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 Abstract 
____ Typically 

123
I-MIBG is used for the study of innervation and function of the 

sympathetic nervous system in heart failure. The protocol involves two studies: first a 

planar or SPECT scan is performed to measure initial uptake of the tracer, followed some 

3-4 hours later by another study measuring the wash-out of the tracer from the heart. A fast 

wash-out is indicative of a compromised heart. In this work, a dual head pinhole SPECT 

system was used for imaging the distribution and kinetics of 
123
I-MIBG in the myocardium 

of spontaneous hypertensive rats (SHR) and normotensive Wistar Kyoto (WKY) rats. The 

system geometry was calibrated based on a nonlinear point projection fitting method using 

a three-point source phantom. The angle variation effect of the parameters was modeled 

with a sinusoidal function. A dynamic acquisition was performed by injecting 
123
I-MIBG 

into rats immediately after starting the data acquisition. The detectors rotated continuously 

performing a 360° data acquisition every 90 seconds. We applied the factor analysis (FA) 

method and region of interest (ROI) sampling method to obtain time activity curves (TACs) 

in the blood pool and myocardium and then applied two-compartment modeling to estimate 

the kinetic parameters. Since the initial injection bolus is too fast for obtaining a consistent 

tomographic data set in the first few minutes of the study, we applied the FA method 

directly to projections during the first rotation. Then the time active curves for blood and 

myocardial tissue were obtained from ROI sampling. The method was applied to determine 

if there were differences in the kinetics between SHR and WKY rats and requires less time 

by replacing the delayed scan at 3-4 hours after injection with a dynamic acquisition over 

90 to 120 minutes. The results of a faster washout and a smaller distribution volume of 
123
I-

MIBG near the end of life in the SHR model of hypertrophic cardiomyopthy may be 

indicative of a failing heart in late stages of heart failure. 
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I.  INTRODUCTION 

 

Single Photon Emission Computed Tomography (SPECT) is an important diagnostic tool 

for investigating organ function in health and disease. In addition to being a useful diagnostic tool 

in humans, it is also an important tool to follow the progression of disease in small animals. Of 

particular interest is the use of the spontaneous hypertensive rat (SHR) model to follow the 

progression of heart failure in hypertrophic cardiac myopathy. One aspect that is manifested in 

heart failure is changes in sympathetic neuronal function. In this work a clinical pinhole SPECT 

scanner is used to image 
123

I-MIBG in the SHR model to ascertain changes in neuronal function 

with the progression of congestive heart failure. Pinhole SPECT has been widely used to image 

small animals in the study of physiological processes because of its capability to achieve good 

spatial resolution, which is very desirable in imaging small objects (Palmer 1990, Metzler 2005a, 

Beekman 2005). SPECT imaging is usually performed to measure static tracer distribution, 

however, it is hypothesized that dynamic SPECT imaging will provide a more sensitive measure 

of changes in neuron function with progression of heart failure in the SHR model.  

In this work we use the SHR model to study changes in sympathetic innervation with the 

progression of hypertrophy. The SHR (Okamoto and Aoki Strain) has hypertension associated 

with generalized dyslipidemia and insulin resistance. It has been noted that CD36 is a defective 

gene on chromosome 4 (Hajri 2001). The gene contains multiple sequence variants, that in the 

SHR results in a defective fatty acid translocase, which functions in long chain fatty acid 

transport into the cell. This compromises tissue utilization of fatty acid and increases the basal 

glucose metabolism and hyperinsulinemia. A high rate of glucose uptake increases insulin 

requirement and over expression of the membrane protein glut1 results in eventual insulin 

resistance. A short chain fatty acid supplement diet decreases glucose uptake and alleviates 

hypertrophy, but hypertension is not improved. Since increased glucose oxidation is essential in 

pressure-overload hypertrophy, decreased glucose transport into the myocyte may play a role in 

contractile dysfunction in the failing heart. A valuable aspect of studies in the SHR is that long-

term studies over the course of its two year lifespan are feasible. 

The sympathetic nervous system plays a crucial role in the development and progression 

of heart failure in patients with reduced left ventricular systolic function (O’Keefe 2000). Patients 

with heart failure have elevated levels of circulating catecholamines that increase in proportion to 

the severity of heart failure (Bristow 1997, Esler 1997). Acute adrenergic stimulation of the 

myocardium causes increases in heart rate, contractility, and conduction, thereby temporarily 

increasing cardiac output. However, chronic excessive sympathetic nervous system stimulation 
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causes myocardial toxicity and further depression of left ventricular systolic function (Eichhorn 

1996, Bristow 1997, Esler 1997). The SHR model has been used to study adrenergic neuron 

remodeling in congestive heart failure (Sisson 1991). The SHR model exhibits more aspects that 

are indicative of diastolic dysfunction. However, this is not clear; we will show in this report that 

the SHR may have a faster washout toward the end of life, which could be the result of the 

downregulation of the sympathetic nervous system which in turn results in systolic dysfunction.  

The cardiac autonomic nervous system consists of both sympathetic and parasympathetic 

innervation (Bengel 2004). Each system differs in their major neurotransmitters. The primary 

sympathetic transmitter is norepinephrine and the primary parasympathetic transmitter is 

acetylcholine; each exhibit stimulating or inhibitory effects in target tissues via adrenergic and 

muscarinic receptors, respectively. Norepinephrine is synthesized and stored within vesicles of 

the neurons. Neuronal stimulation leads to norepinephrine release through exocytosis. Release is 

regulated by a number of presynaptic receptor systems. Most of the norepinephrine released from 

the presynaptic neuron undergoes reuptake by the energy dependent norepi transporter (NET-1) 

mechanism and recycles into vesicles, or is metabolized in the cytosol, and only a small amount 

of released norepinephrine actually activates postsynaptic receptors on the surface of the 

myocyte. When prolonged excessive stimulation of adrenergic receptors takes place, the first 

consequence is desensitization of adrenoceptors, followed by down regulation with enhanced 

receptor degradation and decreased receptor synthesis. The next step is downregulation of 

adenylyl cyclase, which results in decreased myocardial reserve and impaired exercise capacity. 

Metaiodobenzylguanidine (MIBG) is a functional analog of norepinephrine and is 

thought to share the same uptake, storage, and release mechanisms as norepinephrine in the nerve 

terminals but is not metabolized (Wieland 1981a, Nakajo 1986, Pissarek 2002, DeGrado 1995, 

Glowniak 1993,Guilloteau 1984, Carrio 2001, Dae 1995). 
123

I-MIBG is used to assess the 

innervation of the sympathetic nervous system in the heart. The distribution of 
123

I-MIBG most 

closely depicts the distribution of sympathetic neurons, and provides an accurate depiction of 

myocardial sympathetic innervation and allows a unique characterization of alterations in 

regional sympathetic nerve function (Dae 1995). 
123

I-MIBG has been used in several clinical 

studies (Dae 1995, Mitrani 1993, Gill 1993, Maunoury 2000, Henderson 1988, Nakajima 1994, 

Tomaselli 1994, Lotze 2001). Cardiac 
123

I-MIBG uptake and washout predicts outcome more 

effectively than any of the standard noninvasive measurements of left ventricular function in 

patients with congestive heart failure (CHF). Clinically, 
123

I-MIBG is used in the diagnosis of 

heart failure (CHF, dilated cardiomyopathy, hypertrophic cardiomyopathy), evaluation of 

neuronal function after heart transplant, evaluation of heart function with diabetes and during 
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chemotherapy, and in the evaluation of arrhythmias. A high washout rate means increased 

adrenergic activity (Patel 2002). SHRs seem to develop similarities to patients with heart failure. 

They develop a generally enhanced sympathetic tone and a downregulation of cardiac receptors 

(Pissarek 2002, Dubois 1996, Bohlender 2000). In our work a 2-compartment model was used to 

model the kinetics of 
123

I-MIBG. The effect of alterations of the supracardiac receptor population 

for cardiac norepinephrine turnover, the density or activity of uptake-1 transporters, and the 

perfusion of cardiac microcompartments is not fully understood (Pissarek 2002).  

Small-animal imaging studies associated with molecular imaging are rapidly growing 

(Massoud 2003, Weissleder 2001). Nuclear imaging of small animals involves the use of 

microPET (Cherry 2001), microSPECT (a dedicated small animal system) (McDonald 2000, 

McElroy 2002, Furenlid 2004, Beekman 2004, Meikle 2005, Goertzen 2005, Beekman 2005, Kim 

2006, Zeniya 2006, Hesterman 2007, Vastenhouw 2007), and pinhole SPECT technologies 

(Strand 1993, Weber 1994, Strand 1994, Jaszczak 1994, Li 1995a, Weber, 1995, Ishizu 1995, 

Yukihiro 1996, Smith 1997a, Smith 1998, Ogawa 1998, Tenney 1999, Wu 1999, Wu 2000, Hirai 

2000, Hirai 2001, Acton 2002a, Acton 2002b, Wu 2003, Schrammm 2003, Metzler 2004, 

Zimmerman 2004, Vanhove 2005, Metzler 2005a, Zhou 2005, Acton 2006, Ostendorf 2006, 

Forrer 2006). For reviews of small animal imaging of single photon tracers see (Budinger 2002, 

Weber 1999, Peremans 2005, Beekman 2007). Some of the microSPECT systems use modified 

commercial clinical systems in which the camera does not rotate but a special collimator insert is 

provided for small animal imaging (Beekman 2004, Beekman 2005, Vastenhouw 2007), or the 

animal is rotated in front of a fixed gamma camera (Habraken  2001, Booij  2002, de Win  2004, 

Andringa 2005). Many of the newer designs are looking to use new CZT technology (Liu  2002, 

Kim 2006, Hesterman  2007) as opposed to older NaI detector technology. Pinhole SPECT (in 

our classification) differs from a microSPECT system in that it uses pinhole collimators with a 

large field of view clinical SPECT/CT system. The use of pinhole SPECT/CT technology allows 

for the more direct translation of development in small animal models to clinical application 

where SPECT/CT technology is most applicable. Other pinhole SPECT systems have been used 

to image the heart (Yukihiro 1996, Wu 1999, Wu 2000, Hirai 2000, Hirai 2001, Wu 2003, 

Vanhove 2005, Zhou 2005, Acton 2006) (commercial patient SPECT systems) and dedicated 

small animal microSPECT systems (Coaanstantinesco 2005, Beekman 2005, Liu 2002).  

Our work builds on excellent theoretical work of others (Li 1994, Li 1995b, Wang 1996, 

Smith 1997b, Smith 1997c, Smith 1998b, Metzler 2001, Metzler 2002, Metzler 2003, Zeniya 

2004, Sohlberg 2004, Meng 2004, Bal 2006, Hsu 2006, Rentmeester 2007). The two-detector GE 

Millennium VG3 SPECT/CT system at LBNL which we use to develop a pinhole SPECT 
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technique directed toward cardiovascular imaging of rats, is a SPECT/CT clinical system used for 

patients. This differs from the dedicated small animal SPECT/CT systems and our x-ray CT 

resolution is not as good as that of the dedicated small animal systems. SPECT imaging of small 

animals can be performed on commercial clinical imaging systems with specially designed 

pinhole collimators. A resolution on the order of 1 mm can be obtained in mice (Ogawa 1998) 

with 
99m

Tc agents and with cardiac gating for heart rates as high as 400 beats per minute (Wu 

1999, Wu 2000). Combining a low-energy isotope with gold alloy pinholes allows for a 

resolution of a few hundred m in mice (Beekman 2002). Our investigation allows for the study of 

mechanisms and treatment of human diseases in animal models and permits longitudinal 

investigations that track physiologic changes over time in the same animal. The evaluation of 

radiopharmaceuticals in small animals can be a tremendous asset for the translation to the clinic. 

For example, at present, GE Healthcare is evaluating 
123

I-MIBG for imaging heart failure. We 

expect that our work with small animals using 
123

I-MIBG, will develop new technology in terms 

of data acquisition techniques and algorithms for processing 
123

I-MIBG imaging data which will 

directly be appropriate for clinical application.  

It is well known that a pinhole SPECT system is very sensitive to geometrical 

misalignment because of the magnification effect.  The trajectory of the pinhole for our SPECT 

system is a circle within a plane. Seven parameters are enough to characterize the geometry of the 

imaging system if the geometrical parameters do not change from view to view (Noo 2000, 

Beque 2003). However, due to variations in the gravitational torque of the detector as a function 

of angle, we found that some parameters change with the view angle. In particular, we found that 

the axial and transaxial mechanical shift has a sinusoidal variation as a function of angle. Also, 

since the SPECT system has two detector heads, we model the axial difference between the two-

pinhole collimators. A nonlinear least square fitting method is applied to obtain the parameters 

for the imaging geometry (Gullberg 1987, Beque 2003). Our calibration procedure obtains good 

fits to the measured projections of the point sources. 

In this work we perform dynamic pinhole SPECT imaging using 
123

I-MIBG. MIBG is 

taken up by sympathetic nerves in a manner similar to norepinephrine, but is not metabolized. 

The distribution of MIBG closely depicts the distribution of sympathetic neurons and provides an 

accurate depiction of myocardial sympathetic innervation. In so doing it allows a unique 

characterization of alterations in regional sympathetic nerve function (Sisson 1987, Dae 1995, 

Carrio 2001, Patel 2002). MIBG has been widely used in clinical studies to provide diagnostic 

information for the cardiac sympathetic innervation (Nakajima 1994, Maunoury 2000). Faster 
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MIBG washout rate in the heart, which reflects accelerated cardiac adrenergic neuronal activity, 

is indicative of a compromised heart (Henderson 1988, Arimoto 2004).  

Because of the fast blood circulation and slow camera rotation it is difficult to 

estimate an input function from the dynamic data. Factor analysis (FA) is a semi-

automatic tool used to extract TACs for different organs with different kinetics (Barber 

1980). It can be applied to dynamically acquired projections (Sitek 2001) or a dynamic 

sequence of reconstructions (Sitek 2000). For the dataset we collected, the initial injected 

bolus travels throughout the vascular system too fast to obtain a consistent set of 

projections for the first 90 second rotation; therefore, a tomographic reconstruction for 

the first rotation is not appropriate. To obtain the input function for compartmental 

modeling, we applied the FA method directly to the projections. Starting with the second 

rotation, the projections become relatively consistent and we applied the ROI sampling 

method to the dynamic sequence of reconstructions. These two types of TACs can be 

connected since the same system matrix is used for the direct FA on projections and for 

the iterative reconstruction of the ROIs. The TACs for the myocardium and blood pool 

are then fit to two-compartment model . 

 This paper is organized as follows. The materials and methods for this work are 

described in section II. We introduce calibration and reconstruction methods for the dual head 

pinhole SPECT system. The kinetic analysis method for the dynamic data is also presented. The 

pinhole SPECT calibration and image reconstruction results are presented in section III. Also in 

this section, we provide the results for kinetics analysis.  Finally, conclusions and discussions are 

provided in section IV. 
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II. MATERIALS and METHODS 

 

A. Dual Head Pinhole SPECT System 

Our pinhole SPECT system, shown in Fig. 1, was set up by mounting two pinhole 

collimators (Nuclear Fields, Vortum-Mullen, The Netherlands) on a GE Millennium VG3 dual 

head SPECT system with slip ring detector technology. The 45 cm × 45 cm detectors each have a 

crystal thickness of 3/8 inches, providing an intrinsic spatial resolution of 3.9 mm and energy 

resolution of 9.8% at an energy of 140 keV. The pinhole collimators had a focal length of 25 cm 

and allowed for pinhole inserts of different sizes. In our work we used a tungsten insert with a 1.5 

mm aperture. The magnification (ratio between pinhole to detector distance and pinhole to 

rotation axis distance) using our pinhole SPECT system to image a rat was approximately 5. The 

data were acquired using a circular trajectory. Although the circular planar orbit does not provide 

complete data for cone beam tomographic acquisition, we found it to be adequate for our cardiac 

imaging for the following three reasons: first, the cone angle involved is relatively small; second, 

there is some axial displacement (4-5 mm) between the two pinholes, which increases the data 

sampling completeness; and third, the heart does not extend very far from the central plane of the 

cone beam geometry. 

 

 

Figure 1.  Pinhole SPECT scanner used for the dynamic cardiac data acquisition 

in a rat.   

 
 

B. Calibration of  the Dual Head Pinhole System 

Since the pinhole system is very sensitive to geometrical misalignment, it is important to 

accurately estimate the geometric parameters to obtain an accurate system matrix, which will be 

used in the reconstruction. We calibrated our dual head pinhole SPECT system using a nonlinear 



 9 

point projection fitting method first proposed in (Gullberg 1987) and later in (Hsieh 1992). For a 

pinhole SPECT system with a circular planar orbit, it was shown in (Beque 2003) that the 

projections of 3 point sources separated by a known distance from each other is enough to obtain 

a unique solution for the 7 parameters needed to fully characterize the geometry of a circular 

planar orbit pinhole SPECT system, assuming that the parameters remain unchanged over the 

entire rotation. Figure 2 shows an illustration of our dual head pinhole SPECT system. For our 

SPECT system, we found that because the detector heads extend from the gantry (Fig. 1) they 

produce a moment arm that varies as the detectors rotate around the bed, causing the heads to 

slightly shift axially (Fig. 3). Also, we model the transaxial mechanical shift as an angle variant, 

which may be caused by the imperfectness of the gantry. We estimate these shifts as sinusoidal 

functions of view angle.  Finally, the initial axial distance between the two pinholes is included in 

the calibration procedure. 
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Figure 2. Illustration of dual head pinhole SPECT system and geometrical 

parameters. 

 

The tilting of the detector heads as a function of view angle causes several effects. First, 

it causes the tilt angle of the gamma detector to change; second, it causes the distance of the 

pinhole to the rotation axis to change; and third, it causes the axial pinhole location to change as a 

function of angle. One challenge exists for accurately modeling the tilting angle variation: it is 

difficult to determine the location of the rotation axis of the gamma camera. Figure 4 shows that 

the detector tilting angle can change around the two different fulcrums. In each case, the view 

angle dependent parameters have to be modeled differently, which complicates the calibration 

task. However, we can show that if the amplitude of the radius and tilt angle change is very small, 
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it will cause very little effect on the image reconstruction. The change of axial location of the 

pinhole plays a major role in obtaining the final image reconstruction. Therefore, in the 

calibration, we only model the axial change of the pinhole aperture with different view angles 

while keeping the tilt angle and the distance from the pinhole to axis of rotation constant. We 

found that this simplification gives us satisfactory results in the calibration. Table 1 summarizes 

the geometrical parameters we need to estimate for each pinhole detector. Refer to (Metzler 

2005b) for a good understanding of mechanical shift and electronic shift. 

Pinhole Collimator

Supporting Arm

Gantry

 

Figure 3.  Axial view of the dual head pinhole SPECT system, which illustrates 

the axial shift of the pinholes.  

φφ

z z

(a) (b)

 

Figure 4. Illustration of the detector tilting around two different fulcrums. (a) 

Illustrates rotation off axis and (b) illustrates rotation on axis. The angle of tilt is 

exaggerated for the illustrations. The angle tilt is very small (less than 1°) in our 

pinhole SPECT system. 
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Geometrical parameters Mathematical notations 

Pinhole to rotation axis distance d  

Pinhole to detector distance f  

Transaxial mechanical shift  ( )
t

m θ  

Axial mechanical shift  ( )
a

m θ  

u electronic shift 
u

e  

v electronic shift 
v

e  

Tilt angle  φ  

Twist angle ψ  

 

Table 1. Geometrical parameters for a single pinhole SPECT system, 

θ represents the view angle, mechanical shift and tilt angle is modeled as a 

function of angle. 

 

The transaxial mechanical shift of detector head h (h=1,2) as a function of view angle is 

modeled as 

( ( )) ( ) ( ) sin ( ) cos
d s ct h t h t h t hm m m mθ θ θ= + +  ,                        (1) 

 

where ( )
dt hm is the DC component of the transaxial mechanical shift of head h, ( )

st hm  is the 

coefficient of the sin component, and ( )
ct hm  is the coefficient of the cos component. 

The axial mechanical shift of detector head h (h=1,2) as a function of view angle is 

modeled as 

( ) ( ) ( ) sin ( ) cos ( )
d s c inita h a h a h a h a hm m m m mθ θ= + + + ,                                   (2) 

 

where we set ( ) ( )
d ca h a hm m= −  , so that when 0θ = , ( ) ( )

inita h a hm m= ; 
initam is the initial axial location 

of the pinhole, when 0θ = ; and we assume  1( ) 0
initam =  and 2( )

initam z= ∆ , where z∆  is the initial 

axial difference between the two pinholes. 

From the above, we see that 12 parameters (3 each for transaxial mechanical shift and 

axial mechanical shift) are estimated for each head. Since we assume that 1( ) 0
initam = , a total of 

23 parameters need to be estimated for the dual head pinhole SPECT system. It should be noted 

that the shift of the geometrical parameters as a function of angle have also been studied in 

(Crawford 1988, Beque 2004, Metzler 2005c).  
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The calibration phantom illustrated in Fig. 5 was used to estimate the geometric 

parameters. Point sources (small beads soaked with 
99m

Tc) were placed at five locations shown in 

Fig. 5. The phantom was placed on the support holder for the rats and 120 projections were 

collected using a step and shoot acquisition mode and each projection were acquired for 18 

seconds. After projections were collected from different view angles, the geometrical parameters 

were estimated by minimizing the following chi-square equation: 

 

2 2 2

, , , , , , , ,
( ) ( )img est img est

i h i h i h i h

h i

u u v vθ θ θ θ
θ

χ  = − + − ∑∑∑   ,                                         (3) 

 

where h is the index of the detector heads, i is the index for the points in the object space,θ is the 

index of the view angle, 
, , , ,

( , )img img

i h i h
u vθ θ  is the coordinate of the measured centroid of the projection 

of the point source, and 
, , , ,

( , )est est

i h i h
u vθ θ is the estimated coordinate of the projected centroid, which is 

a function of the geometrical parameters and the point source location. Axially, the initial location 

of the first head was used as a reference. 

 

Figure 5. Illustration of the calibration point source phantom. (Supplied to us by 

Benjamin Tsui, Ph.D., Johns Hopkins University) 

 

In the following, we illustrate how to calculate the projections 
, , , ,

( , )img img

i h i h
u vθ θ of point 

sources onto the detector heads at different view angles as a function of the geometrical 

parameters and location of point sources: ( , , ) 1,2,3
i i i

x y z i = . The projections 
, , , ,

( , )est est

i h i h
u vθ θ in Fig. 6 

are calculated as follows: 
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,

, , ,

cos ( , , )
cos ,

( , , )

r

est h h i h h h

i h h h h u hr

h i h h h

m x
u f m e

d y

θ
θ θ

ψ θ φ ψ
ψ

θ φ ψ

−
= + +

+
  ,                              (4) 

 

,

, , ,

sin ( , , )
sin ,

( , , )

r

est h h i h h h

i h h h h v hr

h i h h h

m z
v f m e

d y

θ
θ θ

ψ θ φ ψ
ψ

θ φ ψ

−
= + +

+
     ,                               (5) 

 

where ( , , )r r r

i i i
x y z  is calculated as follows: 

 

( ) cos 0 sin cos sin 01 0 0 0

( ) 0 1 0 0 cos sin sin cos 0 0

sin 0 cos ( ( ))0 sin cos 0 0 1( )

r

i h h h h h i

r

i h h h h h i

r
h h a hh h ii h

x x

y y

mzz

ψ ψ θ θ

φ φ θ θ

ψ ψ θφ φ

  −         
          = − − +          
                  

     (6) 

u

yr

xr

zr

v

zrxr

yr yr

pinhole pinholepinhole
cos

t
m ψ sin

t
m ψ

(a) (b) (c)

 

Figure 6. Illustration of , , , ,( , )
est est

i h i h
u vθ θ . (a) The 3D perspective of projection of a 

point source through the pinhole. (b) 2D illustration of the calculation of the 

coordinate , ,

est

i h
u θ . (c) 2D illustration of the calculation of the coordinate , ,

est

i h
v θ . 

 

The geometrical parameters of both heads and the 3D coordinates of the point sources are 

estimated by minimizing equation (3). 

 

C. Reconstruction of Data Acquired with the Dual Head Pinhole System 

System matrix. The dual head pinhole SPECT data acquisition can be modeled in the 

following affine transformation: 

rxP += α   ,                                                                             (7) 
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where 
1×∈ MRP  is the expectation of the detected data, 1Nx R ×∈  is the unknown tracer 

distribution, M NRα ×∈  is the system matrix with the (i,j)th element containing the probability of 

detecting an event from image voxel  j at detector pixel  i, and  r is the noise. M is the number of 

detector elements for both heads and N is the number of image voxels. Although various types of 

basis functions exist, we chose cubic voxels for this work because of their simplicity. 

Since emission data is very noisy, iterative methods that properly account for the Poisson 

statistics are usually applied to obtain image reconstruction. The system matrix, which describes 

the photon detection physics, plays a very important role in almost all iterative reconstruction 

algorithms. In the following, we describe how to calculate ijα , which is the probability of 

detecting a photon emitted from voxel j in detector i, ignoring the effects of attenuation and 

scatter, for a pinhole SPECT system. 

Figure 7 shows the geometry for how the activity from voxel j is detected by a detector 

bin i through the pinhole system. Assume there is a unit of activity within voxel j, then the 

fraction of activity from voxel j, which will be detected in pixel I, is calculated as follows: 

 

j

j

A d
F

V

×
=    ,                                                                            (8) 

 

where 
j

A  is the area of intersection (represented by the thick solid line in the voxel) of the 

inverse cone subtended by the pinhole and the detector pixel with the voxel; d is the length of the 

voxel side; and 
j

V is the volume of voxel j. The area 
j

A  is given by 

 

2

2j p

h
A A

f
= ×    ,                                                                           (9) 

 

where 
p

A  is the area of the detector pixel and the length d is given by 

 

( , ) cosd l i j θ=     ,                                                                          (10) 

 

where l is the length of the line connecting the center of the pixel and the center of the voxel j and 

θ  is the angle between the horizontal line and the line connecting the centers of pixel i and voxel 

j. Substituting equation (9) and equation (10) into equation (8), gives the following expression for 

the fraction of activity from voxel j, which will be detected in pixel i 
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2

2
( , )cosp

j

h
F A l i j

V f
θ= × ×         .                                                            (11) 

 

Detector pixel i

Voxel j

h

f

Pinhole

θ

d

Aj

 

Figure 7. Geometry of pinhole detection. 

 

From (Anger 1959), the geometrical sensitivity of the pinhole camera is  

2

2 3

2

( sin )
( )

4 ( / sin )

sin

4

r r
Sens

h

r

h

π θ
θ

π θ

θ

× ×
=

=

                                                                    (12) 

where r is the radius of the pinhole. 

Therefore, the activity emitted from voxel j, which will be detected in detector i, is as 

follows,  

2 3 2

2 2

2

4

2

( , ) ( )

sin
sin

4
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                 .                                     (13) 

The results are similar to that derived in (Li 1995b).  Attenuation and scatter, which may be 

minor, is not compensated for in the current implementation. 

Model for the point spread function.  There are different methods to compensate for 

the point spread function because of the finite size of the pinhole aperture. We applied a multi-ray 



 16 

technique, which is illustrated in Fig. 8. We subdivide both detector pixels and pinhole aperture 

into multiple sub-elements and form multiple lines by connecting each sub-element in the 

detector pixel with those in the pinhole aperture. Using the multi-ray model, the septum 

penetration effect is easily modeled as long as the geometry of the septum is known. 

 

Detector Pixel

Pinhole

Object

 

Figure 8. Model for point spread function using a multi-ray technique. 

 

 

Reconstruction algorithm. After the system matrix is obtained for the dual head pinhole 

SPECT system, different iterative algorithms can be applied to obtain the image reconstruction. 

In this work, we applied the ML-EM algorithm to obtain the image reconstruction. All images of 

80×80×80 (0.85 mm) were reconstructed from 128×128 (4.42 mm) projections using 30 iterations 

of the ML-EM algorithm. A Gaussian filter with kernel [0.458 1 0.458] was applied to obtain the 

final images. The system matrix was pre-calculated and stored. The point spread function was 

modeled by a multi-ray technique. The effect of attenuation and scatter was not modeled in the 

reconstruction procedure. However, since the algorithm is ray driven, attenuation compensation 

can easily be incorporated into the reconstruction as long as an attenuation map is available. A 

computation time of 2 hours was required to obtain a reconstruction. 

  

D. Dynamic Imaging Protocol 

        Two groups of rats were involved in the dynamic imaging of cardiac innervation (Table 2). 

Each group contained one control WKY rat and one SHR .  The study was approved by our 

Animal Welfare and Regulatory Committee. The weights of the rats were measured before they 

were imaged. Four studies were performed over eight months up until the death of one of the 

SHR’s, at which time we sacrificed the other three rats and performed histology on all four rats. 
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In each study, the rats were scanned according to the dynamic scanning protocol described below. 

Pinhole collimators of a focal length of 25 cm with an aperture diameter of 1.5 mm were mounted 

on our pinhole SPECT system (Fig. 1). The energy window was set at 20% centered on 159 keV. 

The rats were anesthetized with 2% isofluorene and oxygen and positioned in a support holder 

mounted on the patient bed. A dynamic acquisition was performed by injecting 5 mCi of 
123

I-

MIBG (half life of 13 hrs) into the rat immediately after starting the data acquisition. The 

detectors rotated continuously performing a 360° data acquisition every one and half minutes. For 

each rotation, 90 1-second 128×128 projections of 4.42 mm pixels were acquired. A total of 66 

rotations of data acquisition were obtained. We also measured the systolic pressure of the rats at 

4/19/05, which showed that the hypertensive rats had higher blood pressure than that of the 

normal rats. 

 

 
Date Group Rat Type Weight 

(grams) 

Study Type BL Press (mm 

Hg) 

WKY 472 Dynamic  1 

SHR 440 Dynamic  

WKY 465 Dynamic  

 

03/02/05 

2 

SHR 458 Dynamic  

    119 

    164 

    146 

 

04/19/05 

    169 

WKY 506 Dynamic  1 

SHR 443 Dynamic  

WKY 492 Dynamic  

 

05/17/05 

2 

SHR 458 Dynamic  

WKY 532 Dynamic  1 

SHR 457 Dynamic  
WKY 510 Dynamic  

 

08/16/05 

2 

SHR 452 Dynamic  
SHR 406 Dynamic  1 

WKY 572 Dynamic  
SHR 426 Dynamic  

 

11/29/05 

2 

WKY 505 Dynamic  

 

 
Table 2. Two groups of rats were studied at four separate times over a period of 

8 months. All rats were born 5/08/04 (minus 84 days). In Group 1, the SHR died 

1/01/06. The other three rats were sacrificed 1/05/06. The ratio of heart weight to 

total body weight was 0.64% SHR Group 1; 0.39% WKY Group 1; 0.59% SHR 

Group 2; 0.59% WKY Group 2. 
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E. Extracting Time Activity Curves from Dynamic Projections and Dynamic Reconstructions 

The goal of this study was to explore the possibility of whether we could obtain kinetic 

parameters in the myocardium (washin and washout rates) from dynamically collected 

projections. The TACs in the myocardium tissue and blood pool are necessary for performing 

compartmental modeling to obtain the kinetic parameters, i.e. washin and washout rates, of the 

myocardial tissue. In order to extract TACs corresponding to blood pool and myocardium, we 

applied the FA method directly to the acquired projections to obtain the TAC for the blood pool 

for the first 90 seconds of the acquisition. Next, for the remainder of the data, we applied the ROI 

method on the dynamically reconstructed frames to obtain the TACs corresponding to the blood 

pool and myocardium. The ROIs were selected manually on the reconstructed summed image. 

In the following, we describe the FA method applied directly to the projection data (Sitek 

2001). This was applied to the data acquired for the first rotation of inconsistent projections to 

obtain the blood input function for this period. The factors 
sk

F  and coefficients 
ns

C  were 

estimated from the projection measurements ˆ ( )
m

P k  by minimizing the following objective 

function: 

,
2

,
, 1

, 1
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N S

mn ns sk mM K
n s

LS nneg

m k m

k C F P k
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=

−

= +
∑

∑ ,                                             (14) 

 

where ( )
mn

kα  are the elements of the system matrix [as defined in equation (13)] describing the 

probability that photon emitted in voxel n  was detected in projection bin m  at projection k . The 

estimates for C  and F  are constrained by the non-negativity constraint: 

 

, ,
2 2

, 1 , 1

( , ) ( ) ( )
N S K S

nneg c ns ns F sk sk

n s k s

f C F C U C F U Fβ β
= =

= − + −∑ ∑ ,                                          (15) 

 

where U is a Heaviside function and ( , )nnegf C F  will penalize negative values for nsC  and skF . The 

strength of the penalty is controlled by positive parameters Cβ  and Fβ . The variable S is the total 

number of factors, the variable K is the total number of projections, the variable M is the number 

of bins in each projection, and the variable N is the number of voxels.  

The conjugate gradient algorithm (Press 1992) was used to minimize the least squares 

objective function in equation (14). The same system matrix was used here as in the 

reconstruction described in Section C above. The factor coefficients for two factors of 90 time 
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pointes were calculated for an 80×80×80 image matrix (0.85 mm voxels) from 90 1-second 

frames. The FA calculation required the conjugate algorithm to solve for 

80×80×80×2+90×2=1024180 unknowns. It took about 10 days of computational time to solve for 

the factors and factor coefficients using a non-optimized code with a PowerPC G5 processor.  

After the first rotation of 90 seconds, the projections were fairly consistent for the 

remaining 65 90-sec tomographic acquisitions.  Therefore, ROIs were selected for the blood 

(~200 voxels) and for the myocardial tissue (~1800 voxels) and TACs were generated from the 

65 dynamic reconstructions.  

The FA suffers from the known problem of non-uniqueness (Sitek 2000). In order to 

constrain the solution we assumed that curves obtained from FA and curves obtained from ROI 

measurements should be connected without discontinuity. We forced the connection to be smooth 

by assuming that the values of CF obtained using direct FA were equal to the value in the 

reconstructed images at the point of connection since we used the same system matrix for direct 

FA and for the reconstructions. 

 The obtained TACs were corrected for radioactive decay according to the following 

equation: 

1/ 2( ) ( ) / 2

t

T

uncorrected
M t M t

−

=                                                      (16) 

 

where 1/ 2T  was the half-life of 
123

I, which was 13 hours. Since the dynamic imaging procedure 

was about 1.5 hours, the radioactive decay accounted for less than 10% of the total decay, which 

included both radioactive and biological decay, for the entire duration of the imaging procedure. 

 

F. Estimation for a Two-Compartment Model 

After the TACs in the myocardium and blood pool were obtained, we fitted the curves to 

a two-compartment model (Fig. 2) to obtain the kinetic parameters. The TACs in the myocardium 

and the blood pool are defined by the following differential equations for a two-compartment 

model: 

21 12

( )
( ) ( )

dM t
K I t K M t

dt
= − ,                                                     (17) 

where ( )M t  represents the TAC in the myocardium, ( )I t  represents the TAC in the blood pool, 

and K21 and K12 are the wash-in and wash-out parameters, respectively. 

When (0) 0M = , then the solution for equation (17) is  

12 ( )

21
0

( ) ( )
t

K t
M t K I e d

ττ τ− −= ∫ ,                                                       (18) 
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when (0) 0M ≠ , then the solution for equation (17) is  

 

12 12( )

21
0

( ) ( ) (0)
t

K t K t
M t K B e d M e

ττ τ− − −= +∫ .                                               (19) 

 

The estimates for
21

K  and 
12

K  can be determined by using a non-linear least squares fitting 

method, if ( )M t  and ( )I t are known.  

 

Figure 9. Two-compartment model. A two-compartment model was assumed in 

the washin and washout of 123I-MIBG from the presynaptic neurons of the 

sympathetic nervous system of the heart. 

 

We also calculated the distribution volumes by taking the ratio of K21/K12. The 

distribution volume is illustrated in Fig. 10. 

 

                

 

Figure 10. Distribution Volume. The distribution volume V1 is the volume of 

tissue that would give the same tracer concentration as that in the blood. The 

distribution volume was calculated as K21/K12. 

Cb 

Cb 

Vt 

V1 

tissue 

blood 
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III. RESULTS 

 

A. Calibration of the System Geometry 

Projections of the 3 point sources (out of 5 point sources presented in Fig. 5) were 

obtained over a complete rotation of 360° for each detector. In the detector space, the projection 

of a point source travels along an ellipse. A non-linear least squares fitting method was applied to 

estimate the geometrical parameters. Table 2 presents the estimated parameters for one 

experiment. Figure 11 shows the comparison between the measured and the estimated centroids 

of the projected point sources. Geometrical parameters were modeled as a function of angle for 

the fits shown in Fig. 11(a), independent of angles for the fits shown in Fig. 11(b).  

 

 

 

 

Geometrical parameters Head 1 Head 2 

Pinhole to rotation axis distance 

(mms) 

55.3 57.9 

Pinhole to detector distance (mms) 254.3 251.8 

Transaxial mechanical shift (TMS) 

(DC component) (mms) 

-0.79 -2.5049 

Cosine component of TMS (mms) -1.2851 -1.2850 

Sine component of TMS (mms) 0.5587 0.0499 

Initial Value of Axial Mechanical 

Shift (mms) 

0 4.4819 

Cosine component of AMS (mms) 1.8645 -1.9031 

Sine component of AMS (mms) 0.2142 0.3433 

u electronic shift (mms) -0.5796 0.9622 

v electronic shift (mms) 4.9031 -2.8271 

Tilt angle (radians) 0.0194 -0.0030 

Twist angle (radians) -0.002 -0.0010 

 

Table 3. Geometric parameters for one specific scanning experiment.   
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Figure 11. Nonlinear least square fits for the estimated centroids of the projected 

point sources. Geometrical parameters are assumed to be a function of angle in 

(a) and independent of angle in (b). The red plot is for head 1 and the blue plot is 

for head 2. 

 

 

 
 

In order to test the performance of the calibrated pinhole SPECT system, we scanned and 

reconstructed a micro Jaszczak phantom. Figure 12 shows that the calibrated system has the 

capability to resolve the 1.2 mm rod sources.  
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(a) 

 

(b) 

Figure 12. Reconstruction of a micro Jaszczak phantom. (a) Result for angle 

variant calibration. (b) Result for angle invariant calibration. The images are the 

sum of 40 0.85 cm reconstructed slices. The centers between the smallest sources 

are separated by 1.2 mm. 
 

 

B. Dynamic Projections  

Since the gantry cannot rotate fast enough to freeze the change of tracer activity within 

the heart, inconsistent projections are collected during the bolus input phase of the tracer. Keep in 

mind that the recirculation time in a rat is 8 seconds, whereas a complete set of projections are 

obtained every 90 seconds. Therefore, we observe in Fig. 13(a) that for the first rotation of data, 

the projections are not consistent as can clearly be seen because the distribution of the injection 

bolus changes during the first few projections and then seems to be more uniformly distributed in 

the blood and heart later on. After the first rotation the projections remain relatively consistent. 
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Figure 13(b) shows the relatively consistent projections on which a tomographic reconstruction 

can be performed. 

 

 
 

(a) 
 

 
 

(b) 
 

Figure 13. Dynamic projections. (a) First rotation of inconsistent projections.  (b) 

Tenth rotation of relatively consistent projections. 
 

 

C. Summed Static Reconstruction 

Figure 14 shows volumetric reconstructions (36 slices) from summed events over 66 

rotations of data for a control WKY rat. The images clearly show the distribution of 
123

I-MIBG 

within the myocardium. It can be observed that 
123

I-MIBG is also present in other organs, such as 

liver and spinal chord. The difference between the sympathetic and parasympathetic system is 

that sympathetic system innervates the heart directly from ganglia in the spinal cord, whereas the 

parasympathetic system innervates directly from regulatory centers in the midbrain, 

hypothalamus, pons, and medulla. However, these static reconstructions do not provide kinetic 

information, which is important in some circumstances for ascertaining information about the 

physiology of the organ. 
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Figure 14. Summed static volume reconstructions (36 slices) from summed 

events over 66 rotations of data for a control WKY rat. 
 

 

 

 
D. Sequence of Dynamic Reconstructions 

Figure 15 shows a sequence of dynamic reconstructions of a transaxial slice through the 

heart of a control WKY rat at different time intervals. Each reconstruction represents a 

tomographic acquisition over 90 seconds. The washout of 
123

I-MIBG within the heart region is 

evident in the late frames with the decreased intensity in the myocardium. The bottom right image 

is the reconstructed sum over 66 time frames. It is obvious from the first frame that the 

reconstruction represents the reconstruction of inconsistent projections corresponds to the time 

vary distribution of the radiopharmaceutical in the blood pool and the myocardium during the 

first rotation. The heart becomes more clearly visible in the third and fourth frames.  
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Figure 15. A dynamic sequence of reconstructions of a transaxial slice of a 

control WKY rat. The bottom right image is the reconstructed sum over 66 time 

frames. 
 

 

 

 

 

E. Time activity curves in the blood pool and myocardium 

Although not automatic, the ROI method is the standard method to obtain TACs within 

an organ. Figure 16 shows blood pool and myocardium TACs that were generated from ROI 

samples starting with the second rotation.  

Figure 17 shows the 16 connected TACs in the blood pool. For each connected curve, the 

first 90-second part is from direct FA on projections. The enlarged view of the first 90-seconds is 

shown above each connected TAC. The rest of the curve is from the ROI method. Notice that in 

several cases there are double peaks for the curve during the first 90 seconds. It is anticipated that 

these represent interruption in the infusion with, in some cases, a final flush of the syringe 

containing still significant activity. It is felt that these curves do represent a true measure of the 

input function; however, more work needs to be done to verify this.  
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Figure 16. Blood and tissueTACs from the ROI method starting from the second 

rotation. Top left quadrant is for data collected on 03/02/2005. Top right 

quadrant is for 05/17/2005. Bottom left quadrant is for 08/16/2005; bottom right 

quadrant is for 11/29/2005. In each quadrant, thetop two figures are WKY (left) 

and SHR (right) for group 1; bottom two figures are WKY (left) and SHR (right) 

for group 2. 
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Figure 17. TheTACs corresponding to the blood input function for compartment 

analysis. In each plot, two curves are presented. The curve presented in the 

smaller figure corresponds to the first 90 seconds of the acquisition calculated by 

applying FA directly to the projections, and is an enlargement of the beginning of 

the main curve. Top left quadrant is for data collected on 03/02/2005; top right 

quadrant is for 05/17/2005; bottom left quadrant is for 08/16/2005; bottom right 

quadrant is for 11/29/2005. In each quadrant, top two figures are WKY (left) and 

SHR (right) for group 1; bottom two figures are WKY (left) and SHR (right) for 

group 2. 

 

G. Compartmental Modeling 

We applied the non-linear least squares fit method using both blood pool and 

myocardium TACs to 16 animal studies and obtained estimates of the washin and washout rate of 

123
I-MIBG in the myocardium.  Figure 18 shows the fit for the myocardium TACs. The ROI 

measurements provided the values of the myocardial curve for each point, except the first one for 

which the FA was performed directly on the projections. We approximate the value of the first 

point (first point on the blue curve, Fig. 18) as the average of zero and the value of the second 

point.  
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Figure 18. Results of two compartment model fitting. The blue curve 

corresponds to the ROI measurement and the red curve corresponds to the fit. 

Top left quadrant is for data collected on 03/02/2005; top right quadrant is for 

05/17/2005; bottom left quadrant is for 08/16/2005; bottom right quadrant is for 

11/29/2005. In each quadrant, top two figures are WKY (left) and SHR (right) 

for group 1; bottom two figures are WKY (left) and SHR (right) for group 2. 

 

Figure 19 shows the washout parameters for the myocardial tissue over time. The error 

bars represent one standard deviation. Notice that the washout rates were fairly similar during the 

first three studies. Remember that these studies were performed during the second year of life for 

all of the rats. In the third study, it appears that the SHRs begin to demonstrate a faster washout 

than that of the normal tensive WKY rats. In the final study the SHR from Group 1 definitely 

shows a higher washout than the other rats. This SHR died a month later. However, admittedly, 

the other SHR did not have a significantly higher washout than that of the control rats. The faster 

washout corresponds to what is expected with a compromised heart (Henderson 1988, Arimoto 

2004). Table 4 tabulates the washin (K21) and washout (K12) parameters for the series of studies. 
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Figure 19. Washout rates for the four groups of experiments. The error bars are 

one standard deviation. 

 

 

 

   03/02/2005 05/17/2005 08/16/2005 11/29/2005 
Mean  5.76E-03 4.42E-03 8.33E-03 7.15E-03 Washin 

(sec
-1

) Dev 7.54E-04 5.42E-04 8.78E-04 6.37E-04 

Mean  2.54E-03 2.78E-03 3.52E-03 2.64E-03 

 
g1 nor 

Washout 

(sec
-1

) Dev 4.13E-04 3.62E-04 3.97E-04 2.53E-04 

Mean  5.04E-03 6.88E-03 8.12E-03 6.74E-03 Washin 

(sec
-1

) Dev 5.97E-04 8.77E-04 9.67E-04 7.24E-04 

Mean  2.29E-03 3.07E-03 3.83E-03 3.44E-03 

 
g1 hyp 

Washout 

(sec
-1

) Dev 2.93E-04 4.18E-04 4.84E-04 3.92E-04 

Mean  5.65E-03 6.30E-03 6.55E-03 7.41E-03 Washin 

(sec
-1

) Dev 6.95E-04 7.39E-04 7.51E-04 7.21E-04 

Mean  2.64E-03 2.72E-03 3.17E-03 2.48E-03 

 

g2 nor 
Washout 

(sec
-1

) Dev 3.51E-04 3.43E-04 3.90E-04 2.60E-04 

Mean  6.61E-03 5.86E-03 8.73E-03 5.52E-03 Washin 

(sec
-1

) Dev 9.85E-04 6.44E-04 1.04E-03 5.55E-04 

Mean  2.81E-03 2.61E-03 3.91E-03 2.96E-03 

 
g2 hyp 

Washout 

(sec
-1

) Dev 4.95E-04 2.74E-04 4.95E-04 2.78E-04 

 
Table 4. Fitted compartment model parameters with errors. K21 is the washin and K12  is 

the washout rate constant for the two-compartment model in Fig. 9. 
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In the last group of studies (Fig. 19), it is noticed that the washout for the hypertensive 

SHR are higher than the normotensive WKY. The g1 hyp died one month later (see Table 2). To 

get a measure of the pharmokinetics of both the flow times extraction (K21) washin and the 

washout, the distributions volumes were calculated. The results are shown in Fig. 20 for the series 

of studies. Notice that the distribution volumes for the hypertensive rats were much less than the 

WKY controls. However, the SHR that died had a somewhat better distribution volume than that 

of the other SHR. Also, it is somewhat puzzling that the distribution volumes for the WKY 

controls are significantly higher than their distribution volumes in the previous study on 8/16/05. 

Is this a real effect or a problem of non uniqueness? The results in Fig. 20 need to be verified by 

computer simulations. 

 

 

 

Figure 20. Distribution volumes for the four groups of experiments. The 

distribution volumes were determined as the ratio of K21/K12 using the values in 

Table 4. 
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There is significant changes in collagen as shown in Fig. 21. These rats survive 

approximately 2 years. At death or when sacrificed, the heart is removed and weighed. The 

examination of the hearts demonstrate that the SHR have larger hearts due to hypertrophy (see 

Table 2) and the lungs were filled with fluid indicative of congestive heart failure. Also, results of 

staining (Fig. 21) show significantly more collagen content in the SHR hypertrophic heart. 

Trichrome staining of the mid left ventricle section of one SHR (died of HF) and one WKY 

control shows significant increase in collagen content (blue) in the LV wall of the SHR [Figure 

21(lower right)] compared with the WKY rat [Figure 21(lower left)]. Also, the SHR showed more 

stainning for sympathetic innervation of the endocardium than the WKY control. 

 

 

 

Figure 21. Comparison of immunohistochemical staining in SHR and WKY rat 

cardiac tissue samples. Trichrome stain shows less blue in (lower left) WKY rat 

than (lower right) SHR tissue sample. The SHR had a collagen volume fraction 

of 33.41% compared with 11.86% for the WKY rat. Staining with anti-tyrosine 

hydroxylase antibody shows that the (upper left) WKY rat has less endocardial 

sympathetic nerve density than the (upper right) SHR. 
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anti-tyrosine hydroxylase antibody 



 33 

IV. DISCUSSION AND CONCLUSION 

 

In this work, a calibration and reconstruction procedure for the dual head pinhole SPECT 

system used in our laboratory was presented. In the calibration, we modeled the angle variant 

effects caused by the gravitational torque of the transaxial and axial mechanical shifts. The 

geometrical parameters for both pinholes were obtained by a non-linear least square fitting 

method. An iterative image reconstruction method, which properly accounted for the point spread 

function using a multi-ray technique, was developed.   

Using the developed methodology, a dynamic 
123

I-MIBG pinhole SPECT imaging 

protocol was used to assess the distribution of the sympathetic innervation and function in normal 

WKY rats and SHRs. The proposed protocol was designed to require less time than a traditional 

123
I-MIBG imaging protocol for the evaluation of sympathetic nervous system function. It has the 

potential to more accurately measure the kinetic parameters of MIBG uptake since the 

tomographic information is included. The FA method was applied directly to tomographic 

projection data corresponding to the first rotation of the camera in order to obtain the input 

function during the first 90 seconds. This was done because of the 6 to 8 seconds recirculation 

time in a rat, resulting in a fast passage of the tracer through the blood and exchange with lung, 

heart, and other organs causing the projections to be inconsistent during the first 90 seconds of 

the acquisition. Starting from the second rotation, the projections became relatively consistent, 

and a standard tomographic reconstruction was used for tomographic acquisitions of rotations 2 

through 66. ROI measurements applied to the reconstructed images were used to obtain the TACs 

for the blood pool and the myocardium. The FA method was applied to the dynamic sequence of 

reconstructions (Sitek 2000); however, we found that the TAC corresponding to the  myocardium 

extracted by FA agreed well with the ROI method. Thus the ROI measurements were used for the 

TACs after the first rotation of the camera detectors. 

After TACs were obtained for both blood pool and myocardium, compartment modeling 

was used to obtain the washin and washout kinetic parameters for a two-compartment model. The 

results suggest that towards the end of a rats’ life, the 
123

I-MIBG washout rate is higher in 

hypertensive rats than it is in the normal rats, whereas during earlier life there is virtually no 

difference in 
123

I-MIBG washout between hypertensive and normal rats. However, we emphasize 

that the results are not statistically significant, since experiments were performed on only 4 rats (2 

WKY and 2 SHR). 

There are several limitations of the current study that we would like to point out. One 

shortcoming is the determination of connecting TACs by using the fact that the value of the end 
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point from the direct FA method should be equal to the first point from the reconstructed images. 

Because of noise in the data, this procedure may be inaccurate. Another shortcoming is the 

problem of non-uniqueness. One solution is to address the non-uniqueness during the 

optimization using an orthogonal constraint, as presented in Sitek et al. (2002). This however 

would increase the numerical complexity considerably. We showed (Sitek 2001) that in order to 

derive a more accurate estimation of factors from projections, more detectors in the acquisition 

need to be used. In the current setting, we used two detectors positioned 180° apart, which 

resulted in duplication of data. In the future we plan to use 2 detectors positioned with a relative 

angle of 90°, which should result in better performance of the FA method applied to projection 

data (Sitek 2001). We will also consider investigating other methods applicable to reconstruction 

of inconsistent data, such as dSPECT (Farncombe 2002). 

Another important issue that needs to be addressed is collimator penetration when 

imaging with 
123

I. The pinhole collimator (Fig. 1) that we used in this study was designed to stop 

photons with energies up to 140 keV. An experiment was performed to evaluate the amount of 

penetration through the pinhole collimators of higher energy emissions from 
123

I. The detector 

heads with pinhole collimators (1.5 mm apertures) were positioned 180˚ apart, separated by 10 

cm. A 4 mCi source of 
123

I in a 50-ml syringe was positioned between the pinhole collimators in a 

manner similar to how the rat was positioned. The energy spectrum was measured using camera 

Pulse Height Analysis (PHA) [Fig. 22(a)]. First, the counts acquired in the 
123

I 20% energy 

window were measured. Next the pinholes were covered with 1 cm thick lead bars and the energy 

spectrum [Fig 22(b)] and counts were measured again. This yielded 18% penetration for Head 1 

and 26% penetration for Head 2. The difference was due to the fact that the source was placed 1.8 

cm off center, yielding the same background in both detectors but an increased primary for Head 

1, which was closer to the source. This background was summed over the entire field of view, 

whereas the heart covers a much smaller portion of that field of view. Even still, this background 

will bias our kinetic data but it is sufficiently low enough to not significantly affect the values.  

Figure 22 shows some interesting features in the energy spectra for 
123

I obtained from the 

SPECT system. Notice the 159 keV peak in Fig. 22(a). The lower energy peak is the 27 keV 

emissions, followed on the right by an increasing small Compton edge of 61 keV, then followed 

by lead x-rays at 80-90 keV, and then a backscatter peak around 98 keV. There are also higher 

energy emissions (248, 281, 347 keV) around 300 keV, including the summation of two 159 keV 

photons equal to 318 keV, and emissions (440, 506, 529, 538,625, 688 keV) that straddle 500 

keV. The highest emissions are at 736 keV and 784 keV. Figure 23 shows the spectrum taken 
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from a well counter for a sample on a different day, which shows some emissions around 500 

keV and some around 750 keV.   

 

 

 

 

 (a) 

 

 

(b) 

Figure 22. Energy spectrum for 
123

I obtained from pinhole SPECT system (Fig. 

1). (a) Spectrum with the source placed 25 cm from the 1.5 mm pinhole aperture. 

(b) Spectrum with the source placed 25 cm from the 1.5 mm pinhole aperture, 

which was plugged with lead. The lower peak of lead x-rays are now more 

pronounced.  
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Figure 23. Energy spectrum for 
123

I obtained from well counter. The spectrum 

shows disintegrations beyond the maximum energy of 512 keV obtained with the 

SPECT system. The additional peaks around 54 keV and 186 keV are the 

summation of two 27 keV emissions and the sum of a 27 keV emission and a 159 

keV emission, respectively. 

 

The cardiac autonomic nervous system consists of both sympathetic and parasympathetic 

innervation (Bengel 2004). Each system differs in their major neurotransmitters. The primary 

sympathetic transmitter is norepinephrine and the primary parasympathetic transmitter is 

acetylcholine; each exhibit stimulating or inhibitory effects in target tissues via adrenergic and 

muscarinic receptors.  Sympathetic nerves extend from the base toward the apex of the left 

ventricle and penetrate the myocardium from the epicardial surface to the endocardial surface 

alongside the coronary vessels. (Patel 2002) The sympathetic neuron density appears to be lower 

in the endocardial layer than in the epicardial layer; or some functional difference might exist 

between the layers and is reflected in differences in 
125

I-MIBG imaging (Matsunari 1993).  

Norepinephrine is synthesized within the neurons. First, DOPA is synthesized from tyrosine, 

which is subsequently converted to dopamine by DOPA decarboxylase. Dopamine is transported 

(requiring energy) into storage vesicles where norepinephrine is synthesized from dopamine 
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through the enzyme dopamine β -hydroxylase. Neuronal stimulation leads to norepinephrine 

release through exocytosis. Release is regulated by a number of presynaptic receptor systems. 

One system involves 2α -adrenergic receptors, which provide negative feedback for exocytosis. 

Most of the norepinephrine released from the presynaptic neuron undergoes reuptake by the 

energy dependent uptake-1 mechanism and recycles into vesicles or is metabolized in the cytosol, 

and only a small amount of released norepinephrine actually activates postsynaptic receptors on 

the surface of the myocyte. The non energy-dependent uptake-2 system will remove 

norepinephrine from the synaptic cleft into the myocyte as well as other nonneuronal tissue, and 

dominates at higher concentrations of norepinephrine and is probably the result of passive 

diffusion. The postsynaptic receptors are membrane-bound proteins, which are classified in 

subtypes according to their biochemistry characteristics. β -Adrenoceptors [ 1β - (80%) and 2β -

subtypes (20%] (Carrio 2001) exert chronotropic (increased heart rate), dromotroipic (enhanced 

atrioventricular conduction), and inotropic (augmented contractility) effects. α -Adrenoceptors 

( 1α - and 2α -receptors ) account for about 15% of cardiac adrenergic receptors and 2α -receptors 

are both present postsynaptically and presynaptically. Norepinephrine binds to 1β -receptors, 

whereas epinephrine binds to 2β -receptors. 1β -receptors are located mainly in the synaptic cleft, 

whereas 2β -receptors are located far from the synaptic cleft for easier access for the hormone 

epinephrine. The β -adrenoceptors are coupled to G protein subunits and stimulation by either 

norepinephrine or epinephrine increases adenylyl cyclase activity. This subsequently leads to 

intracellular cyclic adenosine monophosphate (cAMP) formation and phosphorylation of 

intracellular proteins, mediated by protein kinases, and influencing calcium transients and 

repolarization. When prolonged excessive stimulation of adrenergic receptors takes place, the 

first consequence is desensitization of adrenoceptors, followed by down regulation with enhanced 

receptor degradation and decreased receptor synthesis. The next step is downregulation of 

adenylyl cyclase resulting in a clinical consequence of decreased myocardial reserve and 

impaired exercise capacity. 

123
I-MIBG is used to asses the innervation of the sympathetic nervous system in the heart 

and is thought to share the same uptake, storage, and release mechanisms as norepinephrine (NE) 

in the nerve terminals but it is not metabolized (Wieland 1981b, Nakajo 1986). Two mechanisms 

are known for the presynaptic uptake of MIBG. One, is a neuronal energy-dependent uptake-1 

mechanism (DeGrado 1995, Nakajo 1986, Glowniak 1993, Guilloteau, Pissarek 2002). The 

second, is a nonneuronal energy independent uptake-2 mechanism (DeGrado 1995, Pissarek, 
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2002). This nonneuronal uptake-2 mechanism dominates at higher concentrations and probably 

results from passive diffusion. Neuronal uptake is predominantly determined by the uptake-1 

mechanism because when imaging, only an extremely small quantity of 
123

I-MIBG is usually 

injected (Carrio 2001). Clinically, 
123

I-MIBG is used in the diagnosis of heart failure (congestive 

heart failure, dilated cardiomyopathy, hypertrophic cardiomyopathy), evaluation of neuronal 

function after heart transplant, evaluation of heart function with diabetes and during 

chemotherapy, and in the evaluation of arrhythmias. A high washout rate means increased 

adrenergic activity (Patel 2002).  SHRs seem to develop similarities to patients with heart failure. 

They develop a generally enhanced sympathetic tone and a downregulation of cardiac 1β -

receptors (Dubois 1996, Bohlender 2000, Pissarek, 2002). In our work a 2-compartment model 

was used to model the kinetics of 
123

I-MIBG. The data seemed to fit this model well but more 

work is needed to verify if this is the best model to represent the physiology of MIBG. The role of 

alterations of the supracardiac receptor population for cardiac norepinephrine turnover, the 

density or activity of uptake-1 transporters, and the perfusion of cardiac microcompartments have 

not been clarified; and thus, their influence remains open (Pissarek 2002). 

In future work we will address the limitations cited above. We also propose to perform a 

repeat study where we compare results using 
123

I-MIBG with results using selected 

neurotransmitters and analogs that can be tagged with positron emitters (Bengel 2004). Pissaek et 

al. (2002) have previously shown better results with 
18

F-fluorometaraminol than with 
123

I-MIBG. 

It would also be interesting to use molecular imaging to investigate the effect of exercise on those 

with heart failure (Sato 2003). Cardiac 
123

I-MIBG uptake of the delayed image can predict the 

degree of increase in adrenergic drive to the heart during sympathetic stimuli induced by exercise 

in patients with chronic heart failure (to measure reduced exercise activity). Also, 
123

I-MIBG 

imaging has shown that renal transplantation provides improvement in uremic cardiac 

sympathetic neuropathy (Kurata 2004). This research illustrates the important interplay between 

renal and cardiac function. 
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APPENDIX 

 

A. Introduction 

The results presented in this report were due to the development and implementation of 

algorithms by the first author (Jicun Hu) . After he left LBNL for a position at Siemens Medical 

Systems in Knoxville, TN, the second author (Rostyslav Boutchko) continued to develop 

algorithms for reconstructing the dynamic pinhole SPECT data from slow camera rotation. This 

involved developing computer code both for the calibration of the geometry and the modeling of 

the pinhole projections used by the reconstruction algorithm. These developments are presented 

in this Appendix. 

 

B. Calibration of the Dual Head Pinhole System 

In order to overcome effect of geometric misalignment, we automated and improved the 

calibration routine presented in subsection II.B.   

The first stage of the calibration involves determining coordinates (u,v) of the calibration 

point source projections onto the detector plane.  For each detector head h and gantry rotation 

angle θ, the detected signal S is represented as a combination of I Gaussians, where I is the 

number of the radioactive point sources in the calibration object.   

Sθ
h (u,v) = Aiθ exp − (u − uiθ )2 + (v − viθ )2( )/Biθ

2[ ]
i=1

I

∑ . 

Using a Matlab®-based optimization algorithms, measured trajectories uθ ,i

img,vθ ,i

img( ) for 

three of the points were calculated as shown in Figure A1.  Continuity of the trajectories as well 

as continuity of  Aiθ  and Biθ  are used as additional constraints.  

               

Figure A1. Summed projections of the calibration phantom scan for two detector 

heads.  Color markers show positions of centers of the Gaussian fits to the traces 
of three of the point sources used for the calibration.  
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Once three measured trajectories are known for both detectors, we use parametric 

modeling to fit the instantaneous positions of the detectors as well as the spatial positions of the 

point sources.   

• θ:  Angle of gantry rotation about z-axis. 

1. hd: Distance from the pinhole to the axis of rotation. 

2. hf:  Distance from the pinhole to the detector plane. 

3. hϕ : Twist angle, rotation of the detector plane about the tangential u axis.  

4. hψ : Tilt angle, rotation about the radial axis (coinciding with y axis for q = 0). 

5-7. hmt (θ) = hmt,0 + hmt,s sin θ + hmt,c cos θ : Transaxial shift (along  u-axis). 

8-10. hma (θ) = hma,0 + hma,s sin θ + hma,c cos θ : Axial shift (along z-axis). 

11. h
 eu: Electronic shift in u-direction: shift between the true geometric center of the 

detector plane and electronically-measured u=0. 

12. hev : Electronic shift in v-direction. 

      All of these parameters except for the twist angle are displayed in Figure A2 

 

Figure A2. Illustration of dual head pinhole SPECT system and geometrical 
parameters.  Only one detector head is shown in the figure. 

 

The total number of geometric parameters for each head is twelve.  However, one of the 

parameters, the mean axial shift (hma,0) has to be taken into account only as a difference of axial 

shifts between the two heads.  We take it into account by imposing a constraint  

1ma,0 = 2ma,0 , 

thus reducing the total number of free geometric parameters to 23.   

It is important to specify a consistent order of introducing the described geometric 
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corrections to the system.  Below, we illustrate the transformations that produce the true 

coordinates of a detector cell (u, v) rd and of the pinhole center rp for gantry rotation angle θ = 0.  

Before the corrections, these coordinates are 

rd 0 = (d + f ,u,v),

rp 0 = (d      ,0,0).
      (A1) 

First, we shift the detector cell coordinates by the electronic shift: 

rd1 =  rd 0 + (0,  eu,  ev ) = (d + f ,  u + eu,  v + ev ). 

Second, we apply rotation by the tilt angle, followed by the rotation by the twist angle, with the 

center of the rotation being the exact center of the detector in the unperturbed case: 

rd 2 = (d + f ,  0,  0) +  Rϕψ  (0, u + eu,  v + ev ),

rp 2 = (d + f ,  0,  0) +  Rϕψ  (− f ,  0,  0),
 

where  

Rϕψ  =  

1 0 0

0 cos ϕ −sin  ϕ

0 sin  ϕ cos ϕ

 

 

 
 
 

 

 

 
 
 
 

cos ψ 0 -sin ψ

0 1 0

sin ψ 0 cos ψ

 

 

 
 
 

 

 

 
 
 
.   (A2) 

Then, we apply the mechanical shifts along y and z axes: 

rd 3 =  rd 2 + (0, mt,  ma ),

rp 3 =  rp 2 + (0, mt,  ma ).
 

Finally, we apply the gantry rotation as multiplication by the rotation matrix Rθ  

Rθ  =  

cos θ sin θ 0

-sin θ cos θ 0

0 0 1

 

 

 
 
 

 

 

 
 
 

     (A3) 

The final expressions for rd and rp are 

rd  =  Rθ  (d + f ,  my,  mz ) +  Rϕψ  (0, u + eu,  v + ev )[ ],

rp  =  Rθ  (d + f ,  my,  mz ) +  Rϕψ  (− f ,  0, 0)[ ],
   (A4) 

where we delete the gantry head index h for the sake of convenience.   

For any point source at position rs, equations (A4) can be used to compute the estimated 

projection coordinates of this point onto the detector h: 
, , , ,

( , )
est est

i h i h
u vθ θ .  We use three point sources 

out of five in the calibration phantom in Figure 5 in order to obtain the 23 geometric parameters 

for the two-head system.  The parameters are obtained by non-linear minimization of the 

following chi-square functional: 

χ 2 =  Σ
h
Σ
i
Σ
θ

 h uθ ,i

est −h uθ ,i

img[ ]
2

− h vθ ,i

est −h vθ ,i

img[ ]
2

{ }  ,                          (A5) 
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where h is the index of the detector heads, i is the index for the points in the object space,θ is the 

index of the view angle, 
, , , ,

( , )
img img

i h i h
u vθ θ  is the coordinate of the measured centroid of the projection 

of the point source.  The resulting fits are shown in Figure A3. 

 

 
 

Figure A3. Twelve-parameter fits to the detected trajectories of the point sources 

whose segmentation is illustrated in Figure A1.  Dashed gray lines show 8-
parameter (gantry-angle-independent) fits of the same trajectories. 

 

C. Reconstruction of Data Acquired with the Dual Head Pinhole System 

 In this subsection, we provide a more detailed derivation of equation (13) which is used 

to construct the system matrix used in the image reconstruction from projections. 

Assume there is a unit of activity within voxel j.  The voxel is at distance d + f  from the 

detector, where f is pinhole-detector distance.  Consider the projection of the detector onto area 

element dA of detector pixel i through the element ds of the pinhole, as shown in Figure A4.  

First, we need to determine the projections of these area elements onto the plane perpendicular to 

the ray propagation direction: 

dsp = ds cos α = ds sin θ,

dAp = dA sin θ.
 

Element dA will detect signal from the fraction dVj of the voxel: 

dV j = lij  dAp  d2

f 2 ,     (A7) 

where lij denotes the path of the propagation ray defined by indices i and j through the voxel j.  

Pinhole sensitivity, or the fraction of the total radiation from dVj  as seen at the pinhole area 

element is equal to the fraction of solid angle created by dsp in a sphere of radius d / cos θ, or 
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dspcos θ / 4 π d2.  Combining this with (7) and integrating over both pixel area and the pinhole 

area, we obtain the final expression for the system matrix entry ij: 

α i j =  
A s li j

4π f 2
 sin4  θ,     (A8) 

where  li j  denotes the average value of the path length of the propagation ray through voxel j.   

 

 

Figure A4. Pinhole geometry: explanation of the sensitivity expression (A8), 
which is used to compute the system matrix. 

  

The approach presented corresponds to the so-called ray-driven forward- and 

backprojection realization.  Within ray-driven methodology, the geometric blurring due 

to finite size of the pinhole and finite size of the detector pixels is implemented by tracing 

multiple rays as described in Section II.C. In the future, we consider adding attenuation 

correction functionality by multiplying sensitivity (A8) by the attenuation factor that can 

be computed if X-ray CT images of the scanned animal are available.  Also, we are 

studying the possibility of translating to a voxel-based projection scheme which would 
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allow us to add experimentally measured blurring kernels to correct for effect of 

penetration and scatter. 

 

 D. Results 

In Figure A5, we show the reconstruction of a rat study using the fatty acid 123I-BMIPP. 

The rat was a WKY rat.  System geometry calibration was done using the above-described 

approach.  Figure (A1) and (A3) show two intermediate steps of the calibration procedure for this 

scan. 

 

 

 
 

Figure A5. Reconstructed transaxial slices in of the heart region. The voxel size 

was 0.85 mm. 
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