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Estimation of the Parameter Covariance Matrix for
a One-Compartment Cardiac Perfusion Model

Estimated from a Dynamic Sequence Reconstructed
Using MAP Iterative Reconstruction Algorithms

Grant T. Gullberg, Ronald H. Huesman, Bryan W. Reutter, Jinyi Qi, and Dilip N. Ghosh Roy

Abstract

In dynamic cardiac SPECT estimates of kinetic parameters of a one-compartment perfusion model are usually
obtained in a two step process: 1) first a MAP iterative algorithm, which properly models the Poisson statistics and
the physics of the data acquisition, reconstructs a sequence of dynamic reconstructions, 2) then kinetic parameters
are estimated from time activity curves generated from the dynamic reconstructions. This paper provides a method
for calculating the covariance matrix of the kinetic parameters, which are determined using weighted least squares
fitting that incorporates the estimated variance and covariance of the dynamic reconstructions. For each transaxial
slice sets of sequential tomographic projections are reconstructed into a sequence of transaxial reconstructions using
for each reconstruction in the time sequence an iterative MAP reconstruction to calculate the maximum a priori
reconstructed estimate. Time-activity curves for a sum of activity in a blood region inside the left ventricle and a sum
in a cardiac tissue region are generated. Also, curves for the variance of the two estimates of the sum and for the
covariance between the two ROI estimates are generated as a function of time at convergence using an expression
obtained from the fixed-point solution of the statistical error of the reconstruction. A one-compartment model is
fit to the tissue activity curves assuming a noisy blood input function to give weighted least squares estimates of
blood volume fraction, wash-in and wash-out rate constants specifying the kinetics of 99mTc-teboroxime for the left
ventricular myocardium. Numerical methods are used to calculate the second derivative of the chi-square criterion
to obtain estimates of the covariance matrix for the weighted least square parameter estimates. Even though the
method requires one matrix inverse for each time interval of tomographic acquisition, efficient estimates of the tissue
kinetic parameters in a dynamic cardiac SPECT study can be obtained with present day desk-top computers.

I. INTRODUCTION

Previously efficient estimates of dynamic cardiac SPECT kinetic parameters of a one-compartment cardiac
perfusion model were obtained using weighted least squares estimates of dynamic reconstructions that were obtained
from the inversion of the Fisher information matrix [1]–[3]. Each reconstruction in the dynamic sequence was
reconstructed using matrix inverse reconstruction. The reconstruction was a solution to a weighted least squares
optimization problem, which provided a weighted least squares estimate of the reconstructed values and estimates
of the spatial covariances between the reconstructed values. These estimates were used to generate time activity
curves for a sum of activity in a blood region inside the left ventricle and a sum in a cardiac tissue region, for the
variance of the two estimates of the sum, and for the covariance between the two ROI estimates. The weighted least
squares estimates and covariances for the reconstructed time activity curves were fit to a one-compartment perfusion
model to obtain weighted least squares estimates of the kinetic model parameters (wash-in, wash-out, and fractional
blood volume). It was shown that the weighted least squares estimates of the kinetic model parameters gave lower
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variance than the unweighted least squares estimates. However, in general the dynamic sequence of reconstructions
is obtained using ML [4] or MAP [5] iterative algorithms, which properly model the Poisson statistics and the
physics of the data acquisition.

Efficient estimates of dynamic cardiac SPECT kinetic parameters are determined using weighted least squares
fitting that incorporates the variance and covariance of maximum a priori estimates of dynamic reconstructions. For
one transaxial slice a sequential set of tomographic projections are reconstructed into a sequence of 64×64 images
using for each reconstruction in the time sequence an iterative MAP reconstruction to calculate the maximum a
priori reconstructed estimate. Physical factors such as attenuation, geometric response of the collimator and scatter
can be included in the projection equations. Time-activity curves for a sum of activity in a blood region inside
the left ventricle and a sum in a cardiac tissue region are generated from the attenuation and geometric corrected
transaxial reconstructions. The variance of the two estimates of the sum, and the covariance between the two ROI
estimates are generated from the inverse of the Fisher information matrix plus a prior term. A two-compartment
model is fit to the blood and tissue activity curves to give weighted least squares estimates of blood volume fraction,
wash-in and wash-out rate constants specifying teboroxime kinetics for the left ventricular myocardium.

This paper is an updated version of a paper presented at the 2003 IEEE Nuclear Science Symposium and Medical
Imaging Conference [6]. The paper investigates the errors in kinetic model parameters for a one-compartment
cardiac perfusion model when iterative MAP reconstruction algorithms are used to obtain the dynamic sequence
of reconstructions. First the theory is presented for estimating the covariance matrix for reconstructed estimates of
a MAP reconstruction and for estimating the covariance matrix for the parameters of a compartment model fit to a
sequence of the estimated dynamic reconstructions. Then methods and results are presented for the simulation of
a dynamic sequence of a single transaxial slice through the myocardium. This is followed by a discussion of the
implication of the technique for analyzing different approaches used in dynamic cardiac SPECT imaging.

II. THEORY

Huesman and Mazoyer [7] developed a method for estimating kinetic model parameters from time activity
curves for a noisy input function. In their work they developed a formulation for the estimation of both the kinetic
parameters and their errors. Most of this work was applied to data in PET applications where the error estimates
are calculated from an analytical convolution expression [8]. However in SPECT, because of the need to correct for
attenuation in addition to geometric response and scatter, it is necessary to use an iterative reconstruction algorithm
and to obtain estimates of the solutions of iterative type algorithms. In this case the error estimates become more
difficult to obtain because the inversion of large matrices is required.

In RFIT [9] the kinetic parameters k21 (wash-in rate constant), k12 (wash-out rate constant), fv (fractional blood
volume) of a one-compartment perfusion model are estimated from dynamic cardiac SPECT data by minimizing
the chi-square function

χ2 = ρT (θ)Φ−1ρ(θ) , (1)

with respect to the parameters θ. The residuals ρ:

ρ(θ = [k21, k12, fv]) = β −H(θ)α (2)

are the difference between the model and the data. The vector β is the reconstructed tissue time activity curve, the
vector α is the reconstructed noisy arterial blood input time activity curve, and

Hij =


∫ tj

tj−1

(
τ−tj−1

tj−tj−1

)
[h(ti − τ)− h(ti−1 − τ)] dτ +

∫ ti−tj

ti−1−tj
h(τ)dτ j < i∫ ti

ti−1

(
τ−ti−1

ti−ti−1

)
h(ti − τ)dτ j = i

0 j > i

(3)

where h(t) = fvδ(t) + (1− fv)k21e
−k12t.

In the work presented in this paper we use a weighting matrix, Φ = cov(ρ), which provide residual-weighted
least squares estimates. For this case Φ has the expression

Φ = cov(β, β) + Hcov(α, α)HT −Hcov(α, β)− cov(α, β)T HT . (4)

Note, that the matrix Φ is not diagonal, even though the matrices cov(α, α), cov(α, β), and cov(β, β) are assumed
to be diagonal.
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In [7] the bias and variance of the estimated parameters were investigated for different weighting matrices Φ.
These included Φ = cov(ρ) (residual-weighted least squares estimates), Φ = cov(β) (tissue-weighted least squares
estimates), and Φ = I (unweighted least squares estimates). It was shown that the tissue-weighted and the residual-
weighted least squares estimate gave almost equal variances, which was much less than the unweighted least squares
estimates but that the residual weighted estimates gave the least bias of the three least squares estimates.

To obtain estimate of the covariance matrices cov(α, α), cov(β, β), and cov(α, β) for blood, tissue, and between
blood and tissue, respectively, it is necessary to come up with expressions for variances of individual reconstructed
pixel values and covariances between reconstructed pixel values. This is developed in the next section.

A. Fixed Point Solution for the Covariance Matrix of the Reconstruction

Barrett et al. [10] derived an approximate formula for the mean and covariance of the maximum likelihood
expectation maximization (ML-EM) reconstruction as a function of iteration number. Wang and Gindi [11] developed
a similar result for a MAP-EM reconstruction algorithm. Fessler [12] developed formulations for the mean and the
variance at the solution of MAP iterative reconstruction algorithms. Qi [13] presented a more general formulation
of the reconstructed errors as a function of iteration. Here we present the fixed-point solution for the covariance
matrix of the maximum a posteriori (MAP) reconstruction.

The MAP reconstruction is obtained by maximizing the log of the a posteriori probability function

Γ(f) = log[p(g|f)]− 1
2γ2fT Rf ,

subject to fi ≥ 0 ∀ i ,
(5)

where f is the image to be reconstructed from projection measurements, g and −(γ2/2)fT Rf is the log of a Gibbs
prior term [14] with parameter γ and symmetric positive definite matrix R. For the Poisson distribution, we have

log[p(g|f)] =
M∑

m=1

[
gm log

(
N∑

i=1

Fmifi

)
−

N∑
i=1

Fmifi − log(gm!)

]
, (6)

where Fij are elements of the projection operator F . Therefore, writing out Γ(f) as a summation, we have

Γ(f) =
M∑

m=1

[
gm log

(
N∑

i=1

Fmifi

)
−

N∑
i=1

Fmifi − log(gm!)

]
− 1

2
γ2

N∑
i=1

N∑
j=1

Rijfifj . (7)

The projection operator F models the detector geometry, attenuation, scatter, and the spatially varying geometric
response of the collimator. In the simulations presented later, only the effects of photon attenuation and a spatially
varying geometric response were modeled for a parallel geometry; but not the effects of scatter.

If one takes the derivative of the penalized log likelihood function Γ(f), one obtains

∂Γ(f)
∂fl

= −
M∑

j=1

Fjl +
M∑

j=1

gjFjl∑N
i=1 Fjifi

− γ2
N∑

i=1

Rlifi . (8)

Setting Eq. (8) equal to zero gives the reconstructed image, f̂(g), as long as f̂ > 0. Therefore, we have

Sl −
M∑

j=1

gjFjl∑N
i=1 Fjif̂i

+ γ2
N∑

i=1

Rlif̂i = 0 , (9)

where Sl =
∑M

j=1 Fjl is a sensitivity vector that represents the detection probability for activity in voxel l. Note
that throughout our development we assume that f̂ is positive.

In order to study changes in reconstructed images due to noise in the data we define

f̃ ≡ f̂(ḡ) , (10)

where ḡ is the expectation of the data vector, g, so that f̃ is the reconstruction of the noiseless data, we can write

f̂(g) = f̂(ḡ + n) = f̃ + ε , (11)
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where n is Poisson noise and ε is the change in the solution resulting from the noise in the data. Substituting
Eq. (11) into Eq. (9) we get

Sl −
M∑

j=1

(ḡj + nj)Fjl∑N
i=1 Fji(f̃i + εi)

+ γ2
N∑

i=1

Rli(f̃i + εi) = 0 . (12)

Assuming that the image errors are small compared to the mean, we make the following approximation

1∑N
i=1 Fji(f̃i + εi)

≈ 1∑N
i=1 Fjif̃i

(
1−

∑N
i=1 Fjiεi∑N
i=1 Fjif̃i

)
. (13)

Substituting Eq. (13) into Eq. (12), we obtain the following result:

Sl −
M∑

j=1

(ḡj + nj)Fjl∑N
i=1 Fjif̃i

(
1−

∑N
i=1 Fjiεi∑N
i=1 Fjif̃i

)
+ γ2

N∑
i=1

Rli(f̃i + εi) = 0 . (14)

Separating out the zeroth and first order error terms and dropping the second order error term we have

Sl −
M∑

j=1

ḡjFjl∑N
i=1 Fjif̃i

+ γ2
N∑

i=1

Rlif̃i −
M∑

j=1

njFjl∑N
i=1 Fjif̃i

+
M∑

j=1

ḡjFjl
∑N

i=1 Fjiεi(∑N
i=1 Fjif̃i

)2 + γ2
N∑

i=1

Rliεi = 0 . (15)

The three terms on the left of Eq. (15) sum to zero, as they comprise the left side of Eq. (9) for the solution with
noiseless data. The remaining terms can be regrouped to give

N∑
i=1

 M∑
j=1

ḡjFjlFji(∑N
i=k Fjkf̃k

)2 + γ2Rli

 εi =
M∑

j=1

(
Fjl∑N

i=1 Fjif̃i

)
nj . (16)

Writing this in matrix notation: (
F T Λ−1

g̃ ΛḡΛ
−1
g̃ F + γ2R

)
ε = F T Λ−1

g̃ n , (17)

where Λg̃ is a diagonal matrix with the elements of g̃ ≡ F f̃ along the diagonal and Λḡ is a diagonal matrix with
the elements of ḡ along the diagonal. In the limit of low noise, we see that the error ε in the image is a linear
function of the noise in the data and, thus, the change in the solution resulting from a change in the data is the
derivative of the reconstructed image with respect to the data evaluated at the expected data, which is the linear
coefficient of the relationship between ε and n from Eq. (17):

E ≡ ∂f̂(g)
∂g

∣∣∣∣∣
g=ḡ

=
(
F T Λ−1

g̃ ΛḡΛ
−1
g̃ F + γ2R

)−1
F T Λ−1

g̃ . (18)

Eq. (18) is derived by maximizing (with respect to the image distribution f ) the log of the likelihood function
for a penalized Poisson distribution in Eq. (7) assuming that f̂(ḡ) is positive. Also, the assumption in Eq. (13), that
the noise is small compared to the mean, is justified in the derivative expression of Eq. (18). It is interesting to note
that a Gaussian distribution in Eq. (5) would also give the same expression in Eq. (18) if the same approximations
were imposed. The results of our simulation presented later demonstrate that this derivation is sufficiently accurate
for a Poisson distribution at the count level appropriate for a dynamic SPECT study.

The covariance matrix for reconstructed values at the solution is given by the approximation [12], [13], [15]

cov(f̂) ≈ Ecov(n)ET . (19)

Since the variance is equal to the mean for a Poisson distribution, the vector of additive projection noise n has the
covariance matrix: cov(n) = cov(g) = Λḡ. This gives us

cov(f̂) =
(
F T Λ−1

g̃ ΛḡΛ
−1
g̃ F + γ2R

)−1
F T Λ−1

g̃ ΛḡΛ
−1
g̃ F

(
F T Λ−1

g̃ ΛḡΛ
−1
g̃ F + γ2R

)−1
. (20)

If we use the approximation g̃ ≈ ḡ, we get the two expressions:

cov(f̂) ≈
(
F T Λ−1

g̃ F + γ2R
)−1

F T Λ−1
g̃ F

(
F T Λ−1

g̃ F + γ2R
)−1

≈
(
F T Λ−1

ḡ F + γ2R
)−1

F T Λ−1
ḡ F

(
F T Λ−1

ḡ F + γ2R
)−1

. (21)

The expression given here for cov(f̂) was derived by Fessler [12] using implicit derivatives.
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B. Covariance Matrix of Estimated Kinetic Parameters

To obtain weighted least estimates of the kinetic parameters we need to calculate Φ in Eq. (4). The tissue time
activity curve β (vector in time) and the noisy arterial blood input time activity curve α (vector in time) at each
time frame involve sums of reconstructed counts in the blood and tissue regions of interest:

αk =
∑

j∈blood

f̂k
j , (22)

βk =
∑

j∈tissue

f̂k
j . (23)

The variances for these regions at each time frame are obtained by appropriately summing the variances of each
reconstructed pixel value and covariances between pixel values in the region of interest. This gives the following
expressions for the covariance matrices for the time activity curves

cov(αk, αl) =
∑

j∈blood

∑
j′∈blood

cov(f̂k
j , f̂ l

j′) = δkl

∑
j∈blood

∑
j′∈blood

M∑
m=1

Ek
jmEl

j′mḡk
m , (24)

cov(αk, βl) =
∑

j∈blood

∑
j′∈tissue

cov(f̂k
j , f̂ l

j′) = δkl

∑
j∈blood

∑
j′∈tissue

M∑
m=1

Ek
jmEl

j′mḡk
m , (25)

cov(βk, βl) =
∑

j∈tissue

∑
j′∈tissue

cov(f̂k
j , f̂ l

j′) = δkl

∑
j∈tissue

∑
j′∈tissue

M∑
m=1

Ek
jmEl

j′mḡk
m . (26)

These covariance matrices are diagonal since it is assumed the reconstructed values are statistically independent
from time frame to time frame. The vectors ḡk are the expected values of the projections measured at the kth time
frame, where there are a total of M projection bins and K time frames. The symbol δkl indicates that all elements
of the matrix is zero except along the diagonal, where k = l. Expressions for the derivative matrices Ek at time
frame k are given in Eq. (18).

The errors in the estimated parameters θ̂ obtained by minimizing Eq. (1) are elements of the matrix

cov(θ̂) = Ψ , (27)

where

Ψ−1
ij =

1
2

∂2χ2

∂θi∂θj

∣∣∣∣∣
θi=θ̂i , θj=θ̂j

. (28)

This is the asymptotic covariance estimate [15] similar to that specified for the reconstructed values in Eq. (19).
For dynamic cardiac SPECT, we have

Ψ−1 =
1
2


∂2χ2

∂2k21

∂2χ2

∂k21∂k12

∂2χ2

∂k21∂fv

∂2χ2

∂k12∂k21

∂2χ2

∂2k12

∂2χ2

∂k12∂fv

∂2χ2

∂fv∂k21

∂2χ2

∂fv∂k12

∂2χ2

∂2fv


k21=k̂21 , k12=k̂12 , fv=f̂v

. (29)

Later the appropriateness of this expression is investigated for the noise levels experienced in dynamic cardiac
SPECT.

The explicit expression for χ2 is given by

χ2 =
K∑

k=1

K∑
l=1

βkΦ−1
kl βl − 2

K∑
k=1

K∑
l=1

l∑
t=1

βlΦ−1
lk Hktα

t +
K∑

k=1

K∑
l=1

l∑
t=1

k∑
t′=1

Hltα
tΦ−1

lk Hkt′α
t′ , (30)
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where the matrix Φ, which is not diagonal, is given by

Φkl = δkl

∑
j∈tissue

∑
j′∈tissue

M∑
m=1

Ek
jmEl

j′mḡk
m

+
∑

j∈blood

∑
j′∈blood

M∑
m=1

min(k,l)∑
t=1

HktHltE
t
jmEt

j′mḡt
m

−
∑

j∈blood

∑
j′∈tissue

M∑
m=1

HklE
l
jmEl

j′mḡl
m

−
∑

j∈blood

∑
j′∈tissue

M∑
m=1

HlkE
k
jmEk

j′mḡk
m . (31)

The second order partial derivatives of χ2 with respect to the parameters are calculated numerically in our fitting
program RFIT [9].

III. COMPUTER SIMULATIONS

A. Methods

A dynamic version of the MCAT phantom in Fig. 1 was created for the simulations. Only a single 2D slice of
the phantom was used for the experiment. The dynamic phantom was constructed by summing each organ of the
static phantom using weights derived from the time-activity curves (TACs) shown in Fig. 2 for each time frame. In
this way a series of 2D phantoms was constructed, one for each time frame of the dynamic acquisition. Examples
of activity images for selected time frames are shown in Fig. 3.

The time activity curves shown in Fig. 2 were generated to mimic those seen in patient studies. The myocardium
TAC was constructed with blood as input function, with wash-in rate constant k21 = 0.824 min−1, wash-out rate
constant k12 = 0.150 min−1, and blood fraction fv = 0.150. The background TAC was assumed to be 20% of the
blood TAC.

Projection data were formed by projecting each time frame of the 64×64 pixel dynamic phantom. The pixels
were 7mm×7mm, and the projection bins were 7mm. The simulated projections included the effects of attenuation
and geometric point response, but not scatter. The point response was calculated via ray casting to correspond to a
parallel-hole collimator hexagonal holes of 2 mm diameter and 4 cm length with an offset of 1 cm from the detector.
For each time frame in the dynamic sequence there were 120 projection angles with each projection containing 64
projection bins.

The dynamic sequence consisted of complete tomographic projections formed at 12 intervals of 5s, followed
by 12 intervals of 10s, followed by 8 intervals of 30s followed by 8 intervals of 60s. Five-second intervals were
selected for the initial phase of the dynamic simulation to sufficiently sample the rapid rise in the blood curve.
After a minute, which was the peak of the blood curve, the rate of decrease was approximately half the rate of the
rise of the blood curve. Therefore, at one minute the sampling interval was increased to 10s until three minutes
when the interval was increased to 30s. The sampling intervals were increased from 10s to 30s then from 30s to
60s in accordance with the decrease in the rate of change in the blood and tissue curves. Each dynamic projection
data set was numerically integrated over the active acquisition time for each time frame.

Dynamic sequences were reconstructed using weighted least squares by evaluating f =
[
F T Λ−1

ḡ F
]−1

F T Λ−1
ḡ g in

MATLAB, and by maximizing Γ(f). A precondition conjugate gradient algorithm [16], [17] was used to maximize
Γ(f) and it was assumed to converge if the relative change was below 10−6. This was accomplished usually in
about 100 iterations. The projector F and backprojector F T was ray-driven with line length weighting that modeled
attenuation and geometric response of the collimator as implemented in [18]. The matrix R in Eq. (5) was defined
such that when applied to f it provides a smoothing by penalizing the high frequency components of f in Eq. (5)

fT Rf =
∑

i

∑
j∈Ni , j>i

Rij(fi − fj)2 , (32)

where Rij equals to the reciprocal of the distance between pixel i and pixel j, and Ni contains the eight nearest
neighboring pixels around pixel i.
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(a) (b) (c)
Fig. 1. A 2D slice of the MCAT phantom used in the simulations: (a) attenuator, (b) emission distribution of
blood pool, myocardium, and background, and (c) ROIs in blood and myocardium used in the analysis. The ROIs
are highlighted as the darker region.

The elements of R in each column can be represented by the 3×3 image kernel:

−
√

2/2 −1 −
√

2/2
−1 4 + 2

√
2 −1

−
√

2/2 −1 −
√

2/2
.

This kernel acts very much like a Laplacian which tends to preserve edges while eliminating noise spikes.
Several values of the parameter γ2 were tried. The value of 10 was selected for the reconstruction of the 24th

frame (the final 10 sec frame) and the value for each other frame was scaled to be inversely proportional to the
counts in the frame compared to the counts in the 24th frame. This was done to keep the weighting between the
prior and the likelihood function relatively the same from time frame to time frame as the counts change in the
data due to the simulated wash-in and wash-out of teboroxime from the myocardium. The value of 10 was selected
because it gave reasonable images. The value of the parameter γ2 did not seem to have a significant effect on the
kinetic parameter estimation in our simulations.

Time activity curves were generated from the dynamic reconstructed sequence for the blood region and my-
ocardium region shown in Fig. 1(c). The variance for pixels within the blood and the variance for pixels within
the myocardial region and covariance between blood and myocardium pixels were calculated with MATLAB using
the expression for cov(f̂) given in Eq. (19). The variances for the blood and myocardial ROIs and the covariance
between the blood and myocardial ROI were calculated by appropriately summing the variances and covariances
between pixels in the corresponding ROIs. These data were submitted to RFIT to obtain the weighted least squares
fit for the kinetic parameters.

B. Results

Figure 3 shows the results for the weighted least squares reconstructions (f =
[
F T Λ−1

ḡ F
]−1

F T Λ−1
ḡ g) and MAP

reconstructions obtained by maximizing Γ(f) with and without noise. It is obvious from the results that the MAP
reconstruction considerably suppresses the noise. Also, the MAP reconstruction without noise shows undershoots
around the edge of the myocardium due to the formulation of the prior as a 3×3 smoothing kernel.

Figure 4 shows the variance time sequences for the blood [Eq. (24)] myocardial ROIs [Eq. (26)] time sequence
for the negative of the covariance between blood and myocardial ROIs [Eq. (25)]. The discontinuities in the curves
are the result of changes in the length of the acquisition interval. In Fig. 4 the correlation is mostly due to the
finite system resolution and the smoothing prior. While the variances change significantly over time, the correlation
coefficient remains nearly constant. Because blood fraction is a parameter in the kinetic model, the correlation
between blood and myocardium does not introduce any bias in the parameter estimation.

Figure 5 and Figure 6 give the results of the fit for the time sequences generated from the Bayesian reconstruction
without noise and with noise, respectively. The background curve (lowest curve) illustrates that the reconstructed
values match well with the simulated data. The background region in Fig. 1(b) is all pixels in the tissue cross
section excluding the central myocardial blood and tissue regions.



8

Fig. 2. Time-activity curves used in the simulations: blood input function, extravascular myocardial tissue, and
background tissue. The myocardial curve is based on a one-compartment model with a wash-in rate constant
k21 = 0.824 min−1, wash-out rate constant k12 = 0.0150 min−1, and blood fraction fv = 0.150.

Regularization causes a blurring of blood into the tissue. This is reflected in the increase in fv from the simulated
value of 0.150. The blood fraction increased, thus the tissue fraction has decreased which is reflected by a decrease
in the myocardium curves in Figs. 5 and 6. Notice also because of the negative correlation between blood and
tissue regions, a positive noise increase above the fitted curve corresponds to a negative variation in the tissue curve
and visa versa.

Our previous work [3] gave estimated values and errors for k21 of 0.801±0.325 using weighted least squares
(WLS) and of 0.801±0.370 using least squares (LS) when no physical effects were simulated or modeled in the
reconstruction; and 0.801±0.701 using WLS, and of 0.801±0.721 using LS when attenuation, detector response,
and scatter were simulated and modeled in the reconstruction. Two things we notice: first, with increase modeling
the variance increases, and second, the iterative Bayesian reconstruction provides significant reduction in variance
(see Figs. 5 and 6).

IV. DISCUSSION

We have shown the feasibility of estimating the covariance of time activity curves for MAP reconstruction
algorithms, the ability to obtain weighted least squares estimates of kinetic parameters, and the ability to estimate
uncertainty of the kinetic parameters. The calculation of Φ in χ2 [Eq. (1)] requires the calculation of the matrix
E [Eq. (18)] for each dynamic reconstruction in the dynamic time sequence. For dynamic cardiac SPECT this can
require the inverse of several 4096×4096 matrices. Our original 40 matrix inversions by SVD required 2 CPU hours
on a Cray [3]. Now matrix inversion can be computed in 1 min using row and column operations in MATLAB
on a SGI computer (250Mhz) by reconstructing only nonzero elements. Therefore, efficient estimates of the tissue
kinetic parameters in a dynamic cardiac SPECT study can be obtained with present-day desktop computers.

We found that the prior needed to be properly weighted as the counts changed from image to image. Using a
fixed weighting parameter γ2 caused resolution changes from time frame to time frame resulting in changes in
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1 min 2 min 4 min 8 min
Fig. 3. Sampled Reconstructed Time Sequences. The top row is weighted least squares. The second row is
weighted least squares with noise. The third row is Bayesian reconstruction (100 iterations) without noise. The
last row is Bayesian reconstruction with noise.

the fractional blood volume fv from frame to frame. The approach taken was to keep the derivative in Eq. (8)
relatively constant frame to frame. Comparing the first and second term in Eq. (8) one sees that the first term is
relatively independent of the counts, while the second term varies linearly with the counts in the image. Therefore
the parameter γ2 was selected to be equal to 10 for the 24th frame. For the other frames γ2 was scaled to be
inversely proportional to the counts in the frame compared to the counts in the 24th frame so that the two terms
in Eq. (8) would be of relatively equal weight as the counts change from time frame to time frame.

This is an approximate solution to the problem. Others have developed more sophisticated methods to handle
object dependent resolution [19], [20]. In [19] Qi and Leahy used a spatially variant gamma to achieve uniform
contrast recovery. In [20] Stayman and Fessler, designed anisotropic penalty functions for each pixel location to
achieve isotropic impulse response function. Future work requires the investigation of these approaches to the
application of dynamic cardiac SPECT.

The expression in Eq. (18) is here derived using the fixed-point approach allowing the iteration of the errors to
go to convergence. Fessler [12] derived this same result using implicit derivative. By examination of Eq. (18) one
can see that the inverse term is the second derivative of gamma with respect to the data whereas the outer term
is the first derivative of gamma with respect to the data and the second derivative with respect to the parameter.
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Fig. 4. Variance time sequences for the blood and myocardial ROIs shown in Fig. 1(c) and time sequence for the
covariance between blood and myocardial ROIs. These are based on the theory given in Eq. (24), Eq. (26), and
Eq. (25). The discontinuities in the curves are the result of changes in the acquisition interval. Note, the negative
of the covariance is shown in this plot.

As showed in Fesslers work the same result in Eq. (19) follows naturally by taking the covarianace of the Taylor
series approximation of the reconstruction parameter f as a function of the data.

The optimization problem in Eq. (5) requires that the image values be nonnegative. Throughout our development
we assumed that the image values were positive so that we could obtain an analytical relationship for the error
matrix in Eq. (18). However, to be absolutely correct we need to consider the more general case of the possibility
of f being zero. Therefore, the expression for E in Eq. (18) will be inaccurate in low count regions such as
intraventricular regions at later time points. There is still the need to develop a more general formulation for E
with non negativity constraints.

The methods developed will allow us to better evaluate methodology for dynamic cardiac SPECT imaging. The
effects of physiology and physics of the imaging detection process (input function shape, tissue response, statistics,
timing resolution, attenuation, scatter, geometric response) on the bias and variance of kinetic parameters can be
analyzed at the solution of iterative reconstruction algorithms [21]. Also, the effect of regularization on the bias
and variance of the kinetic parameters can better be evaluated.
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