y , we see that the integral converges at 

. For very large , we use the estimate 0=y y ( ) 2/ 2l lH y πσ ∗
∗ y y

y

 and 

( ) 2/ 2m mV qy π−x y  for finite x . Thus we have the estimation for very large y : 
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    4~ / 2m
l m

l

V
H y

y
   

 

  
 

x y
y y , and the integral converges at infinity. The 

convolutions in (114) and (115) exist. 

Finally, we will examine the simple case of one-dimensional flow in an unbounded 

domain with non-random sources. Above, in Section 2, we noted that for existence of a 

unique solution in one-dimensional case the total intensity of compactly supported  

density ( )f x  must be zero. 

Thus, the system of the flow equations is 

( ) ( ) ,dv x
f x x

dx
= −∞ < < ∞          (116) 

( ) ( ) ( )du x
v x x

dx
σ= −           (117)   

with the condition . ( ) 0f x dx
∞

−∞

=∫

Let us assume that at infinity  ( ) 0v −∞ = , so that                      

( ) ( )
x

v x f y dy
−∞

= ∫                       (118)    

and . Therefore, the velocity ( ) 0v +∞ = ( )v x  is non-random and hence .  ( ) ( )v x V x=

We write the conservative form of stochastic Darcy`s equation 

( ) ( ) ( )1 du x
x V x

dx
σ − = −           (119)    

and by averaging this equation, we have a closed averaged system 

( ) ( ) ( ) ( ) ( ) 11, ,
dV x dU x

f x V x x
dx dx

σ σ σ
−−

∗ ∗= = − =            (120)   

with conditions ( ) 0V ±∞ = . 

Finally, for any 1x  and 2x  we can find the difference 

( ) ( ) ( )
2

1

2 1
1 x y

x

U x U x f z dzdy
σ∗ −∞

− = − ∫ ∫           (121)   
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8.Non-Steady Transient Flow with Sources 

Let us consider the stochastic system of equations in a three-dimensional unbounded 

domain: 

( ) ( ), ( , ) ,l

l

m t v t f t
t x

∂ ∂
+ =

∂ ∂
x x x   (122)  

( ),m t =x ( ) ( ),u tα x x%    (123)  

( ) ( ) ( ),u t= −∇r x v x x  (124)  

( )0, 0u t =x     (125)  

Here the scalar function and the tensor of ( )  α x% ( )r x  are statistically homogeneous 

random fields of the storage capacity and resistance, respectively, and  is the 

pressure that tends to zero at infinity. We introduce Green’s function 

( ,u tx )

)( , , ,g t τx y , which 

also tends to zero at infinity, as the random solution of the system of Equations (122)-

(125) for ( ) ( ) (,f t t )δ δ τ= − −x x y . Let us introduce, in the same way as before: 

( ) ( ), , ,G t g t ,τ τ− − =x y x y   (126)  

( ) ( ) ( ),N t g t, , ,τ α− − =x y x x y% τ  (127)  

( ) ( ) ( ), , ,
,l lj

j

g t
t

x
τ

τ σ
∂

Γ − − = −
∂
x y

x y x   (128)  

We consider FLT  and 1
FLT − - the direct and inverse Fourier-Laplace transforms and use the 

following designations: 

( ) ( ) ( ), , , , ,FL FL l FL lG T G N T N Tµ µ µ= = Γk k k = Γ   (129)  

and then introduce the following scalar function and vector: 

( ) ( ) ( ) ( ) ( ) ( )1, , , , , ,l lS N G G 1 ,µ µ µ µ µ− −= Π = Γk k k k k k µ   (130) 

It easy to show that ( ) ( ) ( )1, 2 , ,l lN ik Gµ µ π µ µ−+ Π =k k k . Thus, the averaged system is 
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( ) ( ) ( ), ,
,l

l

M t V t
f t

t x
∂ ∂

+ =
∂ ∂

x x
x   (131)  

( ) ( ) ( )
0

3, , ,
t

t

M t S t U dy dτ τ= − −∫ ∫x x y y τ  (132)  

( ) ( ) ( )
0

3, , ,
t

l l
t

V t t U dy dτ τ τ= − Π − −∫ ∫x x y y   (133)  

( )0, 0U t =x     (134)  

Here, ( ) ( ) ( ) ( ) ( ) ( ) ( )1, ( , ) , , , , , , , , ,l l FLU t u t V t v t M t m t S t T S µ−= = = =x x x x x x x k , 

and ( ) ( )1, ,FLt T µ−=Π x Π k . 

9. NON-REACTIVE SOLUTE TRANSPORT 

We consider a stochastic system of equations in a three dimensional unbounded domain: 

( ) ( ), ( , ) ,l

l

a t q t f t
t x

∂ ∂
+ =

∂ ∂
x x x   (135)  

( ) ( ) (,a t c tθ=x x x ),   (136)  

( ) ( ) ( ),
, ( , ) ,l l lj

j

c t
q t v t c t D

x
∂

= −
∂

x
x x x   (137)  

( )0, 0c t =x   (138)  

Here, ( ),c tx  is the concentration of solute that tends to zero at infinity, and   

 are random porosity, solute flux, and non-random dispersion tensor, 

respectively. 

( ) ( ), , ,tθ x q x D

 We introduce the random Green`s function ( ), , ,cg t τx y , also tending to zero at infinity 

which is the solution to the system of Equations (135)-(138) for 

( ) ( ) (,f t t )δ δ τ= − −x x y ,  and the following 

( )xθ ( ),v x t ljD const= ( ), , ,cg x t y τ ( ) ( ) ( ),f x t x y tδ δ τ= − −  relations:
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( ),c cG t gτ− − =x y ( ), ( ), cH t gτ θ− − =x y x , ( ) ( ),l lP t v gτ− − =x y x c   (139)  

( ) ( ) ( ) ( ) ( )1 1, , , , , , , , ,c FL c FL l FL l lG T G H T H P T P HG W Pµ µ µ θ µ µ lG
− −= = = =k k k k k% =  

It easy to show that 12 l lik W Gµθ π −+ =% .  

Thus, for the mean concentration ( ) ( ),C t c t=x x,  tending to zero at infinity, we have: 

( ) ( ) ( ), ,
,l

l

A t Q t
f t

t x
∂ ∂

+ =
∂ ∂
x x

x   (140)  

( ) ( ) ( )
0

3, , ,
t

t

A t t C d y dθ τ τ= − −∫ ∫x x y y% τ   (141)  

( ) ( ) ( ) ( )
0

3 ,
, , ,

t

l l lj
jt

C x t
Q t W t C dy d D

x
τ τ τ

∂
= − − −

∂∫ ∫x x y y   (142)  

( )0, 0C t =x   (143)  

Here, 

( ) ( ) ( ) ( ) ( ) (1, , , , , , ,l l FL l FL lQ t q t t T W t T W )1 ,θ θ µ µ− −= = =x x x k x k% %  (144)  

10. SUMMARY 

We have described a general form for the exactly averaged equations of flow and 

transport in a stochastically homogeneous unbounded field with sources. We examined 

the validity of the averaged descriptions for the given fields and the generalized law for 

some nonlocal models. A variant of the generalization for a given field, with a unique 

kernel-vector and with a unique kernel-tensor for some cases, was presented. We 

discussed the problem of uniqueness and the properties of the non-local averaged 

equations for three types of global symmetry: isotropic, transversal isotropic, and 

orthotropic. We analyzed the structure of non-local equations in the general case of 

stochastically homogeneous fields. 
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APPENDIX 

Here, we discuss the problem of the random flow in bounded domain with small radius 

wells. Earlier, we noted that this is a very difficult problem, because the flow-domain 

with wells is multiply connected. However, for the deterministic case, if the radii of the 

wells are small compared to scale of heterogeneity and the scale of domain, the wells can 

be modeled with singular source or sink. Some modifications of this approach are often 

applied to model flow using finite difference approximation and when the grid spacing  is 

much larger then the wells radius (for example, see Shvidler, 1964; Aziz and Settari, 

1979). In this variant of  two-dimensional modeling case, the flow near the well (in the 

cell where a well located) is described as radial. However this is a rough approximation. 

According to the classical theory of wells interactions (see for example Muskat, 1937; 

Shcelkachev and Pychacev, 1939; Charny, 1948; Polubarinova- Kochina, 1962; Bear, 

1972), when the productions of some wells are preassigned and the radius of these wells 

are much less than the scale of heterogeneity, modeling the flow near the well with local 

singularities (local source or sink) is usually acceptable. If for some wells the pressure or 

head is preassigned, for singularities approximation we need to describe and preassign 

the productions of these wells. Evidently we need to solve for each realization the 

boundary value problem for a field with singularities: one part of them have preassigned 

productions and second part has desired productions. To find these productions we can 

use the preassigned pressures or heads. Only after finding or predicting these productions 

can we analyze the field with all singularities. 

It should be noted that Indelman et al., (1996) presented some attempt to simplify the 

prediction of random flow toward a small radius well in cylindrical  domain with finite 

radius and height. Authors represented the well with singular source (sink) and assumed 

that the density of production along the vertical singular line is proportional to the local 
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conductivity multiplied by the well production of a cylindrical domain with any constant 

conductivity, divided by this conductivity and the height of the domain. Later in this 

Appendix, we will analyze this assumption. 

 Another questionable points is their modification of the problem in describing the 

unbounded space and using the Fourier transformation. It remains not properly 

understood how authors transformed the bounded domain into unbounded without 

changing the basic equation. Moreover, as is well known, in the case where the function 

at infinity is finite, the classical Fourier transformation does not exist. For more 

generalized problem of multiple wells, in the later published paper (Indelman, 2002) 

explanation is missing for what was done to achieve the generalized equations for a 

multiwell system. 

Now we will continue our analysis. Let for example for two-dimensional case we 

consider the steady-state flow in some bounded domain  with wells, using the 

equations 

D

( ) ( ) ( )u f in⎡ ⎤∇ ∇ =⎣ ⎦σ x x x D          (A1) 

( )u u const if D= = ∈∂x x

)jx

          (A2) 

Let the function  model the set of  wells ( )f x N

( ) ( ) (
1 1 2

11 1

n N n n

i i j
i j n

f q qδ δ
= +

= = +

= − + −∑ ∑x x x x%         (A3) 

here  wells have preassigned relative productions 1n /i iq Q h=  where is the actual 

production of i -th  well and h

iQ

const=  is the thickness of flow domain,  wells have 

preassigned pressure or head 

2n

ju , the  or -are the centers of i -th or j –th well. ix jx

For closing the system of Equations (A1)-(A3) and determination of productions we 

can use the relations  

jq%

( )j ju r+ =x e ju            (A4) 

Here  is the radius of -th well and e  is any unit-module vector. jr j
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It should be noted that when D  is an unbounded domain the problem (A1)-(A4) valid 

only if all the wells are compactly distributed in two-dimensional space with  the 

condition . 
1 1 2

11 1

0
n N n n

i j
i j n

q q
= +

= = +

+ =∑ ∑

Let  be the the random Green`s function for Equation (A1) in the bounded 

domain , with condition 

( ,g x y)

D ( ), 0g =x y  if D∈∂x . Then 

( ) ( ) (
1 1 2

11 1

,
n N n n

i i j
i j n

u u q g y q g
= +

= = +

= + +∑ ∑x x % ), jx y         (A5) 

and for  we have a closed linear algebraic system of  equations: iq% 2n

( ) ( )
1 2 1

1 1 1

, ,
N n n n

j l l j l i l l i
j n i

q g r u u q g r
= +

= + =

+ = − − +∑ ∑x e x x e x% ,     1 1,...,l n N n n1 2= + = +    (A6) 

It is clear that the coefficients and the right part of the equations are random, and 

therefore the solution  is random and is dependent on all preassigned nonrandom jq% ju  

and . It is also clear that the solution  is dependent on all components of  iq jq% 2 2n n×  

random matrix , where (1
, ,l j l l jg g r= +x e x ) 2n1 11 ,n l j n+ ≤ ≤ +  and  random 

matrix , where 

2n n× 1

) 2n2
, ( ,l i l l ig g r= +x e x 1 11n l n+ ≤ ≤ +  and 11 i n≤ ≤ . 

Let the distances between-wells ,l j l jd = −x x  and the shortest distance for each wells to 

the external border D∂  be much more than the scale of correlation a . In this case the 

nondiagonal component of matrix 1g  and all the components of matrix  2g , in contrast to 

-diagonal components of matrix 1
,l lg 1g , are low variable. However, it is the manifestation 

of self-averaging phenomena. Below, we show for the one-well example how 

significantly they depend on the variation coefficient of well production q% ,  and . r a

Thus, returning to system of Equations (A1)-(A3), we need to find the random Green`s 

function  and solve the system (A6). Only after this can we discuss the problem 

of averaging the system of equations (A 1)-(A 3). 

( ,g x y)

However, it is possible in some cases to simplify the analysis, presupposing some 

corresponding conditions. If, for example, the scale of heterogeneity is small and 
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fluctuations of  are moderate, for estimation of , we can use the solution of 

system (A6), where the random Green`s function 

( )σ x jq%

( ),g x y  is replaced with non-random 

Green`s function ( )0 ,g x y  for equation (A1), in which ( ) ( ) 0= =σ x σ x σ . In this 

variant, the  are non-random and the problem of averaging is as described earlier. jq%

Moreover, if the wells are far apart in space, it is possible to ignore the interactions 

between them, that is, to neglect the sum on the right side of (A6) and all terms for j l≠  

on the left side. In this case, we have 

( ) (/l l l l lq u u g r= − +x e x% ),

),

            (A7) 

Subsequent simplification is related to the assumption that for scalar field and for 

small  the random Green`s function can be presented in the form: 

( )σ x

lr

( ) ( ) (1
0 0,l l l l l lg r g rσ σ−+ = +x e x x x e x           (A8) 

In this case we have 

( ) ( )
( )0 0 ,

l l
l

l l l

u u
q

g r
σ

σ
−

=
+

x
x e x

%     , ( ) ( )1
0 ,l l l lq u u g r−= − +x e x% l        (A9) 

 ( ) 0/l l lq qσ σ= x% %            (A10) 

Below we will designate this simple result, to be as s-prediction. We should emphasize 

that in the 3-dimensional case, for the productions density along the well a similar 

prediction was in fact utilized by Indelman et al. (1996). 

Using (A10), we can write, for , the mean square deviation of : lSq% lq%

0

l
l

q
Sq Sσ

σ
=

%
%          (A11) 

Now we can describe positive lς  -some degree of variability for random production , as 

the ratio the coefficient of variation  to coefficient of variation conductivity 

lq%

lq% σ  

0

/l
l

l

Sq S
q

σς
σ

⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜⎜ ⎟ ⎝ ⎠⎝ ⎠

%

%
⎟          (A12) 

and for the s- approximation  (A10), we have 1lς
∗ = . 
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Since the essence of the discussed s-prediction for  , is in reality the random functional 

from random function  in all domain, with only one random value at some point in 

space, it is important to examine the quality of this operation at least on independent 

examples. 

lq%

( )σ x

It should be pointed out that Shvidler (1964), using the method of perturbation, examined 

flow in a two-dimensional domain-ring with a central well (in polar coordinates: 

,0 2r Rρ θ< < < < π ) with preassigned non-random pressures on the borders 

 and . In a first order approximation, this study 

presented the relationship between production fluctuations 

( )u u constρρ = = ( ) Ru R u const= =

( ) ( ) ( )2 2 2q q q′ = −% % %  and field 

( ) ( ) 0σ σ σ′ = −x x  

( )
( ) ( )2
2

2
0

,
2 ln /

Rq r
q drd

R r

π

ρ

σ ϑ
ϑ

π ρ
′

′ = ∫ ∫
%

% ( ) ( )0
2

2
ln / Rq u u

R ρ
πσ

ρ
= −%

)

  ,   (A13) 

In this case, for the Gaussian correlation function of conductivity   

 ( ) ({ }2 2 2 2, ; , exp 2 cosK r r S a r r rrθ θ σ θ θ−′ ′ ′ ′ ′⎡= − + − −⎣ ⎤⎦  , the following was derived 

( ) ( ) ( )

( )

2 2
22

2 2 2
0

2

, , /
S q SR a
q

σς ρ
σ

=
%

%
  (A14) 

 

( ) ( )

2 22 2
2
2 2 2 2 2

1

1 1
4 ln / n

n

REi Ei
R a a n a a

ρ ρς ϕ
ρ

∞

=

⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞ R ϕ⎡ ⎤⎪ ⎪⎛ ⎞ ⎛ ⎞= − − − + −⎨ ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦⎝ ⎠ ⎝ ⎠⎣ ⎦⎪ ⎪⎩ ⎭
∑      (A15)   

( ) ( )
( )

2
2 11

0
,

( 1

n kz n
x

n
kx

e xEi x x e
z n

ϕ
∞ − −− −

−

=

− − = =
)!k− −∑∫  

and some partial examples were calculated. Much more detailed calculation and analysis 

were presented in the book (Shvidler, 1985). 

 It is plain to see that in the limit , Equations (A 13) tends toward Equations (A 

9) and (A 10), and  in this limit 

/R a → 0

( ) ( )2 2 1ς ς ∗= = . In Table A, we present the improved 

variant of calculation ( ) ( ) ( ) ( ) ( )2 2 , , / / / oR a Sq q Sς ς ρ σ σ= = % % . 
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Comparing ( )2ς  from Table A with ( )2 1ς ∗ = , in accordance with the s-prediction (A10), 

we see a significant difference; they are close only if a , the case in which the 

random conductivity is practically constant in the ring-domain.  

R>

It is interesting to find the reciprocal correlation moment for the random well production 

and in some point random conductivity ( )2q% ( )1 1,rσ ϑ . Following Shvidler (1985), we 

have 

( ) ( ) ( )
( ) ( )2
2 1 1

1 12 2
0 0

, ; ,
,

2 ln /

Rq K r r
H r q d

R r

π

ρ

ϑ ϑ
rdσ θ ϑ

πσ ρ
⊕ ′ ′= = ∫ ∫

%
%    (A16) 

If , using the Gaussian correlation function after simple transformation, we have 1 0r =

( )
( )

2 2 2
2

2 2
02 ln /

q S RH Ei Ei
R a a

σ ρ
σ ρ

⊕ ⎡ ⎤⎛ ⎞ ⎛
= − −⎢ ⎜ ⎟ ⎜

⎝ ⎠ ⎝⎣ ⎦

%

2

⎞
− ⎥⎟

⎠

2

     (A17) 

and for ( ) ( ) ( ) ( )2 2, , /R a H Sq Sλ ρ ⊕= % σ  - the coefficient of correlation we find 

( ) ( ) ( )

( )

2 2
2

2 2
2

, ,
2 ln /

sgn q RR a Ei Ei
R a a

ρλ ρ
ς ρ

⎡ ⎤⎛ ⎞ ⎛
= − −⎢ ⎜ ⎟ ⎜

⎝ ⎠ ⎝⎣ ⎦

%

2

⎞
− ⎥⎟

⎠

)

    (A18) 

The results of computing  ( ) (2 , ,R aλ ρ  are presented in Table B. Clearly, for s-

approximation (A 10), we have ( ) ( )2 , , 1R aλ ρ∗ ≡  and the same follows from (A18) in the 

limiting  case of . It may appear that the closeness of the coefficient of 

correlation 

/R a → 0

( )2λ  to unity, is an indication of  the  proportionality between random 

functional q%  and random conductivity ( )0,σ σ θ∗ = . But we need to consider that the 

significant deviation ( )2ς  from 1 (see Table A) contradict this assumption. Now, we 

analyze this situation in more detail. 

Like the relation (A 13s) between fluctuations ( )2q′%  and ( )σ ′ x  we can, in the same order 

of approximation, write the equation 

( )
( ) ( )2
2

2
0 0

,
2 ln /

Rq r
q

R r

π

ρ

σ ϑ
drdϑ

πσ ρ
= ∫ ∫

%
%  (A19) 
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Using identity ( ) ( ), ,r rσ ϑ σ σ ϑ σ∗ ∗⎡ ⎤= + −⎣ ⎦  and splitting the integral into two parts we 

find 

( ) ( ) ( ) ( ) ( )2 2 2 2 2
0

,q q q q q σ
σ

∗ ⊗ ∗ ∗= + =% % % % %         (A 20) 

where the term  is the known s-prediction (A10) and  q∗% ( )2q⊗%  is a random residual 

functional: 

( )
( ) ( )2
2

2
0 0

,
2 ln /

Rq r
q d

R r

π

ρ

σ ϑ σ
rdϑ

πσ ρ
∗⊗ −

= ∫ ∫
%

%       (A 21) 

Averaging equation (A21), we find ( )2 0q⊗ =% . Using the relation (A20) again, we can 

find significant parameters: - mean square deviation of residual functional , and 

 and - the correlation coefficients of residual functiona

( )2Sq⊗% ( )2q⊗%

( )2C∗
( )2C l ( )2q⊗%  with prediction ( )2q∗%  

and functional  respectively. In addition, we find ratios 2   and  

2
⊗ . 

( )2q% ( ) ( ) ( )2 2 /Sq Sqω ⊗= % %

( ) ( ) ( )2 2 /Sq Sqω∗ ∗= % %

( ) ( ) (2)2 2
0

SSq q σ η
σ

⊗ =% %  ,  ( ) ( ) ( ) ( )
2

2 2 21 2 2η ς ς λ= + −  (A 22) 

( )
( ) ( )

( )

2 2
2

2

1
C

ς λ

η
∗

−
=   ,   ( )

( ) ( )

( )

2 2
2

2

C
ς λ

η

−
=  (A 23) 

2( ) ( ) ( ) ( ) ( )2 2 2 2/ , 1/ω ς η ω η∗= =  (A 24) 

In Tables C, D, and E, we present the results of  calculation  ( )2η , ( )2C∗− , and , and in 

Tables F and G, the ratio

( )2C

s ( )2ω∗ , ( )2ω  respectively as a function of ρ  and  when 

. 

We can see from Table C that for 1 and 

a

250R m=

0/ ~S   a R< , the mean square deviation of 

residual functional has the same degree as the functional  ( )2q⊗%  ( )2q% . In addition, for 
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small  (compare witha 0ς  from Table A and ( )2ω  from Table G), the mean square 

deviation of  is larger than the mean square deviation of functional .  ( )2q⊗% ( )2q%

The Table D demonstrates that residual functional ( )2q⊗% is relatively well correlated with 

conductivity σ∗ . From Table E, we see that the module of correlation coefficient  is 

small if 

2C

aρ > , and when a  increases, the module reaches its maximum and then slowly 

decreases. 

In the Tables F and G, we can see the significance of ( )2Sq⊗% - the measure of variability 

residual functional , compared to  and ( )2q⊗% ( )2Sq% ( )2Sq∗% - the measures of variability the 

production  and  s-prediction ( )2q% ( )2q∗% . 

We describe the three-dimensional flow in domain  { },0 2 ,0D r R z hρ ϑ π= ≤ ≤ ≤ ≤ ≤ ≤ , 

and in the first order approximation of conductivity fluctuation ( ), ,r zσ ϑ′ , we have ( )3q′% - 

the fluctuation of  the well production and appropriate ( ) ( )
2 2

3 3S q q′=% %  

( )
( ) ( )2
3

3
0 0 0

, ,
2 ln /

R hq r z
q drd dz

h R r

π

ρ

σ ϑ
ϑ

πσ ρ
′

′ = ∫ ∫ ∫
%

% ( ) ( )0
3

2
ln / R

hq u u
R ρ
πσ

ρ
= −%  ,    (A 25) 

  

( )
2

3S q = ( ) ( )
2

2 2
3

2 2 2 2
0 0 0 0 0

, , ; , ,
4 (ln / )

R h R hq K r z r z
drd dzdr d dz

h R r rr

π π

ρ ρ

ϑ ϑ
ϑ ϑ

π σ
′ ′ ′

′ ′ ′
′∫ ∫ ∫ ∫ ∫ ∫

%
 (A 26) 

 Using the correlation function  for conductivity in three-dimensional space 

( ) ( ){ }22 2 2 2exp 2 cosK S r r rr a z z aσ ϑ ϑ −
⊥′ ′ ′ ′⎡ ⎤= − + − − − −⎣ ⎦

2−  , we have: 

( ) ( ) ( ) ( ) 222
3 2

0 0

, exp
x x

xhf x f x z z dzdz x erfx e
a

ζ ζ π −

⊥

⎛ ⎞ ⎡ ⎤′ ′= = − − =⎜ ⎟ ⎣ ⎦⎝ ⎠
∫ ∫ 1+ −       (A 27) 

 

The function ( )3ζ  and the function ( )/f h a⊥  are presented in Table H. Since for any 

, the function , the degree of variability /h a⊥ 1f ≤ ( ) ( )3 2ς ς≤ .  
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Similarly we calculated  - the correlation moment between  and random 

, and the appropriate coefficient of correlation   

( )3H ⊗
( )3q%

( )1

0

0, ,
h

hσ σ ϑ−
∗ = ∫ z dz ( ) ( ) ( )3 3 3/H Sq Sλ σ⊗= % : 

( ) ( ) ( ) ( ) ( )3 2, , , , , /R a a R a f h aλ ρ λ ρ⊥ = ⊥  (A 28) 

In the three-dimensional case, the analog for Equation (A10) is ( ) ( )
1

03 3q qσ σ∗ ∗
∗=% % −  or the 

equivalent relation for fluctuations ( ) ( )
/

03 3q q 1σ σ∗ ∗ −
∗′=% % . After simple calculations, we have 

( ) ( )3 /f h aς ∗
⊥=   ,   ( ) ( ) ( )3 3/ 2ζ ζ ζ∗ = ,     ( ) ( )3 /f h aλ∗

⊥=  (A 29) 

It is clear that as for  we have /a R →∞ ( )2 1ς →  , ( )2 1λ → , and therefore, from 

Equations (A 27) and (A 28), we have the same result. 

Now, as in the two-dimensional case, we write the random well production  ( )3q%

( )
( ) ( )2
3

3
0 0 0

, ,
2 ln /

R hq r z
q

h R r

π

ρ

σ ϑ
drd dzϑ

πσ ρ
= ∫ ∫ ∫

%
%  (A 30) 

and present  as the sum  ( )3q% ( ) ( ) ( )3 3q q q 3
∗ ⊗= +% % % , where    

( )
( ) ( )2
3

3
0 0 0

, ,
2 ln /

R hq r z
q

h R r

π

ρ

σ ϑ σ
drd dzϑ

πσ ρ
∗⊗ −

= ∫ ∫ ∫
%

%  (A 31) 

Averaging Equation (A 31), we find ( )3 0q⊗ =% , and after this we derive -mean 

square deviation of functional 

( )3Sq⊗%

( )3q⊗%  and ( )3C∗  and - the correlation coefficients 

functional  with functionals 

( )3C

( )3q⊗% ( )3q∗% and  respectively. Finally, we find the ratios 

 and  

( )3q%

( ) ( ) ( )3 3 /Sq Sqω ⊗= % % 3 3
⊗

( ) ( ) ( )3 3 /Sq Sqω∗ ∗= % %

( ) ( ) ( ) ( ) ( ) ( )3 3 3 3 2
0

,SSq q f h a/σ η η η
σ

⊗
⊥= =% %  (A 32) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )3 2 3 2 3 2 3, , ,C C C C 2ω ω ω ω∗ ∗ ∗ ∗= = = =  (A 33) 

Information presented here enables some model estimation: whereby the production of a 

well in a random field is proportional to the conductivity at the center of the well.  

It is evident that the productions at the wells can be determined for each realization of 

random conductivity field only after solving appropriate boundary value problem for the 
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elliptic equation with variable coefficients. However, such a method is practically 

unrealizable. 

 On the other hand, our estimation must take into consideration the goal for the sake of 

accepting similar models. Since the random well productions are necessary for solving 

the averaging problem, in some cases we sufficiently know the mean productions, and 

mean square deviations. If the number of wells with preassigned pressure or head is more 

than one, it is important to know the matrix correlation coefficients of productions, that 

is, the functional of random conductivity field and the parameters that describe the 

geometry of the well set. 

As we showed in this paper, the variation coefficient for one well production obtained in 

our analysis and that discussed s-prediction are significantly different. 

 We can see that the discussed s-prediction used oversimplification in many cases. 
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Table A: ζ0 = ζ0(ρ, a), R = 250m 
 

a (m) ρ (m) 
10-3 10-2 10-1 0.5       1 5 10 50 100 500

10-3 0.0332          0.1703 0.3511 0.4795 0.535 0.664 0.7196 0.8488 0.9043 0.9906
10-2 0.0001         0.0408 0.209 0.3634 0.4309 0.5886 0.6567 0.815 0.883 0.9884
10-1 0 0.0002        0.0528 0.189 0.2705 0.4703 0.5577 0.7617 0.8494 0.9851
0.5      0 0 0.0127 0.0665 0.1225 0.3406 0.4477 0.702 0.8118 0.9812
1        0 0 0.0003 0.0394 0.0748 0.2678 0.3833 0.6662 0.7892 0.9789
5          0 0 0 0.0004 0.0202 0.1056 0.1946 0.5405 0.7088 0.9704
10           0 0 0 1E-81 0.0005 0.0676 0.1284 0.4585 0.6536 0.9641
 
 

Table B: λ0 = λ0(ρ, a), R = 250m 
 

a (m) ( (m) 
10-3          10-2 10-1 0.5 1 5 10 50 100 500

10-3          0.2655 0.9539 0.9892 0.9942 0.9954 0.997 0.9974 0.9982 0.9986 1 
10-2          0 0.2655 0.9539 0.9848 0.9892 0.9942 0.9954 0.9971 0.9978 0.9999
10-1          0 0 0.2655 0.9067 0.9539 0.9848 0.9892 0.9944 0.996 0.9999
0.5        0 0 3E-12 0.2655 0.686 0.9539 0.9733 0.9894 0.993 0.9998
1    0 0 0 0.0087 0.2655 0.9067 0.9539 0.9851 0.9906 0.9998
5     0 0 0 0 3E-12 0.2655 0.686 0.9548 0.9767 0.9996
10      0 0 0 0 0 0.0087 0.2655 0.9084 0.9595 0.9994
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Table C: ( )0 0 0, 1oχ ς λ λ ς= − , R = 250m 

 
a (m) ρ (m) 
10-3 10-2 10-1 0.5       1 5 10 50 100 500

10-3 0.9912          0.8376 0.6527 0.5232 0.4675 0.3380 0.2822 0.1527 0.09695 0.0095
10-2 1 0.9892        0.8006 0.6422 0.5737 0.4148 0.3464 0.1874 0.1190 0.01161
10-1 1         1 0.9860 0.8287 0.7420 0.5369 0.4483 0.2426 0.1540 0.01503
0.5        1 1 1 0.9823 0.9160 0.6751 0.5642 0.3054 0.1939 0.01892
1 1          1 1 0.9997 0.9801 0.7572 0.6343 0.3437 0.2182 0.02130
5         1 1 1 1 1 0.9720 0.8665 0.4839 0.3077 0.03005
10           1 1 1 1 1 0.9994 0.9659 0.5835 0.3728 0.03647
 
 

Table D: ( )
2

0 0
0 0

1
,

ς λ
η ς λ

χ
−

= , R = 250m 

 
a (m) ρ (m) 
10-3 10-2 10-1 0.5       1 5 10 50 100 500

10-3 0.0323          0.0610 0.0788 0.0983 0.1100 0.1521 0.1822 0.3332 0.4952 0.9421
10-2 0.0001          0.0398 0.0783 0.0983 0.1100 0.1521 0.1822 0.3332 0.4952 0.9421
10-1 0 0.0002         0.0516 0.0962 0.1094 0.1521 0.1822 0.3332 0.4952 0.9421
0.5       0 0 0.0127 0.0653 0.0973 0.1514 0.1820 0.3331 0.4952 0.9421
1 0          0 0.0003 0.0394 0.0736 0.1492 0.1814 0.3331 0.4952 0.9421
5        0 0 0 0.000381 0.020249 0.1048 0.1634 0.3320 0.4948 0.9421
10         0 0 0 1.01E-81 0.000463 0.0676 0.1281 0.3284 0.4938 0.9421
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Table E: C(2) = C(2)(ρ, a), R = 250m 
 

a (m) ρ (m) 
10-3 10-2 10-1 0.5      1 5 10 50 100 500

10-3 -0.2342   -0.9338 -0.9747 -0.9790 -0.9789 -0.9740 -0.9685 -0.9281 -0.8713 -0.7216
10-2 0.0001   -0.2270 -0.9275 -0.9631 -0.9673 -0.9668 -0.9620 -0.9217 -0.8645 -0.7202
10-1 0.0000   0.0002 -0.2154 -0.8621 -0.9156 -0.9475 -0.9469 -0.9098 -0.8527 -0.7179
0.5 0.0000 0.0000 0.0127 -0.2021 -0.6123 -0.8982 -0.9166 -0.8929 -0.8374 -0.7153
1 0.0000 0.0000 0.0003 0.0307 -0.1940 -0.8345 -0.8850 -0.8803 -0.8270 -0.7136
5 0.0000 0.0000 0.0000 0.0004 0.0202 -0.1636 -0.5597 -0.8126 -0.7801 -0.7075

10 0.0000 0.0000 0.0000 0.0000 0.0005 0.0588 -0.1408 -0.7327 -0.7357 -0.7030
 

Table F: 2
1 0 0 0η χ ς ς λ= + − , R = 250m 

 
a (m) ρ (m) 
10-3 10-2 10-1 0.5       1 5 10 50 100 500

10-3 0.9917          0.8391 0.6547 0.5257 0.4703 0.3419 0.2868 0.1610 0.1082 0.0130
10-2 1.0000          0.9899 0.8031 0.6453 0.5772 0.4196 0.3521 0.1976 0.1328 0.0160
10-1 1.0000          1.0000 0.9873 0.8325 0.7464 0.5430 0.4557 0.2557 0.1719 0.0207
0.5           1.0000 1.0000 1.0001 0.9844 0.9203 0.6828 0.5735 0.3219 0.2164 0.0260
1 1.0000          1.0000 1.0000 1.0004 0.9828 0.7656 0.6447 0.3623 0.2435 0.0293
5           1.0000 1.0000 1.0000 1.0000 1.0002 0.9773 0.8780 0.5099 0.3433 0.0413
10           1.0000 1.0000 1.0000 1.0000 1.0000 1.0017 0.9738 0.6142 0.4158 0.0501
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Table G: 1
1

χλ
η

= , R = 250m 

 
a (m) ( (m) 
10-3          10-2 10-1 0.5 1 5 10 50 100 500

10-3           0.9995 0.9981 0.9969 0.9952 0.9940 0.9886 0.9838 0.9487 0.8962 0.7278
10-2           1.0000 0.9992 0.9969 0.9952 0.9940 0.9886 0.9838 0.9487 0.8962 0.7278
10-1           1.0000 1.0000 0.9987 0.9954 0.9941 0.9886 0.9838 0.9487 0.8962 0.7278
0.5 1.0000          1.0000 0.9999 0.9979 0.9953 0.9887 0.9838 0.9487 0.8962 0.7278
1 1.0000          1.0000 1.0000 0.9992 0.9973 0.9891 0.9839 0.9487 0.8962 0.7278
5           1.0000 1.0000 1.0000 1.0000 0.9998 0.9946 0.9869 0.9491 0.8963 0.7279
10           1.0000 1.0000 1.0000 1.0000 1.0000 0.9977 0.9919 0.9501 0.8967 0.7279
 
 

Table H: 0 0
2

1

ς λλ
η
−

= , R = 250m 

 
a (m) ρ (m) 
10-3 10-2 10-1 0.5       1 5 10 50 100 500

10-3 -0.2342          -0.9338 -0.9747 -0.9790 -0.9789 -0.9740 -0.9685 -0.9281 -0.8713 -0.7216
10-2 0.0001          -0.2270 -0.9275 -0.9631 -0.9673 -0.9668 -0.9620 -0.9217 -0.8645 -0.7202
10-1 0.0000          0.0002 -0.2154 -0.8621 -0.9156 -0.9475 -0.9469 -0.9098 -0.8527 -0.7179
0.5           0.0000 0.0000 0.0127 -0.2021 -0.6123 -0.8982 -0.9166 -0.8929 -0.8374 -0.7153
1 0.0000          0.0000 0.0003 0.0307 -0.1940 -0.8345 -0.8850 -0.8803 -0.8270 -0.7136
5           0.0000 0.0000 0.0000 0.0004 0.0202 -0.1636 -0.5597 -0.8126 -0.7801 -0.7075
10           0.0000 0.0000 0.0000 0.0000 0.0005 0.0588 -0.1408 -0.7327 -0.7357 -0.7030
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