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Abstract

We construct a supersymmetric version of the “critical” non-relativistic bosonic
string theory [1] with its manifest global symmetry. We introduce the anticommuting
bc CFT which is the super partner of the βγ CFT. The conformal weights of the
b and c fields are both 1/2. The action of the fermionic sector can be transformed
into that of the relativistic superstring theory. We explicitly quantize the theory with
manifest SO(8) symmetry and find that the spectrum is similar to that of Type IIB
superstring theory. There is one notable difference: the fermions are non-chiral. We
further consider “noncritical” generalizations of the supersymmetric theory using the
superspace formulation. There is an infinite range of possible string theories similar to
the supercritical string theories. We comment on the connection between the critical
non-relativistic string theory and the lightlike Linear Dilaton theory.
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1 Introduction

Time-dependent backgrounds in string theory are hard to analyze [2]. Perturbative string

theory breaks down in some spacetime regions due to a large string coupling, and it appears

that a full nonperturbative string theory formulation is required. One clean example with

the lightlike Linear Dilaton theory is proposed in [3]. On the other hand, there are some in-

teresting developments which emphasize the role of perturbative string theory in the analysis

of time-dependent backgrounds [4, 5]. But the complete understanding of time-dependent

backgrounds is still out of reach in string theory.

It turns out that many interesting cosmological solutions have broken Lorentz symme-

try. And it is interesting to consider these solutions with their manifest global symmetry.

Furthermore fundamental issues related to time, especially to “emergent time”, is not clear

(see, e.g., [6]). Thus it is interesting to consider alternative approaches, which can shed light

on time-dependent backgrounds and on fundamental issues of time.

Recently a bosonic string theory with manifest Galilean symmetry in target space was

constructed in an elementary fashion [1], motivated by earlier works [7–9]. These non-

relativistic string theories clearly treat time differently than relativistic string theory. In non-

relativistic string theories, time in target space can be described by the first order nonunitary

βγ CFT, while second order X0 CFT plays the role of time in the relativistic theory. Thus

we can hope to obtain some insights on the issues of time-dependent backgrounds in string

theory from this very different approach. As we mention in the final section of this paper,

there are some intriguing pieces of evidence that these non-relativistic string theories can

be connected to known time-dependent backgrounds in string theory. This possibility opens

up a new framework for addressing the issues related to time and to time-dependent string

solutions.

With these motivations, we briefly review the construction of the bosonic non-relativistic

string theory, which has a manifest Galilean symmetry in target space. Compared to earlier

works, the theory does not assume a compact coordinate and has a simpler action, a βγ

CFT in addition to the usual bosonic X CFTs. The first order βγ CFT is directly related to

time and energy in target space. Time in target space is parametrized by a one parameter

family of selection sector and is explicitly realized through the generalized Galilean boost

symmetry of the action. We quantize the theory in an elementary fashion which reveals

many interesting features. The spectrum is very similar to the relativistic bosonic string

theory, except for the overall motion of the string which is governed by a non-relativistic
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energy dispersion relation. The ground state has the energy

E =
1

pp′

(
α′

4
kiki − 1

)
, (1)

where p and p′ are the parameters which specify the selection sector and the ground state

vertex operator, respectively, and kis are the transverse momenta. The particle correspond-

ing to the ground state is still “tachyonic” because it is possible to have negative energy

for the range α′

4
kiki ≤ 1. Thus it is desirable to remove this state from the spectrum. The

first excited state has 24 degrees of freedom which transform into each other under SO(24)

rotations.

The world sheet constraint algebra imposes strong restrictions on the spectrum of string

theories. We can enlarge the world sheet constraint algebra by adding the supercurrents to

construct non-relativistic superstring theories. We start with the non-relativistic superstring

action in terms of the component fields in the critical case, which reveals an interesting

simplification in the fermionic sector. The fermionic sector can be rewritten in the same

form as in the relativistic superstring theory with a simple transformation. The rest of

the quantization is very similar to that of the relativistic superstring theory, except for a

different global symmetry structure. We explicitly construct the vertex operators using the

bosonization technique,then we quantize the theory and check the modular invariance. We

encounter a non-relativistic analogue of the Dirac equation in the ground state of the R

sector. By solving the equation we show that the fermionic sector has eight physical degrees

of freedom which transform in the spinor representation 8 of SO(8). But there is one clear

difference: the fermions in this theory are non-chiral. We contrast this to the relativistic

case. This is done in section 2.

In section 3, we consider the “noncritical” version of non-relativistic superstring theories.

We present the superspace formulation of the new first order matter ΣΓ CFT in detail.

There exist an infinite range of possible string theories for the general conformal weights of

the ΣΓ CFT. There are two different categories in the noncritical theories distinguished by

the conformal weight of the βγ CFT: those with integer weight and those with half integer

conformal weight. The former case is similar to the case we quantize in this paper. The

latter case seems more exotic and it is expected to give us a rather different view on the

geometric interpretation of target space.

Using the world sheet constraint algebra, we construct all possible string theories with

extended supersymmetry in section 4. The bosonic and supersymmetric non-relativistic

string cases are presented here. We comment on some immediate observations. We conclude

in section 5. In section 6, we mention possible intriguing applications of this non-relativistic

string theory to time-dependent string backgrounds such as the lightlike Linear Dilaton
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theory.

2 Critical Non-Relativistic Supersymmetric String

2.1 New Matter βγ CFT and bc CFT

We start with a full non-relativistic superstring action of component fields in the conformal

gauge

S =

∫
d2z

2π

(
β∂̄γ + β̄∂γ̄ +

1

α′
∂X i∂̄Xi + bg∂̄cg + b̄g∂c̄g

)
+

∫
d2z

2π

(
b∂̄c+ b̄∂c̄+

1

2

(
ψi∂̄ψi + ψ̄i∂ψ̄i

)
+ βg∂̄γg + β̄g∂γ̄g

)
, (2)

where i runs from 2 to 9 for X i and ψi for the critical non-relativistic superstring theory.

The commuting matter βγ CFT has weights, h(β) = 1 and h(γ) = 0, and has its central

charge, cβγ = 2. The anticommuting matter bc CFT, whose central charge is cbc = 1, has

weight h(b) = 1/2 and h(c) = 1/2. In conventional notation for the superstring case, the

total central charge of the matter sector is ĉm = 2
3
cm = 2

3
(3+ 3

2
D), which cancels the central

charge from the ghost sector ĉgh = 2
3
cgh = 2

3
(−26 + 11) = −10. Thus this theory is anomaly

free if D = 8. This is indicated above by the spatial index i which runs from 2 to 9. We

consider the cases with general conformal weights in the matter βγ and bc CFTs in the next

section. The case with conformal weight of β as 1 is rather special and we will call it as the

“critical” case as in bosonic non-relativistic theory.

We briefly comment on the new matter βγ and bc CFTs. Their OPEs are

γ(z1)β(z2) ∼ 1
z12

∼ −β(z1)γ(z2) , (3)

b(z1)c(z2) ∼ 1
z12

∼ c(z1)b(z2) . (4)

The bosonic and the fermionic energy momentum tensors and their mode expansions are

T βγbcb = −(∂γ)β − 1

2
c(∂b) +

1

2
(∂c)b =

∑
m∈Z

Lm
zm+2

, (5)

T βγbcf =
1

2
cβ − 1

2
(∂γ)b =

∑
r∈Z+ν

Gr

2 · zr+3/2
. (6)

As is well known there are two possible sectors for the fields with the half integer conformal

weight. These are ν = 0 and ν = 1/2 cases corresponding to R sector and NS sector,
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respectively. We can also find mode expansions and their hermiticity properties of the fields

γ(z) =
∑
n∈Z

γn
zn

, γ†n = γ−n , β(z) =
∑
n∈Z

βn
zn+1

, β†n = −β−n , (7)

c(z) =
∑
r∈Z+ν

cr
zr+1/2

, c†r = c−r , b(z) =
∑
r∈Z+ν

br
zr+1/2

, b†r = b−r . (8)

And the mode expansions for the energy momentum tensors are

Lβγbcm =
∑
n∈Z

nβm−nγn +
∑
s∈Z+ν

(s−m/2)bm−scs + aδm,0 , (9)

Gβγbc
r =

∑
m∈Z

(cr−mβm +mγmbr−m) . (10)

There is a normal ordering constant for L0 in each sector

aβγbcR =
1

8
, aβγbcNS = 0 . (11)

This is only from the new matter sector, βγ and bc CFTs, and is one part of the total normal

ordering constant.1

2.2 Fermionic Sector and its Symmetry

The fermionic bc CFT is a new ingredient of this non-relativistic superstring theory. There

are immediate observations which are rather interesting. As we briefly mentioned at the

beginning of this section, the conformal weights of the fields b, c and all the other fermionic

fields ψi are equal and the value is 1/2. From this observation, we can think about a

transformation

c =
1√
2
(ψ1 − ψ0) , b =

1√
2
(ψ1 + ψ0) . (12)

Combining these fields with the other fermionic fields ψi, we can see that the action of the

fermionic sector is exactly the same as that of the relativistic one

SF =

∫
d2z

2π

(
b∂̄c+ b̄∂c̄+

1

2

(
ψi∂̄ψi + ψ̄i∂ψ̄i

))
=

∫
d2z

4π

(
ψµ∂̄ψµ + ψ̄µ∂ψ̄µ

)
, (13)

where µ runs from 0 to 9. We can naively think that there are SO(9, 1) invariance in the

fermionic sector of this non-relativistic superstring theory. But as is obvious from the original

1It is important to observe that the total normal ordering constant for non-relativistic superstring theory
is the same as that of the relativistic theory

aR = 0, aNS = −1
2

,

because there are other contributions from the Xi CFTs and the ghost CFT.
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action, there is no symmetry transformation which connects the fields ψ0, ψ1 and the other

transverse fields ψi. The symmetry groups of the fermionic sector are the SO(8) rotations

among the ψis as well as a one-parameter family of superconformal symmetry which is related

to rescaling β → xβ and γ → γ/x.2 The latter is actually realized as the relative rescaling

between kγ and p′ in the bosonic string case, related by rescaling kγ → xkγ and p′ → p′/x.

We can denote this zero dimensional conformal symmetry as “SO(1, 1)”, thus the symmetry

group turns out to be SO(1, 1)×SO(8). This symmetry group becomes important when we

consider a non-relativistic analogue of the Dirac equation. Even though we know there is no

relativistic SO(9, 1) symmetry, we still use the relativistic notation to make the expression

simple and to get some intuitions from the relativistic results.

2.3 Vertex Operators

Most of the vertex operators for this theory are already known. The vertex operators of

the X i, ψi CFTs and of the superconformal ghost sector with the bgcg and βgγg CFTs are

already well understood and can be found in many places (see, e.g., [10–12]). Constructing

vertex operators for the bosonic βγ CFT is considered in [1, 7].

Thus let’s concentrate on the vertex operators of the fermionic bc CFT. The fermionic

matter sector, in terms of the fermionic fields ψµ, µ = 0 · · · 9, has well understood vertex

operators in the relativistic string theory [10–12]. Thus we can just borrow the results from

them with caution. In this section we will use both the notations ψ0, ψ1 and bc.

For the Neveu-Schwarz (NS) sector, there is no r = 0 mode and we can define the ground

state to be annihilated by all r > 0 modes

ψµr |0; kγ, kγ̄, ~k〉NS = 0 , r > 0 . (14)

This ground state is “tachyonic”. The vertex operator corresponding to NS ground state is

VNS,0(k
γ, kγ̄, ki; z, z̄) = e−ϕV0(k

γ, kγ̄, ki; z, z̄) , (15)

V0(k
γ, kγ̄, ki; z, z̄) = g : eik

γγ+ikγ̄ γ̄−ip′ R z β−iq′
R z̄ β̄+iki·Xi : , (16)

where the field ϕ comes from the bosonization of the superconformal ghost fields and has

nothing to do with the selection parameter φ. And the bosonic ground state vertex operator

V0 was considered in [1, 7] with kγ, kγ̄ and ki representing the overall continuous momenta

along the coordinates γ, γ̄ and X i, respectively.

2We realize that there exist this symmetry when we have discussions with Professor Ori Ganor and with
Professor Ashvin Vishwanath. We thank for their questions and comments related to this.
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The first excited state in theNS sector is a linear combination of the fermionic excitations

b−1/2, c−1/2 and ψi−1/2.

|e; kγ, kγ̄, ~k〉NS =
(
ecc−1/2 + ebb−1/2 + eiψ

i
−1/2

)
|0; kγ, kγ̄, ~k〉NS . (17)

We use two different notations for the fermionic sector (i) eµψ
µ with µ = 0, · · · , 9 and (ii)

eMψ
M
−1/2 =

(
ecc−1/2 + ebb−1/2 + eiψ

i
−1/2

)
with i = 2, · · · , 9. The vertex operator correspond-

ing to the first excited state VNS,1(k
γ, kγ̄, ki; z, z̄) is

e−ϕψMV0(k
γ, kγ̄, ki; z, z̄) or e−ϕψµV0(k

γ, kγ̄, ki; z, z̄) . (18)

The modes with r < 0 for the fields ψr act as raising operators and each mode can be excited

only once.

The Ramond (R) sector ground state is degenerate due to the zero modes ψµ0 (or ψM0 ).

We can define the R ground state to be those that are annihilated by all r > 0 modes. And

the zero modes satisfy the Dirac gamma matrix algebra with Γµ ∼=
√

2ψµ0 . Since {ψµr , ψν0} = 0

for r > 0, the zero modes ψµ0 take ground states into ground states. Thus the ground states

form a representation of the gamma matrix algebra. For critical case with “10 dimensions”

we can represent this as |s〉 = |s0〉 × |~s〉 = |s0〉 × |s1, s2, s3, s4〉 with s0, sa = ±1/2. Here we

separate s0 from the others to indicate that there is no symmetry transformation between

s0 and ~s.

It is convenient to combine two fermions, ψ2 and ψ3 for example, into a complex pair,

ψ ≡ 1√
2
(ψ2 + iψ3) and ψ† ≡ 1√

2
(ψ2 − iψ3),3 to consider a more general periodicity condition

ψ(w + 2π) = e2πiνψ(w) , (19)

for any real ν. Here we concentrate on two cases ν = 0 and ν = 1/2. The mode expansions

are

ψ(z) =
∑
r∈Z+ν

ψr
zr+1/2

, ψ†(z) =
∑
s∈Z−ν

ψ†s
zs+1/2

, (20)

with a commutation relation {ψr, ψ†s} = δr,−s.

We can define a reference state |0〉ν by

ψn+ν |0〉ν = ψ†n+1−ν |0〉ν = 0 , n = 0, 1, · · · . (21)

The first nonzero terms in the Laurent expansions are related to the indices r = −1 + ν

and s = −ν. And these conditions can uniquely identify the state |0〉ν . Similarly for the

corresponding vertex operator Aν , the OPEs

ψ(z)Aν(0) = O(z−ν+1/2), ψ†(z)Aν(0) = O(zν−1/2) (22)

3Note that we use different notation for the complex field compared to [10].
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can determine the vertex operator as

Aν ' ei(−ν+1/2)H . (23)

This vertex operator has weight h = 1
2
(ν − 1

2
)2. The boundary conditions are same for ν

and ν + 1, but the reference states are not. The reference state is a ground state only for

0 ≤ ν ≤ 1. For the R sector with ν = 0, there are two degenerate ground states which can

be identified as |s〉 ∼= eisH with s = 1/2 and s = −1/2.

It is convenient to use bosonization to take care of branch cut which arises in the fields

with the half integer conformal weight. And the explicit bosonization expressions are

1√
2
(ψ1 − ψ0) = c ∼= e−iH

0

,
1√
2
(ψ1 + ψ0) = b ∼= eiH

0

, (24)

1√
2
(ψ2a ± iψ2a+1) ∼= e±iH

a

, a = 1, · · · , 4 , (25)

where H(z) fields are the holomorphic part of corresponding scalar fields. Then the corre-

sponding vertex operator Θs for an R sector ground state |s〉 = |s0, ~s〉 is

Θs
∼= exp

[
is0H

0
]
× exp

[
i

4∑
a=1

saH
a
]
. (26)

This spin field operator produces a branch cut in ψµ and need to be combined with an

appropriate antiholomorphic vertex operator.

Thus the R ground state vertex operators are

VR,0(s0, ~s; k
γ, kγ̄, ki; z, z̄) = e−ϕ/2ΘsV0(k

γ, kγ̄, ki; z, z̄) , (27)

where ϕ is related to the bosonization of the superconformal ghost fields and V0 is given in

equation (16). Now we are ready to quantize the theory.

2.4 Quantization

In the old covariant quantization procedure, we ignore the ghost excitations and concentrate

on the matter sector, which has the X i, ψi, βγ and bc CFTs. We impose the physical states

conditions

(Lm
n + aδn,0) |ψ〉 = 0, n ≥ 0 , Gm

r |ψ〉 = 0, r ≥ 0 , (28)

where ’m’ denotes the matter sector. We can construct spurious states which are orthogonal

to all physical states such as

Lm
n |χ〉 , n < 0 , Gm

r |χ〉 , r < 0 . (29)
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These states satisfy 〈ψ|Lm
n |χ〉 = 0 and 〈ψ|Gm

r |χ〉 = 0. If these states satisfy the physical

state conditions, then we call them null states. We need to impose equivalence relations to

get a physical Hilbert space.

NS sector

The NS sector with ν = 1/2 is simpler and we consider this first. For the ground state

(with simplified notation |0; k〉NS instead of |0; kγ, kγ̄, ~k〉NS), the physical state condition(
Lm

0 − 1
2

)
|0; k〉NS = 0 gives us the mass shell equation

α′

4
~k2 − kγp′ − 1

2
= 0 . (30)

The other physical state conditions, Lm
n |0; k〉NS = 0 for n > 0 and Gm

r |0; k〉NS = 0 for

r ≥ 1/2, are trivial. Thus there is one equivalence class, corresponding to a scalar particle.

The first excited level (with simplified notation |e; k〉NS instead of |e; kγ, kγ̄, ~k〉NS) has 10

states

|e; k〉NS =
(
ecc−1/2 + ebb−1/2 + eiψ

i
−1/2

)
|0; k〉NS. (31)

The nontrivial physical state conditions,
(
Lm

0 − 1
2

)
|e; k〉NS = 0 and Gm

1/2|e; k〉NS = 0, give

us

α′

4
~k2 − kγp′ = 0 , (32)

−p′ec + kγeb + (α′/2)1/2kiei = 0 , (33)

while a spurious state

Gm
−1/2|0; k〉NS =

(
(α′/2)1/2kiψi,1/2 + kγc−1/2 − p′b−1/2

)
|0; k〉NS (34)

is physical and null. Thus there is an equivalent relation

(ec, eb, ei) ∼=
(
ec + kγ, eb − p′, ei + (α′/2)1/2ki

)
. (35)

Thus for the first excited state in the NS sector, there are only 8 independent degrees of

freedom.

The global symmetries are the conformal scaling and the SO(8) rotation, SO(1, 1) ×
SO(8), as we point out above. At this stage, these symmetries are manifest in the equation

(32). But we show in the previous work [1] that the energy dispersion relation for the particle

corresponding to this level is actually

E = pt =
1

pp′

(
α′

4
~k2 − 1

)
, (36)
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where p and p′ are parameters specifying a selection sector and the ground state vertex

operator, respectively. Thus non-relativistic particles have SO(8) symmetry which is smaller

than SO(1, 1) × SO(8). The explicit dependence of energy on the parameter p′ breaks

SO(1, 1) scaling symmetry. Particularly, at the first excited level of NS sector, these eight

degrees of freedom transform into each other in the vector representation of 8v of SO(8)

similar to the case of relativistic massless excitations.4

R sector

In the R sector, we have degenerate ground states |v, u; k〉R = |s0, ~s; k〉R (vs0 ⊗ u~s), where

v and u are “polarizations” along bc and ψi, respectively. The nontrivial physical conditions

are

0 = Lm
0 |v, u; k〉R =

(
α′

4
~k2 − kγp′

)
|v, u; k〉R , (37)

0 = Gm
0 |v, u; k〉R =

((
α′

2

)1/2

kiψ0,i + kγc0 − p′b0

)
|v, u; k〉R . (38)

The first equation is the usual mass shell condition. The second equation is an analogue of

the relativistic Dirac equation. We can check that G2
0 = L0. So the G0 condition implies the

mass shell condition.

The second equation is particularly important for us to investigate the difference between

the spectrum of the non-relativistic theory and that of the relativistic one. To make things

more transparent, we can rewrite the equation in terms of the fields ψ0 and ψ1, which reads

1

21/2

(
α′1/2kiψ0,i − (kγ + p′)ψ0,0 + (kγ − p′)ψ0,1

)
= 0 . (39)

This equation is the same as the relativistic one if we use
(
α′

2

)1/2
kµψ0,µ = 0, with (α′)1/2k0 =

−kγ − p′ and (α′)1/2k1 = kγ − p′. With an appropriate signature, we can get

kµkµ =
α′ kiki

2
− (kγ + p′)2

2
+

(kγ − p′)2

2
=
α′

2
kiki − 2kγp′ = 0 . (40)

Particularly there is no further constraint in the vertex operators for the change of fields

from bc to ψ0, ψ1, thus the fermionic sector has SO(1, 1)×SO(8) symmetry,5 where there is

no connection between ψ0, ψ1 and the other ψis. It is interesting to observe that the SO(1, 1)

4 There is another way to think about the expression (32). Rather than breaking SO(1, 1) symmetry, we
can go to a frame, ki = 0 for i = 2, · · · , 8 and k9 6= 0, which is similar to the relativistic consideration and
keeps the SO(1, 1)× SO(7) symmetry. For further explanation, please see the appendix.

5It is interesting to observe that the one parameter family of superconformal symmetry “SO(1, 1)” can
be transformed into SO(1, 1) Lorentz symmetry.
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has boost symmetry and is realized as the rescaling of the relative magnitude of kγ and p′

while keeping the magnitude of their product kγp′ fixed.

We can think about the non-relativistic Dirac equation with manifest SO(8) symmetry

structure. For the spinors of SO(8), we can impose the Majorana condition and the Weyl

condition simultaneously, and there are two inequivalent irreducible spinor representations,

8c and 8s. The description of Dirac matrices for SO(8) requires a Clifford algebra with

eight anticommuting matrices, which are 16-dimensional matrices corresponding to reducible

8c + 8s representation of SO(8). These matrices can be written in the block form

γi =

(
0 γiaȧ
γi
ḃb

0

)
, (41)

where the equations {γi, γj} = 2δij are satisfied with γiaȧγ
j
ȧb + γjaȧγ

i
ȧb = 2δijδab with i, j =

2, · · · , 9. γiȧa is the transpose of γiaȧ and can be expressed in terms of real components.

To apply these matrices to the non-relativistic Dirac equation (39), we can construct the

ten dimensional Dirac matrices Γµ explicitly

Γ0 = σ3 ⊗ 116, Γ1 = σ1 ⊗ 116, Γ0 = iσ2 ⊗ γi, (42)

where 116 is the 16 × 16 identity matrix and i = 2, · · · , 9. Here all the Gamma matrices

are real and thus it is possible to impose Majorana condition for all the spinor fields. Using

ψµ0 = Γµ/
√

2, we can rewrite the equation (39) as α′1/2

2
kµΓ

µ = 0. To go further we can use

the basis

vs0 ⊗ u~s =

(
v+

v−

)
2

⊗

(
ub

uȧ

)
16

. (43)

And we can explicitly write the non-relativistic Dirac equation
√
α′

2

(
v+

−v−

)
2

⊗

(
kiγ

i
aȧu

ȧ

kiγ
i
ḃb
ub

)
16

+

(
kγv−

−p′v+

)
2

⊗

(
ua

uḃ

)
16

= 0 . (44)

To solve this problem we can go to a basis v+ =
√

kγ

p′ v−.6 Then we have the equations,

√
α′

2
kiγ

i
aȧu

ȧ +
√
kγp′ua = 0 , (45)

√
α′

2
kiγ

i
ḃb
ub +

√
kγp′uḃ = 0 . (46)

These equations are very similar to the relativistic Dirac equation presented in [11] with

a definite chirality in the 10 dimensional fermion.7 And it is possible to satisfy the non-

relativistic Dirac equation with manifest SO(8) symmetry by exploiting the superconformal

6This condition is actually equivalent to use the symmetry transformation of SO(1, 1) to rescale kγ = p′.
7We thank Professor Petr Hořva for discussions and comments on the non-relativistic Dirac equation and

interesting ideas related to non-relativistic system.
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rescaling symmetry. Furthermore this equation tells that there is no chiral property for the

non-relativistic fermions because these two inequivalent irreducible spinor representations 8c

and 8s are connected by the non-relativistic Dirac equation.8 We will denote this as 8. Thus

we can summarize the particle contents for the first two states in the NS sector and for the

ground state of R sector in the table.

sector SO(8) spin −α′

4
~k2 + kγp′

NS0 1 -1/2

NS 8v 0

R 8 0

Table 1: Spectrum of the holomorphic sector for ground and first excited level of NS sector

and ground state of R sector. 8v is the fundamental representation of SO(8) and 8 is one

copy of the spinor representation of SO(8).

Closed String Spectrum

The closed string spectrum has two copies of above spectrum, each from holomorphic

and antiholomorphic sectors. Because of the level matching condition NS0 sector can only

combined with the other NS0 sector −α′

4
~k2 + kγp′ = −α′

4
~k2 + kγ̄q′ = −1/2. This is a

nondegenerate state of the non-relativistic closed string. This state will be projected out

due to the requirement of modular invariance which requires at least one R sector.

Now it is rather straightforward to construct the closed string spectrum at the next

level because there are one copy of the vector representation 8v and one copy of the spinor

representation 8 of SO(8). The spinor representation 8 is nonchiral and it is expected that

the whole theory is nonchiral. We can identify the spinor representation 8 as one of the two

chiral representations 8c or 8s of SO(8). And then the whole spectrum is similar to that

of the relativistic Type IIB superstring theory, which has the same spinor representations

in both the holomorphic and the antiholomorphic sectors. This signals that the theory is

modular invariant and consistent even before we actually check the modular invariance. We

summarize the ground state and first excited states in the following table.

8Then why are there two inequivalent propagating degrees of freedom 8s and 8c in the relativistic case?
These two inequivalent degrees of freedom come from the 10 dimensional Weyl conditions Γ11λ = ±λ, which
are not available for the non-relativistic theory. For k0 = k9, it is possible to impose s0 = 1/2 and there is
8s spinor. For k0 = −k9, the other spinor 8c is available. (These two equations k0 = ±k9 satisfy kµkµ = 0.)
This does not apply for the non-relativistic theory. Because there is no 10 dimensional Weyl condition and
the bosonic dispersion relation does not have two inequivalent choice for the relation kγ and p′.
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sector SO(8) spin tensors dimensions

(NS0, NS0) 1× 1 = 1

(NS, NS) 8v × 8v = [0] + [2] + (2) = 1 + 28 + 35

(NS, R) 8v × 8 = 8 + 56

(R, NS) 8× 8v = 8 + 56

(R, R) 8× 8 = [0] + [2] + [4] = 1 + 28 + 35

Table 2: Closed superstring spectrum for the ground state and the first excited state of NS

sector and the ground state of R sector. 8v is the fundamental representation and 8 is one

copy of the spinor representation of SO(8).

2.5 Partition Function and Modular Invariance

To show that the theory is consistent, we need to check the modular invariance. The bosonic

part of the modular invariance is already shown in the previous work [1]. Thus we can

concentrate on the fermionic sector. As explained in the previous section, The field contents

of the non-relativistic superstring theory is the same as those of the relativistic IIB string

theory. Thus the modular invariance can be proved in a similar way. For completeness

we provide a very brief proof of the modular invariance of the fermionic sector by closely

following [10].

For the complex fermion ψ, we can introduce a general periodicity α = 1− 2ν with

ψ(ω + 2π) = eπi(1−α)ψ(ω) . (47)

Then the raising operators can be written as ψ−m+(1−α)/2 and ψ†−m+(1+α)/2 with positive

integer m. In the bosonized language given in (23), the weight of the vertex operator is

α2/8.9 Using this result we can calculate

Trα

(
qL0−c/24

)
= q(3α2−1)/24

∞∏
m=1

(
1 + qm−(1−α)/2

) (
1 + qm−(1+α)/2

)
. (48)

To accommodate this general boundary condition, we join the fermions into complex pairs

in 20. Then a fermion number Q can be defined as +1 for ψ and −1 for ψ†. Q corresponds

to be H momentum in the bosonization formula. The ground state has a Q charge as α/2.

9We can get the same result from the fermionic language, where the normal ordering constant can be
calculated by the zero point mnemonic given in [10].

12



Thus we can define the more general trace

Zα
β (τ) = Trα

(
qL0−c/24 exp(πiβQ)

)
= q(3α2−1)/24 exp(πiαβ/2) (49)

×
∞∏
m=1

(
1 + exp(πiβ)qm−(1−α)/2

) (
1 + exp(−πiβ)qm−(1+α)/2

)
(50)

=
1

η(τ)
ϑ

[
α/2

β/2

]
(0, τ) . (51)

Here α and β can have 0 and 1. We have the relevant traces Z0
0 , Z

1
0 , Z

0
1 and Z1

1 . The

holomorphic part of the partition function for the fermionic sector is

Zψ(τ) =
1

2

[
Z0

0(τ)4 − Z0
1(τ)4 − Z1

0(τ)4 − Z1
1(τ)4

]
, (52)

where the first − sign comes from the ghost contribution and the last two − signs come from

the spacetime spin statistics. And the total partition function is

Ztotal =
V8Vβγ
2p′q′

∫
F

d2τ

16π2α′τ 2
2

(
Z8
XZψ(τ)Zψ(τ)∗

)
. (53)

This short explanation proves the modular invariance and it is the same as that of the Type

IIB string.

3 General Non-Relativistic Supersymmetric String

In this section we consider the βγ and bc CFTs with general conformal weights. First

we explain the new matter sector in the superspace formulation. Then we construct a

“noncritical” version of the non-relativistic superstring theories.

3.1 Matter ΣΓ CFT

Let’s start with supersymmetric string theory action with a matter ΣΓ CFT in addition to

the usual Xi CFT and the ghost BC CFT in the conformal gauge

Ssusy =

∫
d2zd2θ

2π

(
ΣD̄θ̄Γ

)
. (54)

The equations of motion for the fields are D̄θ̄Γ = 0 = D̄θ̄Σ. There are a similar action and

equations of motion for the anti-holomorphic part of ΣΓ and BC CFTs.

OPEs of new ΣΓ CFT are given by

Γ(z1, θ1)Σ(z2, θ2) ∼ θ12

ẑ12

∼ Σ(z1, θ1)Γ(z2, θ2) , (55)
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where θ12 = θ1 − θ2 and ẑ12 = z1 − z2 − θ1θ2. The super energy momentum tensor10 is a

chiral superfield of dimension 3/2 with the ordinary energy momentum tensor of dimension

2 in it T(z) = TF (z) + θTB(z)

T = (λ− 1)Γ∂Σ +
1

2
(DΓ) (DΣ) + (λ− 1

2
)∂ΓΣ . (56)

For λ = 1 case, the super energy momentum tensor simplifies further and have the form

Tλ=1 =
1

2
(DΓ) (DΣ) +

1

2
∂ΓΣ , (57)

which is very simple and we concentrate on the previous section as a critical case. It is simple

to verify that this reduces to the component forms of the energy momentum tensor (5) and

(6), which are presented below. The case with λ = 1/2 also simplifies and corresponds to

the “critical” case in a sense we explain in the next subsection.

The super energy momentum tensor is itself an anomalous superconformal field

T(z1, θ1) T(z2, θ2) ∼
8λ− 6

4ẑ3
12

+
3

2

θ12

ẑ12

T(z2, θ2) +
1

2

1

ẑ12

D2T(z2, θ2) +
θ12

z12

∂2T(z2, θ2) , (58)

which tells us the central charge of super energy momentum tensor is ĉ = 2
3
c = 8λ − 6 and

the conformal weight of the tensor is 3/2.

OPEs of the energy momentum tensor with the super fields can be calculated

T(z1, θ1) Γ(z2, θ2) ∼ (1− λ)
θ12

ẑ2
12

Γ(z2, θ2) +
1

2

1

ẑ12

D2Γ(z2, θ2) +
θ12

ẑ12

∂2Γ(z2, θ2) ,

T(z1, θ1) Σ(z2, θ2) ∼ (λ− 1

2
)
θ12

ẑ2
12

Σ(z2, θ2) +
1

2

1

ẑ12

D2Σ(z2, θ2) +
θ12

ẑ12

∂2Σ(z2, θ2) . (59)

These equations tells us that the new fields Γ and Σ have conformal weights h(Γ) = 1 − λ

and h(Σ) = λ− 1/2, respectively.

The dimensions of the component fields are

Γ = −γ + θc , h(γ) = 1− λ , h(c) = 3/2− λ , (60)

Σ = b+ θβ , h(b) = λ− 1/2 , h(β) = λ . (61)

And γ, β and Γ are commuting fields and b, c and Σ are anticommuting fields.

10This can be contrasted to the energy momentum tensor of BC super ghost CFT

TBC
ghost = −(λg − 1)C

(
D2B

)
+

1
2

(DC) (DB)− (λg −
1
2
)
(
D2C

)
B .

The ghost energy momentum tensor has the same form as that of the matter ΣΓ CFT except the sign
differences. And the conformal weights of the ghost super fields with λg = 2 are h(B) = λg − 1/2, h(C) =
1−λg. And those of the component fields are h(βg) = λg−1/2, h(cg) = 1−λg, h(bg) = λg, h(γg) = 3/2−λg.
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Using the component fields we can rewrite the supersymmetric action

S1 =

∫
d2z

2π

(
β∂̄γ + β̄∂γ̄ + b∂̄c+ b̄∂c̄

)
. (62)

Given the conformal weights of the component fields, the central charge of the βγ CFT and

the bc CFT are 3(2λ − 1)2 − 1 and −3(2λ − 2)2 + 1, respectively. Thus the total central

charge is c = 12λ− 9, which agrees with the result from the OPE of the energy momentum

tensor.

And the OPEs of the component fields are

γ(z1)β(z2) ∼ 1
z12

∼ −β(z1)γ(z2) , (63)

b(z1)c(z2) ∼ 1
z12

∼ c(z1)b(z2) . (64)

The energy momentum tensor in the component form can be written

Tb = (λ− 3

2
)c(∂b) + (λ− 1

2
)(∂c)b− (λ− 1)γ(∂β)− λ(∂γ)β =

∑
m∈Z

Lm
zm+2

, (65)

Tf = −(λ− 1)γ(∂b) +
1

2
cβ − (λ− 1

2
)(∂γ)b =

∑
r∈Z+ν

Gr

2 · zr+3/2
. (66)

As is well known, the fields with the half integer conformal weight have both NS and R

sectors. To make the expressions simple, we concentrate on the case of integer λ. The mode

expansions and the hermiticity properties are

γ(z) =
∑
n∈Z

γn
zn+1−λ , γ†n = γ−n , β(z) =

∑
n∈Z

βn
zn+λ

, β†n = −β−n , (67)

c(z) =
∑
r∈Z+ν

cr
zr+3/2−λ , c†r = c−r , b(z) =

∑
r∈Z+ν

br
zr+λ−1/2

, b†r = b−r . (68)

There are two possible values for ν. For the NS sector ν = 1/2 and for R sector ν = 0. And

the mode expansions for the energy momentum tensors are

Lβγbcm =
∑
n∈Z

(
n− (1− λ)m

)
βm−nγn −

∑
s∈Z+ν

(
s− (3/2− λ)m

)
bm−scs + aδm,0 , (69)

Gβγbc
r =

∑
n∈Z

(
cr−nβn +

(
n+ 2r(λ− 1)

)
γnbr−n

)
. (70)

There is a normal ordering constant in each sector, aβγbcR = 4λ−3
8

and aβγbcNS = λ−1
2

.
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3.2 Possible Non-Relativistic Superstring Theories

It is interesting to construct a “noncritical” version of the non-relativistic superstring theory.

Central charge of the ghost part is ĉBC = −10 and that of the matter CFT is ĉΣΓ = 8λ− 6.

Thus to be consistent the dimension D of the spatial directions in target space is

D = 8(2− λ). (71)

We summarized the interesting portion of theories in the table.

λ · · · 2 3
2

1 1
2

0 - 1
2

-1 · · ·
ĉΣΓ = 8λ− 6 · · · 10 6 2 -2 -6 -10 -14 · · ·
D = 8(2− λ) · · · 0 4 8 12 16 20 24 · · ·

Table 3: Table for the super string case. Conformal weight of the supersymmetric βγ

CFT and the number of spatial dimensions of target space are presented. For λ > 2, the

geometric interpretation is not possible. As the parameter λ is decreasing, the number of

spatial dimensions is growing indefinitely and linearly.

Here we comment on the immediate observations of these possible consistent “noncritical”

non-relativistic superstring theories. These theories have the same actions and the SO(1, 1)×
SO(D) symmetries in addition to Galilean symmetry. There exists an infinite range of

possible consistent theories with geometric interpretation, for which we mean it is possible

to have positive number of spatial coordinates.

It will be interesting to quantize them explicitly. We can divide them in two categories,

(i) with integer λ cases and (ii) with half integer λ cases, because there are two sectors for the

fields with half integer conformal weight. For the integer λ cases (i) withD = 0, 8, 16, · · · , the

bosonic commuting βγ CFT has only one bosonic coordinate. From the explicit quantization

of the previous section and from [1], we know that it is relatively easy to quantize and

establish the spacetime interpretation. On the other hand, there are two commuting bosonic

sectors, NS and R, for the half integer λ cases (ii) with D = 4, 12, 20, · · · . Of course, in case

(ii) the zero modes of the R sector of the βγ CFT have a space and time interpretation. The

case (ii) seems rather peculiar and it looks harder to quantize them. But these theories are

expected to provide different perspective for a space and time interpretation.

The challenges of establishing the zero modes of βγ CFT in the new matter sector can be

easily seen by the total normal ordering constant. As usual, the normal ordering constant for

the R sectors is 0 due to the cancellation between the bosonic contribution and the fermionic
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contribution. And those of the NS sectors are

a
(i)
NS =

λ− 2

2
, a

(ii)
NS =

2λ− 3

4
. (72)

Thus the total normal ordering constant for the NS sector depends on the parameter λ and

there is nontrivial mapping between the unit vertex operator 1 and the corresponding state.

We can see that the case with λ = 1, we considered in the previous section, is critical in the

sense that the normal ordering constants a
(i)
NS = −1

2
recover those of the critical relativistic

string theory. It is interesting to comment that there is another “critical” case for the case

(ii) with λ = 1
2
. Thus the cases with λ = 1 and λ = 1

2
tie together in a sense and we expect

that the space and time interpretation is rather similar. This observation extends to all the

other cases. The case with λ = n and λ = n+ 1
2

tie together for integer n. Quantization of

the theory with λ = 1
2

and comparison to the critical case with λ = 2 will be very interesting.

In the case λ = 2 with D = 0, there are only ΣΓ CFT and BC CFT. Upon quantization,

only the zero modes are present without oscillator excitations. The theory is topological.

Furthermore there is a possible unification of these CFTs in a simple fashion. We comment

this at the end of this section. As explained in the previous paragraph, this case is tied with

the λ = 3
2

case in a sense that the normal ordering constant is same and thus the zero modes

have similar roles. But this is not a “topological” case because there are additional 4 spatial

coordinates.

unification of all the first order CFTs

There is a curiosity related to a possible interesting Z2 graded algebra involving the

nonzero conformal weight, the U(1) ghost number and the U(1) number of the matter ΣΓ

CFT. We can make a table for basic properties of the first order matter CFT and the ghost

CFT

field weight U(1)m U(1)gh field weight U(1)m U(1)gh

bg λg 0 −1 cg 1− λg 0 1

βg λg − 1/2 0 −1 γg 3/2− λg 0 1

β λ −1 0 γ 1− λ 1 0

b λ− 1/2 −1 0 c 3/2− λ 1 0

Table 4: Table for the various properties of the first order matter CFT and the ghost CFT.

We list the conformal weight, U(1) charge of the matter βγ CFT and U(1) charge of the

ghost CFT.

From this table we can imagine that there are two grand supermultiplets V and W with
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new field Θgh which carries conformal weight, U(1) ghost charge and U(1) matter charge

V = Σ + ΘghB = b+ θβ + Θgh(βg + θbg) = b+ Θghβg + θ(β + Θghbg), (73)

W = C + ΘghΓ = cg + θγg + Θgh(−γ + θc) = cg −Θghγ + θ(γg + Θghc). (74)

If one investigates these grand multiplets a little further one can read off that Θgh is anticom-

muting field with conformal weight λ−λg, matter U(1) charge −1 and ghost number 1. V is

an anticommuting multiplet with the conformal weight λ− 1/2, the U(1) matter charge −1

and the ghost U(1) number 0, whereas W is an anticommuting multiplet with the conformal

weight 1− λg, the U(1) matter charge 0 and the ghost U(1) number 1. We comment on two

cases with immediate interest. One is λ = 1 case with the conformal weight of the field Θgh

as −1. Then all the fields have uniform gaps of their conformal weights. This is the case we

quantized in the previous section. For λ = 2, the field Θgh has no conformal weight. This is

a topological case with these two multiplets only without other matter sector.

With these observation we can rewrite the superstring action in a very simple form for

holomorphic part

SVW =

∫
d2zd2θ

2π
dΘgh

(
VD̄θ̄W

)
=

∫
d2zd2θ

2π
(ΣD̄θ̄Γ + BD̄θ̄C) (75)

Note that this action has still the derivative of the form D̄θ̄ = ∂θ̄ + θ̄∂z̄ and we did not gauge

the field Θgh. It will be interesting if we can gauge the field Θgh.

4 Non-Relativistic Strings with Higher Supersymme-

try

Following Polchinski [10], we would like to survey possible superconformal algebras and their

related non-relativistic superstring theories. The basic idea is to find the sets of holomorphic

and antiholomorphic currents, whose Laurent coefficients form a closed constraint algebra.

This is motivated by the idea of enlarging the world sheet constraint algebra with super-

currents TF (z) and T̄F (z̄). Here the constraint is part of the symmetry singled out to be

imposed on physical states in OCQ or BRST sense.

Here we assume that there is only one (2, 0) constraint current because the sum of the

βγ, bc and X i energy momentum tensors have geometric interpretation in terms of conformal

invariance. This is similar to the relativistic case. Thus the result of the constraint current

algebra in world sheet is the same as the relativistic case. Concentrating on holomorphic
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current with conformal weight as multiple of half integer and less than and equal to 2,11

there are very limited possible algebras and it is given in the following table.

n2 n3/2 n1 n1/2 n0 cgh cmβγ,bc,··· symmetry TF Rep.

I 1 0 0 0 0 −26 2(6λ2 − 6λ+ 1)

II 1 1 0 0 0 −15 12 λ− 9

III 1 2 1 0 0 −6 +6 U(1) ±1

IV 1 3 3 1 0 0 0 SU(2) 3

V 1 4 7 4 0 0 24(λ− 2) SU(2)2 × U(1) (2, 2, 0)

VI 1 4 6 4 1 0 0 SU(2)2 (2, 2)

VII 1 4 3 0 0 12 36− 24λ SU(2) 2

Table 5: Survey of possible string theory. The first five columns represent the number of

reparametrization currents with corresponding spins as indicated in the subscript of nspin.

n3/2 represent the number of supersymmetry. cgh is the total central charge of the supersym-

metrized ghost CFT and cmβγ,bc,··· is the total central charge of the supersymmetrized βγ CFT.

The last two columns represent the symmetry and the representation of the supercharge.

The cases I and II are explained already in the bosonic string theory [1] and in the

previous section, respectively. These theories are explicitly quantized and have the non-

relativistic dispersion relation. The cases III, IV and VI are rather different from the other

cases because both the supersymmetric ghost BC CFT and the ΣΓ CFT have the central

charges independent of λ, which are same in magnitude with opposite sign. Thus there is no

room for the spatial coordinates. But it is still possible to have some geometric interpretation

from the matter ΣΓ CFTs.

In addition to the II case, there are two possible cases with infinite number of possible

string theories, the cases V and VII. Both cases have 4 super charges in world sheet CFT. For

case V, the central charge of the superconformal ghost CFTs is 0 and the central charge of

the matter ΣΓ CFTs is 24(λ−2). Thus for λ ≤ 2 cases, it is possible to have spatial X CFTs.

In the last case, VII, the central charge has positive contribution from the ghost CFTs. On

the other hand, there are negative contribution from the matter ΣΓ CFTs. We can make the

parameter λ large and there is corresponding string theory. It will be interesting to quantize

these sets of theories.

11For the ghost CFT, there are restrictions as we mentioned. But there is no restriction for the matter βγ

or bc CFT because they are part of the (2, 0) constraint current and they are consistent part of the algebra
as long as all the matter conformal weight sums up to satisfy the physical state conditions.
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5 Conclusions

In this paper we construct a supersymmetric version of the recently constructed non-relativistic

string theory. The non-relativistic superstring theory has a first order ΣΓ SCFT on top of

the usual eight second order X SCFTs. The fermionic sector has an anticommuting matter

bc CFT in addition to the eight ψi fields. The component fields, b and c, have the confor-

mal weights 1/2. These can be transformed into the ψ0 and ψ1 fields, and the fermionic

action is the same as that of the relativistic superstring theory. The symmetry group is

SO(1, 1)× SO(8).

We quantize the theory in an elementary fashion. In addition to the physical state

conditions imposed by energy momentum tensor, there exist other conditions from the super

current. These give us a non-relativistic analogue of the Dirac equation in the ground state of

the R sector. This equation can be solved with the manifest SO(8) symmetry by exploiting

SO(1, 1) symmetry. The fermionic spectrum is non-chiral because the non-relativistic Dirac

equation connects the two irreducible spinor representations 8c and 8s for the SO(8) group.

For the closed string spectrum, modular invariance requires to project out the ground state in

the NS sector. The spectrum of this theory is very similar to that of Type IIB superstring

theory, except for the chiral property and the energy dispersion relation. The one loop

consistency check is straightforward and the theory is modular invariant.

We present a noncritical version of the non-relativistic superstring theories by generalizing

the conformal weight of the first order ΣΓ SCFT. It turns out that there is an infinite range

of possible non-relativistic superstring theories. We present some immediate observations re-

lated to these possible consistent string theories. We further survey possible non-relativistic

string theories with extended supersymmetry utilizing the world sheet constraint algebra.

The matter βγ CFT (and its supersymmetric partners) combined with the X CFT (and its

partners) form a (2, 0) constraint current (and its partners) to have a geometric interpreta-

tion. Thus the matter first order CFTs are not constrained severely compared to the ghost

sector. There are three infinite series of possible string theories: two with the four super

charges and one with the one super charge, which is considered in the present work. It will

be interesting to quantize these noncritical non-relativistic string theories.

6 Future Directions

Understanding cosmological singularities such as the Big Bang is an interesting and out-

standing problem. It requires understanding time-dependent backgrounds in string theory,

which are very difficult to analyze [2]. Perturbative string theory breaks down in some space-
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time regions where the string coupling becomes large. One clean example with the lightlike

Linear Dilaton theory was recently proposed in [3].12 The Dilaton is proportional to a light

cone coordinate, −X+, and the theory is defined as an exact CFT that describes string

propagating in flat spacetime with the string coupling, gs = e−QX
+
. Thus the spacetime is

free at late times and strongly coupled at early times. At early times, there is a true singu-

larity happening at a finite affine parameter, which requires a matrix string description as

explained in [3]. It appears to be necessary to have a complete nonperturbative description

of string theory to understand time dependent backgrounds in string theory. There is an

interesting nonperturbative formulation of noncritical M-theory in (2+1) dimensions using

the non-relativistic Fermi liquid and its time-dependent solutions [14]. Earlier work with

time-dependent background with closed string tachyon condensation can be found in (1+1)

noncritical string theory [15].

On the other hand there are very interesting developments which emphasize the role

of perturbative string theory in the analysis of time-dependent backgrounds. It is claimed

that a certain spacetime singularity can be replaced by a tachyon condensate phase within

perturbative string theory [4]. And very recent papers [5] argue, using alternative gauge

choices to free world sheet gravitino, that spacetime decay to nothing in string and M-

theory should be addressed at weak string coupling, where the nonperturbative instanton

instability is expected to turn into a perturbative tachyon instability. See also [16]. Similar

considerations in supercritical string theories can be found in [17,18].

It turns out that many interesting cosmological solutions have broken Lorentz symme-

try. And it is interesting to consider these solutions with their manifest global symmetries.

Furthermore fundamental issues related to time, especially to “emergent time”, is not clear

(see, e.g., [6]). Thus it is interesting to consider alternative approaches, which can shed light

on time-dependent backgrounds and on fundamental issues of time.13 Our current work and

a previous paper [1], motivated by earlier works [7–9], provide examples for these alternative

approaches.

As we saw in the main body, the non-relativistic string theory shares many features

with relativistic string theory. The difference between these two theories comes from the

replacement of the X0 and X1 CFTs by βγ CFT. This effect is minimal because these

12There are some direct generalizations of this simple solution [13]. We thank Professor Nobuyoshi Ohta
for drawing our attention for these solutions.

13An example which motivates a different approach for time can be seen in the low energy limits of open
string theory with magnetic and electric NS−NS B-field. In the appropriate limits, the theory with electric
NS−NS B-field is reduced to noncommutative open string theory while the theory with magnetic NS−NS

B-field reduces to the noncommutative Yang-Mills theory. This suggest that time is rather different from
space. This is motivated to consider non-relativistic string theories in [1].
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matter CFTs are part of the (2, 0) constraint current, which makes a geometric interpretation

possible. As a result, the spectrum is very similar to that of Type IIB superstring theory. On

the other hand, these non-relativistic string theories provide a very different perspective on

time. Thus these non-relativistic string theories appear to be ideal for investigating general

issues related to time-dependent backgrounds with broken Lorentz symmetry, such as the

lightlike Linear Dilaton theory and supercritical string theories.

We would like to comment on a few preliminary results for the correspondence between

the critical non-relativistic string theory and the lightlike LDT.14 These two theories have

the same set of global symmetries, which can be checked with the identification X+ = t

in the lightlike LDT case. In the lightcone gauge, the spectrum of the lightlike LDT can

be checked to be the same as that of the non-relativistic string theory. These equivalences

are enough for us to be serious about investigating the exact mapping between these two

theories. We hope to report these results in the near future.

Acknowledgments

It is pleasure to thank Professor Ori Ganor for encouragements, Professor Petr Hořava for
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Appendix: Physical spectrum with SO(7) symmetry

In this appendix, we consider a relativistic approach to investigate the spectrum of this non-

relativistic string theory. It is interesting to compare these results with those in the main

text.

We have SO(1, 1) × SO(8) symmetry and we want to analyze the non-relativistic mass

shell condition (32) and the non-relativistic Dirac equation (39)

α′

4
~k2 − kγp′ = 0 , (76)

1

21/2

(
α′1/2kiψ0,i − (kγ + p′)ψ0,0 + (kγ − p′)ψ0,1

)
= 0 . (77)

Rather than breaking the SO(1, 1) symmetry, we can go to a frame, ki = 0 for i = 2, · · · , 8
and k9 6= 0, which preserves the SO(1, 1) × SO(7) symmetry, to solve these two equations

(76) and (77). From the quantization procedure we know that there are eight physical

degrees of freedom. There are only the SO(7) manifest symmetry in the first excited level

of the NS sector, which has a vector representation 7 of SO(7). Then where is one extra

degrees of freedom? It is a “Dilaton” originated from the conformal rescaling SO(1, 1), which

transforms as a singlet under SO(7). Thus the first excited level has eight degrees of freedom

which transform as 1 + 7 under the SO(7) rotation.

And then we can solve the non-relativistic Dirac equation (77) by using the SO(1, 1)

symmetry by picking particular values of kγ and p′. Then the remaining symmetry group

SO(1, 1) × SO(7) is broken to SO(7). The irreducible spinor representation of the SO(7)

group is 8 as is well known. Thus there are actually eight independent degrees of freedom in

the ground state of the R sector. And it is obvious that there is no chance for the fermions

to have any chiral property. We present a table for the holomorphic spectrum with SO(7)

symmetry.

It is straightforward to construct the non-relativistic closed superstring spectrum. They
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sector SO(7) spin −α′

4
~k2 + kγp′

NS0 1 -1/2

NS 1 + 7 0

R 8 0

Table 6: Spectrum of the holomorphic sector for ground and first excited level of NS sec-

tor and ground state of R sector. 7 and 8 are the vector representation and the spinor

representation of SO(7), respectively.

are presented below. We would like to have a few comments. Compared the approach

with the manifest SO(8) symmetry, the SO(7) symmetry is not efficient to describe the

physical spectrum. Furthermore it is not clear that how we can demonstrate the modular

invariance at all. The field contents are very similar to the relativistic string theory with a

circle compactification. But in that case there are discrete momentum modes and discrete

winding modes in the twisted sector. One the other hand, we have just continuous momentum

without compact coordinate or twisted sector.

sector SO(7) spin dimensions

(NS0, NS0) 1× 1 = 1

(NS, NS) (1 + 7)× (1 + 7) = 1 + (7 + 7) + (1 + 21 + 27)

(NS, R) (1 + 7)× 8 = 8 + (8 + 48)

(R, NS) 8× (1 + 7) = 8 + (8 + 48)

(R, R) 8× 8 = 1 + (7 + 21) + (1 + 7 + 27)

Table 7: Closed superstring spectrum for the ground and the first excited levels of NS sector

and ground state of R sector. 1,7,27 are the tensor representations and 8,48 are the spinor

representations of SO(7).
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“Strings on AdS2 and the High-Energy Limit of Noncritical M-Theory,” JHEP 0706,

031 (2007) [arXiv:0704.2230 [hep-th]].

[15] J. L. Karczmarek and A. Strominger, “Closed string tachyon condensation at c = 1,”

JHEP 0405, 062 (2004) [arXiv:hep-th/0403169].

[16] S. Hellerman and I. Swanson, “A stable vacuum of the tachyonic E8 string,”

arXiv:0710.1628 [hep-th].

[17] O. Aharony and E. Silverstein, “Supercritical stability, transitions and

(pseudo)tachyons,” Phys. Rev. D 75, 046003 (2007) [arXiv:hep-th/0612031].

[18] S. Hellerman and I. Swanson, “Cosmological solutions of supercritical string theory,”

arXiv:hep-th/0611317; S. Hellerman and I. Swanson, “Dimension-changing exact solu-

tions of string theory,” arXiv:hep-th/0612051; S. Hellerman and I. Swanson, “Cosmolog-

ical unification of string theories,” arXiv:hep-th/0612116; S. Hellerman and I. Swanson,

“Charting the landscape of supercritical string theory,” arXiv:0705.0980 [hep-th].

26


