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Abstract 

Aerosols generated from burning different plant fuels were characterized to determine 

relationships between chemical, optical and physical properties. Single scattering albedo (ω) and 

Angstrom absorption coefficients (αap) were measured using a photoacoustic technique combined 

with a reciprocal nephelometer. Carbon-to-oxygen atomic ratios, sp2 hybridization, elemental 

composition and morphology of individual particles were measured using scanning transmission 

X-ray microscopy coupled with near-edge X-ray absorption fine structure spectroscopy 

(STXM/NEXAFS) and scanning electron microscopy with energy dispersion of X-rays 

(SEM/EDX). Particles were grouped into three categories based on sp2 hybridization and 

chemical composition. Measured ω (0.4 – 1.0 at 405 nm) and αap (1.0 - 3.5) values displayed a 

fuel dependence. The category with sp2 hybridization >80% had values of ω (<0.5) and αap 

(~1.25) characteristic of light absorbing soot. Other categories with lower sp2 hybridization (20 

to 60%) exhibited higher ω (>0.8) and αap (1.0 to 3.5) values, indicating increased absorption 

spectral selectivity.  
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1. Introduction 

 The atmospheric radiation budget is strongly coupled with aerosols produced during 

natural and anthropogenic biomass burns. Biomass burn aerosols consist of particulate organic 

carbon (OC), soot or black carbon (BC) and inorganic species [Reid, et al., 2005]. BC is strongly 

light absorbing, while OC mostly scatters radiation. Hence, biomass burn aerosols both scatter 

and absorb light, directly affecting the atmospheric radiation budget. They also impact climate 

indirectly by serving as cloud condensation nuclei (thus altering cloud optical properties) and by 

providing a surface for condensation of secondary organic aerosols. To estimate their radiative 

contributions, a range of chemical and physical properties are needed, including particle 

chemical composition, size, shape and hygroscopicity. These properties depend on the type of 

biomass fuel, the combustion phase of the fire (flaming versus smoldering) and the degree of 

subsequent atmospheric processing. Laboratory burns of biomass fuels provide an opportunity to 

explore the fundamental relationships between the chemical, physical and optical properties of 

particles  

 

In this letter, chemical, physical and optical properties are reported for the combustion 

products of twelve biomass fuels typical of western and south-eastern U.S. forests. Scanning 

transmission X-ray microscopy (STXM) coupled with near-edge X-ray absorption fine structure 

(NEXAFS) spectroscopy enables determination of percent sp2 hybridization (graphitic nature) 

and carbon-to-oxygen atomic ratios (C/O). Computer controlled scanning electron microscopy 

with energy dispersion of X-rays (CCSEM/EDX) yields particle morphology and elemental 

composition. In addition, aerosol single scattering albedo (ω), which is the ratio of light 

scattering and extinction at a particular wavelength was measured at 405 and 532 nm. The 

Angstrom coefficient for absorption (αap) was determined between these wavelengths and 870 

nm using eq. 1.  
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Where λ is wavelength (405 nm or 532 nm) and βap (λ) is aerosol light absorption measured at 

specific λ. Hence, variations in optical properties can be correlated with the nature of the relevant 

chemical bonds. 

 

2. Experiment 

 Experiments were conducted at the U.S. Forest Service Fire Science Laboratory (FSL, 

Missoula, MT), from July 5−9, 2006. Fuels in Table 1 were selected to represent mid-latitude 

forest burning [Chakrabarty, et al., 2006]. Fuels (200 g) were placed upon a platform in an open 

room, ignited with a propane torch and went through a combination of flaming and smoldering 

phases for ~5-10 minutes. Hence, particulates collected during the hour after the fires 

extinguished contained matter from a mixture of combustion phases. Photographs taken during 

the burns were examined to determine if flaming and/or smoldering were observed as noted in 

Table 1. Particles were collected onto Si3N4 windows (Silson Ltd) and TEM grids (Carbon type 

B on Cu 400 mesh grids, Ted Pella Inc) for STXM and SEM analysis, respectively, using a 

rotating cascade impactor, MOUDI model 110 (MSP, Inc). Size-fractionated particles of 0.32-

0.56 µm aerodynamic diameters, studied here were collected on the 7th stage MOUDI impactor 

stage.  

 

STXM analysis was performed at beamline 5.3.2 of the Advanced Light Source 

(Berkeley, CA) [Warwick, et al., 2002] at the carbon (C) (280–320 eV) and oxygen (O) (520–

550 eV) absorption edges [Hopkins, et al., 2007]. C/O atomic ratios are calculated using a 

method outlined previously [Hopkins, et al., 2007; Tivanski, et al., 2007]. For ease of visual 

comparison, spectra presented here are normalized to the same carbon concentration. 

CCSEM/EDX analysis was at the Environmental Molecular Sciences Laboratory (Richland, 

WA), using a FEG XL30 digital scanning electron microscope (FEI, Inc) equipped with an EDX 

spectrometer (EDAX, Inc). Specific details of the analysis are provided elsewhere [Laskin, et al., 

2006]. 

 

Light absorption and scattering measurements were obtained in-situ during the burns with 

a photoacoustic instrument [Arnott, et al., 2005] modified to operate simultaneously at two 

wavelengths (405 and 870 nm). Light scattering was measured using the reciprocal nephelometer 



method [Abu-Rahmah, et al., 2006]. A second single wavelength instrument provided aerosol 

scattering and absorption measurements at 532 nm. Instrument calibration is performed by 

comparing extinction with scattering for very weakly absorbing salt aerosol, and also for strongly 

absorbing kerosene soot aerosol [Abu-Rahmah, et al., 2006]. 

 

3. Results and Discussion 

3.1 Chemical and Physical Characterization 

 Chemical and physical properties determined from CCSEM/EDX and STXM/NEXAFS 

suggest classification of the combustion products into three categories: 1) liquid/oily OC with 

BC inclusions, 2) mixed carbonaceous and inorganic material and 3) BC material with inorganic 

inclusions (see Table 1). Figure 1 presents a characteristic SEM image and EDX and NEXAFS 

spectra recorded from particulate matter for each category. The NEXAFS spectra were obtained 

by averaging over 10 µm × 10 µm regions containing multiple particles.  

 

CCSEM/EDX elemental analysis (Figure 1(b)) suggests that category 1 materials are 

composed mainly of C and O with no inorganic inclusions. SEM images indicate that these 

products contain different types of particulate matter. The small carbonaceous particles 

resembling fragments of soot fractals surrounded by irregularly shaped oily regions containing C 

and O have been reported previously [Buseck and Pósfai, 1999; Chen, et al., 2005; Pósfai, et al., 

2004]. The oily/tar-like residue may be produced by a heavy oil type of combustion, which is 

more typical in the absence of inorganic salts [Jones, et al., 2007]. NEXAFS spectra indicate that 

the inclusions have a high 1s-π* aromatic carbon peak (R'−C=C−R'') at 285.3 eV [Hopkins, et 

al., 2007], consistent with the presence of soot. In addition, a high proportion of oxygen-

containing functional groups are observed in the 286.8–289.7 eV region (highlighted in Figure 

1). This indicates that graphitic material is not the dominant species as it displays a low 

proportion of oxygen-containing functional groups relative to R'−C=C−R''. C/O atomic ratios 

range from 69/31–87/13, with a mean value of 78/22 (see Table 1). 

 

Category 2 combustion products are carbonaceous material mixed with inorganic species. 

The SEM/EDX spectrum in Figure 1(e) indicates prominent K and Cl peaks and lower C and O 

compared to categories 1 and 3. Normalizing the NEXAFS spectra in Figures 1(c, f, i) to the 



same carbon concentration required multiplying category 2 spectra by ~2; category 2 materials 

are less carbonaceous than categories 1 and 3. Combustion products in category 2 display C/O 

ratios ranging from 74/26–77/23, with a mean value of 76/24. 

 

SEM images and NEXAFS spectra indicate that despite similar SEM/EDX spectra, 

category 1 and 3 materials display significant morphological and chemical bonding differences. 

Category 3 materials have a fractal morphology, typical of soot (Figure 1(g)) e.g. [Buseck and 

Pósfai, 1999; Chen, et al., 2005; Pósfai, et al., 2004]. Figure 1(i) illustrates striking similarities 

between NEXAFS spectra from a category 3 material and flame generated methane soot defined 

as 100% BC [Kirchstetter and Novakov, 2007]. Similarities include intense 1s-π* R'−C=C−R'' 

(285.3 eV) and 1s-σ* R'−C=C−R'' (292.3 eV) peaks, and the lower intensity 286.8–289.7 eV 

region, where oxygen-containing functional group peaks are typically observed. The C/O ratio 

for methane soot is 84/16, which is within the C/O ratio range of 80/20–91/9 displayed by 

category 3 materials.  

 

3.2 Optical Properties 

 Correlating optical properties ω and αap with chemical and physical information enables 

an understanding of the variation in light absorption of these biomass burn particles. The percent 

sp2 hybridization is calculated from the NEXAFS spectra [Hopkins, et al., 2007]. This value 

reflects the graphitic nature of a material, with 100% sp2 hybridization corresponding to highly 

oriented pyrolytic graphite. In our previous work, the 282-292 eV spectral region was fit using a 

series of Gaussian functions and the sp2 hybridization estimated [Hopkins, et al., 2007]. Here, 

only the 1s-π* R'−C=C−R'' peak (~285 eV) is fit, providing an upper limit for the sp2 

hybridization value. Category 1, 2 and 3 combustion products exhibit sp2 hybridization values 

between 25–44% (mean 34%), 48–60% (mean 53%) and 81–86% (mean 83%), respectively (see 

Table 1). The sp2 hybridization and C/O ratio of methane soot is similar to that of category 3 

fuels indicating a similarity in optical properties and chemical bonding. 

 

Figure 2 illustrates the relationship between ω measured at both 405 and 532 nm (grey 

and black symbols, respectively) and percent of sp2 hybridization for the various combustion 

particulates. As the percent of sp2 hybridization increases, a decrease in ω at both wavelengths is 



observed. Mean ω values of 0.895, 0.879 and 0.409 at 405 nm and 0.939, 0.838 and 0.394 at 532 

nm were measured for categories 1, 2 and 3, respectively. These illustrate the relatively non-

absorbing nature of category 1 and 2 particulate matter (low BC relative to OC plus inorganic 

material) and the greater light absorbing capabilities of category 3 particulates (high proportion 

of BC).  

 

Despite the similarity in percent sp2 hybridization values of category 3 materials and 

methane soot, their ω values are different. Methane soot has a ω of 0.15 at 530 [Kirchstetter and 

Novakov, 2007]. The decreased absorption of category 3 materials may arise from perturbation 

of the extended π networks by the presence of inorganic inclusions not found in laboratory 

generated methane soot. This disparity could arise if the methane soot particles were smaller than 

those from biomass combustion. 

 

In Figure 3, αap values range from 0.9–3.4 at 405 nm and 0.9–2.3 at 532 nm, indicating a clear 

difference in the spectral dependence for the biomass combustion particulates. Generally, αap 

increases as percent sp2 hybridization decreases, thus category 1 and 2 materials display a strong 

spectral dependence, typical of organic aerosols [Kirchstetter, et al., 2004]. Previous work 

indicates that biomass burning smoke varies more strongly with wavelength than urban and soot 

aerosols [Bergstrom, et al., 2003; Bergstrom, et al., 2002; Dubovik, et al., 1998; Horvath, 1997; 

Kirchstetter, et al., 2004; Patterson and McMahon, 1984; Rosen, et al., 1978]. The stronger 

spectral dependence of biomass burn aerosols results from enhanced absorption at wavelengths 

<600 nm. Category 3 materials display low mean αap  values, 1.13 and 1.11 at 405 and 532 nm, 

respectively, signifying a weak spectral dependence. Combustion particulate products with sp2 

hybridization values >80% display lower ω and αap values, indicating the highly absorbing 

nature of these graphitic materials. 

 

 

4. Conclusions 

 Particles collected during combustion of biomass fuels are examined using 

microspectroscopy techniques, providing information on their chemical and physical properties. 

Subsequent assignment of the combustion particulate products into three categories based on 



their morphology, elemental composition, chemical bonding, C/O ratios and percent sp2 

hybridization was made. The particulates comprising these three categories display diverse 

chemical and physical properties. ω and αap values measured in situ during the combustion 

process display a wide range of values (0.364–0.996 and 0.9–3.4, respectively), demonstrating 

the diversity in optical properties of biomass burning products. Only a single category, that 

comprises 25% of the combustion products is similar to BC, displaying high sp2 hybridization 

and ω and αap values that indicate high light absorption ability. 

 

 It is generally accepted that flaming conditions produce more BC and less OC while 

smoldering fires result in higher OC content [Ward, et al., 1992]. This is consistent with the 

strong flaming noted and the sp2 hybridization and optical properties measured for category 3 

fuels. However, several category 2 fuels exhibited a strong flaming phase and produced 

significant salts during the burning process, resulting in less carbonaceous particulate matter and 

optical properties inconsistent with BC. Category 1 fuels exhibited a range of burning conditions, 

including flaming, yet produced particulates more characteristic of OC with the corresponding 

optical properties. Hence, it appears that even when a flaming phase occurs, high salt contents 

and/or other fuel properties may influence the chemical and optical properties of particulate 

matter produced. 
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Figure 1 Characteristic SEM images, EDX and NEXAFS spectra of three types of particulates 

generated from the burning of (a-c) Ponderosa pine needles and sticks, (d-f) rice straw and (g-i) 

Chamise. The grey NEXAFS spectrum presented in (i) was recorded from methane soot and is 

shown for comparison purposes. Dotted lines on the NEXAFS spectra indicate the 286.8–289.7 

eV region where oxygenated functional groups are typically located. The doublet peak near 300 

eV arises from K [Henke, et al., 1982]. Dark round spots in the SEM micrographs are surface 

features of the substrate carbon film. 

 



 
Figure 2 Relationship between single scattering albedo (ω) and percent of sp2 hybridization for 

the twelve biomass fuels and methane soot. Black and grey symbols represent ω recorded at 532 

and 405 nm, respectively. The dashed line serves as a visual guide. 

 



 
Figure 3 Relationship between Angstrom absorption coefficient (αap) and percent of sp2 

hybridization for the biomass fuels. Black and grey symbols represent αap recorded at 532 and 

405 nm, respectively. The dashed line serves as a visual guide. 



 

Table 1.  Biomass burning particulates classified according to chemical and physical properties 

determined by CCSEM/EDX and STXM/NEXAFS. 

Category 1 a C/O %sp2 Flaming Smoldering 

Ponderosa Pine (Needles & Twigs) 70/30 32 Yes Yes 

Ponderosa Pine (Duff) 87/13 40 No      Yes (s)b 

Alaskan Tundra Core (Duff) 82/18 25 No      Yes (s) 

Southern Longleaf Pine Needles 69/31 44      Yes (s) Yes 

Puerto Rico Mixed Woods 80/20 60 Yes Yes 

Ceanothus (I)c 78/22 31 Yes Yes 

 Mean 78/22 Mean 39   

Category 2     

Rice Straw (I)  49      Yes (s) - d 

Puerto Rico Maiden Fern (dried) (I) 74/26 56 Yes - 

Palmetto (I) 77/23 48      Yes (s) - 

 Mean 76/24 Mean 51   

Category 3     

Chamise (I) 80/20 81      Yes (s) Yes 

Juniper Foliage & Twigs (I) 91/9 82      Yes (s) Yes 

Sagebrush & Rabbitbush (I) 84/16 86      Yes (s) - 

 Mean 85/15 Mean 83   

Soot Standard     

Methane Soot 84/16 79   
a Species: Pinus ponderosa; Pinus palustris; Tectona grandis, Hibiscus tilliaceus L., Peltophorum 

inerme, Inga laurina; Ceanothus crassifolius; Oryza L.; Thelypteris yaucoensis; Serenoa repens; 

Adenostoma fasciculatum; Juniperus osterosperma; Artemisia tridentate, Ericameria nauseosa.  
b s (strong) indicates that the flame height was greater than twice the burn pile width.  
c (I) indicates the presence of inorganic material (including Na, Cl and K). 
d A dash (-) indicates that a clear assessment could not be made. 

 


