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Abstract

Characterizing percolation patterns in unsaturated zones has posed a greater challenge to

numerical modeling investigations than comparable saturated zone studies, because of the

heterogeneous nature of unsaturated media as well as the great number of variables impacting

unsaturated zone flow. This paper presents an integrated modeling methodology for

quantitatively characterizing percolation patterns in the unsaturated zone of Yucca Mountain,

Nevada, a proposed underground repository site for storing high-level radioactive waste. It

takes into account the multiple coupled processes of air, water, heat flow and chemical isotopic

transport in Yucca Mountain’s highly heterogeneous, unsaturated fractured tuffs. The modeling

approach integrates a wide variety of moisture, pneumatic, thermal, and isotopic geochemical

field data into a comprehensive three-dimensional numerical model for modeling analyses.

Modeling results are examined against different types of field-measured data and then used to

evaluate different hydrogeological conceptual models and their results of flow patterns in the

unsaturated zone. In particular, this integration model provides a much clearer understanding of

percolation patterns and flow behavior through the unsaturated zone, both crucial issues in

assessing repository performance. The integrated approach for quantifying Yucca Mountain’s

flow system is also demonstrated to provide a comprehensive modeling tool for characterizing

flow and transport processes in complex subsurface systems.

Index Terms: 1982 hydrology: groundwater hydrology; 1983 hydrology: groundwater

transport; 1866 hydrology: unsaturated zone
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1. Introduction

Since the 1980s, the unsaturated zone (UZ) of the highly heterogeneous, fractured tuff at Yucca

Mountain, Nevada, has been investigated by the U.S. Department of Energy as a possible

repository site for storing high-level radioactive waste. Characterization of flow and transport

processes in the fractured rock of the Yucca Mountain UZ has received significant attention and

generated substantial interest in scientific communities over the last two decades. During this

period of extensive study, many types of data have been collected from the Yucca Mountain

UZ, and these data have helped in developing a conceptual understanding of various physical

processes within the UZ system.

While quantitative evaluation of fluid flow, chemical transport, and heat transfer has proven to

be essential, the complexity of geological conditions and physical processes within the Yucca

Mountain UZ has posed a tremendous challenge for site characterization efforts. The need for

quantitative investigations of flow and transport at the Yucca Mountain site has motivated a

continual effort to develop and apply large, mountain-scale flow and transport models [e.g., Wu

et al., 1999a and 2002a]. Numerical models have played a crucial role in our understanding of

UZ fluid movement in assessing the effects of hydrogeological, geochemical, and thermal

conditions on various aspects of the overall waste disposal system. Whereas laboratory studies

and field experiments, however necessary, are limited in space and time, numerical modeling

provides a powerful means by which to study physical processes on the temporal and spatial

scales relevant to the understanding of the nuclear waste disposal systems in a geological

formation.

Site characterization studies of the unsaturated tuff at the Nevada Test Site and at Yucca

Mountain began in the late 1970s and early 1980s. Those early hydrological, geological, and

geophysical investigations of Yucca Mountain and its surrounding region were conducted to

assess the feasibility of the site as a geological repository for storing high-level radioactive

waste, and to provide conceptual understanding of UZ flow processes [Montazer and Wilson,
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1984]. Soon after, as part of the continuing site characterization, theoretical studies were

deemed necessary to quantitatively model unsaturated groundwater flow. The first numerical

modeling effort was made in the middle 1980s to simulate the natural state of the UZ underlying

Yucca Mountain, using a two-dimensional site-scale model [Rulon et al., 1986]. This work

was followed by a number of other modeling efforts, focused on more basic-level processes.

Pollock [1986] developed a mathematical model for analyzing one-dimensional, vertical

transport of energy, water, and air in unsaturated alluvium. Tsang and Pruess [1987] studied

thermally induced convection phenomena near a high-level nuclear waste repository in partially

saturated tuff, using a two-dimensional model. Weeks [1987] reported a study of gas flow in the

Yucca Mountain UZ to explain air circulation as observed from boreholes.

In the early 1990s, more progress was made in UZ model development. Wittwer et al. [1992,

1995] developed a three-dimensional (3-D) site-scale model that incorporated several

geological and hydrological complexities, such as geological layering, degree of welding, fault

offsets, and different matrix and fracture properties. The 3-D model handled fracture-matrix

flow using an effective continuum method (ECM) and was applied to evaluate assumptions

concerning faults and infiltration patterns.

Using the ECM concept, Ahlers et al. [1995a, 1995b] continued development of the UZ site-

scale model with increased numerical and spatial resolution. Their studies considered more

processes, such as gas and heat flow analyses, and introduced an inverse modeling approach

for estimating model-input properties. However, more comprehensive UZ models were not

developed until several years later, when the UZ models were developed for Total System

Performance Assessment–Viability Assessment (TSPA-VA) [e.g., Wu et al., 1999a and

1999b; Bandurraga and Bodvarsson, 1999; Ahlers et al., 1999]. Instead of the ECM, the

TSPA-VA model used a more rigorous dual-permeability numerical approach for handling

fracture-matrix interaction, and incorporated additional physical processes such as perched-

water occurrence.
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The latest UZ models include those primarily developed for the TSPA-site recommendation

(SR) calculations [e.g., Wu et al., 2002a; Moridis et al., 2003; Robinson et al., 2003]. These

TSPA-SR models have been enhanced from the TSPA-VA model. More importantly, the

newer models have taken into account the coupled processes of flow and transport in highly

heterogeneous, unsaturated fractured porous rock, and were applied to analyzing the effect of

current and future climates on radionuclide transport through the UZ system. The site-scale UZ

flow and transport models developed during the site characterization of Yucca Mountain have

built upon past research as well as the above-referenced work and many other studies [e.g.,

McLaren et al., 2000; Robinson et al., 1996 and 1997; Viswanathan et al., 1998;

Sonnenthal and Bodvarsson, 1999; Liu et al., 2003]. In general, model development,

benefiting significantly from extensive field and laboratory studies of the site, has followed an

iterative or trial-and-error approach [Wu et al., 2002a].

Despite the significant progress made in the site characterization of the Yucca Mountain UZ

over the last two decades, there is still a general lack of comprehensive analyses or integrated

studies applied to the site. In particular, little effort has been made to make use of all available

data from different types and sources in one study. Previous investigations, for example, were

focused primarily on individual studies of, separately, moisture data [e.g., Wu et al., 1999a;

2002a], temperature data [Bovardsson et al., 2003], pneumatic data [Ahlers et al., 1999], or

chloride data [Liu et al., 2003]. How to quantitatively analyze percolation flux in the deep

unsaturated zone, such as within the complicated unsaturated fracture-matrix system of Yucca

Mountain, remains a great challenge to investigators. The main difficulties are (1) that

unsaturated percolation flux is too low to measure directly and (2) flow paths are too

complicated to identify in field studies. To the best of our knowledge, no commonly accepted

approaches exist for directly measuring or quantifying unsaturated percolation fluxes on the

spatial and temporal scales of interest to the Yucca Mountain Project. In an attempt to

overcome these difficulties, we propose a comprehensive, integrated modeling approach, which

incorporates everything measured at the site, including hydrological, pneumatic, geochemical,

and thermal data, into a single numerical model, for the purpose of analyzing percolation
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patterns and behavior.

This paper presents a comprehensive modeling effort to quantify moisture movement at Yucca

Mountain. The processes under study include moisture flow, natural geochemical or tracer

transport, and gas and heat flow. These processes account for many variables that have field

measurements for calibrations. Among these processes, the unsaturated moisture flow and

tracer transport at Yucca Mountain will be discussed in this paper, because they are the

common topics of modeling in this field. Those interested in relevant Yucca Mountain flow and

transport modeling concept are referred to the work by Wu et al. [2004]. Here we present an

integrated modeling methodology for characterizing percolation flux in the unsaturated zone. The

results provide an understanding of percolation patterns and flow behavior within the Yucca

Mountain UZ under various climates and different hydrogeological conceptual models, using the

integrated modeling approach. First, this present effort integrates different field-observed data,

such as water potential, liquid saturation, perched water, gas pressure, chloride, and

temperature logs, into one single 3-D UZ flow and transport model. The combined model

calibration will provide a consistent cross-check or verification of modeled percolation fluxes, as

well as better insight into UZ flow patterns. Second, using the dual-permeability modeling

approach, this integrated modeling effort provides consistent model predictions for different but

interrelated hydrological, pneumatical, geochemical, and geothermal processes in the UZ. Third,

and most importantly, such an integrated model will improve our capability and credibility in

describing and predicting current and future UZ conditions and processes.

The modeling study of this work consists of (1) a UZ model description; (2) model development

and calibration using liquid saturation, water potential, perched water, and pneumatic data; (3)

simulated percolation pattern analysis; and (4) assessing percolation patterns and flow behavior

using thermal and geochemical data.

2. Hydrogeological Setting, Physical Process, and Conceptualization
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The domain of the UZ model encompasses approximately 40 km2 of the Yucca Mountain area,

as shown in Figure 1. The UZ is between 500 and 700 m thick and overlies a relatively flat

water table. The repository would be located in the highly fractured Topopah Spring welded tuff

unit, more than 200 m above the water table. Geologically, Yucca Mountain is a structurally

complex system of Tertiary volcanic rock. Subsurface hydrological processes in the UZ occur in

a heterogeneous environment of layered, anisotropic, and fractured volcanic rocks [Scott and

Bonk, 1984]. These volcanic formations consist of alternating layers of welded and nonwelded

ash flow and air-fall tuffs. The primary geological formations, beginning from the land surface

and progressing downward, are the Tiva Canyon, Yucca Mountain, Pah Canyon, and the

Topopah Spring tuffs of the Paintbrush Group. Underlying these are the Calico Hills Formation

and the Prow Pass, Bullfrog, and Tram tuffs of the Crater Flat Group [Buesch et al., 1995].

For hydrological investigations, the UZ geologic formations have been categorized into

hydrogeologic units based primarily on their degree of welding [Montazer and Wilson, 1984].

These units are classified as the Tiva Canyon welded (TCw) hydrogeologic unit; the Paintbrush

Tuff nonwelded unit (PTn), consisting primarily of the Yucca Mountain and Pah Canyon bedded

tuffs; the Topopah Spring welded (TSw) unit; the Calico Hills nonwelded (CHn) unit; and the

Crater Flat undifferentiated (CFu) unit. The hydrogeological units vary significantly in thickness

and sloping over the model domain (Figure 2).

Conceptual Model of UZ Flow

Over the past two decades, extensive scientific investigations have been conducted for the site

characterization of Yucca Mountain, including collecting data from surface mapping, sampling

from many deep and shallow boreholes, constructing underground tunnels, and conducting field

testing [e.g., Rousseau, 1998]. Figure 2 presents a typical geological profile along a vertical

east-west transect of borehole UZ-14 (Figure 1), illustrating a conceptual model currently used

to analyze UZ flow patterns, as well as the possible effects of faults and perched water on the

UZ system. As illustrated in Figure 2, the ground surface of the UZ is subject to spatially and

temporally varying infiltration pulses from precipitation, which provide the water source for deep
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percolation into the UZ. Surface infiltration pulses are expected to move rapidly through the top,

highly fractured TCw unit, with little attenuation in travel times. Once it enters the PTn,

percolating water may be subject to very different processes, because the PTn unit has very

different hydrogeologic properties from the TCw and TSw units, which display the low porosity

and intensive fracturing typical of the densely welded tuffs. With its high porosity and low

fracture intensity, the PTn matrix has a large capacity for storing groundwater. As a result,

moisture imbibing into the dry PTn matrix from rapid fracture flow of the TCw may result in a

more uniform distribution of flux at the base of the PTn. In fact, the PTn’s capability to attenuate

episodic percolation fluxes has been observed in field tests of water release into the PTn matrix

[Salve et al., 2003].

In addition, the possibility for capillary barriers exists at both upper and lower PTn contacts, as

well as within the PTn layers [Montazer and Wilson, 1984; Wu et al. 2002b], because large

contrasts in rock properties exist across the interfaces of units and inner PTn layers. However,

the extent of lateral flow diversion within the PTn remains a topic of debate. For example, a

recent study using a conceptual model with transitional changes in rock properties argues that

lateral diversion may be small [Flint et al., 2003].

Perched Water

Perched water has been encountered in a number of boreholes at Yucca Mountain, including

UZ-14, SD-7, SD-9, SD-12, NRG-7a, G-2, and WT-24 (Figure 1). These perched-water

locations are found to be associated with low-permeability zeolites in the CHn or the densely

welded basal vitrophyre of the TSw unit, below the repository horizon. Perched water is

another important mechanism impacting flow paths in the UZ units below the repository horizon.

Perched water may occur where percolation flux exceeds the capacity of the geological media

to transmit vertical flux in the UZ [Rousseau et al., 1998]. Several conceptual models have

been investigated for explaining the genesis of perched water at Yucca Mountain [e.g., Wu et

al., 1999b and 2002a]. The permeability-barrier conceptual model, for one example, has been
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used in UZ flow modeling studies since 1996  [Wu et al., 1999b and 2002a]. In this conceptual

model, both vertical and lateral water movement in the vicinity of the perched zones is

considered to be controlled mainly by localized fracture and matrix permeability distributions.

The main assumptions of the permeability-barrier conceptual model are that: (1) there are few

large, vertically connected, potentially fluid-conducting fractures transecting the underlying low-

permeability units; (2) both vertical and horizontal permeabilities within and below perched-

water zones are small compared to permeabilities outside perching zones; and (3) sufficient

percolation flux (>1 mm/yr) exists locally.

Faults

In addition to possible capillary and permeability barriers, major faults in the UZ are also

expected to play an important role in controlling percolation flux. Permeability within faults is

much higher than that in the surrounding tuff [Montazer and Wilson, 1984]. Pneumatic

permeability measurements taken along portions of faults have revealed low air-entry pressures,

indicating that large fracture apertures are present in the fault zones. Highly brecciated fault

zones may act as vertical capillary barriers to lateral flow. Once water is diverted into a fault

zone, however, its high permeability could facilitate rapid downward flow along faults through

the unsaturated system [Wang and Narasimhan, 1987; Wu et al. 2002a]. In this modeling

study, major faults are treated as intensively fractured zones.

Heterogeneity

A considerable amount of field data, obtained from tens of boreholes, two underground tunnels,

and hundreds of outcrop samples at the site, constrains the distribution of rock properties within

different units. In general, field data indicate that the Yucca Mountain formation is more

heterogeneous vertically than horizontally, such that layer-wise representations are found to

provide reasonable approximations of the complex geological system. Many model calibration

results using this approximation are able to match different types of observation data obtained

from different locations and depths [e.g., Bandurraga and Bodvarsson, 1999; Ahlers et al.,

1999; Wu et al., 2002a].
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In summary, as shown in Figure 2, the key conceptualizations and assumptions made in this

study for constructing the hydrogeological model to analyze UZ flow patterns are as follows:

• Ambient water flow in the UZ system is at a quasi-steady state condition, subject to

spatially varying net infiltration on the ground surface.

• Hydrogeological units/layers are internally homogeneous, unless interrupted by faults or

altered.

• There may exist capillary barriers in the PTn unit, causing lateral flow.

• Perched water results from permeability barrier effects.

• Major faults serve as fast downward flow pathways for laterally diverted flow.

3. Numerical Modeling Approach and Model Description

Because of the complexity of the UZ geological system and flow and transport processes

involved–as well as the highly nonlinear nature of governing equations for UZ flow and

transport–numerical modeling approaches were used in this study. In particular, the dual-

permeability modeling approach has been used for modeling fluid (water and gas) flow, tracer

transport, and heat transfer processes through the fractured tuffs. In addition to moisture data,

this modeling approach also incorporates pneumatic and geothermal data in the analyses. This is

because the variation in gas pressure  is related directly to the air permeability of fractures, while

the temperature at different depths is sensitive to infiltration and percolation rates at Yucca

Mountain. Incorporations of field data of these two types provide a verification of model

predictions and contribute to better understanding of fluid flow at Yucca Mountain. This section

describes the modeling approach for handling fracture-matrix interaction, the numerical scheme

and codes, numerical model grids, input parameters, and boundary conditions used in this work.

3.1 Modeling Fracture-Matrix Interaction

Modeling fracture and matrix flow and interaction under multiphase, multicomponent,

isothermal, or nonisothermal conditions has been a key issue for simulating fluid and heat flow in
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the Yucca Mountain UZ. Different modeling approaches have been tested for handling fracture-

matrix interaction at Yucca Mountain [Doughty, 1999]. The dual-continuum (in particular, dual-

permeability) concept has been the main modeling approach for modeling flow and transport in

the Yucca Mountain UZ [e.g., Wu et al., 1999a], because it is able to simulate transient matrix-

fracture interaction and account for global flow through matrix blocks, which is considered

important under low percolation flux.

The technique used in this work for handling multiphase flow, tracer transport, and heat transfer

through fractured rock is based primarily on the dual-permeability concept. It considers global

flow and transport occurring not only between fractures but also between matrix gridblocks. In

this approach, one rock-volume domain is represented by two overlapping (yet interacting)

fracture and matrix continua. The fracture-matrix fluid flow is evaluated using the same quasi-

steady-state approximation as in the double-porosity model [Warren and Root, 1963], which

has also been extended for estimating local mass and energy exchange terms between fracture

and matrix systems [Pruess and Narasimhan, 1985].

When applied in this work, the traditional dual-permeability concept is first modified by using an

active fracture model [Liu et al., 1998] to represent fingering effects of flow through fractures.

Secondly, the dual-permeability model is not used for all formation units or model domains. For

example, vitric units in the CHn are handled as unfractured, single-porosity matrix only, and

additional global fracture-matrix connections at boundaries of vitric units and at the TCw-PTn

and PTn-TSw interfaces are considered to provide physical transitions for fracture-matrix flow

across these units or domain boundaries. Therefore, the modeling approach is actually a

physically based, hybrid dual-permeability model with a combination of dual-continuum and

single-porosity medium approximations.

3.2 Numerical Formulation and Codes

In the dual-continuum approach, flow, transport, and heat transfer processes in an air-water,

two-phase system of fractured rock are described separately, using a doublet of governing
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equations, respectively, for the two fracture and matrix continua. This conceptualization results

in a set of partial differential equations for mass and energy conservation in either continuum,

which are in the same form as that for a single porous medium. In this work, the multiphase flow

system, consists of two phases: gas (air) and water, and three mass components: air, water, and

tracer. Richards’ equation (1931) is considered as a special case of two-phase flow.

Model calibration and simulation of this study were carried out using the TOUGH2 and T2R3D

codes [Pruess, 1991; Wu and Pruess, 2000]. In these two TOUGH2-family codes, the

integral finite-difference scheme is used for spatial discretization, and the time discretization is

carried out with a backward, first-order, finite-difference scheme. The resulting discrete

nonlinear algebraic equations for describing mass (or component) and/or energy conservation

are written in a residual form and solved using the Newton/Raphson iteration with an iterative

linear solver. At each time step, iteration continues until convergence is reached for a given time,

when the residual at every gridblock is decreased to a preset convergence tolerance.

3.3 Numerical Model Grids

There are two 3-D numerical model grids used in this study, as shown in plan view in Figures 3a

and 3b. The two 3-D UZ model grids were generated based on an integral finite-difference

scheme [Pan et al., 2000], using an irregular, unstructured, 3-D control-volume spatial

discretization. The first numerical grid (Figure 3a) is called the UZ flow model grid, because it is

primarily designed for model calibrations and investigations of UZ flow and transport. This 3-D

model grid uses a refined mesh in the vicinity of the proposed repository, located near the center

of the model domain and covering the region from Solitario Canyon to Ghost Dance faults, from

west to east and north to beyond Pagany Wash fault. Shown in its plan view in Figure 3b is the

second 3-D model grid, covering a smaller model domain, called the thermal model grid, which

is used for gas flow and ambient heat-flow modeling. Also shown in Figures 3a and 3b are the

locations of a number of boreholes, incorporated in model calibrations and analyses. In both

model grids, faults are represented in the model by vertical or inclined 30 m wide zones.
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In Figures 3a and 3b, each gridblock in the x-y plane represents a vertical column defined in the

3-D grid. The 3-D flow model grid has about 2,042 mesh columns of both fracture and matrix

continua along a horizontal grid layer (Figure 3a), and 50 computational grid layers in the

vertical direction, resulting in 250,000 gridblocks and 1,000,000 connections in a dual-

permeability grid. This 3-D flow grid is relatively large and requires extensive computational

effort for simulation of coupled two-phase flow and heat transfer. This is why we designed the

second, relatively smaller grid, the 3-D thermal grid (Figure 3b). As shown in the plan view of

Figure 3b, the thermal model grid domain covers approximately 20 km2 of the area. The thermal

model grid of Figure 3b consists of 980 mesh columns of fracture and matrix continua, 86,440

gridblocks, and 350,000 connections in a dual-permeability grid. Vertically, the thermal grid has

an average of 45 computational grid layers.

3.4 Model Input Parameters

Since Richards’ and two-active-phases flow equations are used in modeling unsaturated flow of

water and air through fracture and matrix, relative permeability and capillary pressure curves are

needed for the two media. In addition, other intrinsic fracture and matrix properties are also

needed, such as porosity, permeability, density, and fracture geometric parameters, as well as

rock thermal properties. In our modeling study, the van Genuchten models of relative

permeability and capillary pressure functions [van Genuchten, 1980] are selected to describe

variably saturated flow in both fracture and matrix media. The basic input rock and fluid-flow

parameters used for each model layer or hydrogeological subunit (Wu et al., 2003) include (1)

fracture properties (frequency, spacing, permeability, van Genuchten α and m parameters,

porosity, fracture-matrix interface area, and residual saturation); (2) matrix properties (porosity,

permeability, the van Genuchten α and m parameters, and residual saturation); (3) thermal and

transport properties (grain density, wet and dry thermal conductivity, grain specific heat, and

diffusion and tortuosity coefficients); and (4) fault properties for each of the major

hydrogeologic units.
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The model input parameters for fractured and matrix rock were determined by two steps: (1)

using field and laboratory measurements [Liu et al., 2003a] and 1-D model inversion results

[Liu et al., 2003b] as an initial guess, and (2) conducting a 3-D model forward calibration, as

discussed in the next section. Adopting a hybrid, dual-permeability approach, we treat all the

geological units, including fault zones, as fracture-matrix systems (except for vitric zones, which

are treated as single-porosity mediua).

3.5 Model Boundary Conditions

The ground surface of the mountain (or the tuff-alluvium contact in the area of significant alluvial

cover) is taken as the top model boundary, while the water table is treated as the bottom model

boundary. For flow simulations, net infiltration is applied to fractures along the top boundary

using a source term. The bottom boundary at the water table is treated as a Dirichlet-type

boundary. All the lateral boundaries, as shown in Figures 1, 3a, and 3b, are treated as no-flow

(laterally closed) boundaries. No-flow boundaries should have little effect on moisture flow and

radionuclide transport within or near the repository area (which is the focus of the current

study), because these lateral boundaries are either far away from the repository or separated by

vertical faults.

Net infiltration of water, resulting from precipitation that penetrates the top-soil layer of the

mountain, is the most important factor affecting the overall hydrological, geochemical, and

thermal-hydrological behavior of the UZ. Net infiltration is the ultimate source of groundwater

recharge and deep-zone percolation through the UZ, and provides a vehicle for transporting

radionuclides from the repository to the water table. To cover the various possible scenarios

and uncertainties of current and future climates at Yucca Mountain, we have incorporated a

total of nine net infiltration maps, provided by U. S. Geological Survey (USGS) scientists

[Hevesi and Flint, 2000; Forrester, 2000], into the model, These infiltration maps include

present-day (modern), monsoon, and glacial transition—three climatic scenarios, each of which

consists of lower-bound, mean, and upper-bound rates, as summarized in Table 1, for average

rate values over the flow model domain.
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As shown in Table 1, the average rate for present-day, mean infiltration with the flow model grid

(Figure 3a) is 4.4 mm/yr distributed over the flow model domain, which is considered as a

base-case infiltration scenario. By comparison, the thermal model grid has an average net

infiltration rate of 3.6 mm/yr distributed over the smaller domain (Figure 3b) for the present-day,

mean infiltration case. Note that only the present-day, mean infiltration scenario is used with the

thermal grid for gas flow and ambient thermal studies. (Using lower- and upper-bound

infiltration values in flow modeling is intended to cover possible higher or lower rates.) The two

future Yucca Mountain climatic scenarios, the monsoon and glacial transition periods, are used

to account for possible higher precipitation and infiltration conditions in the future. A plan view

of the spatial distribution of the present-day mean infiltration map, as interpolated onto the flow

model grid, is shown in Figure 4. The figure shows patterns of flux distributions with higher

infiltration rates in the northern part of the model domain and from south to north along the

mountain ridge east of the Solitario Canyon fault.
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4. Model Calibration

The complexities of the heterogeneous geological formation at the Yucca Mountain UZ,

combined with the many variables needed to account for in coupled UZ flow and transport

processes, have posed serious challenges to numerical modeling investigations. For example,

past modeling experiences have shown that one cannot simply input field- and laboratory-

measured parameters or 1-D model inverted properties directly into 3-D models and expect

reasonable simulation results. This is because of the many uncertainties and significant

differences in those input parameters with respect to their spatial and temporal scales of

measurements. Without further calibration, those parameters observed or determined on one

spatial scale are in general inappropriate for use at another scale. In general, a proper model

approximation of the actual physical system requires model calibration on the same model scale,

from conceptual models to model parameters, as well as an accurate description of the physical

processes involved.

A total of 18 flow simulation scenarios are studied in this work, as listed in Table 2. The 18 3-D

flow simulations are decided by 9 (infiltration maps, Table 1) multiplied by 2 (parameter sets,

one base case and one alternative). The classification of base-case and alternative parameters is

based on model calibration results from different parameter sets of different PTn conceptual

models, because the base-case parameter models provide a better overall match to field data

than the alternative properties, as shown below. The difference between the base-case and

alternative scenarios is the implementation of different PTn properties, i.e., using two different

PTn conceptual models, as discussed in the next section for flow pattern analysis. The

objectives of investigating a large number of 18 3-D flow scenarios are (1) cover various

uncertainties and possibilities of the UZ flow patterns, and (2) investigate the effects of

uncertainties with estimated infiltration rates and model parameters on simulated percolation

fluxes, under current and future climates and different conceptual models. Note that flow

simulation results, with different infiltration rates and parameter sets, are steady-state solutions of

flow simulation scenarios.
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The model calibrations for this work rely on field-measured matrix-liquid saturation, water

potential, perched-water, and pneumatic data. Liu et al. [2003b] provide basic input

parameters for fracture and matrix rock for starting modeling efforts in this paper. However,

these properties were estimated through a series of 1-D model inversions in which lateral

diversion, perched-water, and capillary barrier effects cannot be modeled. Use of a 3-D model

allows further parameter adjustment to better match field observation data and avoid unphysical

solutions. Among the various types of available data used in UZ model development, the

moisture data related to matrix-liquid saturation and water potentials, measured from core

samples or from in situ instruments, have been perhaps the most important data sources.

Moisture data have been used to estimate model parameters since early model calibration

efforts [e.g., Ahlers et al., 1995a and 1995b] and provide a basis for current estimation of

permeability and van Genuchten parameters, both for 1-D inverse modeling [Liu et al., 2003b]

and 3-D calibration [Wu et al., 2003].

Table 3 summarizes field-measured data used in model calibration, as observed from 25

boreholes and two underground tunnels (ESF and ECRB). These data include moisture data

(matrix liquid saturation, matrix water potentials, and perched-water elevations), borehole

temperature logs, borehole pneumatic or gas pressure measurements, and geochemical chloride

data.

This section presents calibrated parameters after adjustment through a series of 3-D model

calibrations. The adjusted parameters include fracture-matrix properties of the top TSw layer,

the entire PTn unit, and perched-water zones, as well as fracture permeabilities in the upper

TSw layers. The 3-D model calibration efforts were performed in a series of forward 3-D

simulations, starting with the three sets of 1-D model calibrated parameters corresponding to

three rates of lower bounds, means and upper bounds of infiltration [Liu et al., 2003b]. Then,

model results were compared with field-observed data for matrix liquid, water potential,

perched-water elevations, and gas-pressure measurements.
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Comparison with Liquid Saturation and Water Potential Data: Characterizing moisture

movement is the essential issue at Yucca Mountain. Field-measured moisture data regarding

matrix-liquid saturation, water-potential data and perched-water data below are the actual site-

specific information for model calibrations. Here we summarize our results from our flow

modeling. More discussion on flow and transport modeling is given in Wu et al. (2004). Field

data for measured matrix-liquid saturation, water-potential data, and perched-water elevations

are compared against 3-D model results from the nine base-case simulations. Matrix-liquid

saturation, water-potential, and perched-water data used for these comparisons were taken

from eleven boreholes (Table 3, Figures 1 and 3a). Figure 5 compares, as an example,

simulated and observed matrix-liquid saturation along the vertical column (representing borehole

SD-12), from the UZ flow model results with three mean infiltration scenarios. Figure 6 displays

a comparison with water potentials for WT-24. In general, the simulation results from the

calibrated

3-D model are in good or reasonable agreement with the measured saturation and water-

potential profiles from all the boreholes, as shown in Figures 5 and 6.

Comparison with Perched-Water Data: As discussed above, to calibrate the 3-D UZ model

against observed perched-water conditions at Yucca Mountain using a permeability-barrier

concept [Wu et al., 1999b], some local modification of fracture-matrix properties is necessary.

At the same time, calibration against perched-water data provides a rare opportunity to estimate

localized heterogeneity in fracture-matrix parameters near and at perched zones. Otherwise, this

heterogeneity would be unknown.

During perched-water calibration, measured perched-water elevations from all the perched-

water boreholes are compared to 3-D model simulation results with the three mean infiltration

rates of the three climates. Figures 5 and 6 also show two examples of comparisons between 3-

D model-simulated and observed perched-water elevations along the two vertical columns,

representing boreholes SD-12 and WT-24 by the 3-D UZ model. Model calibration results, as
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indicated by Figures 5 and 6, indicate that the 3-D model predicts fully saturated and zero water

potential conditions at perched levels for the two boreholes, matching field measured perched-

water data.

Comparison with Pneumatic Data: Calibration of the 3-D UZ model to pneumatic data or

gas flow provides a practical method of estimating large-scale fracture permeability within the 3-

D UZ system. It should be mentioned that because of the low percolation flux at the site,

moisture data are found to be insensitive to fracture properties under ambient infiltration

conditions and are insufficient for estimating fracture permeability. In addition, a UZ flow model

capable of modeling gas flow is particularly important for studies of thermal loading, air

circulation, and transport of gaseous-phase radionuclides after waste emplacement in the Yucca

Mountain UZ.

Gas flow calibration is carried out under a steady-state water flow with the present-day-mean

infiltration scenario and by matching field-measured pneumatic data from five boreholes of Table

3. In doing so, fracture permeability needs to be modified from values estimated by the 1-D

inverse model for certain 3-D model layers. In these calibrations, the gas flow model uses the

UZ thermal model grid (Figure 3b), with similar boundary conditions as those in the flow model

for infiltration and temperature prescribed on the ground surface and water table. Additional

pneumatic boundary conditions are needed on the land-surface boundary for the gas phase,

specifically as the time-dependent gas-pressure conditions, based on measured atmospheric

barometric pressure data. Since gas flow is a much more rapid process than liquid or heat flow

in the UZ, water flow during pneumatic calibration is assumed to be at steady-state conditions,

determined by steady-state flow simulation results under the present-day mean infiltration

scenario.

Comparison of model simulation results and field-measured pneumatic data for boreholes UZ-

7a is shown in Figure 7. The 3-D pneumatic simulation was run using a two-phase liquid and

gas flow module of the TOUGH2 code [Pruess, 1991]. Model calibration results indicated that
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some modification of rock properties in several TSw layers was necessary to match field-

observed gas pressures. In particular, the fracture permeability of several TSw subunits,

estimated by the 1-D model, needs to be reduced by a factor of 15. The lower fracture

permeability needed for the 3-D model may be attributed to the original fracture permeability

being estimated from inversion of 1-D models, allowing for 1-D vertical flow paths only. In a 3-

D model, some high-gas-flux channels may exist, such as through faults or highly fractured

zones, and 3-D gas flow is able to follow these high-permeability pathways with the least

resistance. This also shows why 3-D model calibration is necessary for UZ model development.

In general, the simulation results demonstrate a good match with measurement data for this

borehole. Many comparisons between model-simulated pressures and field measurements have

been made with and without fracture-permeability modifications, and the results show that the

calibrated 3-D model has improved the match of the observation data from for all pneumatic

data boreholes. Overall, a reduction by a factor of 15 for the TSw fracture permeability

provides a better fit to observed pneumatic data for all locations and all time periods. The good

match in Figure 7 indicates that after calibration, simulated gas pressures and their patterns of

variations are consistent with observed values.

In addition to the model calibration efforts discussed in this section, many model verification

studies have been carried out using moisture, pneumatic, temperature, field water injection and

tracer-release testing, and geochemical data (Wu et al., 2003). These verification data have

also been observed from boreholes and underground tunnels, but have not been used for model

calibration for the base-case present-day infiltration flow scenario. In all the verification cases,

the UZ flow model results have been shown to be in agreement with the field data.

5. Flow Patterns and Analyses

The primary objective of modeling UZ flow at Yucca Mountain is to estimate percolation flux

through the UZ system. This is because percolation is the most critical factor in assessing overall

repository performance under current and future climates. However, in situ percolation fluxes
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of unsaturated flow at the site are in general too low to measure directly. Therefore, indirect

data and model results are needed to estimate these flux values and their distributions. Even with

the considerable progress made so far in characterizing the Yucca Mountain UZ through

intensive geological, hydrological, and chemical studies, accurate estimates of percolation flux

within the UZ remain a scientific challenge.

Past studies [e.g., Wu et al., 2002a] have shown that it is very difficult even to quantify the

range of percolation fluxes by using hydrological data alone. Percolation patterns inside the UZ

strongly depend on infiltration rates and their spatial distribution, among other factors.

Therefore, over the past two decades, significant research has been devoted to estimating

infiltration rates [e.g., Flint et al., 1996; Hevesi and Flint, 2000; Bodvarsson et al., 2003].

From these studies, the best estimates of present-day mean infiltration rates across the study

area are in the range of several millimeters per year over the model domain. To further assess

simulated UZ percolation fluxes for their relevance and reasonableness, this section presents

percolation fluxes simulated by the calibrated

3-D UZ flow model and examines these percolation fluxes and their patterns using field-

measured temperature and pore-water chloride data.

5.1 Simulated Percolation Fluxes

Percolation Patterns at Repository: Percolation fluxes at the repository horizon, as predicted

using the 18 3-D UZ flow simulation results of Table 2 with nine infiltration maps  (Table 1), are

used for insight into percolation patterns.  Percolation flux is defined as total vertical-liquid mass

flux through both fractures and matrix, and is converted to millimeters per year (mm/yr) per unit

area using a constant water density. Figures 8 and 9 present two examples of percolation fluxes

simulated at the repository level for the present-day climate (Figure 4) by the base-case and

alternative models, respectively. A comparison of the calculated repository percolation fluxes

(Figures 8 and 9) with the surface infiltration map (Figure 4) indicates that percolation fluxes at

the proposed repository are different from surface infiltration patterns.
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The major difference between percolation fluxes at the repository level (as shown in Figure 8)

and surface infiltration patterns (Figure 4) are: (1) flow focusing into faults in the very northern

part of the model domain (with the north coordinate > 237,000 m); (2) flow diverted into or

near faults located in the middle and southern model domain; and (3) about a 500 m lateral flow

of the high-infiltration zones to the east from south to north along the crest, as illustrated by the

“lateral flow scale” on Figure 8. Note that flow redistribution or focusing in the very northern

part of the model domain (beyond the repository block) results from the repository grid-layer

horizon laterally intersecting the CHn zeolitic and perched-water zones, where major flow paths

are through faults. On the other hand, the simulation results (Figure 9) with the alternative flow

model shows a high flux distribution, a distribution very similar to that shown on infiltration maps

(Figure 4) in the middle (except for the very northern part) of the model domain along the north-

south mountain crest. Thus, from the alternative model results, smaller lateral flow occurs in the

PTn in the area above the repository.

Further examination of all simulated fluxes at the repository level indicates that the lower the

infiltration rates, the larger the lateral flow scales. This confirms that a substantial amount of

large-scale lateral flow within the PTn unit is caused by capillary barriers. This is because the

lower infiltration results in “drier” conditions and stronger contrasts in capillary forces [Wu et

al., 2002b]. In comparison, the simulation results with the nine alternative flow fields show

relatively small PTn lateral flow occurrence in the area above the repository.

Percolation fluxes within the repository footprint can be further analyzed using a frequency

distribution that displays the average percentage of the repository area subject to a particular

percolation rate. In this statistical analysis, percolation rates are normalized with respect to the

average infiltration rate for the climate scenario. For example, the flux rates are normalized by

4.4, 11.8, and 17.0 mm/yr (Table 1), respectively, for the three mean infiltration scenarios. The

statistical information of flux distributions is important to smaller-scale modeling studies of flow

and transport and flow-focusing phenomena throughout the UZ. Furthermore, the frequency
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distribution of normalized percolation fluxes within the repository horizon from the 18 simulated

flow-field analyses can be used to define a cumulative flux-frequency distribution, as shown in

Figure 10, displaying a regression curve that incorporates the 18 flow fields. The cumulative

frequency of Figure 10 can be used, for example, in selecting ambient flow-boundary conditions

for smaller-scale modeling. The regression curve, with the equation given on the figure, may be

used to correlate cumulative flux frequency within the repository with net infiltration rates for any

future climatic scenarios. For example, using the equation with x = 1, 2, and 5 gives results of

60%, 88%, and 99%, respectively. This indicates that 60%, 88%, and 99% of the repository

blocks are subject to less-than-normalized fluxes of 1, 2, and 5, respectively.

Percolation Patterns below Repository: Percolation fluxes below the repository horizon play

a critical role in controlling the migration of radioactive waste from the repository to the water

table. Figure 11 shows an example of the simulated percolation fluxes at the water table, using

the base-case model flow simulation with the present-day, mean infiltration scenario. When

compared to percolation fluxes at the repository for the different model results and infiltration

scenarios, percolation fluxes at the water table reveal more flow focusing into faults while

traveling through the CHn unit. This is caused by the impact of perched water and low-

permeability zeolitic units on flow paths through these lower units. Similar flux distributions and

patterns at the water table are also seen for both base-case and alternative model flow fields

under different climates, as compared with Figure 11, which is primarily caused by strong

effects of faults, zeolites, and perched-water zones in the CHn. These results show the PTn

conceptual model makes an insignificant difference in flow below the repository or through the

CHn unit.

In addition to looking at flow simulation results for insight into flux patterns below the repository

or at the water table, locations or areas where radionuclides are most likely to break through at

the water table, or high-flux flow paths across the CHn, can also be identified using tracer-

transport-simulation results. To assess tracer transport from the repository to the water table,

we used two types of tracers, conservative (nonadsorbing) and reactive (adsorbing), in this
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study. An initial, constant-source concentration was specified for the fracture continuum

gridblocks representing the repository, released at the starting time of simulation. In addition,

hydrodynamic/mechanical dispersion through the fracture-matrix system is ignored, because

sensitivity studies have indicated that mechanical dispersion has an insignificant effect [Wu et al.,

2002a]. A constant molecular diffusion coefficient of 3.2 × 10-11 m2/s is used for the

conservative component, and 1.6 × 10-10 m2/s is selected for the reactive component. For the

conservative tracer, Kd = 0, and for the reactive tracer, Kd = 4 cc/g for zeolitic matrix, Kd = 1

cc/g for other matrix rock in TSw and CHn units, and Kd = 0 for all fractures and other units.

Tracer transport modeling was conducted with the T2R3D code [Wu and Pruess, 2000] using

the same flow model grid (Figure 3a) and the dual-permeability approach for fracture-matrix

interaction. In transport simulation, isothermal, unsaturated, steady-state flow fields of Table 2

were used as direct input to the T2R3D.

Figures 12 and 13 show cumulative and normalized mass-arrival contours at the water table at

1,000 years for the conservative and reactive tracers, respectively. The cumulative and

normalized mass arrival is defined as cumulative mass that arrives at each grid column (or block)

of the water table over time, normalized by the total initial mass released at the entire repository.

The two figures present examples of breakthrough at the water table for conservative and

reactive tracers under the present-day, mean infiltration rate (preq_mA). The two figures clearly

indicate a significant difference between the two tracer-modeling results in distributions of tracer

mass arrivals along the water table. Figure 12 shows that without adsorption, in 1,000 years, the

conservative tracer has a much larger breakthrough area, covering the entire area directly below

the repository footprint, spreading to the east in the north. At this time, about 40% of the total

initial mass of conservative tracers has arrived at the water table. At the same time, only about

2% of the reactive tracer breaks through, and only along and near the major faults (Figure 13),

owing to adsorption effects in the rock matrix. Similarly, breakthrough areas can be identified in

different grid layers at different times, which indicate tracer transport paths or flow pathways

below the repository.
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5.2 Flow Pattern Analyses

Simulated percolation fluxes, as discussed above, are model results only. Their accuracy and

relevance for representing actual UZ percolation needs further examination. This section

presents a quantitative evaluation of such simulated percolation fluxes estimated from the large-

scale 3-D UZ flow model. In particular, borehole temperature logs and pore-water chloride

data are used to assess percolation patterns. This is because these two types of data are found

to be more sensitive to deep percolation than other types of data collected from the site.

Examination Using Borehole Temperature Data: The site-scale UZ modeling investigations

have relied on an ambient thermal model to simulate large-scale heat flow and geothermal

conditions in the Yucca Mountain UZ [Wu et al., 1999a]. In general, the thermal model

represents ambient geothermal and moisture conditions, which in turn represents initial and

boundary conditions for the mountain-scale or drift-scale thermal-hydrological, thermal-

hydrological-chemical, and thermal-hydrological-mechanical coupled-process models [Wu et

al., 2003]. A recent study [Bodvarsson et al., 2003] shows that borehole temperature data are

very useful in estimating percolation flux values in the UZ and provide an independent

examination of the ranges for estimated surface net infiltration rates and simulated percolation

fluxes.

In this study, heat flow simulations use a 3-D thermal model grid (Figure 3b), base-case UZ

model parameters, and present-day mean infiltration rate to simulate advective and conductive

steady-state heat-transfer processes within the UZ. The main objective here is to analyze the

average present-day infiltration rate. To account for variation in average atmospheric

temperature along the mountain surface, measured mean surface temperatures and a linear

equation are used to correlate surface temperature with elevation, thus describing initial surface

temperature conditions [Wu et al., 1999a]. Temperature distributions at the bottom boundary

of the thermal model are taken from deep-borehole-measured temperature profiles [Sass et al.,

1988] for an initial guess of the water-table-boundary temperature contours. Then, initially
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estimated ground surface and water table temperatures are further calibrated by comparing

model results with field temperature measurements.

Under steady-state conditions, temperature profiles or geothermal gradients within the UZ are

controlled by regional geothermal and weather conditions. In addition, these profiles and

gradients are also related to formation thermal conductivity, net infiltration rates, and deep

percolation fluxes. In thermal calculations, the surface net infiltration rate is fixed, based on the

U. S. Geological Survey estimation map (Table 1), and the temperatures from the initially

specified values along the top boundary are slightly adjusted. These adjustments result in a

better match with observed borehole data. The rationale behind the adjustment is, first, that

insufficient temperature data were collected along the UZ model boundaries for accurate

description of temperature distributions along the boundaries. Second, under steady-state

moisture and heat-flow conditions, both top and bottom boundary temperatures vary spatially,

but are constant with time, which leaves room for adjustments to fit steady-state temperature

profiles measured from boreholes.

Figure 14a shows a model calibration result using measured temperature profiles in six

boreholes (NRG-6, NRG-7a, SD-12, UZ#5, UZ-7a, and H-4) [Sass et al., 1988; Rousseau

et al., 1998]. The figure shows a good match between measured and simulated temperatures

for all six boreholes. Note that near the ground surface in the boreholes, observed temperatures

show significant seasonal variations, which cannot be captured by the steady-state heat flow

model. However, these seasonal changes in surface temperature have little impact on steady-

state heat flow and field measured temperature profiles in the deeper (more than 20 m) UZ.

Field data, as well as comparisons with steady-state simulation results in Figure 14a, indicate

that the ambient geothermal conditions can be approximated as steady state on the large-scale

model. Figure 14b presents the distribution of averaged temperatures estimated on the mountain

ground surface.

Matching measured temperature profiles using simulation results along these boreholes at
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different locations, as shown in Figure 14a, implies that percolation fluxes (as well as their spatial

distributions estimated by the 3-D UZ model) are within a reasonable range of the actual

percolation in the UZ. Otherwise, the study by Bodvarsson et al.[2003] indicates that if the

surface infiltration rate is increased or decreased by a factor of 3 or more, temperature profiles

can generally no longer be fitted by a 3-D model. This is because on average, a percolation flux

of 5 mm/yr carries out about 10 mW/m2 of downward heat convection, which is about 25% of

upward heat conduction, ~ 40 mW/m2 [Sass et al., 1988] through the UZ by ambient

geothermal gradients. Any large increase or decrease (e.g., by a factor of 2 or more) of

infiltration or percolation flux values in the model will lead to significant changes in downward

heat convection or in geothermal gradients, such that model results will significantly deviate from

observed temperature profiles.

Examination Using Geochemical Isotopic Data: The methodology for analyzing percolation

flux using geochemical pore-water chloride (Cl) data is based on modeling studies of chloride

transport processes in the UZ under different infiltration scenarios. Here we discuss the detailed

rationale for using Cl to constrain the percolation fluxes. The results of Cl transport modeling is

briefly described; more detailed discussion is found in Wu et al. [2003; 2004].

While field-measured moisture data are found to be relatively insensitive to percolation values,

geochemical isotopic data provide valuable information by which to analyze the UZ system and

help constrain or calibrate the UZ percolation flux range [Sonnenthal and Bodvarsson, 1999].

For example, pore-water chemical concentration data can be used to calibrate the UZ model

and to bound the infiltration fluxes [Liu et al., 2003; Wu et al., 2003]. The distribution of

isotopic chemical constituents such as chloride (Cl-) in both liquid and solid phases [Lu et al.,

2003] of the UZ system depends on many factors, such as hydrological and geochemical

processes, surface precipitation, evapotranspiration, fracture-matrix interactions of flow and

transport, and the history of climate changes and recharge. Therefore, the current status of

chemical components existing within the UZ, as measured from the site, will reveal some of the

past and current percolation patterns, along with their spatial variations.
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Measurements of chloride concentration data were made from pore waters extracted from field

samples [Fabryka-Martin et al., 2002; Yang et al., 1996 and 1998] collected from a number

of surface-based boreholes and two underground tunnels, the Exploratory Studies Facilities

(ESF) and the Enhanced Characterization of Repository Block (ECRB) (Figures 1 and 3a). The

source recharge of chloride on the ground surface to the transport model is estimated using

precipitation, runon, and runoff [Sonnenthal and Bodvarsson, 1999], and is imposed on the

top boundary under different infiltration scenarios.

All Cl transport simulations were run using the T2R3D code for 100,000 years to approximate

the current, steady-state condition under the infiltration scenarios considered. Chloride is treated

as a conservative component transported through the UZ, subject to advection, diffusion, and

first-order delay. The mechanical dispersion effect through the fracture-matrix system was

ignored. A constant molecular diffusion coefficient of 2.032 × 10-9 m2/s is used for Cl- matrix

diffusion.

The three present-day infiltration rates for lower, mean, and upper bounds are used in chloride

modeling. Each of the three infiltration maps corresponds to two 3-D flow fields (Table 2), i.e.,

the base-case (A) and alternative models (B) use the same surface infiltration maps. For

example, the same present-day mean infiltration scenario leads to two flow fields: preq_mA of

the base case and preq_mB of the alternative. This results in a total of six 3-D flow fields with

three base cases and three alternatives, based on different parameter sets of different PTn

conceptual models. Therefore, the difference predicted by the two flow-field results under the

same infiltration scenario (e.g., preq_mA and preq_mB) is a function of input parameters or

conceptual models. On the other hand, the difference in model predictions with the same

conceptual models of base cases (i.e., preq_lA, preq_mA, preq_uA) or alternatives (preq_lB,

preq_mB, preq_uB) with different infiltration scenarios results from the effects of infiltration

rates. By comparing model results with field observed chloride data using different parameter

sets (or conceptual models) and infiltration rates, it may be possible to identify more suitable
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conceptual models as well as to estimate the range of net infiltration rates.

The modeled chloride concentrations and their field measurements are represented in Figures 15

and 16 for boreholes UZ-14 and one underground tunnel of ECRB, respectively. As shown in

the figures, modeled chloride distributions in the UZ are very sensitive to both conceptual

models and net surface infiltration rates. Comparisons of simulated and measured chloride

concentrations in Figures 15 and 16 indicate that the simulations (preq_mA) for mean infiltration

of the base-case model have overall better matches than the alternative model results

(preq_mB). It is also shown that base-case model results (preq_uA) with upper-bound

infiltration give reasonable matches, compared to the mean infiltration results (preq_mA), while

model results using lower-bound rates give the poorest fit. In general, high net infiltration results

in lower chloride concentrations, whereas lower net infiltration gives high chloride concentrations

within the UZ.

Figures 15 and 16 show that simulation (preq_lA) of chloride transport with the base-case,

lower-bound infiltration overestimates Cl concentrations on the top of the PTn and

underestimates at the bottom layers (about an 800 m elevation). In borehole UZ-14 (Figure

15), upper and mean results (i.e., preq_mA and preq_uA) are similar to observations. At

borehole SD-9 and ESF,  results demonstrate that neither lower infiltration rates (preq_lA) nor

alternative model results (preq_lB, preq_mB, and preq_uB) could match the measured Cl data

well [Wu et al., 2004]. Figure 16 presents sample comparisons between simulated and

observed chloride concentrations along an underground tunnel (ECRB). Similar results are also

shown along the ECRB tunnel (Figure 16), i.e., lower infiltration rates and the alternative model

give poor results compared with observations. Comparisons between the model results for

chloride distributions, using the six different flow modeling scenarios, can be useful in

distinguishing which infiltration map or conceptual model is more appropriate for site

characterization.

In comparing simulated chloride distributions using the base-case model with the alternative
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models (Figures 15 and 16), we find that the base-case flow field simulation results under the

present-day, mean infiltration rate consistently provide a better overall match with the observed

chloride. As discussed before, the main difference between the base-case and alternative flow

fields is whether there is large- or small-scale lateral flow within the PTn unit, with the base-case

flow fields, in general, predicting relatively large lateral diversion. The model calibration results

using chloride data show that large lateral diversion may exist in the PTn unit. Nevertheless, this

study demonstrates that pore-water chloride provides additional evidence for understanding

PTn flow, which has a direct impact on chloride transport and distributions.

6. Concluding Remarks

This paper presents an integrated modeling approach for a large-scale study characterizing

percolation patterns in the unsaturated zone of Yucca Mountain, Nevada, a proposed

underground repository site for storing high-level radioactive waste. The integrated modeling

approach, based on a dual-continuum formulation, takes into account the multiple coupled

processes of (air, water, and heat) flow and (chemical isotopic) transport in Yucca Mountain’s

highly heterogeneous, unsaturated fractured tuffs, and incorporates a wide variety of field data

into a comprehensive 3-D UZ flow model.

In the integrated analyses, model-simulated percolation fluxes are examined against different

types of field-measured temperature, pneumatic pressure, and pore-water chloride, and matrix

saturation and water potential data to increase the confidence and reliability of model

predictions. The modeling investigations are conducted to provide an understanding of

percolation patterns and flow behavior through the unsaturated zone, which are crucial issues in

assessing repository performance. In addition, this paper discusses the methodology used for

developing the numerical model and conducting large-scale modeling investigations at Yucca

Mountain, including model calibration procedures.

Supported by field-observed temperature and chloride data, the simulations of percolation
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fluxes lead to several insights into complex flow patterns through the UZ system. First, within the

PTn unit, there may exist significant lateral flow diversion towards the eastern direction as well

as flow focusing into major faults, because of a capillary barrier effect. Second, all the flow-

modeling cases indicate significant lateral flow diversion occurring at the CHn, resulting from the

presence of perched water or thick low-permeability zeolitic layers. Under the current

conceptualization, faults act as major flow paths through the CHn or below the repository

horizon. The modeled percolation fluxes and their distributions show that fracture flow is

dominant in the welded tuff, both at the potential repository horizon and at the water table.

This study summarizes our current research effort to characterize UZ flow patterns at Yucca

Mountain. Even with the significant progress made in quantitative evaluation of UZ flow and

transport processes at the site using numerical models over the last two decades, there are still a

number of limitations and uncertainties with these models and their results. In general, accuracy

and reliability of UZ site-scale models and simulation results are critically dependent on the

accuracy of estimated model-related properties and other types of input parameters, as well as

hydrogeological conceptual models. The main limitations and uncertainties with the current UZ

site-scale models are (1) the lack of in-depth knowledge of the mountain system (including the

geological and conceptual models and the availability of field and laboratory data), and (2) the

approximations of a large volume-averaged modeling approach. As a result, continuing research

effort is still needed toward a better understanding of the Yucca Mountain UZ system.
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Table 1. Climate scenarios and infiltration rates (mm/year) averaged over the flow model
domain

Climate Scenario Lower-Bound
Infiltration

Mean
Infiltration

Upper-Bound
Infiltration

Present-Day/Modern 1.3 4.4 10.7
Monsoon 4.4 11.8 19.2
Glacial Transition 2.4 17.0 31.7

Table 2. Nine base-case and nine alternative simulation scenarios associated with
parameter sets and infiltration maps

Designation/Simulation*

Base-Case+ Alternative+

Infiltration Rate/Climate Scenario

preq_lA preq_lB Present-day, lower-bound infiltration

preq_mA preq_mB Present-day, mean infiltration

preq_uA preq_uB Present-day, upper-bound infiltration

monq_lA monq_lB Monsoon, lower-bound infiltration

monq_mA monq_mB Monsoon, mean infiltration

monq_uA monq_uB Monsoon, upper- bound infiltration

glaq_lA glaq_lB Glacial transition, lower-bound infiltration

glaq_mA glaq_mB Glacial transition, mean infiltration

glaq_uA glaq_uB Glacial transition, upper-bound infiltration
* A denotes base-case and B alternative flow scenarios; l, m, and u stand for lower, mean,
and upper bounds of infiltration rates for each climate scenarios, respectively.
 + The base-case simulations are based on the base-case parameter sets; while the alternative
simulations are done using the alternative parameter sets.
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Table 3. The field-measured data used in model calibration, including moisture data
(matrix liquid saturation, matrix water potentials, and perched-water elevations),
and pneumatic data, as observed from 14 boreholes and one underground
tunnel of the Enhanced Characterization of Repository Block (ECRB)

Borehole or
Tunnel

Liquid
Saturation

Water
Potential

Perched
Water

Gas
Pressure

G-2 4

NRG#5 4

NRG-6 4

NRG-7a 4 4 4

SD-6 4 4

SD-7 4 4 4

SD-9 4 4

SD-12 4 4 4 4

UZ-1

UZ#4 4

UZ-7a 4

UZ-14 4 4

UZ#16 4

WT-24 4 4 4

ECRB 4
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Figure 1. Plan view of the UZ model domain, showing the model boundary, the potential
repository outline, major fault locations, the paths of the ESF and ECRB, and
selected borehole locations
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Figure 2. Schematic showing the conceptualized flow processes and effects of capillary
barriers, major faults, and perched-water zones within a typical east-west cross
section of the UZ flow model domain
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Figure 3a. Plan view of the 3-D UZ flow model grid, showing the model domain, faults
incorporated, repository layout, and several borehole locations (modified from
Wu et al., 2004)
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Figure 8. Simulated percolation fluxes at the repository horizon, using the present-day,
mean infiltration scenario, base-case model results (preq_mA) (modified from
Wu et al., 2004)
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the base-case model.
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