
A Cell-Centered Adaptive Projection Method

for the Incompressible Navier-Stokes

Equations in Three Dimensions 1

Daniel F. Martin ∗ Phillip Colella Daniel Graves

Lawrence Berkeley National Laboratory, Berkeley, CA

Abstract

We present a method for computing incompressible viscous flows in three dimensions
using block-structured local refinement in both space and time. This method uses a
projection formulation based on a cell-centered approximate projection, combined
with the systematic use of multilevel elliptic solvers to compute increments in the
solution generated at boundaries between refinement levels due to refinement in
time. We use an L0-stable second-order semi-implicit scheme to evaluate the viscous
terms. Results are presented to demonstrate the accuracy and effectiveness of this
approach.
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1 Introduction

Adaptive mesh refinement is a powerful tool for computing solutions to prob-
lems which are otherwise inaccessible due to limits in computational resources.
In a previous work [19], we presented a projection method for two-dimensional
inviscid incompressible flow on adaptive locally refined meshes. The algorithm
in [19] employs refinement in time as well as space (subcycling), and is second-
order accurate in time and space. The cell-centered projection discretization is
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based on composite (multilevel) and single-level operators. Also, an advection-
velocity correction was computed based on a passively advected scalar to en-
sure that the algorithm was approximately freestream-preserving.

In this work, the algorithm presented in [19] is extended to three-dimensional
viscous flow. There have been many approaches to computing adaptive solu-
tions for this problem which have not employed subcycling in time [9,22,23,29],
instead opting to advance all levels with a uniform timestep. Extension of
the non-subcycled schemes to multiphase flows was done in [28], and to the
immersed-boundary method in [15,25]. Almgren et al [1] presented an algo-
rithm for the solution of the three-dimensional incompressible Navier-Stokes
equations which also subcycles in time. As detailed in [1], subcycling results in
better accuracy and AMR performance, at the expense of greater algorithmic
complexity.

The work presented here represents a different set of algorithmic design choices
from those employed in [1], many of which have been chosen to simplify the
eventual extension of this work to Cartesian-mesh embedded-boundary ge-
ometries like those in [11]. Features of the algorithm presented here include:

• Projection discretization. This work employs the cell-centered approx-
imate projection discretization developed in [19] as opposed to the node-
centered discretization employed in [1]. Since cell-centered solvers are al-
ready required for other parts of the algorithm, the cell-centered projection
discretization enables the use of a single set of elliptic solvers and will sub-
stantially lessen the work required to extend this algorithm to embedded
boundary computations and other applications.

• Treatment of viscous terms. Previous semi-implicit methods have used
the Crank-Nicolson scheme to compute the viscous terms in the update.
However, for the discretizations used in this work, we found the neutrally-
stable Crank-Nicolson scheme suffered from weak instabilities at coarse-
fine interfaces, similar to the behavior noticed at embedded boundaries in
[16,20]. To eliminate this problem, we employ a second-order semi-implicit
Runge-Kutta scheme based on the L0-stable scheme in [30].

• Approach to synchronization. Synchronizing the computed solution be-
tween AMR levels for an adaptive projection method requires additional
elliptic solves to ensure that the divergence constraint is satisfied. Also, a
flux-correction step is performed to ensure conservation at coarse-fine in-
terfaces. For stability, this correction is computed in an implicit manner,
requiring an additional elliptic solve during the synchronization step, as in
[13]. Extending the ideas in [19], our approach has been to perform these
as multilevel elliptic solves over all of the appropriate refinement levels. In
contrast, the work in [1] performs synchronizations one pair of levels at a
time using single-level elliptic solves, interpolating corrections to finer levels.

• Re-initialization after regridding. In an AMR computation, refined
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regions can change as the solution evolves. After the mesh hierarchy is
changed, the solution must be re-initialized, Once data is interpolated to fill
newly-refined regions, the velocity field is projected to ensure that the new
velocity field is divergence-free. Also, pressures and the freestream preserva-
tion correction are recomputed. Previous work [1] has simply interpolated
these values from coarser levels where needed.

• Freestream preservation for advective transport. We use the volume
discrepancy approach described in [19] to ensure that freestream preser-
vation is approximately enforced. In contrast, freestream preservation is
maintained exactly in [1] by computing a correction to the advection veloc-
ity field, performing a correction advection step, and then interpolating the
corrections to finer levels.

A basic principle in the design of of this algorithm, as seen in the last three
points above, has been to avoid the interpolation of corrections computed by
elliptic and parabolic solves onto finer levels. While such interpolation can
easily be done to second-order accuracy, the gradients of such interpolated
corrections can be non-smooth with mesh imprinting and interpolation arti-
facts. Instead, we perform multilevel solves to compute corrections over entire
multilevel hierarchies, which results in smooth corrections with smooth gradi-
ents.

1.1 Formulation of the Problem

We are solving the incompressible constant-density Navier-Stokes equations
with a passively-advected scalar Λ, included as an auxiliary quantity for
freestream preservation as in [19]:

∂~u

∂t
+ (~u · ∇)~u = −∇p + ν∆~u (1)

(∇ · ~u) = 0 (2)

~u = 0 on ∂Ω (3)

∂Λ

∂t
+∇ · (~uΛ) = 0, (4)

where ~u is the fluid velocity, p is the pressure, and ν is the kinematic viscosity.

As in [19], we transform the constrained problem (1-2) into an initial value
problem using the Hodge projection. The Hodge projection operator P applied
to a vector field ~w extracts the divergence-free component

P(~w) = ~wd

∇ · ~wd = 0
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and is computed by solving an elliptic equation and then subtracting the
gradient piece of the decomposition:

P(~w) = (I −∇(∆−1)∇·)~w.

Using the projection operator, we transform the constrained problem (1-2)
into an evolution equation:

∂~u

∂t
= P(−(~u · ∇)~u + ν∆~u)

∇ · ~u(·, t = 0) = 0.

1.2 Single-Level Time discretization

On a single level of refinement, our algorithm is a predictor-corrector formu-
lation of the projection method [10] of a form first introduced by Bell, Colella
and Glaz (BCG) [7]. We first compute an intermediate velocity field and then
project it onto the space of vectors which satisfy the divergence constraint. The
intermediate velocity field ~u∗ is computed as an approximation to ~u(t + ∆t):

~u∗ = ~u(t)−∆t
[
(~u · ∇)~u

]H
+ ∆tLHvisc −∆t∇p(t− 1

2
∆t)

LHvisc = ν∆~u(t + 1
2
∆t)

where the superscript H indicates centering at the half time (t + 1
2
∆t). The

updated velocity field is then computed by projecting the intermediate velocity
field onto the space of divergence-free vectors:

~u(t + ∆t) = P(~u∗ + ∆t∇p(t− 1
2
∆t))

∇p(t + 1
2
∆t) =

1

∆t
(I− P)

(
~u∗ + ∆t∇p(t− 1

2
∆t)

)

Note that we project an approximation to ~u+∇p rather than ~u. We have found
this formulation to be better behaved in the presence of local refinement; work
by Almgren, Bell, and Crutchfield [3] supports this choice of formulations.
Updates to the scalar Λ are computed using a conservative unsplit Godunov
method [12,26].

In the original BCG algorithm, the Crank-Nicolson scheme is used to compute
LHvisc. However, Crank-Nicolson is only neutrally stable, and we found that it
led to weak instabilities at coarse-fine interfaces, given the other choices we
made in this algorithm. This behavior was similar to that noted at embedded
boundaries in [16,20]. To eliminate this problem, we found it necessary to
employ a different approach to computing the viscous terms in (1), using the
L0 scheme described in [30].
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We consider a parabolic equation of the form

∂q

∂t
= L(q) + f (5)

where L is a second-order linear elliptic operator. Following [30], we discretize
(5) in time:

qn+1 = (I − µ1L)−1(I − µ2L)−1
[
(I + µ3L)qn + ∆t(I + µ4L)fn+

1
2

]
, (6)

where qn = q(n∆t), fn+
1
2 = f

(
(n + 1

2
)∆t

)
, and the coefficients µ1, µ2, µ3, µ4

are the values suggested in [30]:

µ1 =
2a− 1

a + discr
∆t,

µ2 =
2a− 1

a− discr
∆t,

µ3 = (1− a)∆t,

µ4 = (1
2
− a)∆t

a = 2−
√

2− ε,

discr =
√
a2 − 4a + 2,

where ε is a small quantity (we use 10−8). The treatment of the source term
f presented here differs from that in [30] due to differences in time centering;

the source terms in [30] are centered at the old and new times, while f n+
1
2

in this work is centered at the half-time. We use this to define the operator

LTGA(qn, fn+
1
2 ) as follows:

LTGA(qn, fn+
1
2 )≡ qn+1 − qn

∆t
− fn+

1
2 (7)

≈ (Lq)
(

(n + 1
2
)∆t

)
+ O(∆t2).

where qn+1 = qn+1(qn, fn+
1
2 ) is defined to be the expression (6). In the present

work, we take

LHvisc ≡ LTGAvisc (~un, ~fn+
1
2 ) (8)

~fn+
1
2 = −

[
(~u · ∇)~u

]H −∇p(t− 1
2
∆t)

1.3 AMR Notation

In this work, we use the same notation as in [19]. Following [8], our adap-
tive mesh calculations are performed on a hierarchy of nested, cell-centered
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Fig. 1. Block-structured local refinement. Note that refinement is by an integer
factor and is organized into rectangular patches.

grids (Figure 1). At each AMR level ` = 0, ..., `max, the problem domain is
discretized by a uniform Cartesian mesh Γ` with grid spacing h`. Level 0 is
the coarsest level, while each level `+ 1 is a factor n`ref = h`

h`+1
finer than level

`; the refinement ratio n`ref is an integer. Because refined grids overlay coarser
ones, cells on different levels will represent the same geometric region in space.
We identify cells at different levels which occupy the same geometric regions
by means of the coarsening operator Cr(i, j, k) = (b i

r
c, b j

r
c, bk

r
c). In that case,

{Cr}−1{(i, j, k)} is the set of all cells in a grid r times finer that represent the
same geometric region (in a finite volume sense) as the cell (i, j, k).

In the present work, we assume that the problem domain is a rectangle, and
that the refinement ratios are powers of two. Calculations are performed on
a hierarchy of meshes Ω` ⊂ Γ`, with Ω` ⊃ Cn`

ref
(Ω`+1). Ω` is the union of

rectangular patches (grids) with spacing h`; the block-structured nature of
refinement is used in the implementation to simplify computations on the
hierarchy of meshes. On the coarsest level, Ω0 = Γ0. A cell on a level is either
completely covered by cells at the next finer level, or it is not refined at all.
Since we assume the solution on finer grids is more accurate, we distinguish
between valid and invalid regions on each level. The valid region on a level is
not covered by finer grid cells: Ω`

valid = Ω` − Cn`
ref

(Ω`+1). The invalid region

is made up of cells which are covered by refined regions. The grids on each
level satisfy a proper nesting condition [8]: no cell at level ` + 1 represents a
geometric region adjacent to one represented by a valid cell at level `− 1.

Likewise, Ω`,∗ denotes the cell faces of level ` cells, while Ω`,∗
valid refers to the

cell faces on level ` not covered by level ` + 1 faces. Note that the coarse-
fine interface ∂Ω`+1,∗ between levels ` and ` + 1 is considered to be valid on
level ` + 1, but not on level `. The coarsening operator also extends to faces:
Cn`

ref
(Ω`+1,∗) is the set of level ` faces overlain by level ` + 1 faces.
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Fig. 2. Sample coarse-fine interface with a face-centered vector field. Cell (i,j) (open
circle) is to the right of the coarse-fine interface.

A composite variable is defined on the union of valid regions of all levels.
Since we organize computation on a level-by-level basis, the invalid regions of
each level also contain data, usually an approximation to the valid solution.
A level variable is defined on the entire level Ω` (not just the valid region).
For a cell-centered variable φ, the level variable φ` is defined on all of Ω`; the
composite variable φcomp is defined on the union of valid regions over all levels.
We also define composite and level-based vector fields , which are defined at
normal cell faces. Like other face-centered variables, a composite vector field
~uface,comp is valid on all faces not overlain by finer faces (Fig 2). Likewise, we
define composite and level operators which operate on composite and level
variables, respectively.

Transferring information from finer grids to coarser ones is also necessary.
We define 〈φ`+1〉 as the appropriate cell-centered or face-centered arithmetic
average of level `+ 1 data φ`+1 to the underlying coarser cells or faces in level
`.

Divergence, Flux Registers, and Reflux-Divergence

The operator discretizations employed in this work are identical to those em-
ployed in [19]; a short description of the operators is included here for conve-
nience.

The basic multilevel divergence Dcomp is a cell-centered divergence of a face-
centered vector field. The level-operator divergence D` of a level variable
~uface,` is defined by ignoring any finer levels and computing D` everywhere
in Ω` as if there were no finer level. Since the composite divergence on level
` depends on both level ` and level ` + 1 data [19], it may be written as
Dcomp,`(~uface,`, ~uface,`+1); the level operator only depends on level ` data: D`(~uface,`).
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Assume that the vector field ~uface,` can be extended to all faces in Ω`,∗, in-
cluding those covered by the coarse-fine interface face ∂Ω`+1,∗. The composite
divergence Dcomp~uface,comp on Ω` may then be expressed as the level-operator
divergence D` along with a correction for the effects of the finer level (` + 1).
To do this efficiently, we define a flux register δ~u`+1 defined on Cn`

ref
(∂Ω`+1,∗),

which stores the difference in the face-centered quantity ~uface on the coarse-
fine interface between levels ` and ` + 1. Notationally, δ~u`+1 belongs to the
fine level (`+ 1) because it represents information on ∂Ω`+1,∗. However, it has
coarse-level (`) grid spacing and indexing.

We define the reflux divergence D`
R to be the D` stencil as applied to the

face-centered vectors on the coarse-fine interface with level ` + 1; the general
composite operator can then be expressed as:

(Dcomp,`~uface)i = (D`~uface,`)i + D`
R(δ~u`+1)i, (9)

δ~u`+1 = 〈~uface,`+1〉 − ~uface,` on Cn`
ref

(∂Ω`+1,∗).

For the level ` cell (i), D`
R can be defined as:

D`
R(δ~u`+1)i =

1

h`

∑

p

±(δ~u`)p, (10)

where the sum is over the set of all faces of cell (i) which are also coarse-fine
interfaces with level ` + 1, and the ± is + if the face p is on the high side of
cell (i), and - if p is on the low side. Note that D`

R only affects the set of level
` cells immediately adjacent to the coarse-fine interface with level ` + 1.

Gradient and Coarse-Fine Interpolation

The gradient is a face-centered, centered-difference gradient of a cell-centered
variable φ. Gcompφ is a composite vector field, defined on all valid faces in the
multilevel domain. To compute Gcompφ at a coarse-fine interface, we interpo-
late values for φ using both coarse- and fine-level values. The details of this
interpolation process are discussed in the appendix. We denote this quadratic
coarse-fine interpolation operator as I(φ`, φ`−1):

φ` = I(φ`, φ`−1) on ∂Ω`,∗ (11)

means that ghost cell values for φ on level ` along the coarse-fine interface
with level `− 1 are computed using this interpolation.

The level-operator gradient G` is defined by extending Gcomp (which is only
defined on Ω`,∗

valid) to all faces in Ω`,∗ as if no finer level existed. At interfaces
with a coarser level ` − 1, the interpolation operator I(φ`, φ`−1) is used to
compute ghost cell values.
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The composite gradient on level `, Gcomp,`, is dependent on level ` and coarse-
level (` − 1) data: Gcomp,`(φ`, φ`−1). Likewise, the level-operator gradient can
be written G`(φ`, φ`−1).

Laplacian

The Laplacian is defined as the divergence of the gradient:

Lcompφcomp = DcompGcompφcomp (12)

L`φ` = D`G`φ`. (13)

Away from coarse-fine interfaces and domain boundaries, (12) and (13) re-
duce to the usual seven-point (five-point in 2D) second-order discrete Lapla-
cian. The dependencies of the Laplacian operators may again be expressed
explicitly: Lcomp,`(φ`, φ`+1, φ`−1) and L`(φ`, φ`−1).

Cell-centered Operators

Cell-centered versions of the gradient and divergence operators are defined in
the same way as in [19] using the operators defined above along with cell-to-
face and face-to-cell averaging AvC→F and AvF→C . For example, the compos-
ite cell-centered divergence operator is defined as the composite divergence
applied to a cell-centered vector field which has been averaged from cells to
faces:

DCC,comp~uCC = Dcomp(AvC→F~uCC).

Similarly, the cell-centered gradient is defined by averaging the face-centered
gradient to cell centers:

GCC,compφ = AvF→CGcompφ.

The cell-centered level-operator divergence and gradient operators are defined
similarly:

DCC,`~uCC = D`(AvC→F~uCC)

GCC,`φ = AvF→CG`φ.

2 Multilevel update algorithm

In this section, we present the recursive algorithm used to update the solution
on a single level ` from time t` to time t` + ∆t`. Implied in this advance is the
update of all levels finer than ` and synchronization with them.
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As in [8,19], we organize our update around single-level updates and then
a synchronization step to ensure proper matching between the solutions at
different refinement levels. This can be described as a recursive advance for a
single AMR level ` which advances the solution at levels ` and finer from time
t` to t` + ∆t`. First, the solution on level ` is advanced using a single-level
update from time t` to t` + ∆t`. This update is generally performed using
single-level operators without regard for the solution at finer levels. Once the
single-level update has been completed, the next finer level ` + 1 is advanced
n`ref times with a timestep ∆t`+1 = ∆t`

n`
ref

. Once level `+1 (along with any levels

finer than ` + 1) has been advanced to the time t` + ∆t`, a synchronization

step is performed to ensure proper matching between the solutions at different
refinement levels.

2.1 Variables

We start the level ` advance with the solution at time t`, which includes
the cell-centered velocity field ~u` = (u`, v`, w`)T , the cell-centered freestream
preservation scalar Λ`, and the face-centered freestream preservation correc-
tion ~up from the most recent synchronization step, which has been extended to
the invalid regions on level ` with 〈~u`+1p 〉. We also have the lagged cell-centered

approximation to the pressure π`,n−
1
2 . (Following [19], we have decomposed the

pressure into p = π+e, where π`,n−
1
2 ≈ p`(tn−

1
2 ) is the pressure computed dur-

ing single-level updates and e is a correction computed during synchronization
to ensure that the velocity is divergence-free in a composite-operator sense. )
For notational simplicity, we suppress the time centering of π and henceforth
refer simply to π`.

We also need flux registers to contain coarse-fine matching information. δ ~V `

contains the normal and tangential (to the coarse-fine interface) momentum
fluxes across the coarse-fine interface between level ` and the coarser level
`− 1, while δΛ` contains the fluxes of the advected scalar Λ. A complete list
of the variables used in this algorithm appears in Figure (3).

2.2 Single-level update

The complete recursive algorithm used to advance the level ` solution from
time t` to t` + ∆t` is presented in pseudocode form in Figure 4.

Steps 1, 2, and 3 are very similar to those in [19]. The hyperbolic tracing
scheme predicts face-centered values at the half-time as detailed in the ap-
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~u` (u`, v`, w`) – cell-centered velocity on level `
~uAD face centered advection velocity, centered at half-time

~uhalfG (unprojected) Godunov-predicted face velocities at half-time
~uhalf projected predicted face-centered velocities at the half-time
~u∗,` (unprojected) approximation to cell-centered velocity at new time
Λ` cell-centered freestream-preservation advected scalar
π` half-time-centered cell-centered level pressure
ν kinematic viscosity
eΛ cell-centered freestream preservation correction on level `
~up = GcompeΛ: face-centered correction to ~uAD to maintain freestream preservation
es cell-centered correction from multilevel synchronization projection
φ` cell-centered correction computed by face-centered projection
µ1, µ2, µ3, µ4 parameters for viscous term computation

Dcomp,` composite multilevel divergence, evaluated on level `
Gcomp,` composite multilevel face-centered gradient, evaluated on level `
Lcomp,` composite multilevel Laplacian, evaluated on level `
D` single-level divergence on level `
G` single-level face-centered gradient on level `
L` single-level Laplacian on level `
Lvisc~u discrete viscous operator ≈ ν∆~u
L`visc~u single-level discrete viscous operator νL`~u
DCC,comp,` composite multilevel cell-centered divergence, evaluated on level `
GCC,comp,` composite multilevel cell-centered gradient, evaluated on level `
DCC,` single-level cell-centered divergence on level `
GCC,` single-level cell-centered gradient on level `
D`
R reflux divergence on coarse side of (` + 1)/` interface

δV `, δΛ` hyperbolic flux registers containing flux mismatches along
the `/(`− 1) coarse-fine interface

I(φ`, φ`−1) quadratic coarse-fine interpolation of φ along `/(`− 1) coarse-fine interface
Ω` portion of domain contained in AMR level `
Ω`
valid portion of Ω` not covered by finer levels

∂Ω`,∗ boundary of level `, including coarse-fine interface with level `− 1
t` current time on level `
∆t` timestep on level `
h` mesh spacing on level `
n`ref refinement ratio between levels ` and ` + 1
AvF→C averaging operator from faces to cell centers
AvC→F averaging operator from cell centers to faces
Cr(i, j, k) Coarsening operator (factor of r) for cell (i,j,k).

Fig. 3. List of variables
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NSLevelAdvance(`, t`,∆t`)

Compute advection velocities ~u`AD (1)

Compute advective updates: (2)
Λ`

i
(t` + ∆t`) = Λ`

i
(t`)−∆t`D`(FΛ,`)i

Predict ~uhalf (3)

Compute ~u∗,`
i

= ~u`
i
(t`)−∆t[(~u · ∇)~u]

n+
1
2

i
−∆tGCC,`π` −∆t[Lvisc~u]TGA (4)

Update advective and velocity flux registers: (5)
if (` < `max) then

δV`+1
i = −~uAD,`i ~uhalf,` − (F TGA

i )` on C
n
`
ref

(∂Ω`+1,∗)

δΛ`+1
i = −~uAD,`i Λhalf,` on C

n
`
ref

(∂Ω`+1,∗)

end if
if (` > 0) then

δV`
i = δV`

i + 1

n`−1
ref

〈~uAD,`i ~uhalf,`〉 + 1

n`−1
ref

〈
(F TGA

i )`
〉

on C
n
`−1
ref

(∂Ω`,∗)

δΛ`
i = δΛ`

i + 1

n`−1
ref

〈~uAD,`i Λhalf,`〉 on C
n
`−1
ref

(∂Ω`,∗)

end if

Level Project ~u∗,` → ~u`(t` + ∆t`) : (6)
Remove old ∇π: ~u∗,` := ~u∗,` + ∆tGCC,`π`

Solve L`π` = 1
∆t`

DCC,`~u∗,`

~u`(t` + ∆t`) = ~u∗,` −∆t`GCC,`π`

if (` < `max) (7)
∆t`+1 = 1

n`
ref

∆t`

for n = 0, n`ref − 1
NSLevelAdvance(` + 1, t` + n∆t`+1,∆t`+1)

end for

if ((t` + ∆t`) < (t`−1 + ∆t`−1)) Synchronize(`, t` + ∆t`,∆t`) (8)
end if

end NSLevelAdvance

Fig. 4. Recursive level time step for the incompressible Navier-Stokes equations.
Numbers refer to algorithmic items in section 2.2

pendix in [19], implementing the 3-dimensional transverse predictor as de-
scribed in [26] and the stable treatment of source terms described in [21].

(1) Compute advection velocities We predict a set of upwinded face-
centered velocities ~uhalfG at time t` + 1

2
∆t`, using the hyperbolic tracing

scheme. The source term used in the predictor step is S = L`
visc~u

`(t`),
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where L`visc is the level-operator form of the diffusion operator Lvisc.
These velocities are then projected using the face-centered projection

to compute a set of divergence-free face-centered velocities at the inter-
mediate time t`+ 1

2
∆t`. First, we perform an elliptic solve for a correction:

L`φ = D`~uhalfG . (14)

If ` > 0, coarse-fine boundary conditions for the solve are quadratic
interpolation with the level pressure π:

φ` = I(φ`, 1
2
∆tπ`−1). (15)

Domain boundary conditions are the standard projection boundary con-
ditions (∂φ

∂n
= 0 at solid wall boundaries) [14]. Then the face-centered

velocity field is corrected:

~uhalf,` = ~uhalfG −G`φ`. (16)

Coarse-fine boundary conditions for computing G`φ` are given by (15).
To correct for freestream preservation errors, the freestream preserva-

tion correction ~up is added to create a set of advection velocities:

~u`AD = ~uhalf,` + ~u`p (17)

(2) Update Λ The scalar update scheme is unchanged from [19]; upwinded
face-centered values at the half time Λhalf are predicted using the hyper-
bolic tracing scheme, which are then used with the advection velocities
to compute a conservative scalar update. As in [19], the update equation
used is

Λ`(t` + ∆t`) = Λ` −∆t`D`(~u`ADΛhalf,`). (18)

(3) Predict transverse ~uhalf and [(~u · ∇)~u]half,` Using the advection ve-
locities ~u`AD, the transverse components of the staggered-grid ~uhalf are
computed (the normal components of ~uhalf were computed in step (1) )
using the hyperbolic tracing scheme and are corrected using the projec-
tion correction computed in (1), as in [19]. At this point, the nonlinear
advection term is computed as follows:

[(~u · ∇)~u]half,` = AvF→C(~u`AD) · (G`~uhalf,`). (19)

Following [19], the nonlinear advection terms are computed using an ad-
vective form rather than the conservative form because the freestream
preservation correction to the advection velocities produces an advection
velocity field which is not discretely divergence-free.

(4) Compute ~u∗ (evaluate viscous terms) The viscous terms are evalu-
ated semi-implicitly and the intermediate velocity ~u∗,` is computed using
the method described in Section 1.2. The update proceeds as follows:
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(a) Compute diffused source term

~f ∗ = −[(~u · ∇)~u]n+
1
2
,` −GCC,`π` (20)

~f = ∆t`(I + µ`4L
`
visc)

~f ∗, (21)

where coarse-fine boundary conditions for the computation of ~f ` are
given by higher-order extrapolation of ~f ∗ normal to the coarse-fine
interface. Physical boundary conditions for the computation of ~f ` are
the same as the viscous boundary conditions on velocity (homoge-
neous Dirichlet for solid walls).

(b) Intermediate solve

Then, an intermediate solve is performed for ~u`e:

(I − µ`2L
`
visc)~u

`
e = (I + µ`3L

`
visc)~u

`(t`) + ~f. (22)

Coarse-fine boundary conditions for ~u`e are quadratic interpolation
with the coarse-level velocity linearly interpolated in time:

~u`e = I(~u`e, ~u
`−1(t` + (∆t` − µ`1)). (23)

(c) Solve for ~u∗

A second solve is then performed for the intermediate velocity ~u∗:

(I − µ`1L
`
visc)~u

∗,` = ~u`e, (24)

with coarse-fine boundary conditions (if required):

~u∗,` = I(~u∗,`, ~u`−1(t` + ∆t`)). (25)

(5) Initialize/update momentum and advective flux registers Once
the updates have been completed, the flux registers may be updated to
contain the mismatches between the coarse- and fine-level fluxes along
coarse-fine interfaces: We define the viscous flux ~F TGA:

~F TGA,` =
ν

∆t
G`

(
µ1~u

∗,` + µ2~u
`
e + µ3~u

`(t`) + ∆t`µ4 ~f
∗,`

)
, (26)

For faces with normals in the ith direction,
• if (` < `max)

δ~V `+1
i :=−~u`AD,i~uhalf,` − F TGA,`

i

δΛ`+1
i :=−~u`AD,iΛhalf,`
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• if (` > 0)

δ~V `
i := δ~V `

i +
1

n`−1ref

〈
~u`AD,i~u

half,` + F TGA,`
i

〉

δΛ`
i := δΛ`

i −
1

n`−1ref

〈~u`AD,iΛhalf,`〉

where ~u`AD,i is the component of ~u`AD in the ith component direction.
(6) Project ~u∗,` → ~u`(t` + ∆t`) In the same way as in [19], the cell-

centered level-operator projection P
CC,` is applied to the intermediate

velocity field ~u∗,`. First, solve for the approximation to the pressure
π`new = π`(t` + 1

2
∆t`). Note that the pressure gradient GCC,`π`old, included

in the computation of ~u∗,` in step (4), is removed before projecting:

L`π`new =
1

∆t
DCC,`

(
~u∗,` + ∆t`GCC,`π`old

)
. (27)

If ` > 0, then coarse-fine boundary conditions are required both for
DCC,` and LCC,`. The coarse-fine boundary condition used to compute
the source term for the projection is quadratic interpolation:

~u∗,` = I(~u∗,`, ~u`−1 + ∆t`G`−1π`−1). (28)

Note that this coarse-fine boundary condition differs from that used for
the single-level projection in [19] (which was an extrapolation of ~u∗,` at the
coarse-fine interface). It was found that using this quadratic interpolation
boundary condition provided better matching at the coarse-fine interface
for viscous flows, which in turn results in a smaller correction when the
multilevel projection is applied during the synchronization phase. The
coarse-fine boundary condition used for π` in the elliptic solve is:

π` = I(π`, π`−1). (29)

Then, the velocity field is corrected:

~u`(t` + ∆t`) = (~u∗,` + ∆t`GCC,`π`old −∆t`GCC,`π`new) (30)

(7) Recursive update of finer levels
If a finer level `+1 exists, it is then updated n`ref times with a timestep of
∆t`+1 = 1

n`
ref

∆t`. This brings all levels finer than level ` to time t` + ∆t`.

(8) Synchronize with Finer Levels
If a finer level `+1 exists, we now synchronize level ` with all finer levels,
as described in the next section.
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Synchronize(`base, t
sync,∆tsync)

Refluxing: (1)
for ` = `max − 1, `base,−1

Λ`(tsync) := Λ`(tsync)−∆t`D`
R(δΛ`+1)

end for
Solve (I −∆t`baseLcompvisc )δ~u = −∆t`D`

R(δV`+1) for ` ≥ `base
~u`(tsync) := ~u`(tsync) + δ~u

Apply Synchronization Projection: (2)
Solve Lcompes = DCC,comp~u(tsync) for ` ≥ `base

e`base
s = I(e`base

s , ∆tsync

∆tsync,(`base−1) e
`base−1
s )

~u(tsync) := ~u(tsync)−∆tsyncGCC,compes for ` ≥ `base

Freestream Preservation Solve: (3)

Solve LcompeΛ = (Λ(tsync)−1)
∆tsync η for ` ≥ `base

e`base
Λ = I(e`base

Λ , e`base−1
Λ )

~up = GcompeΛ

Average finer solution onto coarser levels: (4)
for ` = `max − 1, `base,−1

~u`(tsync) = 〈~u`+1(tsync)〉 on C
n
`
ref

(Ω`+1)

Λ`(tsync) = 〈Λ`+1(tsync)〉 on C
n
`
ref

(Ω`+1)

end for
end Synchronize

Fig. 5. Synchronization for incompressible Navier-Stokes equations. Numbers refer
to algorithmic items in section 2.3.

2.3 Synchronization

Synchronization is an essentially multilevel operation which ties together the
different AMR levels after they have been advanced independently of each
other. For this reason, synchronization operations are applied to all levels
which have reached the synchronization time tsync simultaneously. We denote
the coarsest level which has reached tsync as `base. For example, in a compu-
tation with a finest refinement level of 3, the first synchronization operations
will be performed when levels 2 and 3 reach the same time. Then, as the
nested advance proceeds, eventually levels 1, 2, and 3 will reach the same
time tsync; at that point, the synchronization will be performed over all levels
` ≥ `base, where `base is 1. A pseudocode representation of the synchronization
operations is presented in Figure 5.

(1) Refluxing Flux mismatches stored in the flux registers δ~V and δΛ are
used to correct the solution along the coarse side of coarse-fine interfaces.
For the non-diffusive scalar Λ, we apply the correction explicitly, as in
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[19]:
Λ` = Λ` −∆t`D`

R(δΛ`+1) for ` ≥ `base. (31)

The hyperbolic flux corrections, when used in conjunction with the
upwind predictor step for computing the edge-centered values, serve the
purpose of applying the appropriate local inflow / outflow boundary con-
ditions for the advection operator. This is true even for velocity advection,
even though it is not differenced in conservation form. Since the velocity
flux correction contains diffusive fluxes, stability considerations require
that we apply this correction implicitly. We first solve a Helmholtz equa-
tion for a correction:

(I −∆t`baseLcompvisc )δ~u = ∆t`DR(δ~V `+1) for ` ≥ `base (32)

At physical boundaries, the correction δ~u satisfies the homogeneous form
of the viscous boundary conditions for the velocity. If the base level has
a coarse-fine interface with level (`base − 1), the coarse-fine boundary
condition for δ~u is quadratic interpolation with 0’s on the coarser level
(`base − 1):

δ~u`base = I(δ~u`base , 0`base−1).

Then, the correction is added to the velocity field

~u` := ~u` + δ~u` for ` ≥ `base. (33)

(2) Apply multilevel projection To ensure that the velocity field is divergence-
free in a composite sense, we apply a composite projection during syn-
chronization, as in [19]. We solve a multilevel Poisson equation for the
correction:

Lcompes = DCC,comp~ucomp for ` ≥ `base. (34)

If `base > 0, coarse-fine boundary conditions are required. When com-
puting DCC,comp~ucomp, the coarse-fine boundary condition is quadratic
interpolation with the coarser-level velocity field, linearly interpolated in
time to tsync:

~u`base = I(~u`base , ~u(`base−1)(tsync)).

The coarse-fine boundary condition for the elliptic solve is

e`bases = I(e`bases ,
∆tsync

∆tsync,(`base−1)
e`base−1s ), (35)

where ∆tsync,(`base−1) is the ∆tsync used during the computation of e(`base−1)s .
Once the correction has been computed, the velocity field is corrected:

~u` := ~u` −GCC,compe`s for ` ≥ `base. (36)

If `base > 0, the coarse-fine boundary condition for computing the gradient
is given by (35). Physical boundary conditions for the correction es and
its gradient are the homogeneous form of those used for the single-level
projection. [19]
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(3) Compute freestream preservation correction The computation of
the freestream preservation correction is unchanged from that presented
in [19] and is presented again here for convenience. An elliptic equation
is first solved for the potential

LcompeΛ = η
(Λ− 1)

∆t`base
for ` ≥ `base. (37)

If required, the coarse-fine boundary condition is quadratic interpolation:

e`baseΛ = I(e`baseΛ , e`base−1Λ ). (38)

Then, a face-centered correction to the advection velocities is computed:

~up = GcompeΛ for ` ≥ `base. (39)

Coarse-fine boundary conditions for the gradient are given by (38).
(4) Average fine solution onto coarser grids Finally, all quantities on

covered regions, including the face-centered ~up, are replaced by the aver-
age of the overlying fine-grid solutions.

2.4 Initialization

At the beginning of a computation, an initial velocity field is specified. After a
regridding operation, variables on any newly refined mesh are filled by inter-
polating the underlying coarse-cell values, while any regions which have been
de-refined from a finer mesh are filled with averaged fine-level values. Once this
has been done, a set of initialization operations is performed to ensure that
the new velocity field is divergence-free and to initialize the lagged variables
π and eΛ (along with ~up), which are required for the single-level updates.

While re-initializing π results in a post-regridding initialization which is more
computationally expensive, it is done because the existing pressures are cen-
tered at different temporal locations. Interpolating these would result in mis-
matched temporal errors in the pressure which would result in O(1) errors
in the pressure gradient. Also, recomputing the pressure prevents interpola-
tion artifacts from appearing in the pressure gradients. The velocity field is
re-projected to prevent artifacts of the interpolation from appearing in the
divergence; we have observed such artifacts to be significantly larger than the
divergence resulting from the approximateness of the projection.

A pseudocode description of the initialization procedure appears in Figure
6. For initialization, `base is the finest unchanged level (at the initial time,
`base = −1). ∆t`base is the most recent time step for level `base.
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Initialize(`base, t
init)

Project velocity field: (1)
Solve Lcompφ = Dcomp~u for ` > `base
Apply correction: ~u` := ~u` −Gcompφ for ` > `base

Initialize ~up: (2)

Solve LcompeΛ = (Λ(tinit)−1)

∆t`base
η for ` ≥ `base

e`base
Λ = I(e`base

Λ , 0`base−1)
~up = GcompeΛ

Initialize π: (3)
π` = 0 for ` > `base
for n = 1, npasses

∆̃t = 1
2
∆t`max

for ` = `base, `max
Compute ~̃u∗,` as in normal timestep

Remove ∇π from ~̃u∗,`: ~̃u∗,` := ~̃u∗,` + ∆̃tGCC,`π`

Solve L`π` = DCC,`~u∗,`

Correct ~̃u`: ~̃u`(t` + ∆̃t) = ~̃u∗,` − ∆̃tπ`

end for
end for

end Initialize

Fig. 6. Initialization for incompressible Navier-Stokes equations. Numbers refer to
algorithmic items in section 2.4

(1) Project Velocity field To ensure that the velocity field satisfies the
divergence constraint, a multilevel projection is applied to the velocity
field for all levels finer than `base. No correction is applied to the velocity
field on `base. If `base is greater than -1, the coarse-fine boundary condition
for the elliptic solve is a homogeneous quadratic coarse-fine interpolation
with zeroes in the coarse grid cells:

φ`base+1 = I(φ`base+1, 0`base). (40)

(2) Initialize Freestream Preservation Correction While the freestream
preservation correction ~up is simply initialized to 0 at the start of the
computation, it must be re-computed after regridding. First, an elliptic
equation is solved for the potential eΛ:

LcompeΛ =
Λ(tinit)− 1

∆t`base
η for ` ≥ `base. (41)

If `base > 0, then the coarse-fine boundary condition for eΛ in the elliptic
solve is homogeneous quadratic interpolation:

e`baseΛ = I(e`base , 0`base−1). (42)
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The face-centered freestream-preservation correction is then given by:

~up = GcompeΛ. (43)

Coarse-fine boundary conditions on eΛ when computing ~up are also given
by (42).

(3) Initialize π During the single-level update, computation of the interme-
diate velocity field ~u∗ uses the lagged level pressure π`(t`− 1

2
∆t`). During

the initialization step, we compute an approximation to the single-level
pressure. To initialize π, simplified non-subcycled single-level timesteps
are performed for all levels for which π must be initialized. The timestep
used for this initialization step is half the timestep computed for the
finest level in the AMR hierarchy (∆̃t = 1

2
∆t`max). Since there is no ex-

isting estimate of π when performing the velocity predictor and viscous
updates, the pressure gradient terms are not included for these steps. If
a more-accurate estimate of π is required, then a second iteration of the
initialization timesteps may be performed. In practice, we have found one
iteration to be sufficient to compute an adequate estimate for π.

First, we compute ~̃u∗ as in a normal timestep, using the pressure gra-
dient term if it is available. All of the coarse-fine boundary conditions for
the initialization timesteps are the same as are used in a regular advance.

We then project ~̃u∗ to compute π, solving

L`π` =
1

∆̃t
DCC,`(ũ∗) (44)

π` = I(π`, π`−1).

Finally, ~̃u∗ is corrected for use as a boundary condition for initializing
any finer levels:

~̃u`(t` + ∆̃t) := ~̃u∗ − ∆̃tGCC,`π`. (45)

3 Results

Ideally, we would like to show that the method described here is second-
order accurate. Unfortunately, in the absence of exact solutions to the 3D
incompressible Navier-Stokes equations, the standard method for doing this
based on Richardson error estimation is not practical in the presence of time-
dependent grid hierarchies. Instead, we investigate this indirectly, by compar-
ing a Richardson-type error estimate for our adaptive method to the same
error estimate for our second-order accurate method on a uniform-mesh so-
lution with the equivalent finest-grid resolution. In addition, we show that
the use of local refinement for appropriate problems results in significant sav-
ings in computational time and/or memory when compared to the equivalent
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Fig. 7. Vortex ring test problem. Yellow vorticity isosurface depicts location of vortex
ring, green lines depict streamlines, blue box is example of refined region. Black box
depicts computational domain.

uniform-mesh solution. Finally, we show results of a calculation of vortex ring
merger that demonstrates the robustness of the method on a more complicated
problem.

3.1 Convergence and Accuracy

To demonstrate the convergence and accuracy of this approach, we use a single
vortex ring in a unit cube domain. We use periodic boundary conditions in
the z−direction and no-shear boundaries in the x− and y− directions. The
vorticity distribution is specified, and the initial velocity is then computed
based on the initial vorticity field. Each vortex ring is specified by the center
of the vortex ring (x0, y0, z0), the radius of the center of the local cross-section
of the ring from the center of the vortex ring r, and the strength of the vortex
ring Γ.

The cross-sectional vorticity distribution in the vortex ring is given by

ω(ρ) =
Γ

aσ2
e(
−ρ

σ
)3 (46)

where ρ is the local distance from the center of the ring cross-section, a =
2268.85, and σ = 0.0275. The vortex ring is centered at (x0, y0, z0) = (0.5, 0.5, 0.4),
with a radius of 0.2, and strength Γ of 1.5. This test problem is depicted in
Figure 7.

The solution is then advanced to a solution time of 0.06, with a fixed timestep
(∆t = 9.375 × 10−4 for the 5123 uniform mesh solution, double that for the
2563 uniform mesh, and so on).
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Since there is no analytic solution to this problem, the standard approach to
estimate the rate of convergence would be to perform Richardson error esti-
mation, in which one computes the solution on a succession of grid resolutions
and estimates the error as the difference between successive resolutions. This
approach was used in [1] by computing solutions on fixed AMR hierarchies
which are refinements of each other, but this has the unfortunate effect of
ignoring possible errors due to regridding, and generalizing this approach to
time-varying grids would be extremely complicated. Instead, we have taken
the indirect approach of computing an estimate of the error by comparing
the solution to that computed on a uniform 5123 mesh. One cannot use these
errors directly to compute the order of accuracy. Such a calculation depends
on knowing that the coefficient in front of the leading order error term is the
same for all of the calculations being compared, which is not the case here.
Instead, we first demonstrate that the single-level scheme is second-order accu-
rate in space and time using the standard Richardson extrapolation approach
of comparing pairs of solutions to compute errors. Then, we compute errors
compared to the uniform fine-grid solution to demonstrate that the AMR so-
lutions achieve similar errors (and hence similar convergence) as the uniform
mesh solutions with the equivalent finest resolution.

The L2 and ÃL∞ norms of error in the x−velocity are shown in Tables 1 and
2, respectively (solution errors for y− and z− velocities are similar). The left
column indicates the number of cells on one side of the coarsest domain (so the
1
h0

= 16 is a 163 computation). As expected, the single-level solutions converge
at second-order rates, except for the coarsest cases, which are not well-resolved
enough to be in the asymptotic regime. Comparing the errors for equivalent
resolutions demonstrates the effectiveness and accuracy of the local refinement.
For example, the error for the 1283 single-level case should be compared with
the 643 nref = 2 case, the 323 nref = 4 case, and the 323 nref = (2, 2) case.
The nref = (2, 2) case refers to 2 levels of refinement, each with a factor of
2 refinement, which results in the equivalent resolution as a single nref = 4
refinement. This case is included to demonstrate that the subcycled algorithm
maintains its accuracy in the case with more than one level of refinement, and
is a good indication that the synchronization step is correct for the case where
`base is greater than 0. In all cases, we note that the AMR solutions achieve
the accuracy of the equivalent uniform mesh computations.

3.2 Computational performance

To demonstrate the performance of the AMR algorithm, we measured the
runtimes and total number of cells advanced (a rough indicator of memory
usage) for the vortex-ring example for a single-level 2563 computation, along
with AMR computations with equivalent resolution. To make the performance
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1
h0

single-level rate single-level nref = 2 nref = 4 nref = (2, 2)

Richardson 512 difference

16 1.51e-04 – 1.66e-04 5.195e-05 1.22e-05 1.05e-05

32 4.21e-05 1.84 5.01e-05 1.05e-05 2.70e-06 2.87e-06

64 7.90e-06 2.41 1.01e-05 2.48e-06 7.02e-07 6.60e-7

128 1.87e-06 2.08 2.32e-06 5.64e-07 – –

256 4.58e-07 2.03 4.58e-07 – – –

Table 1
L2 Convergence of x−velocity for single-vortex test problem. “Single-level Richard-
son” errors are computed by comparing uniform mesh computations which differ
in resolution by a factor of 2. “Single-level 512 difference” errors are computed by
comparing to a uniform fine (5123) solution. AMR errors are computed using the
“512 difference” approach.

1
h0

single-level rate single-level nref = 2 nref = 4 nref = (2, 2)

Richardson 512 difference

16 1.65e-03 – 1.88e-03 9.34e-04 2.12e-04 2.14e-04

32 8.07e-04 1.04 9.55e-04 2.14e-04 5.15e-05 5.14e-05

64 1.72e-04 2.23 2.14e-04 5.12e-05 1.09e-05 9.91e-06

128 4.21e-05 2.03 5.16e-05 1.29e-05 – –

256 9.86e-06 2.09 9.86e-06 – – –

Table 2
L∞ Convergence of x−velocity for single-vortex test problem

effects of AMR clear, we then normalized the runtimes and cell counts by the
single-level numbers, as shown in Table 3. In this figure, the refinement ratio
of zero corresponds to a single-level 2563 run, while the refinement ratio of
2 is a 1283 base grid with one level of refinement with a refinement ratio of
2, etc. The difference between the timing line and the cell-count line in this
case represents the overhead of adaptivity (regridding, synchronization, etc).
Both the nref = 2 and nref = 4 AMR computations show significant savings
both in computational time and memory usage due to the use of adaptivity.
Note that while the total number of cells advanced for nref = 4 is only slightly
smaller than the number of cells advanced for nref = 2, the execution time
is noticeably smaller. While approximately the same amount of work is done
performing the fine-level updates, there are only half as many synchroniza-
tion steps as the nref = 2 case. This agrees with the results presented in [1],
and suggests that refinement ratios of 4 are to be preferred wherever possible.
While it might be tempting to infer that the additional cost of synchroniza-
tion makes the additional complexity of refinement in time less worthwhile,
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number of CPU time normalized normalized

nref cells advanced (seconds) cells advanced CPU time

0 536870912 23664 1.0 1.0

2 45547520 8661 0.0848 0.366

4 24346624 1571 0.0454 0.0664

Table 3
AMR performance for single vortex ring problem. Refinement ratio of 0 is the non-
AMR (single-level) case. Normalized values are relative to the single-level case. CPU
seconds are on an 1.8 gHz Opteron using GNU compilers and a Linux operating
system.

the additional efficiency resulting from subcycling (especially in the case of
very deep AMR hierarchies) outweighs the additional overhead due to the
synchronization step. This point was made in a fairly compelling way in [1].

3.3 Vortex Merger example

To demonstrate that the algorithm is robust enough to handle more complex
problems, we also computed an adaptive solution for a viscous vortex ring
merger problem, similar to the ones studied computationally in [2,4,17] and
experimentally in [5,18]. The initial conditions are two vortex rings which are
angled toward each other by an inclination angle φ from horizontal. The vortex
rings are each initialized with a solid vorticity core, with ω = ωinterior inside
the vortex ring, and ω = 0 outside. The parameters used for this example are:

ωinterior = 300.0

r = 0.02

R = 0.1

φ1 =
π

9
, ~x1 = (0.5, 0.625.0.5)

φ2 =
−π
9
, ~x2 = (0.5, 0.375, 0.5)

where r is the cross-sectional radius of the vortex ring core, and R is the radius
of the vortex ring around its center. ~x1 and ~x2 and φ1 and φ2 are the centers
and inclinations of the two vortex rings. The viscosity ν is 0.001.

The problem was run in a unit cube with a 643 base mesh with 2 levels
of refinement using nref = 4. Refinement is added wherever the undivided

vorticity magnitude (h` ∗ (ω2x +ω2y +ω2z)
1
2 ) is greater than 0.0625. Evolution of

an isosurface of the vorticity magnitude is shown in Figure 8. As can be seen,
the two vortices merge in a fairly complicated way, with the refined regions
smoothly following the vortical structures as they evolve.
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(a) t = 0 (b) t = 0.1347687

(c) t = 0.2114612 (d) t = 0.2889325

Fig. 8. Vortex merger problem – isosurface of |ω| = 50 (a) at initial time, (b) after
60 timesteps, (c) after 90 timesteps, and (d) after 120 timesteps. Black lines depict
streamlines, green boxes are level 1 grids, and blue boxes are level 2 grids. Note
that for clarity the grid boxes are only shown in the rear half of the domain.

To better see the structure of the merging vortices, we show the log10 of the
vorticity magnitude in a slice through the x = 0.505 plane in figure 9; a closeup
of the center as the vortex rings merge is shown in Figure 10, which demon-
strates the how the vortex ring cores are deformed by differential shearing and
vorticity diffusion. As the flow progresses, sheets of vorticity (seen in cross-
section as narrow strips) are stripped from the central vortex cores and are
then wrapped around and transported away. A longer-term evolution is shown
in Figure 11, which shows the role of vortex stretching in the formation of the
longer-term vortical structures in the flow.
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(a) t = 0 (b) t = 0.01083

(c) t = 0.02258 (d) t = 0.03463

(e) t = 0.04688 (f) t = 0.05946

Fig. 9. Vortex merger problem – slice at x = 0.505 showing log10|ω| at (a) initial
time and after (b) 5 timesteps, (c) 10 timesteps, (d) 15 timesteps, (e) 20 timesteps,
and (f) 25 timesteps. Colormap scale is from 0.5 to 2.0.
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(a) t = 0.02258 (b) t = 0.02740

(c) t = 0.02322 (d) t = 0.03706

(e) t = 0.04198 (f) t = 0.04688

Fig. 10. Vortex merger problem – slice at x = 0.505 showing log10|ω| after (a) 10
timesteps (b) 12 timesteps, (c) 14 timesteps, (d) 16 timesteps, (3) 18 timesteps, and
(f) 20 timesteps. Colormap scale is from 0.5 to 2.0.
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(a) t = 0 (b) t = 0.07217

(c) t = 0.13487 (d) t = 0.21157

(e) t = 0.28906 (f) t = 0.37270

Fig. 11. Vortex merger problem – slice at x = 0.505 showing log10|ω| at (a) initial
time and after (b) 30 timesteps, (c) 60 timesteps, (d) 90 timesteps, (e) 120 timesteps,
and (f) 150 timesteps. Colormap scale is from 0.5 to 2.0.
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4 Conclusions

In this work, an algorithm was presented to compute solutions to the in-
compressible Navier-Stokes equations with local refinement in time and space
using a cell-centered discretization of the projection operator. Other key inno-
vations differentiating this work from past work are the use of fully multilevel
elliptic solves for synchronization and the use of an L0-stable semi-implicit
scheme (rather than Crank-Nicolson) to discretize the diffusive terms. We
have demonstrated second-order convergence of the method, as well as the
computational efficiencies enabled by the use of AMR.

This work will be extended in several directions. Extension to flows with vari-
able properties, which will also entail the implementation of tensor solvers
for the diffusion terms, is one such direction. Also, we plan to extend the
ideas in this work to computing flows in complex geometries, using the em-
bedded boundary approach [11]. Another possible direction would be the im-
plementation of higher-order finite-volume schemes, such as those found in
[6]. In general, we foresee application of these ideas to other coupled elliptic-
parabolic-hyperbolic systems, such as those found in porous media flows [24]
and non-ideal MHD [27].

A Quadratic Coarse-Fine Boundary Interpolation

This interpolation scheme is motivated by the requirement to construct con-
sistent discretizations of second-order operators. Given the fine- and coarse-
level variables ϕf and ϕc,valid, we compute a single-level vector field ~Gf =
(Gf

0 , . . . G
f
D−1) that approximates the gradient to sufficient accuracy so that,

its divergence is at least an O(h) approximation to the Laplacian. For each
Ωf,k ∈ R(Ωf ), we construct an extension ϕ̃ of ϕf .

ϕ̃ :Ω̃f
k → R

m

Ω̃f
k = ( ∪

±=+,−

D−1∪
d=0

Ωf
k ± e

d) ∩ Γf .

Then, for each i + 1
2
e
d such that both i, i + e

d ∈ Ω̃f
k , we can compute a

centered-difference approximation to the gradient on a staggered grid

Gf

d,i+
1
2

ed
=

1

hf
(ϕ̃i+ed − ϕ̃i).

For this estimate of the gradient to be accurate to O(h2), it is necessary to
compute an O(h3) extension of ϕf . On Ω̃f

k ∩Ωf , the values for ϕ̃ will be given
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by ϕ̃i = ϕf
i
. The values for the remaining points in Ω̃f

k − Ωf will be obtained
by interpolating using ϕf and ϕc.

To perform this interpolation, we first observe that given i ∈ Ω̃f
k − Ωf , there

is a unique choice of ± and d, such that i ∓ e
d ∈ Ωf

k . Having specified that
choice, the interpolant is constructed in two steps (figure A.1).

(i) Interpolation in directions orthogonal to e
d. We compute

x =
i + 1

2
u

nref
− (ic + 1

2
u)

where i
c = Cnref (i). The real-valued vector x is the displacement of the cell

center i on the fine grid from the cell center at i
c on the coarse grid, scaled

by hc.

ϕ̂i = ϕc
i
c+

∑

d′ 6=d

[(
xd′(D

1,d′ϕc)i
c+1

2
(xd′)

2(D2,d′ϕc)i
c

)
+

∑

d′′ 6=d,d′′ 6=d′
xd′xd′′(D

d′d′′ϕc)i
c

]

The second sum has only one term if D = 3, and no terms if D = 2.

(ii) Interpolation in the normal direction.

ϕ̃i = IBq (ϕf , ϕc,valid) ≡ 4a + 2b + c , x̃d = xd − 1
2
(nref + 3)

where a, b, c are computed to interpolate between the collinear data

((i± 1
2
(nlref − 1)ed)h, ϕ̂i),

((i∓ e
d)h, ϕl

i∓ed
),

((i∓ 2e
d)h, ϕl

i∓2ed)

In (i), the quantities D1,d′ϕc, D2,d′ϕc and Dd′d′′ϕc are difference approximations
to ∂

∂xd′
, ∂2

∂x2
d′

, and ∂2

∂xd′∂xd′′
, respectively. D1,dϕ must be accurate to O(h2), while

the other two quantities need only be O(h). Only values in Ωc
valid are used to

compute these difference approximations. For D1,d′ϕ and D2,d′ϕ, we use 3-
point stencils, centered if possible, or shifted as required to consist of points
on Ωc

valid.

(D1,d′ϕ)i =





1
2
(ϕc

i+ed
′ − ϕc

i−ed
′ ) if both i± e

d′ ∈ Ωc
valid

±3
2
(ϕc

i±ed
′ − ϕc

i
)∓ 1

2
(ϕc

i±2ed
′ − ϕc

i±ed
′ ) if i± e

d′ ∈ Ωc
valid, i∓ e

d′ 6∈ Ωc
valid

0 otherwise
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x x

x x

xx x x x

x xx

Fig. A.1. Interpolation at a coarse-fine interface. Left stencil is the usual stencil.
Right stencil is the modified interpolation stencil; since the upper coarse cell is cov-
ered by a fine grid, use shifted coarse grid stencil (open circles) to get intermediate
values (solid circles), then perform final interpolation as before to get “ghost cell”
values (circled X’s). Note that to perform interpolation for the horizontal coarse-fine
interface, we need to shift the coarse stencil left.

(D2,d′ϕ)i =





ϕc
i+ed

′ − 2ϕc
i

+ ϕc
i−ed

′ if both i± e
d′ ∈ Ωc

valid

ϕc
i
− 2ϕc

i±ed
′ + ϕc

i±2ed
′ if i± e

d′ ∈ Ωc
valid, i∓ e

d′ 6∈ Ωc
valid

0 otherwise

x

x

Fig. A.2. Mixed-derivative approximation illustration. The upper-left corner is cov-
ered by a finer level so the mixed derivative in the upper left (the uncircled x) has
a stencil which extends into the finer level. We therefore average the mixed deriva-
tives centered on the other corners (the filled circles) to approximate the mixed
derivatives for coarse-fine interpolation in three dimensions.

In the case of Dd′d′′ϕc, we use an average of all of the four-point difference
approximations ∂2

∂xd′∂xd′′
centered at d′, d′′ corners adjacent to i such that all

four points in the stencil are in Ωc
valid (Figure A.2)

(Dd′d′′

cornerϕ
c)

i+
1
2

ed
′
+
1
2

ed
′′

=





1
h2 (ϕ

i+ed
′
+ed

′′ + ϕi − ϕ
i+ed

′ − ϕ
i+ed

′′ ) if [i, i + e
d′ + e

d′′ ] ⊂ Ωc
valid

0 otherwise
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(D2,d′d′′ϕc)i =





1
Nvalid

∑
s′=±1

∑
s′′=±1(D

d′d′′ϕc)
i+
1
2
s′ed

′
+
1
2
s′′ed

′′
if Nvalid > 0

0 otherwise

where Nvalid is the number of nonzero summands. To compute (ii), we need
to compute the interpolation coefficients a b, and c.

a =
ϕ̂− (nref · |xd|+ 2)ϕi∓ed + (nref · |xd|+ 1)ϕi∓2ed

(nref · |xd|+ 2)(nref · |xd|+ 1)

b = ϕi∓ed − ϕi∓2ed − a

c = ϕi∓2ed
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