DOE/NV/26383-08

FINAL REPORT

HYDRAULIC CONDUCTIVITY WITH DEPTH FOR UNDERGROUND TEST AREA (UGTA) WELLS

prepared by

Phil L. Oberlander, David McGraw, and Charles E. Russell Division of Hydrologic Sciences Desert Research Institute Nevada System of Higher Education

submitted to

Nevada Site Office National Nuclear Security Administration U.S. Department of Energy Las Vegas, Nevada

October 2007

Publication No. 45228

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors.

Available for sale to the public from:

U.S. Department of Commerce National Technical Information Service 5285 Port Royal Road S/D Springfield, VA 22161-0002 Phone: 800.553.6847 Fax: 703.605.6900 Email: orders@ntis.gov Online ordering: http://www.osti.gov/ordering.htm

Available electronically at http://www.osti.gov/bridge

Available for a processing fee to the U.S. Department of Energy and its contractors, in paper, from: U.S. Department of Energy Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831-0062
Phone: 865.576.8401
Fax: 865.576.5728
Email: reports@adonis.osti.gov

DOE/NV/26383-08

FINAL REPORT

HYDRAULIC CONDUCTIVITY WITH DEPTH FOR UNDERGROUND TEST AREA (UGTA) WELLS

prepared by

Phil L. Oberlander, David McGraw, and Charles E. Russell Division of Hydrologic Sciences Desert Research Institute Nevada System of Higher Education

Publication No. 45228

submitted to

Nevada Site Office National Nuclear Security Administration U.S. Department of Energy Las Vegas, Nevada

October 2007

The work upon which this report is based was supported by the U.S. Department of Energy under Contract #DE-AC52-06NA26383. Approved for public release; further dissemination unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

ABSTRACT

Hydraulic conductivity with depth has been calculated for Underground Test Area (UGTA) wells in volcanic tuff and carbonate rock. The following wells in volcanic tuff are evaluated: ER-EC-1, ER-EC-2a, ER-EC-4, ER-EC-5, ER-5-4#2, ER-EC-6, ER-EC-7, and ER-EC-8. The following wells in carbonate rock are evaluated: ER-7-1, ER-6-1, ER-6-1#2, and ER-12-3.

There are a sufficient number of wells in volcanic tuff and carbonate rock to associate the conductivity values with the specific hydrogeologic characteristics such as the stratigraphic unit, hydrostratigraphic unit, hydrogeologic unit, lithologic modifier, and alteration modifier used to describe the hydrogeologic setting. Associating hydraulic conductivity with hydrogeologic characteristics allows an evaluation of the data range and the statistical distribution of values. These results are relevant to how these units are considered in conceptual models and represented in groundwater models.

The wells in volcanic tuff illustrate a wide range of data values and data distributions when associated with specific hydrogeologic characteristics. Hydraulic conductivity data within a hydrogeologic characteristic can display normal distributions, lognormal distributions, semi-uniform distribution, or no identifiable distribution. There can be multiple types of distributions within a hydrogeologic characteristic such as a single stratigraphic unit. This finding has implications for assigning summary hydrogeologic characteristics to hydrostratigraphic and hydrogeologic units. The results presented herein are specific to the hydrogeologic characteristic and to the wells used to describe hydraulic conductivity.

The wells in carbonate rock are associated with a fewer number of hydrogeologic characteristics. That is, UGTA wells constructed in carbonate rock have tended to be in similar hydrogeologic materials, and show a wide range in hydraulic conductivity values and data distributions. Associations of hydraulic conductivity and hydrogeologic characteristics are graphically presented even when there are only a few data. This approach benchmarks what is currently known about the association of depth-specific hydraulic conductivity and hydrogeologic characteristics.

EXECUTIVE SUMMARY

Background and Purpose

The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) constructed a series of deep characterization and monitoring wells as part of the Underground Test Area (UGTA) Program in southern Nevada. These wells have been characterized with a borehole flow meter that measures flow in the well under ambient and pumping conditions. Based on the changes in borehole flow rate, the depth-specific amount of groundwater inflow is calculated. The groundwater contributions to the well are combined with other information to calculate the depth-specific hydraulic conductivity. These values are important when evaluating the association of aquifer permeability to hydrogeologic features in tuff and carbonate rock such as the:

- Stratigraphic unit,
- Lithologic description,

- Lithologic alteration,
- Hydrogeologic unit, and
- Hydrostratigraphic unit.

The association of hydraulic conductivity with hydrogeologic characteristics provides important information on how the physical characteristics of the Nevada Test Site (NTS) are summarized and represented in numeric models. The UGTA project has conducted borehole flow logging in eight wells in volcanic tuff and four wells in carbonate rock. Figure 1 illustrates these wells located at the Nevada Test Site, and the Nevada Test and Training Range in Nye County, Nevada. Wells presented in this report in volcanic tuff are: ER-EC-1, ER-EC-2A, ER-EC-4, ER-EC-5, ER-EC-6, ER-EC-7, ER-EC-8, and ER- 5-4#2, and those in carbonate rock are: ER-6-1, ER-6-1#2, ER-7-1, and ER-12-3.

The borehole flow logging has obtained a substantial amount of information on groundwater flow into the wells. The total vertical length of the flow-logged boreholes exceeds 1,067 meters (m) in volcanic tuff and 1,194 m in carbonate rock. Interpretation of these flow-logs has produced high-resolution, depth-specific borehole hydraulic conductivities for vertical intervals as small as 1.5 m. This information provides insight into aquifer vertical heterogeneity at previously unavailable spatial scales.

Hydraulic conductivity as evidenced by groundwater flow into the well was detected for 22.2 percent of the screened intervals in volcanic tuff and 65 percent of the open borehole accessible in carbonate rock. This finding is important because wells in tuff are screened based on an assumed relationships between geologic classification and the expected hydraulic properties. The findings of this study suggest that these assumed relationships are often tenuous. No general trend of lower hydraulic conductivity with depth is identified based on these data.

Tuff Bedrock

The results of the analysis are summarized in a series of tables providing the average of the detected hydraulic conductivity and estimated statistical distribution for each of the hydrostratigraphic characteristics. Average hydraulic conductivity values detected for the various hydrogeologic characteristics should not be viewed as the average hydraulic conductivity for the entire thickness of the unit. The purpose of evaluating hydraulic conductivity is to understand the range and statistical characteristics of the permeability underlying the transmissivity of the major hydrogeologic units.

Table S-1 summarizes the hydraulic conductivity for stratigraphic units in tuff. The table indicates that many of the stratigraphic units have unknown or too few values to describe the statistical distribution of data. Comparing data for the same stratigraphic unit among wells indicates that the values may be similar such as for the unit Tfb (Tertiary Beatty Wash Formation) in wells ER-EC-7 and ER-EC-8 or may have very different values such as the stratigraphic unit Tfbw (Tertiary Rhyolite of Beatty Wash Formation) in wells ER-EC-2a and ER-EC-7 and for the unit Tmar (Tertiary Mafic-rich Ammonia Tanks Tuff) in wells ER-EC-2a and ER-EC-5. There seems to be no identifiable trends in the average hydraulic conductivity based on stratigraphic unit. In general, well ER-EC-2a seems to have much lower hydraulic conductivity than the other wells. This aspect may be related to the specific fracture domain at that well.

Table S-2 summarizes the hydraulic conductivity for lithologic units in tuff. The table indicates that almost all of the units have unknown statistical distribution of data. An interesting observation is that the average hydraulic conductivity seems unaffected by the degree of welding in tuff. The nonwelded tuff, partly welded tuff, moderately welded tuff, and moderately to densely welded tuff have values over similar ranges. The average hydraulic conductivity values for lava (LA) are generally greater than for other lithologic units.

The summary of results for association of average hydraulic conductivity with alteration modifier for tuff is presented in Table S-3. There are too few data to describe the statistical distributions or trends for most wells. The statistical distribution is unknown for nearly all of the remaining wells. There are no identifiable trends associating average hydraulic conductivity with alteration modifier.

The summary of hydrogeologic units in tuff and average hydraulic conductivity is presented in Table S-4. Well ER-EC-2a has lower average hydraulic conductivity values for all hydrogeologic classifications. Evaluation of the average values for the welded tuff aquifer (WTA) and lava flow aquifer (LFA) shows similarity to those for tuff confining units (TCU). This observation should be viewed with caution because these are average detectable hydraulic conductivity values and do not reflect the many nondetects within each type of hydrogeologic unit. The table is possibly indicating that the permeability of fractures is similar in welded tuff aquifers and tuff confining units and that it is the frequency of fractures that determines whether the unit is an aquifer or a confining unit.

Table S-5 presents the average hydraulic conductivity for the various hydrostratigraphic units in tuff. Well ER-EC-2a is again unique in that the average values are lower than the other wells. Only three hydrostratigraphic units are found in more than one well (e.g., FCCM – Fortymile Canyon Composite Unit, TMCM – Timber Mountain Composite Unit, and BA – Benham Aquifer). Most of the hydrostratigraphic units do not have an identifiable statistical distribution. The average values do not indicate an association with hydrostratigraphic unit.

			Stratigraphic Unit											
Well	Summary Properties	Tfbw	Tfb	Tf	Ttc	Tpb	Tmaw	Tmar	Ттар	Тсь	Трст	Tptm	Тсре	Tmrp
ER-EC-I	Ave K (m/d) Distribution					27.6 In					2.3 шлк	8.4 บทห	נז.1 זעתא	
ER-EC-2a	Ave K (m/d) Distribution	0 .18 In		0.17 few			0.17 unk	0.04 few						
ER-EC-4	Ave K (m/d) Distribution				27,6 unk									16.4 few
ER-EC-5	Ave K (m/d) Distribution							21.9 n-s	18.2 In					
ER-5-4#2	Ave K (m/d) Distribution									5.2 unk				
ER-EC-6	Ave K (m/d) Distribution					5.1 unk								
ER-EC-7	Ave K (m/d) Distribution	28.2 few	13.0 n											
ER-EC-8	Ave K (m/d) Distribution		15.3 п						5.6 unk					

Table S-1. Average hydraulic conductivity by stratigraphic unit in tuff.

Estimated statistical distribution types in = normal, n-s = normal skewed, in = log normal, few = too few values to estimate, unk = unknown

						Litholog	ic Unit					
	Summary					2111110						
Well	Properties	NWT	PWT	PWT-MWT	MWT	MWT-DWT	LA	BED	TSLT	RWT	СL	FB
ER-EC-1	Ave K (m/d)		2.3	8.4			33.4	4.3				10.7
	Distribution		unk	unk			unk	few				unk
ER-EC-2a	Ave K (m/d)	0.14			0,04			0.2	0,11	0,24		
	Distribution	In			few			In	unk	unk		
ER-EC-4	Ave K (m/d)		16.4				28.8				8.5	
	Distribution		unk				unk				unk	
ER-EC-5	Ave K (m/d)				21.9	18.2						
	Distribution				n-s							
ER-5-4#2	Ave K (m/d)	5.2										
	Distribution	unk										
ER-EC-6	Ave K (m/d)						5.1					
	Distribution						unk					
ER-EC-7	Ave K (m/d)						18.0					
	Distribution						few					
ER-EC-8	Ave K (m/d)	14.6										
	Distribution	In										

Table S-2. Average hydraulic conductivity by lithologic modifiers in tuff.

Estimated statistical distribution types in = normal, n-s = normal skewed, in = log normal, few = too few values to estimate, unk = unknown

		Alteration Modifier					
Well	Summary Properties	DV	GL	ZE	QZ	QF	VAR
ER-EC-1	Ave K (m/d)	29.9		4.3	10.6	11.1	
	Distribution	unk		few	few	few	
ER-EC-2a	Ave K (m/d)			0,4		0.2	
	Distribution			few		unk	
ER-EC-4	Ave K (m/d)	28.8				16.4	
	Distribution	unk				few	
ER-EC-5	Ave K (m/d)					21.5	
	Distribution					n-\$	
ER-5-4#2	Ave K (m/d)			5,2			
	Distribution			ln			
ER-EC-6	Ave K (m/d)	1.6	10,9				
	Distribution	few	unk				
ER-EC-7	Ave K (m/d)					28.2	13.0
	Distribution					few	unk
ER-EC-8	Ave K (m/d)				15,3	5.6	
	Distribution				unk	few	

Table S-3. Average hydraulic conductivity by alteration modifiers in tuff.

Estimated statistical distribution types n = normal, n-s = normal skewed, ln = log normal, few = too few values to estimate, unk = unknown

Table S-4.	Average	hydraulic c	conductivity	, by hyd	Irogeologic u	nits in tuff.

	1	Hydrogeologic Unit								
Well	Summary Properties	WTA	тси	LFA	AA					
ER-EC-1	Ave K (m/d)	5,4	4,3	28.4						
	Distribution	few	few	սառե						
ER-EC-2a	Ave K (m/d)	0.04	0.2		0.1					
	Distribution	few	unk		few					
ER-EC-4	Ave K (m/d)	16.4		28.8	8.5					
	Distribution	few		unk	few					
ER-EC-5	Ave K (m/d)	21,5								
	Distribution	N-5								
ER-5-4#2	Ave K (m/d)		5.2							
	Distribution		1n							
ER-EC-6	Ave K (m/d)			5.1						
	Distribution			ատե						
ER-EC-7	Ave K (m/d)			18.0						
	Distribution			In						
ER-EC-8	Ave K (m/d)		14.6							
	Distribution		1 n							

Estimated statistical distribution types n = normal, n-s = normal skewed, ln = log normal, few = too few values to estimate, unk = unknown

		Hydrostratigraphic Unit									
Well	Summary Properties	FCCM	тмсм	TCVA	ТМА	LTCU	BA	UPCU	TCA	TSA	CFCM
ER-EC-1	Ave K (m/d) Distribution						30.6 10	4.3 ឃាk	2.3 unk	8.4 unk	1 1.1 սոհ
ER-EC-2a	Ave K (m/d) Distribution	0. 2 In	0.2 unk								
ER-EC-4	Ave K (m/d) Distribution			27.6 Unk	16.4 onk						
ER-EC-5	Ave K (m/d) Distribution		21.5 In								
ER-5-4#2	Ave K (m/d) Distribution					5.2 unk					
ER-EC-6	Ave K (m/d) Distribution						5.1 µлк				
ER-EC-7	Ave K (m/d) Distribution	18.0 In									
ER-EC-8	Ave K (m/d) Distribution	15.3 In	5.6 few								

Table S-5. Average hydraulic conductivity by hydrostratigraphic unit in tuff.

Estimated statistical distribution types n = normal, n-s = normal skewed, ln = log normal, few = too few values to estimate, unk = unknown

Carbonate Bedrock

Wells in carbonate exhibit only two variations in hydrostratigraphic characteristics: the stratigraphic unit and the lithologic unit. These hydraulic conductivity values are based, in part, on a linearization of the borehole flow rates that produces an average value over distances greater than the nominal 1.5-m vertical calculation interval used in screened wells. Therefore, short intervals containing nondetectable hydraulic conductivity are incorporated into the average values.

Table S-6 presents the average hydraulic conductivity data for each stratigraphic unit in carbonate. The statistical distributions of hydraulic conductivity within each stratigraphic unit are generally unknown. The close similarity of values of ER-6-1 and ER-6-1#2 is the result of these wells being located only 64 m apart.

Table S-7 presents the average hydraulic conductivity associated with lithologic unit. The values in dolomite (Dol) appear to be more similar than those in limestone (Ls). The statistical distributions in carbonate are generally lognormal. This is in contrast to tuff which apparently have more variability in the statistical distributions.

	Summary	Stratigraphic Unit						
Well	Properties	DSs	D\$I	Oes	Puz			
ER-6-1	Ave K (m/d)	1.1	4.3	6,7				
	Distribution	unk	ln 🛛	unk				
ER-6-1#2	Ave K (m/d)		3.3	6,7				
	Distribution		unk	unk				
ER-7-1	Ave K (m/d)				33.1			
	Distribution				unk			
ER-12-3	Ave K (m/d)				0.4			
	Distribution				unk			

Table S-6. Average hydraulic conductivity by stratigraphic units in carbonate.

Estimated statistical distribution types n = normal, n-s = normal skewed, ln = log normal, few = too few values to estimate, unk = unknown

Table S-7.	Average hydraulic conductiv	tv br	v lithologic modifiers in carbonate.
	The stand of the second s	· · ·	

	Summary	Ĺ	Lithologic Unit			
Well	Properties	Dol	Ls			
ER-6-1	Avc K (m/d)	3.2				
	Distribution	In				
ER-6-1#2	Ave K (m/d)	3,5				
	Distribution	սոհ				
ER-7-1	Ave K (m/d)		33.1			
	Distribution		ln			
ER-12-3	Ave K (m/d)	0.8	0,02			
	Distribution	few	In			

Estimated statistical distribution types n = normal, n-s = normal skewed, ln = log normal, few = too few values to estimate, onk = unknown

Alternative Analysis Using Censored Data

The hydraulic conductivity data collected from the well logging contains many values reported as 'less than' some minimum detectable K. In the first stage of this study, these data were either discarded or averaged with detected Ks to produce a composite K for each well at each measured depth. An alternative method to analyze these data was also performed in stage 2 of this study. The 'less-than,' or censored data, were retained for analysis and no averaging of K was performed. Though this results in a significantly larger data set to analyze, analysis is complicated by the presence of the censored data.

Robust, nonparametric methods for statistical analysis of censored data sets were employed in the stage 2 of this study. The Kendall-Tau test was performed to determine correlations between K and depth. This test was motivated by previous groundwater models in this area that assume an exponential decay of K with depth. Also, the Peto-Peto modification of the Wilcoxon test was used to test for differences in populations. This test is a nonparametric alternative to the paired Student's t-test and is appropriate for censored data sets. As applied to this study, the test statistic is used to determine differences between two survival curves.

In this stage of the study, the purpose of the analysis was to describe the data, determine trends in the data, and evaluate heterogeneity. These tasks are similar to those described in the first stage of the study, the difference being a different representation of the raw data was used in stage 2.

The following questions were addressed:

- What are typical values for K?
- Does K follow any trend within a well? Does K decrease with depth?
- Are rock characteristics homogeneous? For example, do the K values for an HSU of BA in one location differ from the K values for an HSU of BA in another location?
- Are there differences in K within rock classifications? Or, which rock classifications best describe variability in K?
- Are Ks affected by fractures?

In summary, the following conclusions were reached:

- Approximately one-quarter of the units exhibit a decrease in K with depth. However, many of these units are relatively thin and extrapolation to thicknesses greater than 100 m may not be appropriate.
- Over 90 percent of the rock classifications exhibit some spatial heterogeneity.
- For each rock classification (HSU, HGU, LITH, STRAT, or ALTERATION) there is significant overlap among their respective characteristics, implying that rock classification is a poor method of describing K. However, of the five rock classifications, stratigraphic unit was the best descriptor of K, while lithology was the worst.
- Though fracture analysis was not part of the original scope, it was discovered that the presence of fractures may be correlated to high values of conductivity.

THIS PAGE INTENTIONALLY LEFT BLANK

ABSTRACT	iíi
EXECUTIVE SUMMARY	iii
LIST OF FIGURES	xv
LIST OF TABLES	. xxv
LIST OF ACRONYMS	. xxvi
INTRODUCTION	1
Background	I
Purpose	1
Approach	4
Stage-one Analysis	4
Stage-two Analysis	6
Limitations of the Borehole Flowmeter and Data Reduction	7
STAGE-ONE ANALYSIS	9
Wells Constructed in Volcanic Tuff	9
Overview	9
Association of Hydraulic Conductivity with Well-specific Hydrogeologic Characteristics	15
Hydraulic Conductivity and Stratigraphy	15
Hydraulic Conductivity and Lithologic Modifier	26
Hydraulic Conductivity and Alteration Modifier	26
Hydraulic Conductivity and Hydrogeologic Unit	36
Hydraulic Conductivity and Hydrostratigraphic Unit	45
Association of Hydrogeologic Characteristics with Well-specific Hydraulic Conductivity	
Hydraulic Conductivity and Stratigraphy	56
Hydraulic Conductivity and Lithologic Modifier	76
Hydraulic Conductivity and Alteration Modifier	81
Hydraulic Conductivity and Hydrogeologic Unit	93
Hydraulic Conductivity and Hydrostratigraphic Unit	105
Wells Constructed in Carbonate Rock	117
Overview	117
Association of Hydraulic Conductivity with Well-specific Hydrogeologic Characteristics	128
Hydraulic Conductivity and Stratigraphy	128
Hydraulic Conductivity and Lithologic Modifier	129
Association of Hydrogeologic Characteristics with Well-specific Hydraulic Conductivity	134
Hydraulic Conductivity and Stratigraphy	. 134
Hydraulic Conductivity and Lithologic Modifier	139
Hydraulic Conductivity and Hydrogeologic Unit / Hydrostratigraphic Unit / Alteration	
Modifier	. 153
Summary of Phase One Analysis	153
STAGE-TWO ANALYSIS	162
Introduction	. 162
Exploratory Data Analysis	163
Approach	. 164
OVERVIEW OF CENSORED DATA METHODS	. 164
Correlation	. 165
Comparison of Populations	. 165

CONTENTS

SUMMARY OF ENTIRE DATASET	
DESCRIPTION OF K WITHIN EACH WELL	
K versus Depth: Well ER-EC-1	
HSU:BA	
HGU:LFA	
ALTERATION DV	
STRAT: Tpb	
K versus Depth: Well ER-EC-2a	
HGU:TCU	
ALTERATION OF	
LITH:NWT	
K versus Depth: Well ER-EC-4	
HSU:TCVA	
HGU:LFA	
ALTERATION	
DV	
LITH	
:LA	
STRAT: Ttc	
K versus Depth: Wells ER-EC-5, ER-5-4#2	
K versus Depth: Well ER-EC-6	
HSU:BA	
HGU:LFA	
LITH:LA	
STRAT: Tpb	
K versus Depth: Well ER-EC-8	
HSU FCCM	
HGU:TCU	
ALTERATION:QZ	
LITH:NWT	
STRAT:Tfb	
Summary	
HETEROGENEITY OF ROCK CHARACTERISTICS	
Heterogeneity of HSUs	
Heterogeneity of HGUs	
Heterogeneity of LITHs	
Heterogeneity of ALTERATIONs	
Heterogeneity of STRATs	
Conclusions	
HETEROGENEITY WITHIN ROCK CLASSIFICATIONS	
Heterogeneity of HSUs	
Heterogeneity of HGUs	
Heterogeneity of LITHs	
Heterogeneity of STRATs	
Heterogeneity of ALTERATIONSs	
Summary	

COMPARE K WITH FRACTURES	. 203
STAGE 2 CONCLUSIONS	. 204
REFERENCES	. 205
APPENDIX: Hydraulic Conductivity at Depth (Dashes indicate hydraulic conductivity	
values are below detection within the interval).	. 207

LIST OF FIGURES

I.	Location map showing the eight wells in volcanic tuff and four wells in carbonate rock	•
~	where borehole flow logging was conducted for the UGTA project	2
2.	Detected hydraulic conductivity with depth at well ER-EC-1, vertical green bars on	
_	left-hand side of figure indicate position of well screen.	. 10
3.	Detected hydraulic conductivity with depth at well ER-EC-2a, vertical green bars on	
	left-hand side of figure indicate position of well screen.	. 11
4.	Detected hydraulic conductivity with depth at well ER-EC-4, vertical green bars on	
	left-hand side of figure indicate position of well screen	. 11
5.	Detected hydraulic conductivity with depth at well ER-EC-5, vertical green bars on	
	left-hand side of figure indicate position of well screen.	. 12
6.	Detected hydraulic conductivity with depth at well ER-5-4#2, vertical green bars on	
	left-hand side of figure indicate position of well screen.	. 12
7.	Detected hydraulic conductivity with depth at well ER-EC-6, vertical green bars on	
	left-hand side of figure indicate position of well screen.	. 13
8.	Detected hydraulic conductivity with depth at well ER-EC-7, vertical green bars on	
	left-hand side of figure indicate position of well screen.	. 13
9.	Detected hydraulic conductivity with depth at well ER-EC-8, vertical green bars on	
	left-hand side of figure indicate position of well screen	. 14
10.	Stratigraphic units adjacent to well screen and detectable hydraulic conductivity at well	
	ER-EC-1	. 18
11.	Stratigraphic units adjacent to well screen and detectable hydraulic conductivity at well	
	ER-EC-2a	. 18
12.	Stratigraphic units adjacent to well screen and detectable hydraulic conductivity at well	
	ER-EČ-4	. 19
13.	Stratigraphic units adjacent to well screen and detectable hydraulic conductivity at well	
	ER-EC-5	. 19
14.	Stratigraphic units adjacent to well screen and detectable hydraulic conductivity at well	
	ER-5-4#2	. 20
15.	Stratigraphic units adjacent to well screen and detectable hydraulic conductivity at well	
	ER-EC-6	. 20
16	Stratigraphic units adjacent to well screen and detectable hydraulic conductivity at well	
	ER-EC-7	21
17.	Stratigraphic units adjacent to well screen and detectable hydraulic conductivity at well	
• • •	FR-FC-8	21
18	Average detected hydraulic conductivity in stratigraphic units at well ER-EC-1	22
19	Average detected hydraulic conductivity in stratigraphic units at well ER-EC-2a	22
20	Average detected hydraulic conductivity in stratigraphic units at well ER-EC-4	22
21	Average detected hydraulic conductivity in stratigraphic units at well ER-EC-5	22
22	Average detected hydraulic conductivity in stratigraphic units at well ER-EC-5,	24
<i>44</i> .	Average detected hydraune conductivity in stratigraphic units at wen EK-3-4#2.	. 44

23.	Average detected hydraulic conductivity in stratigraphic units at well ER-EC-6	24
24.	Average detected hydraulic conductivity in stratigraphic units at well ER-EC-7	25
25.	Average detected hydraulic conductivity in stratigraphic units at well ER-EC-8	
26.	Lithologic modifiers adjacent to well screen and detectable hydraulic conductivity	
	at well ER-EC-1	
27	Lithologic modifiers adjacent to well screen and detectable hydraulic conductivity at	
- / .	well FR-EC-2a	28
28	Lithologic modifiers adjacent to well screen and detectable hydraulic conductivity at	
-0.	well FR-FC-4	29
20	Lithologic modifiers adjacent to well screen and detectable hydraulic conductivity at	
2.7	well FR-FC-5	20
30	Lithologic modifiers adjacent to well screen and detectable hydraulic conductivity at	
50.	uall EP_5_4#7	20
21	Lithologic modifiers adjacent to well screen and detectable hydraulic conductivity at	50
51.	wall ER EC 4	20
27	Well EK-EC-0.	
32.	Enhologic modifiers adjacent to well screen and detectable hydraune conductivity at 	21
33	Well EK-EC-7.	
33.	Lithologic modifiers adjacent to well screen and detectable hydraulic conductivity at	~ 1
~ .	Well EK-EU-8	51
34.	Average detected hydraulic conductivity for lithologic modifiers at well EK-EC-1	32
35.	Average detected hydraulic conductivity for lithologic modifiers at well ER-EC-2a	32
36.	Average detected hydraulic conductivity for lithologic modifiers at well ER-EC-4	33
37.	Average detected hydraulic conductivity for lithologic modifiers at well ER-EC-5	33
38.	Average detected hydraulic conductivity for lithologic modifiers at well ER-5-4#2	34
39.	Average detected hydraulic conductivity for lithologic modifiers at well ER-EC-6	34
40.	Average detected hydraulic conductivity for lithologic modifiers at well ER-EC-7	35
41.	Average detected hydraulic conductivity for lithologic modifiers at well ER-EC-8	35
42.	Alteration modifiers adjacent to well screen and detectable hydraulic conductivity at	
	well ER-EC-1	37
43.	Alteration modifiers adjacent to well screen and detectable hydraulic conductivity at	
	well ER-EC-2a	37
44.	Alteration modifiers adjacent to well screen and detectable hydraulic conductivity at	
	well ER-EC-4	38
45.	Alteration modifiers adjacent to well screen and detectable hydraulic conductivity at	
	well ER-EC-5	38
46.	Alteration modifiers adjacent to well screen and detectable hydraulic conductivity at	
	well ER-5-4#2	
47.	Alteration modifiers adjacent to well screen and detectable hydraulic conductivity at	
	well ER-EC-6	
48	Alteration modifiers adjacent to well screen and detectable hydraulic conductivity at	
	well ER-EC-7	
49	Alteration modifiers adjacent to well screen and detectable hydraulic conductivity at	
	well ER-EC-8	40
50	Average detected hydraulic conductivity for alteration modifiers at well FR-FC-1	41
51	Average detected hydraulic conductivity for alteration modifiers at well FR-FC-2a	11 41
52	Average detected hydraulic conductivity for alteration modifiers at well ER-EC-4	
· 4.	revenues accorded hydraune conductivity for alteration mounters at wen LIC-4	72

53.	Average detected hydraulic conductivity for alteration modifiers at well ER-EC-5	. 42
54.	Average detected hydraulic conductivity for alteration modifiers at well ER-5-4#2	. 43
55.	Average detected hydraulic conductivity for alteration modifiers at well ER-EC-6	. 43
56.	Average detected hydraulic conductivity for alteration modifiers at well ER-EC-7	. 44
57.	Average detected hydraulic conductivity for alteration modifiers at well ER-EC-8	. 44
58.	Hydrogeologic units adjacent to well screen and detectable hydraulic conductivity at	
	well ER-EC-1	. 46
59	Hydrogeologic units adjacent to well screen and detectable hydraulic conductivity at	• • •
••••	well FR-EC-2a	46
60	Hydrogeologic units adjacent to well screen and detectable hydraulic conductivity at	
•••	well FR-EC-4	47
61	Hydrogeologic units adjacent to well screen and detectable hydraulic conductivity at	,
•••	well FR-EC-5	47
62	Hydroneologic units adjacent to well screen and detectable bydraulic conductivity at	,
02.	well FR-5-4#?	48
63	Hydrogeologic units adjacent to well screen and detectable hydraulic conductivity at	. 40
05.	well ED_EC_6	48
64	Well ER-EC-0.	. 40
V- .	Typologeologic units adjacent to well screen and detectable hydraune conductivity at y_{a}	40
65	Well ER-EQ-7.	. 47
ω.	myorogeorogic units aujacent to wen screen and derectable hydraune conductivity at mall EP. EC. 9	40
66	Well ER-EC-0	- 49 - 50
00. 47	Average detected hydraulic conductivity for hydrogeologic units at well ER-EC-1.	. 50
0/.	Average detected hydraulic conductivity for hydrogeologic units at well EK-EC-2a	. 50
68.	Average detected hydraulic conductivity for hydrogeologic units at well EK-EC-4.	. 51
69.	Average detected hydraulic conductivity for hydrogeologic units at well EK-EC-5.	. 21
70.	Average detected hydraulic conductivity for hydrogeologic units at well EK-5-4#2	. 52
71.	Average detected hydraulic conductivity for hydrogeologic units at well ER-EC-6.	. 52
72.	Average detected hydraulic conductivity for hydrogeologic units at well EK-EC-7.	. 53
73.	Average detected hydraulic conductivity for hydrogeologic units at well ER-EC-8.	. 53
74.	Hydrostratigraphic units adjacent to well screen and detectable hydraulic conductivity at	
	well ER-EC-1	. 57
75.	Hydrostratigraphic units adjacent to well screen and detectable hydraulic conductivity at	
	well ER-EC-2a	. 57
76.	Hydrostratigraphic units adjacent to well screen and detectable hydraulic conductivity at	
	well ER-EC-4	. 58
77.	Hydrostratigraphic units adjacent to well screen and detectable hydraulic conductivity at	
	well ER-EC-5	. 58
78.	Hydrostratigraphic units adjacent to well screen and detectable hydraulic conductivity at	
	well ER-5-4#2	. 59
79.	Hydrostratigraphic units adjacent to well screen and detectable hydraulic conductivity at	
	well ER-EC-6	. 59
80.	Hydrostratigraphic units adjacent to well screen and detectable hydraulic conductivity at	
	well ER-EC-7	. 60
81.	Hydrostratigraphic units adjacent to well screen and detectable hydraulic conductivity at	
	well ER-EC-8	. 60
82.	Average detected hydraulic conductivity for hydrostratigraphic units at well ER-EC-1	. 61

83.	Average detected hydraulic conductivity for hydrostratigraphic units at well ER-EC-2a.	. 61
84.	Average detected hydraulic conductivity for hydrostratigraphic units at well ER-EC-4	. 62
85.	Average detected hydraulic conductivity for hydrostratigraphic units at well ER-EC-5	. 62
86.	Average detected hydraulic conductivity for hydrostratigraphic units at well ER-5-4#2	. 63
87.	Average detected hydraulic conductivity for hydrostratigraphic units at well ER-EC-6	. 63
88.	Average detected hydraulic conductivity for hydrostratigraphic units at well ER-EC-7	. 64
89.	Average detected hydraulic conductivity for hydrostratigraphic units at well ER-EC-8	. 64
90.	Detected hydraulic conductivity with depth for the stratigraphic unit Rhyolite of Beatty	
	Wash	. 66
91.	Detected hydraulic conductivity for individual wells for the stratigraphic unit Rhyolite	
	of Beatty Wash	. 66
92.	Detected hydraulic conductivity for wells in composite for the stratigraphic unit	
~	Rhyolite of Beatty Wash	. 67
93.	Detected natural logarithm hydraulic conductivity for individual wells for the	
~	stratigraphic unit Khyolite of Beatty Wash.	. 67
94.	Detected natural logarithm hydraulic conductivity for wells in composite for the	~0
05	stratigraphic unit Khyolite of Beatty Wash.	. 68
У Э.	Detected hydrautic conductivity with depth for the strattgraphic unit Beatry wash	<i>c</i> 0
04	Pormation	. 69
90.	Detected hydrautic conductivity for individual wens for the stratigraphic unit Bearty	20
07	Wash Formation.	. 09
91.	Wesh Formation	70
08	Detected natural locarithm hydraulic conductivity for individual wells for the	. 70
50.	strationable unit Beatty Wash Formation	70
99	Detected natural logarithm by draulic conductivity for wells in composite for the	
<i></i>	stratigraphic unit Beatty Wash Formation	71
100	Detected hydraulic conductivity with depth for the stratigraphic unit mafic-rich	. , .
••••	Ammonia Tanks Tuff	71
101.	Detected hydraulic conductivity for individual wells for the stratigraphic unit mafic-rich	
	Ammonia Tanks Tuff	. 72
102.	Detected hydraulic conductivity for wells in composite for the stratigraphic unit mafic-	
	rich Ammonia Tanks Tuff	. 72
103.	Detected natural logarithm hydraulic conductivity for individual wells for the	
	stratigraphic unit mafic-rich Ammonia Tanks Tuff	. 73
104.	Detected natural logarithm hydraulic conductivity for wells in composite for the	
	stratigraphic unit mafic-rich Ammonia Tanks Tuff	. 73
105.	Detected hydraulic conductivity with depth for the stratigraphic unit mafic-poor	
	Ammonia Tanks Tuff	. 74
106.	Detected hydraulic conductivity for individual wells for the stratigraphic unit mafic-	
	poor Ammonia Tanks Tuff.	. 74
107.	Detected hydraulic conductivity for wells in composite for the stratigraphic unit mafic-	
	poor Ammonia Tanks Tuff.	. 75
108.	Detected natural logarithm hydraulic conductivity for individual wells for the	
	stratigraphic unit mafic-poor Ammonia Tanks Tuff	. 75

109.	Detected natural logarithm bydraulic conductivity for wells in composite for the	
	stratigraphic unit mafic-poor Ammonia Tanks Tuff	. 76
110.	Detected hydraulic conductivity with depth for the stratigraphic unit Rhyolite of Benham Tuff	. 77
Ш.	Detected hydraulic conductivity for individual wells for the stratigraphic unit Rhyolite	
	of Benham Tuff	.77
112.	Detected hydraulic conductivity for wells in composite for the stratigraphic unit	
	Rhvolite of Benham Tuff	78
113.	Detected natural logarithm bydraulic conductivity for individual wells for the	
	stratigraphic unit Rhyolite of Benham Tuff	78
114	Detected natural logarithm bydraulic conductivity for wells in composite for the	
	stratigraphic unit Rhyolite of Benham Tuff	79
115	Detected hydraulic conductivity with depth for the lithologic modifier Nonwelded Tuff	82
116	Detected hydraulic conductivity for individual wells for the lithologic modifier	
	Nonwelded Tuff	82
117	Detected hydraulic conductivity for wells in composite for the lithologic modifier	
	Nonwelded Tuff	83
118	Detected natural logarithm hydraulic conductivity for individual wells for the lithologic	
110.	modifier Nonwelded Tuff	83
110	Detected patural logarithm bydraulic conductivity for wells in composite for the	. 65
11.2	lithologic modifier Nonwelded Tuff	84
120	Detected by draulic conductivity with death for the lithologic modifier Moderately	. 04
120.	Welded Tuff	94
121	Detected hydraulic conductivity for individual wells for the lithologic modifier	. 04
121.	Moderately Welded Tuff	85
122	Detected hydraulic conductivity for wells in composite for the lithelastic modifier	. 60
122.	Moderately Walded Tuff	95
122	Detected patural logarithm bydraulic conductivity for individual wells for the lithologic	. 0,
125.	modifier Moderately Wolded Tuff	06
124	Detected patural logarithm hydraulic conductivity for wells in composite for the	. 60
124.	lithologia modifier Moderately Wolded Tuff	94
125	Detected hydraulic conductivity with death for the lithelogic modifier Dedded Tuff	00
125.	Detected hydraulic conductivity with depth for the httpologic modifier Bedded full.	. 07
120.	Therefore invariance conductivity for individual wents for the inhologic modifier bedded	07
127	Detected budgeulin conductivity for wells in composite for the lithelogic medifier	. 01
127.	Detected hydrautic conductivity for wens in composite for the hinologic modifier	99
100	Detected natural logarithm budraulic conductivity for individual wells for the lithelogic	. 00
120.	modifier Redded Tuff	00
120	Detected network localither budgeville conductivity for wells in composite for the	. 00
129.	Explosive madifier Bodded Tuff	00
120	Innologic modifier Beadea 1011.	. 69 00
130.	Detected hydraulic conductivity with depth for the lithologic modifier lava.	. 89
131.	Detected hydraulic conductivity for individual wells for the hthologic modifier lava	. 90
132.	Detected nyorautic conductivity for wells in composite for the lithologic modifier lava	. 90
133.	Detected natural logarithm hydraulic conductivity for individual wells for the lithologic	~.
	modifier lava.	. 91

134.	Detected natural logarithm bydraulic conductivity for wells in composite for the lithologic modifier lava.	. 91
135	Detected hydraulic conductivity with depth for the alteration modifier Devitrified	94
136.	Detected hydraulic conductivity for individual wells for the alteration modifier	
	Devitrified	94
137.	Detected hydraulic conductivity for wells in composite for the alteration modifier	
	Devitrified	. 95
138.	Detected natural logarithm hydraulic conductivity for individual wells for the alteration	
	modifier Devitrified	. 95
139.	Detected natural logarithm hydraulic conductivity for wells in composite for the	
	alteration modifier Devitrified	. 96
140.	Detected hydraulic conductivity with depth for the alteration modifier Zeolitic.	. 96
141	Detected hydraulic conductivity for individual wells for the alteration modifier Zeolitic.	.97
142	Detected hydraulic conductivity for wells in composite for the alteration modifier	
	Zeolitic	97
143.	Detected natural logarithm hydraulic conductivity for individual wells for the alteration	
	modifier Zeolitic	. 98
144.	Detected natural logarithm hydraulic conductivity for wells in composite for the	
	alteration modifier Zeolitic	. 98
145.	Detected hydraulic conductivity with depth for the alteration modifier Quartz	. 99
146.	Detected hydraulic conductivity for individual wells for the alteration modifier Quartz	. 99
147.	Detected hydraulic conductivity for wells in composite for the alteration modifier	
	Quartz	100
148.	Detected natural logarithm hydraulic conductivity for individual wells for the alteration	
	modifier Quartz	100
149.	Detected natural logarithm hydraulic conductivity for wells in composite for the	
	alteration modifier Quartz.	101
150.	Detected hydraulic conductivity with depth for the alteration modifier Quartz	
	Feldspathoidic.	101
151.	Detected hydraulic conductivity for individual wells for the alteration modifier Quartz	
	Feldspathoidic.	102
152.	Detected hydraulic conductivity for wells in composite for the alteration modifier	
	Quartz Feldspathoidic	102
153.	Detected natural logarithm hydraulic conductivity for individual wells for the alteration	
	modifier Quartz Feldspathoidic.	103
154.	Detected natural logarithm hydraulic conductivity for wells in composite for the	
	alteration modifier Quartz Feldspathoidic.	103
155.	Detected hydraulic conductivity with depth for the hydrogeologic unit Welded Tuff	
	Aquifer	106
156.	Detected hydraulic conductivity for individual wells for the hydrogeologic unit Welded	
	Tuff Aquifer	106
157.	Detected hydraulic conductivity for wells in composite for the hydrogeologic unit	
	Welded Tuff Aquifer	107
158.	Detected natural logarithm hydraulic conductivity for individual wells for the	
	hydrogeologic unit Welded Tuff Aquifer.	107

159.	Detected natural logarithm hydraulic conductivity for wells in composite for the hydrogeologic unit Welded Tuff Aquifer.	108
160.	Detected hydraulic conductivity with depth for the hydrogeologic unit Tuff Confining	108
161.	Detected hydraulic conductivity for individual wells for the hydrogeologic unit Tuff Confining Unit	109
162.	Detected hydraulic conductivity for wells in composite for the hydrogeologic unit Tuff Confining Unit	109
163.	Detected natural logarithm hydraulic conductivity for individual wells for the hydrogeologic unit Tuff Confining Unit	110
164	Detected natural locarithm hydraulic conductivity for wells in commotive for the	110
104.	budrogeologic unit Tuff Confining Unit	110
165	Detected hydraulic conductivity with denth for the hydrogeologic unit Laws Flow	110
105.	Aquifer.	111
166.	Detected hydraulic conductivity for individual wells for the hydrogeologic unit Lava Flow Aquifer	111
167.	Detected hydraulic conductivity for wells in composite for the hydrogeologic unit Lava	
	Flow Aquifer	112
168.	Detected natural logarithm hydraulic conductivity for individual wells for the	
	hydrogeologic unit Lava Flow Aquifer	112
169.	Detected natural logarithm bydraulic conductivity for wells in composite for the	
	hydrogeologic unit Lava Flow Aquifer	113
170.	Detected hydraulic conductivity with depth for the hydrogeologic unit Alluvial Aquifer.	113
171.	Detected hydraulic conductivity for individual wells for the hydrogeologic unit Alluvial Aquifer	114
172	Detected hydraulic conductivity for wells in composite for the hydrogeologic unit	
172.	Allovial Aquifer	114
173	Detected natural locarithm hydraulic conductivity for individual wells for the	114
175.	budrogeologic unit Allunial Aquifer	115
174	Detected natural logarithm hydraulic conductivity for wells in composite for the	115
174.	budroceologic upit Alluviol Aquifer	115
175	Detected hydraulic conductivity with denth for the hydrostratigraphic unit Fortunile	115
175.	Canyon Composite Unit	110
176	Detacted hydraulic conductivity for individual walls for the hydrostratigraphic unit	110
170.	Eastweile Capues Comparite Unit	110
177	Portynnie Canyon Composite Ont.	110
L77.	Easterile Constant Conductivity for wents in composite for the hydrostrangraphic unit	110
170	Portynnie Canyon Composite Unit	113
1/8.	Detected natural logarithm hydraulic conductivity for individual wells for the	110
170	nyarostrangraphic unit Portymije Canyon Composite Unit.	119
179.	Detected natural logarithm hydraulic conductivity for wells in composite for the	100
100	nyarostratigraphic unit Portymile Canyon Composite Unit.	120
180.	Detected hydrautic conductivity with depth for the hydrostratigraphic unit Timber	100
101	Nountain Composite Unit	120
181.	Detected hydrautic conductivity for individual wells for the hydrostratigraphic unit	
	Timoer Mountain Composite Unit	121

182.	Detected hydraulic conductivity for wells in composite for the hydrostratigraphic unit Timber Mountain Composite Unit.	121
183.	Detected natural logarithm hydraulic conductivity for individual wells for the	
	hydrostratigraphic unit Timber Mountain Composite Unit	122
184.	Detected natural logarithm hydraulic conductivity for wells in composite for the	
	hydrostratigraphic unit Timber Mountain Composite Unit	122
185.	Detected hydraulic conductivity with depth for the hydrostratigraphic unit Benham	
	Aquifer.	123
186.	Detected hydraulic conductivity for individual wells for the hydrostratigraphic unit	
	Benham Aquifer	123
187.	Detected hydraulic conductivity for wells in composite for the hydrostratigraphic unit	
	Benham Aquifer	124
188.	Detected natural logarithm hydraulic conductivity for individual wells for the	124
100	nydrostratigraphic unit Bennam Aquiter.	124
189.	Detected natural logarithm hydraulic conductivity for wells in composite for the	125
100	Detected by deputie and function with death structure D	125
190.	Detected hydraulic conductivity with depth at well ER-6-1	120
102	Detected hydraulic conductivity with depth at well ER-0-1#2.	120
102	Detected hydraulic conductivity with depth at well ER-12.3	127
104	Stratigraphic units adjagent to well across and detostable budraulic conductivity at well	127
194.	ED 6.1	130
105	Stratigraphic units adjacent to well screen and detectable budraulic conductivity at well	150
175.	FR_6_1#2	130
196	Stratigraphic units adjacent to well screen and detectable hydraphic conductivity at well	1.50
1.70.	ER-7-1	131
197.	Stratigraphic units adjacent to well screen and detectable hydraulic conductivity at well	
	ER-12-3	131
198.	Average detected hydraulic conductivity in stratigraphic units at well ER-6-1	132
199.	Average detected hydraulic conductivity in stratigraphic units at well ER-6-1#2.	132
200.	Average detected hydraulic conductivity in stratigraphic units at well ER-7-1	133
201.	Average detected hydraulic conductivity in stratigraphic units at well ER-12-3.	133
202.	Lithologic modifiers adjacent to well screen and detectable hydraulic conductivity at	
	well ER-6-1	135
203.	Lithologic modifiers adjacent to well screen and detectable hydraulic conductivity at	
	well ER-6-1#2	135
204.	Lithologic modifiers adjacent to well screen and detectable hydraulic conductivity at	
	well ER-7-1	136
205.	Lithologic modifiers adjacent to well screen and detectable hydraulic conductivity at	
	well ER-12-3	136
206.	Average detected hydraulic conductivity for lithologic modifiers at well ER-6-1	137
207.	Average detected hydraulic conductivity for lithologic modifiers at well ER-6-1#2	137
208.	Average detected hydraulic conductivity for lithologic modifiers at well ER-7-1	138
2 09.	Average detected hydraulic conductivity for lithologic modifiers at well ER-12-3	138
210.	Detected hydraulic conductivity with depth for the stratigraphic unit Laketown	
	Dolomite	140

211.	Detected hydraulic conductivity for individual wells for the stratigraphic unit Laketown	141
212	Detected hydraulic conductivity for wells in composite for the stratigraphic unit	141
212.	Laketown Dolomite	141
213.	Detected natural logarithm hydraulic conductivity for individual wells for the	
	stratigraphic unit Laketown Dolomite	142
214.	Detected natural logarithm hydraulic conductivity for wells in composite for the	
	stratigraphic unit Laketown Dolomite	142
215.	Detected hydraulic conductivity with depth for the stratigraphic unit Ely Springs	
214	Dolomite.	[43
216.	Detected hydraulic conductivity for individual wells for the stratigraphic unit Ely	142
217	Detected hydroulic conductivity for walls in composite for the stratigraphic unit Flu	143
217.	Springs Dolomite	144
218	Detected natural logarithm hydraulic conductivity for individual wells for the	
	stratigraphic unit Ely Springs Dolomite	144
219.	Detected natural logarithm hydraulic conductivity for wells in composite for the	
	stratigraphic unit Ely Springs Dolomite	145
220.	Detected hydraulic conductivity with depth for the stratigraphic unit Paleozoic	
	Undifferentiated	145
221.	Detected hydraulic conductivity for individual wells for the stratigraphic unit Paleozoic	
	Undifferentiated	146
222.	Detected hydraulic conductivity for wells in composite for the stratigraphic unit	
000	Paleozoic Undifferentiated.	146
223.	Detected natural logarithm hydraulic conductivity for individual wells for the	147
224	Detected natural logarithm hydraulic conductivity for wells in composite for the	[47
224.	stratigraphic unit Paleozoic Undifferentisted	147
225	Detected hydraulic conductivity with depth for the lithologic modifier Limestone	148
226.	Detected hydraulic conductivity for individual wells for the lithologic modifier	
	Limestone	149
227.	Detected hydraulic conductivity for wells in composite for the lithologic modifier	
	Limestone	149
228.	Detected natural logarithm hydraulic conductivity for individual wells for the lithologic	
	modifier Limestone.	150
229.	Detected natural logarithm hydraulic conductivity for wells in composite for the	
	lithologic modifier Limestone	150
230.	Detected hydraulic conductivity with depth for the lithologic modifier Dolomite.	151
231.	Detected hydraulic conductivity for individual wells for the lithologic modifier	151
727	Dotomile.	151
232.	Delected nyaraute conductivity for wens in composite for the interogic modifier	152
233	Detected natural logarithm hydraulic conductivity for individual wells for the lithologic	.54
	modifier Dolomite	152
234.	Detected natural logarithm hydraulic conductivity for wells in composite for the	
	lithologic modifier Dolomite	153

235.	Detected hydraulic conductivity with depth for the hydrogeologic unit Carbonate and	
	hydrostratigraphic unit Lower Carbonate Aquifer	. 155
236.	Detected hydraulic conductivity for individual wells for the hydrogeologic unit	
	Carbonate and hydrostratigraphic unit Lower Carbonate Aquifer	. 156
237.	Detected hydraulic conductivity for wells in composite for the hydrogeologic unit	
	Carbonate and hydrostratigraphic unit Lower Carbonate Aquifer	. 156
238.	Detected natural logarithm hydraulic conductivity for individual wells for the	
	hydrogeologic unit Carbonate and hydrostratigraphic unit Lower Carbonate Aquifer	. 157
239.	Detected natural logarithm hydraulic conductivity for wells in composite for the	
	hydrogeologic unit Carbonate and hydrostratigraphic unit Lower Carbonate Aquifer	. 157
240.	Example of survival curves	. 165
241.	Density of all Ks.	. 167
242.	K versus depth for ER-EC-1 by HSU	. 169
243.	K versus depth for ER-EC-1 by HGU.	. 169
244.	K versus depth for ER-EC-1 by ALTERATION.	. 170
245.	K versus depth for ER-EC-1 by STRAT.	. 170
246.	K versus depth for ER-EC-2A by HGU.	. 171
247.	K versus depth for ER-EC-2A by ALTERATION.	. 171
248.	K versus depth for ER-EC-2A by LITH.	. 172
249.	K versus depth for ER-EC-4 by HSU	. 172
250.	K versus depth for ER-EC-4 by HGU.	. 173
251.	K versus depth for ER-EC-4 by ALTERATION	. 173
252.	K versus depth for ER-EC-4 by LITH	. 174
253.	K versus depth for ER-EC-4 by STRAT.	. 174
254.	K versus depth for ER-EC-6 by HSU	. 175
255.	K versus depth for ER-EC-6 by HGU	. 175
256.	K versus depth for ER-EC-6 by LITH	. 176
257.	K versus depth for ER-EC-6 by STRAT.	. 176
258.	K versus depth for ER-EC-8 by HSU.	. 177
259.	K versus depth for ER-EC-8 by HGU.	. 177
260.	K versus depth for ER-EC-8 by ALTERATION	. 178
261.	K versus depth for ER-EC-8 by LITH	. 178
262.	K versus depth for ER-EC-8 by STRAT.	. 179
263.	Heterogeneity of HSU: BA.	. 180
264.	Heterogeneity of HSU: CHCU	. 181
265.	Heterogeneity of HSU: FCCM.	. 181
266.	Heterogeneity of HSU: TCA.	. 182
267.	Heterogeneity of HSU: TMCM	. 182
268.	Heterogeneity of HSU: TSA	. 183
269.	Heterogeneity of HSU: UPCU.	. 183
270.	Heterogeneity of HGU: AA.	. 185
271.	Heterogeneity of HGU: LFA	. 185
272.	Heterogeneity of HGU: TCU	. 186
273.	Heterogeneity of HGU: WTA	. 186
274.	Heterogeneity of LITH: BED.	. 188
275.	Heterogeneity of LITH: LA.	. 188

276. Heterogeneity of LITH: MWT.	. 189
277. Heterogeneity of LITH: NWT	. 189
278. Heterogeneity of LITH: PWT	. 190
279. Heterogeneity of LITH: PWT-MWT	. 190
280. Heterogeneity of LITH: VT	. 191
281. Heterogeneity of ALTERATION: DV.	. 192
282. Heterogeneity of ALTERATION: GL.	. 193
283. Heterogeneity of ALTERATION: QF.	. 193
284. Heterogeneity of ALTERATION: QZ.	. 194
285. Heterogeneity of ALTERATION: ZE	. 194
286. Heterogeneity of STRAT: Tfb.	. 195
287. Heterogeneity of STRAT: Tfbw	. 196
288. Heterogeneity of STRAT: Thr.	. 196
289. Heterogeneity of STRAT: Tmap	. 197
290. Heterogeneity of STRAT: Tmar.	. 197
291. Heterogeneity of STRAT: Tmaw	. 198
292. Heterogeneity of STRAT: Tpb.	. 198
293. Heterogeneity of STRAT: Tpcm	. 199
294. Heterogeneity of STRAT: Tptm.	. 199
295. Heterogeneity of HSUs	. 201
296. Heterogeneity of HGUs.	. 201
297. Heterogeneity of LITHs	. 202
298. Heterogeneity of STRATs.	. 202
299. Heterogeneity of ALTERATIONs	. 203
300. Correlation between fracture location and K: ER-EC-8	. 204

LIST OF TABLES

The number of hydrogeologic characteristics available for association with hydraulic	
conductivity	3
Well-specific analysis of hydraulic conductivity and hydrogeologic characteristics	5
Hydrogeologic characteristics specific analysis of hydraulic conductivity	6
Detection of hydraulic conductivity in tuff	. 10
Stratigraphic units for wells in tuff	. 15
Stratigraphic units encountered in drilling. Units that are screened are shaded gray and	
units with detectable hydraulic conductivity are in bold type	. 17
Lithologic modifiers for wells in tuff	. 26
Lithologic units that are adjacent to well screened. Lithologic modifiers with detectable	
hydraulic conductivity are shaded gray.	. 27
Alteration modifiers for wells in tuff.	. 36
Alteration modifiers that are screened. Modifiers with detectable hydraulic conductivity	
are shaded gray	. 36
Hydrogeologic units for wells in tuff.	. 45
Hydrogeologic units that are screened. Units with detectable hydraulic conductivity are	
shaded gray.	. 45
Hydrostratigraphic units for wells in tuff	. 54
	The number of hydrogeologic characteristics available for association with hydraulic conductivity. Well-specific analysis of hydraulic conductivity and hydrogeologic characteristics

14.	Hydrostratigraphic units encountered in drilling that were screened are shaded gray and	d
	units with detectable hydraulic conductivity are in bold type.	55
15.	Stratigraphic units encountered at multiple wells in tuff.	65
16.	Lithologic units encountered at multiple wells in tuff.	80
17.	Alteration modifiers encountered at multiple wells in tuff.	
18.	Hydrogeologic units encountered at multiple wells in tuff	104
19.	Hydrostratigraphic units encountered at multiple wells in tuff.	116
20.	Detection of hydraulic conductivity in carbonate rock.	125
21.	Stratigraphic units for wells in carbonate rock	129
22.	Stratigraphic units encountered in drilling. Stratigraphic units that are screened are	
	shaded gray and units with detectable hydraulic conductivity are in bold type	1 2 9
23.	Lithologic modifiers for wells in carbonate rock	134
24.	Lithologic modifiers that are screened. Lithologic modifiers with detectable hydraulic	
	conductivity are shaded gray.	134
25.	Stratigraphic units encountered at multiple wells in carbonate rock.	139
26.	Lithic modifier units encountered at multiple wells in carbonate	148
27.	Tuff stratigraphic units property summary.	158
28.	Tuff lithologic modifiers property summary.	159
29.	Tuff alteration modifiers property summary	160
30.	Tuff hydrogeologic units summary properties	160
31.	Tuff hydrostratigraphic units summary properties.	161
32.	Carbonate stratigraphic units property summary	162
33.	Carbonate lithologic modifiers property summary.	162
34.	Comparison of data sets between stage one and stage two	163
35.	Characteristics and classifications of intervals within wells in which a statistically-	
	significant correlation of depth and K were detected.	168
36.	HSU characteristic two-well comparison by rock classification	180
37.	HGU characteristic two-well comparison by rock classification.	184
38.	LITH characteristic two-well comparison by rock classification.	187
39.	ALTERATION characteristic two-well comparison by rock classification	191
40.	STRAT characteristic two-well comparison by rock classification.	195

LIST OF ACRONYMS

- ANOVA analysis of variance
- DOE U.S. Department of Energy
- EDA Expoloratory Data Analysis
- HGU hydrogeologic unit
- HSU hydrostratigraphic unit
- IQR interquartile range
- LITH lithology
- NNSA National Nuclear Security Administration
- NSO Nevada Site Office
- STRAT stratigraphic unit
- UGTA Underground Test Area

INTRODUCTION

Background

The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) constructed a series of deep characterization and monitoring wells as part of the Underground Test Area (UGTA) Program in southern Nevada. The Desert Research Institute has performed borehole flow logging at many of these wells as part of the hydrogeologic characterization. The borehole flow logging is conducted to:

- Understand the quantity and depth of groundwater inflow to the well under ambient and pumping conditions,
- Select target depths for geochemical sampling of discrete inflow zones, and
- Calculate the depth-specific hydraulic conductivity at the smallest spatial scale as practical.

The UGTA project has conducted borehole flow logging in eight wells in volcanic tuff and four wells in carbonate rock. Figure 1 illustrates these wells located at the Nevada Test Site, and the Nevada Test and Training Range in Nye County, Nevada. Wells presented in this report in volcanic tuff are: ER-EC-1, ER-EC-2A, ER-EC-4, ER-EC-5, ER-EC-6, ER-EC-7, ER-EC-8, and ER- 5-4#2, and those in carbonate rock are: ER-6-1, ER-6-1#2, ER-7-1, and ER-12-3.

The borehole flow logging has obtained a substantial amount of information on groundwater flow into the wells. The total vertical length of the flow-logged boreholes exceeds 1,067 meters (m) in volcanic tuff and 1,194 m in carbonate rock. These vertical intervals include only the length of screened intervals or open well bores and do not include cased sections of the wells.

Interpretation of these flow-logs has produced high-resolution, depth-specific borehole hydraulic conductivities for vertical intervals as small as 1.5 m. This information provides insight into aquifer vertical heterogeneity at previously unavailable spatial scales. Hydraulic conductivity as evidenced by groundwater flow into the well was detected for 22.2 percent of the screened intervals in volcanic tuff and 65 percent of the open borehole accessible in carbonate rock. The results of borehole flow logging have been reported previously to DOE in reports that focus on the depth-specific hydraulic conductivity at individual wells. The hydraulic conductivity data at depth for each well are provided in the Appendix.

Purpose

Associating the hydraulic conductivity data with other hydrogeologic information is an important next step to understanding the area's hydrogeology. Of value to the site characterization and groundwater modeling are association of depth-specific hydraulic conductivities to other characterization data commonly used to describe the hydrogeology such as the results of single-well hydraulic tests, geologic descriptors, hydrogeologic classifications, and degree of fracturing.

Figure 1. Location map showing the eight wells in volcanic tuff and four wells in carbonate rock where borehole flow logging was conducted for the UGTA project.

This report examines depth-specific hydraulic conductivity data at multiple wells and identifies the major statistical trends, or lack of trends, within the hydrogeologic

classifications. The hydrogeologic classifications that describe the geologic conditions at depth are taken from DOE NNSA/NSO Well Completion reports (DOE, 2000a,b,c,d,e; DOE, 2006b), and through personal communication (William Fryer, Stoller Navarro, 2006). The hydrostratigraphic designations for specific depth intervals are taken from DOE NNSA/NSO hydrostratigraphic framework model reports (DOE 2002b, 2005b, 2006a). All of the major hydrogeologic descriptors reported in those studies are used in this analysis.

Site interpretation relies on rock descriptions and context. Five separate classification systems are applied to the rock at any single point within the borehole. For the purposes of this report, a terminology is used to distinguish among the various rock description systems. The first and highest level system is referred to as the hydrogeologic classification. The second and next lowest system of subsequent descriptors within a hydrogeologic classification is referred to as a hydrogeologic characteristic.

The five major hydrogeologic classifications used to describe the rock in UGTA wells

• Stratigraphic unit,

are:

- Lithologic description,
- Lithologic alteration,
- Hydrogeologic unit, and
- Hydrostratigraphic unit.

Each of the hydrogeologic classifications has several characteristics to designate the particular stratigraphic unit, lithology, alteration, etc. The Appendix includes the hydrogeologic classification and assigned characteristic for each hydraulic conductivity value. This information is provided for the reader that wants to examine the data in greater detail than presented in this report. The number of hydrogeologic characteristics that were borehole flow logged and those that have detectable hydraulic conductivity for each hydrogeologic classification are presented in Table 1. The hydrogeologic characteristics flow logged for tuff are populated with more designations than for carbonate.

conductivity.		
	Number of Hydrogeologic Characteristics Adjacent to Well	Number of Hydrogeologic Characteristics with Detected
Hydrogeologic Classification	Screen or Open Borehole	Permeability
Tuff Stratigraphic Unit	15	n
Tuff Lithologic Description	16	10
Tuff Lithologic Alteration	7	6
Tull Hydrogeologic Unit	4	4
Tuff Hydrostratigraphic Unit	14	8
Carbonate Stratigraphic Unit	4	4
Carbonate Lithologic Description	2	2
Carbonate Lithologic Alteration	L	1
Carbonate Hydrogeologic Unit	L	1
Carbonate Hydrostratigraphic Unit	l	1

 Table 1. The number of hydrogeologic characteristics available for association with hydraulic conductivity

Approach

Evaluation of hydraulic conductivity and hydrogeologic classifications is challenged by the many possible data associations and the many possible data applications. There are tens of thousands of possible statistical associations between hydraulic conductivity and combinations of the many hydrogeologic characteristics. This analysis seeks a balance between presenting an evaluation of hydraulic conductivity in relation to the many possible combinations of hydrogeologic characteristics and presenting only the most obvious relationships. An evaluation is made of hydrogeologic conductivity within each hydrogeologic characteristic, even if there is only one hydraulic conductivity value that can be associated with that characteristic. The purpose of presenting these limited data is to benchmark what is known about the association of hydraulic conductivity and hydrogeology. This can be considered a "brute force" technique for presenting the data graphically and fulfills the objective of documenting associations of hydraulic conductivity with the hydrogeologic characteristics. Presenting figures that show no trend to the data distributions are included. That is, analyses that show null results are presented so that the topic (i.e., do the log-transformed hydraulic conductivity data have an identifiable frequency trend) can be dismissed. It is also necessary to present sophisticated analyses of the data within the hydrogeologic characteristics and to address the importance of nondetections.

To accomplish these goals, the analysis is presented using two complementary stages. The first-stage analysis is the most basic and is intended for the reader who is mainly interested in a graphical review of hydraulic conductivity at specific wells or for specific hydrogeologic characteristics.

The second-stage analysis conducts a more in-depth statistical evaluation of hydraulic conductivity, depth, and hydrogeologic classifications. This includes relating hydraulic conductivity to fractures geophysically logged in the wells. Each of these approaches is described in more detail below. The report is divided into separate sections for volcanic tuff and carbonate aquifers.

Stage-one Analysis

The first-stage analysis is the most basic and presents the data from two perspectives: 1) the well-by-well detection of hydraulic conductivity within multiple hydrogeologic characteristics, and 2) the statistical distribution of hydraulic conductivity for each hydrogeologic characteristic at multiple wells. In other words, the first perspective examines one well having multiple hydrogeologic characteristics and the second perspective examines one hydrogeologic characteristic at many wells.

Three metrics are used for the well-specific first-stage analysis:

- 1. Detected hydraulic conductivity plotted versus depth independent of hydrogeologic characteristics.
- 2. Vertical extent of the well screen (where there is the potential to detect hydraulic conductivity) within each hydrogeologic characteristic compared to the length within the screen where hydraulic conductivity was detected.
- 3. Average hydraulic conductivity for each of the hydrogeologic characteristics.

The specific graphs for each well are paired with their intended application in Table 2. A nomenclature convention related to the placement of well screen is used within this report. Sections of a well where well screen in placed are referenced herein as "screened." In actuality, this means that well screen was placed adjacent to the rock unit. The term does not infer that a statistical selection has been made regarding the unit or that the unit was physically changed by being screened. In providing an analysis that is as complete as possible, there is no attempt to economize the number of associations of hydraulic conductivity with hydrogeologic characteristics. This approach generates many figures that sometimes contain minimal (but important) information.

Presentation Graph	Analysis Application		
Hydraulic conductivity with depth	Overview of depths and screened intervals where hydraulic conductivity was detected. Number of vertical intervals where hydraulic conductivity was detected. Identification of any obvious trends of hydraulic conductivity with depth.		
Length of screened interval and aquifer thickness containing detectable hydraulic conductivity for hydrogeologic characteristic within each hydrogeologic classification	Hydrogeologic characteristics encountered by well construction and which characteristics were completed with well screen. Identification of which characteristics had detectable hydraulic conductivity. Efficacy of selecting intervals for screening at most permeable locations. Depiction of the amount of screened interval with nondetects.		
Average hydraulic conductivity for hydrogeologic characteristic within each hydrogeologic classification	Association of hydrogeologic characteristics and hydraulic conductivity to identify overall permeability for each characteristic.		

Table 2. Well-specific analysis of hydraulic conductivity and hydrogeologic characteristics.

The second part of the stage-one analysis presents the same basic hydraulic conductivity information at multiple wells for each hydrogeologic characteristic. Where there is only one well with detectable hydraulic conductivity for that characteristic, the information is not presented in a separate figure because the information is identical to that presented for the individual well.

Five metrics are used for the hydrogeologic-characteristic-specific first-stage evaluation:

- Detected hydraulic conductivity plotted versus depth independent of hydrogeologic characteristics.
- 2. Binned hydraulic conductivity values where each well is presented individually.
- 3. Binned hydraulic conductivity values where all values are presented in composite.
- 4. Binned logarithmic hydraulic conductivity values where each well is presented individually.

Binned logarithmic hydraulic conductivity values where all values are presented in composite.

The specific graphs for each hydrogeologic characteristic and the intended application are presented in Table 3.

Presentation Graph	Analysis Application
Hydraulic conductivity with depth for all of the wells with that hydrogeologic characteristic	Overview of depths and screened intervals where hydraulic conductivity is detected. Comparison of hydraulic conductivity at various wells within same hydrogeologic characteristic
Number of detected hydraulic conductivity values at each well within linear statistical bins	Examination of whether a particular hydrogeologic characteristic results in similar hydraulic conductivity values and similar statistical distributions for different wells
Combined number of detected hydraulic conductivity values for all wells within linear statistical bins	Examination of whether, in composite, a particular hydrogeologic characteristic results in similar hydraulic conductivity values and the statistical distribution of all values forms a recognizable statistical distribution
Number of detected hydraulic conductivity values at each well within logarithmic statistical bins	Examination of whether a particular hydrogeologic characteristic at different wells results in similar hydraulic conductivity values and recognizable statistical distributions when the values are logarithmically transformed
Combined number of detected hydraulic conductivity values at each well within logarithmic statistical bins	Examination of whether, in composite, a particular hydrogeologic characteristic at different wells results in similar hydraulic conductivity values and recognizable statistical distributions when the values are logarithmically transformed

Table 3.	Hydrogeologic charac	teristics specific an	alysis of hydraulic	conductivity.
----------	----------------------	-----------------------	---------------------	---------------

Stage-two Analysis

The purpose of this stage is to explore the data at a more detailed level using exploratory data analysis with censored data. The data are evaluated without prior assumptions of distribution or other behavior.

The hydraulic conductivity values (K) were obtained with more than one pumping rate, resulting in up to three values of K at each measured depth in a well. In the previous stage of this study, low values, or values less than the assigned minimum value, were evaluated qualitatively and either averaged or discarded to produce a composite hydraulic conductivity. This results in one value of K for each depth in a well.

In this stage, all measured values of K were analyzed, regardless of whether or not the value was below its minimum acceptable value. Data identified only by a range, or a 'less-than' value, are called censored data.

Limitations of the Borehole Flowmeter and Data Reduction

Borehole flow logging was performed while the wells were being pumped and the flowmeter instrument was moved upward and downward. Pumping rates were increased stepwise between discrete sets of logging runs. The selected pumping rates typically represented the maximum, intermediate, and minimum flow rates at which the well could be continuously pumped based on water level drawdown and the motor capacity. Flow logging was conducted at nominal line speeds (e.g., the speed at which the geophysical tools are raised or lowered in the well) of 6, 12, and 18 meters per minute (m min⁻¹). The different combinations of logging speeds and pumping rates typically provide nine unique flow logs for each well.

The borehole flowmeter records the impeller revolution rate as counts per second. These readings are processed with other information to calculate the borehole flow rate at the various locations in the well. Although simple in concept, calibration involves incorporating many factors to determine the best representation of borehole flow rate. Specifically, the effects of well diameter, minor variations in vertical trolling speed (cable line speed), direction of trolling the flowmeter, impeller response to changing fluid density, and the instrument's mechanical condition are considered in calculating the borehole flow rate. The borehole flowmeter records the impeller rotation rate every 6.1 centimeters of logging depth. The relatively short recording distance also causes the logging system to base the impeller rotation rate. Logging at higher travel speeds of 9.1 to 12.2 m min⁻¹ reduces the recording interval to every 0.4 to 0.3 seconds, respectively. The short time period available for data collection limits the number of impeller rotations (or partial rotations) before data recording. Therefore, apparent short-term flow rate variations are embedded in the raw data as noise.

It is important to reduce the small-scale flow rate variations caused by measurement noise so that they are not attributed to changes in borehole flow rate or hydraulic conductivity. The borehole flowmeter readings are also subject to other influences including flow turbulence, changes in the alignment of the borehole flowmeter within the well casing, impeller jarring, and occasional debris impacts. This is accomplished by data processing of the borehole flow logs by averaging, filtering, and censoring Oberlander and Russell (2003) and Oberlander and Russell (2006).

There are three primary considerations concerning flowmeter data processing that are important to understanding the data presented in this report. First, the flowmeter precision is a function of the borehole flow rate. Therefore, the instrument precision of the flowmeter varies as it encounters differing flow rates within the borehole and the well is logged at different line speeds. Therefore, not all of the borehole flow rate measurements and the subsequent hydraulic conductivity estimates have the same confidence.

Second, borehole flow rates are abstracted by vertically averaging over regular vertical intervals. The length of the vertical calculation interval is important to this analysis because it is used to estimate the change in borehole flow rate for subsequent calculation of

horizontal hydraulic conductivity with depth. There are two important and competing objectives when vertically averaging flow rate data, preserving spatial resolution and reducing uncertainty. Long vertical calculation intervals will average more data and reduce the amount of uncertainty in the average borehole flow rates. However, long calculation intervals limit detection of relatively small changes in borehole flow rate that can be attributed to groundwater inflow. Long calculation intervals reduce the capability to locate discrete hydraulic features with the end-member on this condition being the standard aquifer test. In the UGTA wells, characterization of fracture flow locations is an important objective, dictating that the vertical calculation interval be as small as practical. When the borehole flowmeter was used in large diameter wells (i.e., greater than 12 cm internal diameter) or in uncased carbonate wells, the flowmeter exhibited a high degree of variation in reading over short vertical distances. These data sets were vertically averaged over long intervals of 10's of meters to estimate the average change in flow rate. These borehole flow logs were essentially linearized over the intervals corresponding to the major changes in flow rates. Although this process reflects the average flow conditions within the well, it also produces the analysis artifact of having adjacent locations within the well having very similar hydraulic conductivity values. This aspect of data analysis is recognizable in the reported hydraulic conductivity values provided in the Appendix.

Third, the borehole flow rates at each pumping rate are averaged to calculate a hydraulic conductivity for each at each pumping rate. The three calculated hydraulic conductivity measurements are averaged (if they agree) to produce the best estimate of hydraulic conductivity for that location. Compositing data from nine borehole flow logs are used to produce one estimate of hydraulic conductivity. Therefore, compositing the flow logs carries various sources and levels of uncertainty into each final hydraulic conductivity estimate.

Comparisons of the summed hydraulic conductivity values derived from the borehole flowmeter method do not precisely reproduce the transmissivity calculated from aquifer tests for the entire well. There are several reasons for this:

- The borehole flowmeter is unable to detect small changes in flow rate and subsequently calculate low amounts of groundwater inflow that can be attributed to groundwater inflow. The lowest change in flow rate (e.g., a lower quantification limit for hydraulic conductivity) is a function of borehole fluid velocity, instrument condition, turbulence, and borehole diameter. The lower quantification limit for groundwater inflow and the associated hydraulic conductivity varies for each screen section and is accounted for in the analysis by censoring values below the quantification threshold.
- There are sections of the well where the borehole flowmeter cannot reliably detect hydraulic conductivity whereas the aquifer test of the entire well includes these minor groundwater inflow zones in the determination of transmissivity. This results in the summed hydraulic conductivities producing a transmissivity less than the transmissivity determined by an aquifer test for the entire well.
- Interpretation of the aquifer tests for entire wells are often based on sophisticated techniques that include additional processes (such as dual porosity) not considered in the analysis of the nominal 1.5 m calculation intervals used for the borehole flow method. The borehole flowmeter methodology is similar to the methods for
interpreting the transmissivity for a well at steady state flow. The aquifer tests for entire wells are based on methods for transient water level drawdown while the well is not at steady state flow. Use of differing assumptions in the analysis methods and the well being tested at different states (e.g., steady state vs. transient flow) contributes to the different transmissivity results.

The borehole flowmeter provides greater spatial information concerning where hydraulic conductivity occurs and the statistical properties of hydraulic conductivity in a single well. This information is gained at the cost of not being able to detect reliably relatively low values of hydraulic conductivity. Therefore, the borehole flow meter methodology and aquifer testing of entire wells provide complementary, but not the same, information.

Uncertainty in the borehole flow rates could be reduced by changing the well design to include a section of blank casing below the lowest screened interval. This blank section would serve as a catchment for well detritus and ensure the entire length of well screen was open to the aquifer. A blank section of casing at the bottom of the well would also allow recalibration of the flow meter in the no flow zone. Currently, the flow meter is recalibrated only at the top of each logged section were the borehole flow rate is known to be equal to the flow at flow meter located at land surface. A second calibration location for the borehole would allow two calibrations; one at the start and one at the finish of each flow log. These additional calibrations would reduce uncertainty in the measured flow rates and provide better correspondence of flow rate readings among the various logs. The ultimate outcome would be detection of smaller changes in borehole flow rates, detection of lower values of hydraulic conductivity, and greater certainty in the reported values of hydraulic conductivity.

STAGE-ONE ANALYSIS

Wells Constructed in Volcanic Tuff

<u>Overview</u>

Eight wells logged in volcanic tuff provided a total of 1,067 m of screened borehole. Table 4 presents a summary of the detection of hydraulic conductivity in tuff. The length of logged well screen reflects the accessible well depth. Some wells contained fill material at the bottom of the well that limited the depth of well logging and the effective screen length.

Detection of hydraulic conductivity in only 22.2 percent of the screened length may seem a modest accomplishment. It should be noted that permeability in tuff is often associated with discrete fractures and that well intervals having nondetectable permeability is expected. Another way to view the depth-specific hydraulic conductivity in tuff is that borehole flow logging provides 237 values of hydraulic conductivity and 833 nondetects instead of only the eight hydraulic conductivity values provided by the single-well aquifer tests. These data represent a 30-fold increase in information about the well permeability. Most important is that these values also provide the depth dependence and the statistical distribution of hydraulic conductivity as described later in this report.

Well	Min. Pumping Rate (L/min)	Max. Pumping Rate (L/min)	Screened Length (m)	Vertical Evaluation Interval Length (m)	Possible Hydraulic Conductivity Detection (m)	Hydraulic Conductivity Detection (m)	Intervals with Detectible Hydraulic Conductivity (percent)
ER-EC-1	244	480	151.9	1.5	151.9	32.8	21.6
ER-EC-2a	269	648	377.7	1.5	377.7	88.8	23.5
ER-EC-4	231	692	135.3	1.5	135.3	27.1	20.0
ER-EC-5	230	612	85.9	0.6	85.9	31.8	37.1
ER-5-4#2	287	668	46.8	0.6	46.8	20.3	43.4
ER-EC-6	238	260	124.2	0.6	124.2	4.8	3.8
ER-EC-7	249	671	67.4	1.5	67.4	8.2	12.2
ER-EC-8	250	670	77.6	0.6	77.6	23.0	29.7
TOTAL	n.a.	n.a.	1,066.8	n.a.	1066.8	236.8	22.2

Table 4. Detection of hydraulic conductivity in tuff.

The hydraulic conductivity with depth is presented in Figures 2 through 9. The position of the well screen, where detection of hydraulic conductivity is possible, is indicated on the left-hand side of the figure.

Figure 2. Detected hydraulic conductivity with depth at well ER-EC-1, vertical green bars on left-hand side of figure indicate position of well screen.

Figure 3. Detected hydraulic conductivity with depth at well ER-EC-2a, vertical green bars on left-hand side of figure indicate position of well screen.

Figure 4. Detected hydraulic conductivity with depth at well ER-EC-4, vertical green bars on left-hand side of figure indicate position of well screen.

Figure 6. Detected hydraulic conductivity with depth at well ER-5-4#2, vertical green bars on left-hand side of figure indicate position of well screen.

Figure 8. Detected hydraulic conductivity with depth at well ER-EC-7, vertical green bars on left-hand side of figure indicate position of well screen.

Examination of Figures 2 through 9 indicates that for most wells, the highest conductivity values were found in the upper-most portions of the well. That said, this does not mean that low values were only found at deeper depths. Rather, low values were also found mixed in with the high values in the upper-most portions of the wells. From these data alone, it would be difficult to quantify the dependence of hydraulic conductivity with depth as a general function based on multiple wells.

Wells ER-EC-5, ER-EC-7, and possibly ER-EC-2a are the exceptions to having the most hydraulic conductivity in the upper portions of the screened intervals. The graphical depiction of hydraulic conductivity with depth does not indicate any clearly identifiable trends and these data are examined in detail in the stage-two analyses.

The analysis continues by examining hydraulic conductivity for each hydrogeologic classification. The five major hydrogeologic classifications are:

- Stratigraphic unit,
- Lithologic description,
- · Lithologic alteration,
- Hydrogeologic unit, and
- Hydrostratigraphic unit.

Each of the hydrogeologic classifications has several characteristics to designate the particular stratigraphic unit, lithology, etc. The hydrogeologic characteristics are defined at the beginning of each report section.

Association of Hydraulic Conductivity with Well-specific Hydrogeologic Characteristics

The following sections describe the association of hydraulic conductivity with each hydrogeologic characteristic. The analysis goals of the figures are described in Table 2. These results are intended for the reader interested in the characteristics of a specific well. Each well is discussed in a separate section below. The value of these tables is that they provide a quick review of the stratigraphic units containing detectable hydraulic conductivity without the reader needing to examine each of the well-specific figures.

Hydraulic Conductivity and Stratigraphy

Well construction in tuff encountered 34 different stratigraphic units. Each of the units encountered is presented in the tables and figures to aid the reader in understanding the stratigraphic section at each well and the context of well screening and the detection of hydraulic conductivity. Table 5 presents the stratigraphic abbreviations for the stratigraphic units encountered in each well. Table 6 presents a summary of the stratigraphic units associated with well screen and the detection of hydraulic conductivity. Sixteen stratigraphic units had well screen placed adjacent to the unit and hydraulic conductivity was detected in 12 of these stratigraphic units.

The vertical length of well screen in each stratigraphic unit and the length over which hydraulic conductivity was detected are presented for each well in Figures 10 through 17. The figures include tuff stratigraphic units that were encountered during drilling but not screened, to aid the reader in understanding the stratigraphic context. This is especially important where there are intervening stratigraphic units between the screened units.

The numerical average detected hydraulic conductivity within each stratigraphic unit is presented in Figures 18 through 25. This analysis demonstrates an interesting finding. Although there are differences in average detected hydraulic conductivity values, the values within each well are of similar order of magnitude. The largest difference in average values within a well are less than an order of magnitude. Readers interested in performing additional evaluations of the data are referred to the Appendix.

Stratigraphic Abbreviation	Stratigraphic Unit Name
ER-EC-1	
Ttt	Trail Ridge Tuff
Ttp/Ttr	Painte Mesa and Rocket Wash Tuff
Тпар	Mafic-poor Ammonia Tanks Tuff
Tmat	Rhyolite of Tannenbaum Hill
Тпир	Mafic-poor Rainier Mesa Tuff
Tmrf	Rhyolite of Fluorspar Canyon
Трь	Rhyolite of Benham
Tpcm	Pahute Mesa Lobe of Tiva Canyon Tuff
Thr	Calico Hills Formation
Tpun	Palmte Mesa Lobe of Topopah Spring Tuff
Tepe	Prow Pass Tuff
ER-EC-2a	
Tfbw	Rhyolite of Beatty Wash
Tfb	Beatty Wash Formation
Tf	Volcanics of Fortymile Canyon
Tmaw	Tuff of Button Hook Wash
Titiar	Mafic-rich Ammonia Tanks Tuff

Table 5. Stratigraphic units for wells in tuff.

Stratigraphic Abbreviation	Stratigraphic Unit Name
ER-EC-4	Sector Burkey of the sector sector
Tvn	Pliocene Basali
Tig	Gold Flat Tuff
Tu	Trail Ridge Tuff
Tin	Palmie Mesa Tuff
τη. Τιτ	Rocket Wash Tuff
Tre	Trachyle of Ribbon Cliff
Tfbr	Rhyolite of Chukkar Canyon
Tfbw	Rhyolite of Beatty Wash
Tmay	Trachyte of East Cat Canyon
Tinap	Mafic-poor Ammonia Tanks Tuff
Tmab	Bedded Ammonia Tanks Tuff
Tmrb	Bedded Rainier Mesa Tuff
Ting	Mafic-poor Rainier Mesa Tuff
ER-EC-5	F
Τω	Palnute Mesa Tuff
Τư	Rocket Wash Tuff
Tec	Caldera Moat-Filling Sedimentary Deposits
Tfbw	Rhyolite of Beatty Wash
Tmx	Timber Mountain Landslide Breccia
Tmar	Mafic-rich Ammonia Tanks Tuff
Тпар	Mafic-poor Ammonia Tanks Tuff
ER-5-1#2	
Ttp	Pabute Mesa Tuff
QŤp	Quatemary-Tertiary Playa
QTa	Quaternary-Tertiary Alluvium
Тпа	Ammonia Tanks Tuff
Tmab	Bedded Ammonia Tanks Tuff
Tinr	Rainier Mesa Tuff
Tmr/Tw	Rainier Mesa Tuff/Wahmonie Formation
Tw	Wahmonic Formation
Tcb	Bullfrog Tuff
ER-EC-6	
Tmat	Rhyolite of Tannenbaum Hill
Tnuf	Rhyolite of Fluorspar Canyon
Tpb	Rhyolite of Benham
Tpcm	Palute Mesa Lobe of Tiva Canyon Tuff
Thr	Mafic-rich Calico Hills Formation
Tptm	Pahute Mesa Lobe of Topopah Spring Tuff
Тсре	Prow Pass Tull
Tcpk	Prow Pass Tuff
ER-EC-7	
1 fow	Rhyonic of Beatty Wash
libr	Rhyolite of Chukkar Canyon
115	Beatty Wash Formation
	Tuff of Leadheld Road
EK-EÇ-ð	Thint: Course Cause
11 TC-	Initsiy Canyon Group
1 ID	Beauty wash Formation
I Maw	LULI OJ DULION HOOK WASN
1 map	Manc-poor Ammonia Tanks Tutt

Table 5. Stratigraphic units for wells in tuff (continued).

Well	Stratigr	aphic Unit											
ER-EC-1	Ttt	Ttp/Ttr	Tmap	Tmat	Tmrp	Tmrf	Tpb	Tpcm	Thr	Tptm	Тсре		
ER-EC-2a	Tfbw	Tfb	Tf	Tmaw	Tmar								
ER-EC-4	Тур	Ttg	Τtt	Ttp	Ttr	Ttc	Tfbr	Tfbw	Tmay	Tmap	Tmab	Tmrb	Tmrp
ER-EC-5	Ttp	Ttr	Tgc	Tfbw	Tmx	Tmar	Tmap						
ER-5-4#2	Ttp	QTp	QTa	Tma	Tmab	Tmr	Tmr/Tw	Tw	Tcb				
ER-EC-6	Tmat	Tmrf	Tpb	Tpcm	Thr	Tptm	Тсре	Tepk					
ER-EC-7	Tfbw	Tfbr	Tfb	Tfl									
ER-EC-8	n	Tfb	Tmaw	Tmap									

Table 6. Stratigraphic units encountered in drilling. Units that are screened are shaded gray and units with detectable hydraulic conductivity are in bold type.

Figure 10. Stratigraphic units adjacent to well screen and detectable hydraulic conductivity at well ER-EC-1.

Figure 11. Stratigraphic units adjacent to well screen and detectable hydraulic conductivity at well ER-EC-2a.

Figure 12. Stratigraphic units adjacent to well screen and detectable hydraulic conductivity at well ER-EC-4.

Figure 13. Stratigraphic units adjacent to well screen and detectable hydraulic conductivity at well ER-EC-5.

Figure 14. Stratigraphic units adjacent to well screen and detectable hydraulic conductivity at well ER-5-4#2.

Figure 15. Stratigraphic units adjacent to well screen and detectable hydraulic conductivity at well ER-EC-6.

Figure 16. Stratigraphic units adjacent to well screen and detectable hydraulic conductivity at well ER-EC-7.

Figure 17. Stratigraphic units adjacent to well screen and detectable hydraulic conductivity at well ER-EC-8.

Figure 18. Average detected hydraulic conductivity in stratigraphic units at well ER-EC-1.

Figure 19. Average detected hydraulic conductivity in stratigraphic units at well ER-EC-2a.

Figure 20. Average detected hydraulic conductivity in stratigraphic units at well ER-EC-4.

Figure 21. Average detected hydraulic conductivity in stratigraphic units at well ER-EC-5.

Figure 22. Average detected hydraulic conductivity in stratigraphic units at well ER-5-4#2.

Figure 23. Average detected hydraulic conductivity in stratigraphic units at well ER-EC-6.

Figure 24. Average detected hydraulic conductivity in stratigraphic units at well ER-EC-7.

Figure 25. Average detected hydraulic conductivity in stratigraphic units at well ER-EC-8.

Hydraulic Conductivity and Lithologic Modifier

Well construction in tuff placed well screen adjacent to units containing 16 different lithologic modifiers. Each of the modifiers encountered during well construction is presented in the tables and figures to aid the reader in understanding the context of well screening and the detection of hydraulic conductivity. Table 7 presents abbreviations for the lithologic modifiers encountered in the wells. Table 8 presents a summary of the lithologic modifiers associated with well screen and the detection of hydraulic conductivity. Well screen was placed adjacent to 16 unique lithologic modifiers in tuff. Ten of these lithologic modifiers are associated with detectable hydraulic conductivity. Lithologic modifiers have the second highest number of associations among the hydrogeologic characteristic.

The vertical length of well screen placed adjacent to each lithologic modifier and the length over which hydraulic conductivity was detected are presented for each well in Figures 26 through 33. The figures include only the lithologic modifiers that were screened. Units described as nonwelded tuff and lava most often had detectable hydraulic conductivity. The average detected hydraulic conductivity for the lithologic modifiers is presented in Figures 34 through 41. The higher values of average hydraulic conductivity are associated with lava where it is present.

Hydraulic Conductivity and Alteration Modifier

Well construction in tuff placed well screen adjacent to units containing seven different alteration modifiers. Each of the modifiers that were encountered during well construction is presented in the tables and figures to aid the reader in understanding the context of well screening and the detection of hydraulic conductivity. Table 9 presents abbreviations for the alteration modifiers encountered in the wells. Table 10 presents a summary of the alteration modifiers associated with well screen and the detection of hydraulic conductivity. Well screen was placed adjacent to seven unique alteration modifiers in tuff. Six of these alteration modifiers are associated with detectable hydraulic conductivity.

Lithologic Abbreviation	Lithologic Unit Name
NWT	Nonwelded Tuff
NWT-PWT	Nonwelded - Partially Welded Tuff
PWT	Partially Welded Tuff
PWT-MWT	Partially Welded - Moderately Welded Tuff
MWT	Moderately Welded Tuff
DWT	Densely Welded Tuff
VT	Vitrified Tuff
BED	Bedded Tuff
PL.	Pumiceous Lava
LA	Lava
VL	Vitriñed Lava
FB	Flow Base
RWT	Rhylolitic Welded Tuff
TSLT	Tuff reworked with Silt
CL	Paleocolluvium mixed with Lava

Table 7. Lithologic modifiers for wells in tuff.

Well	Lithologic Unit								-	
ER-EC-1	NWT-PWT	PWT	PWT-MWT	MWT	VT	BED	PL	LA	VL	FB
ER-EC-2a	NWT	MWT	BED	TSLT	RWT					
ER-EC-4	NWT	PWT	MWT	DWT	VT	BED	LA	CL		
ER-EC-5	MWT	MWT-DWT								
ER-5-4#2	NWT									
ER-EC-6	NWT	PWT	MWT	LA	BED					
ER-EC-7	LA	BED	VL	FB						
ER-EC-8	NWT	PWT	PWT-MWT	VT						

Table 8. Lithologic units that are adjacent to well screened. Lithologic modifiers with detectable hydraulic conductivity are shaded gray.

Figure 26. Lithologic modifiers adjacent to well screen and detectable hydraulic conductivity at well ER-EC-1.

Figure 27. Lithologic modifiers adjacent to well screen and detectable hydraulic conductivity at well ER-EC-2a.

Figure 28. Lithologic modifiers adjacent to well screen and detectable hydraulic conductivity at well ER-EC-4.

Figure 29. Lithologic modifiers adjacent to well screen and detectable hydraulic conductivity at well ER-EC-5.

Figure 30. Lithologic modifiers adjacent to well screen and detectable hydraulic conductivity at well ER-5-4#2.

Figure 31. Lithologic modifiers adjacent to well screen and detectable hydraulic conductivity at well ER-EC-6.

Figure 32. Lithologic modifiers adjacent to well screen and detectable hydraulic conductivity at well ER-EC-7.

Figure 33. Lithologic modifiers adjacent to well screen and detectable hydraulic conductivity at well ER-EC-8.

Figure 34. Average detected hydraulic conductivity for lithologic modifiers at well ER-EC-1.

Figure 35. Average detected hydraulic conductivity for lithologic modifiers at well ER-EC-2a.

Figure 36. Average detected hydraulic conductivity for lithologic modifiers at well ER-EC-4.

Figure 37. Average detected hydraulic conductivity for lithologic modifiers at well ER-EC-5.

Figure 38. Average detected hydraulic conductivity for lithologic modifiers at well ER-5-4#2.

Figure 39. Average detected hydraulic conductivity for lithologic modifiers at well ER-EC-6.

Figure 40. Average detected hydraulic conductivity for lithologic modifiers at well ER-EC-7.

Figure 41. Average detected hydraulic conductivity for lithologic modifiers at well ER-EC-8.

Lithologic Alteration Abbreviation	Lithologic Unit Name		
DV	Devitrified		
GL	Glass Vitrophyre		
VP	Vapor Phase Mineralization		
ZE	Zeolitic		
QZ	Quartz		
QF	Quartz Feldspathoidic		

Table 9. Alteration modifiers for wells in tuff.

Table 10. Alteration modifiers that are screened. Modifiers with detectable hydraulic conductivity are shaded gray.

Well			Alt	eration Modi	fier		
ER-EC-1	DV	GL		ZE	QZ	QF	
ER-EC-2a				ZE	QZ	QF	
ER-EC-4	DV	GL		ZE		QF	
ER-EC-5						QF	
ER-5-4#2				ZE			
ER-EC-6	DV	GL				QF	
ER-EC-7	DV	GL				QF	VAR
ER-EC-8	DV		VP		QZ	QF	

The vertical length of well screen placed adjacent to each alteration modifier and the length over which hydraulic conductivity was detected are presented for each well in Figures 42 through 49. The figures include only the alteration modifiers that were screened. Units described as devitrified and quartzo-feldspathoidic modifiers most often had detectable hydraulic conductivity.

The average detected hydraulic conductivity for the alteration modifiers is presented in Figures 50 through 57. Trends in the average hydraulic conductivity are difficult to ascertain from the data plots.

Hydraulic Conductivity and Hydrogeologic Unit

Well construction in tuff placed well screen adjacent to four different hydrogeologic units. The hydrogeologic units that were screened are presented in the tables and figures to aid the reader in understanding the context of well screening and the detection of hydraulic conductivity. Table 11 presents abbreviations for the hydrogeologic units adjacent to well screen. Table 12 presents a summary of the hydrogeologic units associated with well screen and the detection of hydraulic conductivity. Well screen was placed adjacent to four unique hydrogeologic units in tuff. All four of these hydrogeologic units are associated with detectable hydraulic conductivity.

Figure 42. Alteration modifiers adjacent to well screen and detectable hydraulic conductivity at well ER-EC-1.

Figure 43. Alteration modifiers adjacent to well screen and detectable hydraulic conductivity at well ER-EC-2a.

Figure 44. Alteration modifiers adjacent to well screen and detectable hydraulic conductivity at well ER-EC-4.

Figure 45. Alteration modifiers adjacent to well screen and detectable hydraulic conductivity at well ER-EC-5.

Figure 46. Alteration modifiers adjacent to well screen and detectable hydraulic conductivity at well ER-5-4#2.

Figure 47. Alteration modifiers adjacent to well screen and detectable hydraulic conductivity at well ER-EC-6.

Figure 48. Alteration modifiers adjacent to well screen and detectable hydraulic conductivity at well ER-EC-7.

Figure 49. Alteration modifiers adjacent to well screen and detectable hydraulic conductivity at well ER-EC-8.

Figure 50. Average detected hydraulic conductivity for alteration modifiers at well ER-EC-1.

Figure 51. Average detected hydraulic conductivity for alteration modifiers at well ER-EC-2a.

Figure 52. Average detected hydraulic conductivity for alteration modifiers at well ER-EC-4.

Figure 53. Average detected hydraulic conductivity for alteration modifiers at well ER-EC-5.

Figure 54. Average detected hydraulic conductivity for alteration modifiers at well ER-5-4#2.

Figure 55. Average detected hydraulic conductivity for alteration modifiers at well ER-EC-6.

Figure 56. Average detected hydraulic conductivity for alteration modifiers at well ER-EC-7.

Figure 57. Average detected hydraulic conductivity for alteration modifiers at well ER-EC-8.
Hydrogeologic Unit Abbreviation	Hydrogeologic Unit Name
AA	Alluvial Aquifer
WTA	Welded Tuff Aquifer
TCU	Tuff Confining Unit
LFA	Lava Flow Aquifer

Table 11. Hydrogeologic units for wells in tuff.

Table 12. Hydrogeologic units that are screened. Units with detectable hydraulic conductivity are shaded gray.

Well		Hydrogeol	ogic Unit	
ER-EC-1	WTA	TCU	LFA	
ER-EC-2a	WTA	TCU		AA
ER-EC-4	WTA	TCU	LFA	AA
ER-EC-5	WTA			
ER-5-4#2		TCU		
ER-EC-6	WTA	TCU	LFA	
ER-EC-7		TCU	LFA	
ER-EC-8	WTA	TCU		

The vertical length of well screen placed adjacent to each hydrogeologic unit and the length over which hydraulic conductivity was detected are presented for each well in Figures 58 through 65. The figures include only the hydrogeologic units that were screened. The figures indicate that slightly less vertical thickness described as welded tuff aquifer were screened compared to intervals described as tuff confining units. The probability of detecting hydraulic conductivity is nearly equal in welded tuff aquifers and tuff confining units.

The average detected hydraulic conductivity for the hydrogeologic units is presented in Figures 66 through 73. Average hydraulic conductivities are similar for all hydrogeologic units within a particular well with the range of values among units within an order of magnitude.

Hydraulic Conductivity and Hydrostratigraphic Unit

Well construction in tuff encountered 23 hydrostratigraphic units. Well screen was placed adjacent to 12 different hydrostratigraphic units and hydraulic conductivity was detected in eight units. Each of the hydrostratigraphic units that were encountered is presented in the tables and figures to aid the reader in understanding the context of well screening and the detection of hydraulic conductivity. Table 13 presents abbreviations for the hydrostratigraphic units encountered. Table 14 presents a summary of the hydrostratigraphic units and the detection of hydraulic conductivity.

Figure 58. Hydrogeologic units adjacent to well screen and detectable hydraulic conductivity at well ER-EC-1.

Figure 59. Hydrogeologic units adjacent to well screen and detectable hydraulic conductivity at well ER-EC-2a.

Figure 60. Hydrogeologic units adjacent to well screen and detectable hydraulic conductivity at well ER-EC-4.

Figure 61. Hydrogeologic units adjacent to well screen and detectable hydraulic conductivity at well ER-EC-5.

Figure 62. Hydrogeologic units adjacent to well screen and detectable hydraulic conductivity at well ER-5-4#2.

Figure 63. Hydrogeologic units adjacent to well screen and detectable hydraulic conductivity at well ER-EC-6.

Figure 64. Hydrogeologic units adjacent to well screen and detectable hydraulic conductivity at well ER-EC-7.

Figure 65. Hydrogeologic units adjacent to well screen and detectable hydraulic conductivity at well ER-EC-8.

Figure 66. Average detected hydraulic conductivity for hydrogeologic units at well ER-EC-1.

Figure 67. Average detected hydraulic conductivity for hydrogeologic units at well ER-EC-2a.

Figure 68. Average detected hydraulic conductivity for hydrogeologic units at well ER-EC-4.

Figure 69. Average detected hydraulic conductivity for hydrogeologic units at well ER-EC-5.

Figure 70. Average detected hydraulic conductivity for hydrogeologic units at well ER-5-4#2.

Figure 71. Average detected hydraulic conductivity for hydrogeologic units at well ER-EC-6.

Figure 72. Average detected hydraulic conductivity for hydrogeologic units at well ER-EC-7.

Figure 73. Average detected hydraulic conductivity for hydrogeologic units at well ER-EC-8.

Hydrostratigraphic Abbreviation	Hydrostratigraphic Unit Name
ER-EC-1	
TCVA	Thirsty Canyon Volcanic Aquifer
THLFA	Tannenbaum Hill Lava-Flow Aquifer
THCM	Tannenbaum Hill Composite Unit
TMA	Timber Mountain Aquifer
FCCU	Fluorspar Canyon Confining Unit
ВА	Benham Aquifer
UPĆU	Upper Paintbrush Confining Unit
TCA	Tiva Canyon Aquifer
LPCU	Lower Paintbrush Confining Unit
TSA	Topopah Spring Aquifer
CHCU	Calico Hills Confining Unit
CFCM	Crater Flat Composite Unit
ER-EC-2a	
FCCM	Fortymile Canyon Composite Unit
TMCM	Timber Mountain Composite Unit
ER-EC-4	-
YVCM	Younger Volcanics Composite Unit
TCVA	Thirsty Canyon Volcanic Aquifer
FCCM	Fluorspar Canyon Composite Unit
TMA	Timber Mountain Aquifer
ER-EC-5	
ΤϹⅤΑ	Thirsty Canvon Volcanic Aquifer
FCCM	Fluorspar Canyon Composite Unit
TMCM	Timber Mountain Composite Unit
ER-5-4#2	·····
AA3	Alluvial Aquifer No. 3
PCUIU	Poorly Consolidated Alluvial Aquifer
AAl	Alluvial Aquifer No. 1
TM-WTA	Timber Mountain Welded Tuff Aquifer
TM-LVTA	Timber Mountain Lava and Tuff Aquifer
LTCU	Lower Tuff Confining Unit
ER-EC-6	Ŭ
THLFA	Tannenbaum Hill Lava-Flow Aquifer
THCM	Tannenbaum Hill Composite Unit
FCCU	Fortymile Canyon Confining Unit
BA	Benham Aquifer
UPCU	Upper Paintbrush Confining Unit
TCA	Tiva Canyon Aquifer
LPCU	Lower Paintbrush Confining Unit
T\$A	Topopah Spring Aquifer
CHCU	Calico Hills Intrusive Confining Unit
CFCM	Crater Flat Composite Unit
ER-EC-7	
FCCM	Fortymile Canyon Composite Unit
ER-EC-8	· · · · · · · · · · · · · · ·
ΤϹΫΑ	Thirsty Canyon Volcanic Aquifer
FCCM	Fortymile Canyon Composite Unit
TMCM	Timber Mountain Composite Unit
1110111	The second secon

Table 14. Hydrostratigraphic units encountered in drilling that were screened are shaded gray and units with detectable hydraulic conductivity are in bold type.

Well		Hydrostratigraphic Unit														
ER-EC-1	TCVA	THLFA	THCM	TMA	FCCU	BA	UPCU	TCA	LPCU	TSA	CHCU	CFCM				
ER-EC-2a	FCCM	TMCM	101000000000000			11.0.0		1210000 0000			101011100000					
ER-EC-4	YVCM	TCVA	FCCM	TMA	[
ER-EC-5	TCVA	FCCM	TMCM													
ER-5-4#2	AA3	PCU1U	AA1	TM-WTA	TM-LVTA	LTCU										
ER-EC-6	THLFA	THCM	FCCU	BA	UPCU	TCA	LPCU	TSA	CHCU	CFCM						
ER-EC-7	FCCM															
ER-EC-8	TCVA	FCCM	TMCM													

The vertical length of well screen placed adjacent to each hydrostratigraphic unit and the length over which hydraulic conductivity was detected are presented for each well in Figures 74 through 81. The figures include all hydrostratigraphic units that were encountered during drilling to provide a hydrostratigraphic context for well screening. The figures indicate that the Benham Aquifer and the Fluorspar Canyon Composite Unit are likely to have detectable hydraulic conductivity.

The average detected hydraulic conductivity for the hydrostratigraphic units is presented in Figures 82 through 89. Average hydraulic conductivities are highest for the Benham Aquifer, Thirsty Canyon Volcanic Aquifer, and Fortymile Canyon Composite Unit.

Association of Hydrogeologic Characteristics with Well-specific Hydraulic Conductivity

The following sections describe the hydraulic conductivity for each hydrogeologic characteristic that occurs within multiple wells. When a hydrogeologic characteristic is found in only one well, the information is identical to that presented above. The analysis goals of the figures are described in Table 3. Each hydrogeologic classification is discussed in a separate section below. The figures in this section show the detected hydraulic conductivity data for each well plotted both separately and displayed as if all the values are at the same location.

Hydraulic Conductivity and Stratigraphy

There are five stratigraphic units with detected hydraulic conductivity in more than one well. The names of the stratigraphic units and their abbreviations are provided in Table 5. The stratigraphic association of screened intervals and hydraulic conductivity for all wells in tuff is presented in Table 15.

There are more stratigraphic units than any other hydrogeologic characteristic. This tends to reduce the number of detected hydraulic conductivity values within any particular stratigraphic characteristic. Data associations with other hydrogeologic classifications exhibit more heavily populated data sets.

The detected hydraulic conductivity with depth for the Rhyolite of Beatty Wash is presented in Figure 90. Well ER-EC-2a has much lower hydraulic conductivity values than well ER-EC-7. Figures 91 through 94 present the detected hydraulic conductivity for the wells individually and in composite for normal and log-transformed values. Because the ranges of values for the two wells do not overlap, the figures for the wells individually and in composite are identical. The sparse data for this unit prevent interpretation of data trends.

Figure 74. Hydrostratigraphic units adjacent to well screen and detectable hydraulic conductivity at well ER-EC-1.

Figure 75. Hydrostratigraphic units adjacent to well screen and detectable hydraulic conductivity at well ER-EC-2a.

Figure 76. Hydrostratigraphic units adjacent to well screen and detectable hydraulic conductivity at well ER-EC-4.

Figure 77. Hydrostratigraphic units adjacent to well screen and detectable hydraulic conductivity at well ER-EC-5.

Figure 78. Hydrostratigraphic units adjacent to well screen and detectable hydraulic conductivity at well ER-5-4#2.

Figure 79. Hydrostratigraphic units adjacent to well screen and detectable hydraulic conductivity at well ER-EC-6.

Figure 80. Hydrostratigraphic units adjacent to well screen and detectable hydraulic conductivity at well ER-EC-7.

Figure 81. Hydrostratigraphic units adjacent to well screen and detectable hydraulic conductivity at well ER-EC-8.

Figure 82. Average detected hydraulic conductivity for hydrostratigraphic units at well ER-EC-1.

Figure 83. Average detected hydraulic conductivity for hydrostratigraphic units at well ER-EC-2a.

Figure 84. Average detected hydraulic conductivity for hydrostratigraphic units at well ER-EC-4.

Figure 85. Average detected hydraulic conductivity for hydrostratigraphic units at well ER-EC-5.

Figure 86. Average detected hydraulic conductivity for hydrostratigraphic units at well ER-5-4#2.

Figure 87. Average detected hydraulic conductivity for hydrostratigraphic units at well ER-EC-6.

Figure 88. Average detected hydraulic conductivity for hydrostratigraphic units at well ER-EC-7.

Figure 89. Average detected hydraulic conductivity for hydrostratigraphic units at well ER-EC-8.

Stratigraphic	ER-	ER-EC-1		C-2a	ER-	EC-4	ER-	EC-5	ER-	5-4#2	ER-	EC-6	ER-	EC-7	ER-	EC-8
Unit	Screened Length (m)	Detected K Length (m)	Screened Length (m)	Detected K Length (m)	Ecreened Length (m)	Detected K Length (m)	Screened Length (m)	Detected K Length (m)								
Tpb	44.7	26.8	0	0	0	0	0	0	0	0	54.9	4.8	0	0	0	0
Tpcm	14.9	1.5	0	0	0	0	0	0	0	0	14.9	0	0	0	0	0
Thr	26.8	0	0	0	0	0	0	0	0	0	31.0	0	0	0	0	0
Tptm	25.3	1.5	0	0	0	0	0	0	0	0	23.3	0	0	0	0	0
Тсре	40.2	3.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Tfbw	0	0	132.4	51.2	3.2	0	0	0	0	0	0	0	34.4	2.7	0	0
Tfb	0	0	1.5	0	0	0	0	0	0	0	0	0	27.5	5.5	46.6	20.9
Tf	0	0	19.6	6.0	0	0	0	0	0	0	0	0	0	0	0	0
Tmaw	0	0	188.1	27.1	0	0	0	0	0	0	0	0	0	0	15.5	0
Tmar	0	0	36.1	4.5	0	0	62.5	28.2	0	0	0	0	0	0	0	0
Ttc	0	0	0	0	39.8	25.5	0	0	0	0	0	0	0	0	0	0
Tfbr	0	0	0	0	0	0	0	0	0	0	0	0	5.5	0	0	0
Tmay	0	0	0	0	6.4	0	0	0	0	0	0	0	0	0	0	0
Tmrp	0	0	0	0	47.8	1.6	0	0	0	0	0	0	0	0	0	0
Tmap	0	0	0	0	38.2	0	23.4	4.2	0	0	0	0	0	0	15.5	1.8
Tcb	0	0	0	0	0	0	0	0	46.8	20.3	0	0	0	0	0	0

Table 15. Stratigraphic units encountered at multiple wells in tuff.

Stratigraphic units are not presented in stratigraphic sequence Gray shading indicates a stratigraphic unit that occurs in multiple wells. Bold type indicates length of detectable hydraulic conductivity for stratigraphic units with detectable hydraulic conductivity in more than one well

Figure 90. Detected hydraulic conductivity with depth for the stratigraphic unit Rhyolite of Beatty Wash.

Figure 91. Detected hydraulic conductivity for individual wells for the stratigraphic unit Rhyolite of Beatty Wash.

Figure 92. Detected hydraulic conductivity for wells in composite for the stratigraphic unit Rhyolite of Beatty Wash.

Figure 93. Detected natural logarithm hydraulic conductivity for individual wells for the stratigraphic unit Rhyolite of Beatty Wash.

Figure 94. Detected natural logarithm hydraulic conductivity for wells in composite for the stratigraphic unit Rhyolite of Beatty Wash.

The detected hydraulic conductivity with depth for the Beatty Wash Formation is presented in Figure 95. Wells ER-EC-7 and ER-EC-8 have similar hydraulic conductivity values. Figures 96 through 99 present detected hydraulic conductivity for the wells individually and in composite for normal and log-transformed values. The distributions in Figures 96 and 99 indicate a strong similarity to the data sets. Figures 97 and 98 indicate a nearly lognormal statistical distribution.

The detected hydraulic conductivity with depth for the mafic-rich Ammonia Tanks Tuff is presented in Figure 100. Wells ER-EC-2a and ER-EC-5 have dissimilar hydraulic conductivity values. Figures 101 through 104 present detected hydraulic conductivity for the wells individually and in composite for normal and log-transformed values. Because the ranges of values for the two wells do not overlap, the figures for the wells individually and in composite are identical. The distributions in Figures 101 through 104 indicate that the hydraulic values for well ER-EC-2a are much lower than in well ER-EC-5. The hydraulic conductivity values in Figures 101 and 102 appear to have a normal distribution, with the few values for ER-EC-2a as the low-end member. Log-transformation of the data in Figures 103 and 104 does not aid in interpretation.

The detected hydraulic conductivity with depth for the mafic-poor Ammonia Tanks Tuff is presented in Figure 105. Wells ER-EC-5 and ER-EC-8 have dissimilar hydraulic conductivity values. Figures 106 through 109 present detected hydraulic conductivity for the wells individually and in composite for normal and log-transformed values. Because the ranges of values for the two wells do not overlap, the figures for the wells individually and in composite are identical. The distributions in Figures 106 and 107 do not display a regular trend. Log-transformation of the values in Figures 108 and 109 may indicate a lognormal distribution for ER-EC-5 and a separate distribution for ER-EC-8.

Figure 95. Detected hydraulic conductivity with depth for the stratigraphic unit Beatty Wash Formation.

Figure 96. Detected hydraulic conductivity for individual wells for the stratigraphic unit Beatty Wash Formation.

Figure 97. Detected hydraulic conductivity for wells in composite for the stratigraphic unit Beatty Wash Formation.

Figure 98. Detected natural logarithm hydraulic conductivity for individual wells for the stratigraphic unit Beatty Wash Formation.

Figure 99. Detected natural logarithm hydraulic conductivity for wells in composite for the stratigraphic unit Beatty Wash Formation.

Figure 100. Detected hydraulic conductivity with depth for the stratigraphic unit mafic-rich. Ammonia Tanks Tuff.

Figure 101. Detected hydraulic conductivity for individual wells for the stratigraphic unit mafie-rich Ammonia Tanks Tuff.

Figure 102. Detected hydraulic conductivity for wells in composite for the stratigraphic unit maficrich Ammonia Tanks Tuff.

Figure 103. Detected natural logarithm hydraulic conductivity for individual wells for the stratigraphic unit mafic-rich Ammonia Tanks Tuff.

Figure 104. Detected natural logarithm hydraulic conductivity for wells in composite for the stratigraphic unit mafic-rich Ammonia Tanks Tuff.

Figure 105. Detected hydraulic conductivity with depth for the stratigraphic unit mafic-poor Ammonia Tanks Tuff.

Figure 106. Detected hydraulic conductivity for individual wells for the stratigraphic unit mafic-poor Ammonia Tanks Tuff.

Figure 107. Detected hydraulic conductivity for wells in composite for the stratigraphic unit maficpoor Ammonia Tanks Tuff.

Figure 108. Detected natural logarithm hydraulic conductivity for individual wells for the stratigraphic unit mafic-poor Ammonia Tanks Tuff.

Figure 109. Detected natural logarithm hydraulic conductivity for wells in composite for the stratigraphic unit mafic-poor Ammonia Tanks Tuff.

The detected hydraulic conductivity with depth for the Rhyolite of Benham is presented in Figure 110. Wells ER-EC-1 and ER-EC-6 have dissimilar hydraulic conductivity values. Figures 111 through 114 present detected hydraulic conductivity for the wells individually and in composite for normal and log-transformed values. The distributions in Figures 111 and 112 display a weak trend for more low values than high values. Logtransformation of the values in Figure 113 suggests that the values for each well form a separate lognormal distribution with the values for well ER-EC-1 slightly higher than well ER-EC-6. Figure 114 indicates that the values are sufficiently similar to form a composite lognormal distribution with the values for well ER-EC-1 slightly higher than well ER-EC-6.

Hydraulic Conductivity and Lithologic Modifier

There are five lithologic modifier units with detected hydraulic conductivity in more than one well. The names of the lithologic modifier units and their abbreviations are provided in Table 7. The lithologic modifier association with screened intervals and hydraulic conductivity for all wells in tuff is presented in Table 16. The lithologic modifier partially welded tuff (PWT) is a special case where each of the two wells with detected hydraulic conductivity (e.g., ER-EC-1 and ER-EC-4) has only one value.

Figure 110. Detected hydraulic conductivity with depth for the stratigraphic unit Rhyolite of Benham Tuff.

Figure 111. Detected hydraulic conductivity for individual wells for the stratigraphic unit Rhyolite of Benham Tuff.

Figure 112. Detected hydraulic conductivity for wells in composite for the stratigraphic unit Rhyolite of Benham Tuff.

Figure 113. Detected natural logarithm hydraulic conductivity for individual wells for the stratigraphic unit Rhyolite of Benham Tuff.

Figure 114. Detected natural logarithm hydraulic conductivity for wells in composite for the stratigraphic unit Rhyolite of Benham Tuff.

Lithologic	ER-EC-1		ER-EC-2a		ER-EC-4		ER-	R-EC-5 ER-5-4		-4#2 ER-EC-6		EC-6	ER-EC-7		ER-EC-8	
Modifier	Screened Length (m)	Detected K Length (m)	Screened Length (m)	Detected K Length (m)	Screened Length (m)	Detected K. Length (m)	Screened Length (m)	Detected K Length (m)								
NWT	0	0	164.0	27.1	6.4	0	0	0	46.8	20.3	46.6	0	0	0	62.1	22.7
NWT-PWT	10.4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PWT	7.4	1.5	0	0	27.1	1.6	0	0	0	0	31.0	0	0	0	7.2	0
PWT-MWT	6.0	1.5	0	0	0	0	0	0	0	0	0	0	0	0	7.2	Ċ
MWT	7.4	0	45.1	4.5	41.4	0	62.5	28.2	0	0	7.2	0	0	0	0	Ċ
MWT-DWT	0	0	0	0	0	0	23.4	4.2	0	0	0	0	0	0	0	0
DWT	0	0	0	0	8.0	0	0	0	0	0	0	0	0	0	0	C
VT	8.9	0	0	0	3.2	0	0	0	0	0	0	0	0	0	0	0
BED	40.2	3.0	130.9	49.7	6.4	0	0	0	0	0	8.4	0	1.4	0	0	0
PL	19.4	0	0	0	0	0	0	0	0	0	0	0	0	0	0) (
LA	22.3	20,9	0	0	39.8	23.9	0	0	0	0	31.0	4.8	48.1	8.2	0	C
VL	3.0	0.0	0	0	0	0	0	0	0	0	0	0	1.4	0	0	Ċ
FB	26.8	6.0	0	0	0	0	0	0	0	0	0	0	16.5	0	0	c
TSLT	0	0	13.5	4.5	0	0	0	0	0	0	0	0	0	0	0	c
RWT	0	0	24.1	3.0	0	0	0	0	0	0	0	0	0	0	0	c
CL	0	0	0	0	3.2	1.6	0	0	0	0	0	0	0	0	0	0
TG	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	c
LB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	c

Table 16. Lithologic units encountered at multiple wells in tuff.

Stratigraphic units are not presented in stratigraphic sequence Gray shading indicates a stratigraphic unit that occurs in multiple wells Bold type indicates length of detectable hydraulic conductivity for stratigraphic units with detectable hydraulic conductivity in more than one well
The detected hydraulic conductivity with depth for nonwelded tuff is presented in Figure 115. Well ER-EC-2a has much lower hydraulic conductivity values than wells ER-5-4#2 or ER-EC-8. Figures 116 through 119 present the detected hydraulic conductivity for the wells individually and in composite for normal and log-transformed values. Figures 118 and 119 show essentially two separate lognormal distributions with well ER-EC-2a having much lower values and ER-5-4#2 and ER-EC-8 sharing a similar distribution. The visual interpretation is that well ER-EC-2a forms a separate population from ER-5-4#2 and ER-EC-8.

The detected hydraulic conductivity with depth for moderately welded tuff is presented in Figure 120. Well ER-EC-2a has much lower hydraulic conductivity values than well ER-EC-5. Figures 121 through 124 present the detected hydraulic conductivity for the wells individually and in composite for normal and log-transformed values. Because the ranges of values for the two wells do not overlap, the figures for the wells individually and in composite are identical. Figure 123 indicates the wells have two separate distributions with well ER-EC-2a having much lower values than ER-EC-5. There are too few values (i.e., three) to characterize the distribution for ER-EC-2a, but it appears to form a separate population from ER-EC-5. The data for ER-EC-5 appear to form a lognormal distribution.

The detected hydraulic conductivity with depth for bedded tuff is presented in Figure 125. Well ER-EC-2a has somewhat lower hydraulic conductivity values than well **ER-EC-1**. Figures 126 through 129 present the detected hydraulic conductivity for the wells individually and in composite for normal and log-transformed values. Because the ranges of values for the two wells do not overlap, the figures for the wells individually and in composite are identical. Figure 128 indicates that well ER-EC-2a has much lower values than **ER-EC-1**. The data for ER-EC-2a appear to form a lognormal distribution. There are too few values (i.e., two) to characterize the distribution for ER-EC-1.

The detected hydraulic conductivity with depth for lava is presented in Figure 130. There are four wells with detectable hydraulic conductivity and this forms the most populated data set for the hydrogeologic characteristic of lithologic modifier. The wells have overlapping data ranges. Figures 131 through 134 present the detected hydraulic conductivity for the wells individually and in composite for normal and log-transformed values. Figure 131 demonstrates that no individual well has a unique distribution. The wells are considered in composite in Figure 132 and demonstrate that low values are much more prevalent in lava and may represent a "heavy tailed" distribution. Log-transformed data for individual wells in Figure 133 are difficult to interpret for all of the wells. The wells in composite are presented in Figure 134 and visually suggest that the values are of the same population.

Hydraulic Conductivity and Alteration Modifier

There are four alteration modifier units with detected hydraulic conductivity in more than one well. The names of the alteration modifier units and their abbreviations are provided in Table 9. The alteration modifier association with screened intervals and hydraulic conductivity for all wells in tuff is presented in Table 17.

Figure 115. Detected hydraulic conductivity with depth for the lithologic modifier Nonwelded Tuff.

Figure 116. Detected hydraulic conductivity for individual wells for the lithologic modifier Nonwelded Tuff.

Figure 117. Detected hydraulic conductivity for wells in composite for the lithologic modifier Nonwelded Tuff.

Figure 118. Detected natural logarithm hydraulic conductivity for individual wells for the lithologic modifier Nonwelded Tuff.

Figure 119. Detected natural logarithm hydraulic conductivity for wells in composite for the lithologic modifier Nonwelded Tuff.

Figure 120. Detected hydraulic conductivity with depth for the lithologic modifier Moderately Welded Tuff.

Figure 121. Detected hydraulic conductivity for individual wells for the lithologic modifier Moderately Welded Tuff.

Figure 122. Detected hydraulic conductivity for wells in composite for the lithologic modifier Moderately Welded Tuff.

Figure 123. Detected natural logarithm hydraulic conductivity for individual wells for the lithologic modifier Moderately Welded Tuff.

Figure 124. Detected natural logarithm hydraulic conductivity for wells in composite for the lithologic modifier Moderately Welded Tuff.

Figure 125. Detected hydraulic conductivity with depth for the lithologic modifier Bedded Tuff.

Figure 126. Detected hydraulic conductivity for individual wells for the lithologic modifier Bedded Tuff.

Figure 127. Detected hydraulic conductivity for wells in composite for the lithologic modifier Bedded Tuff.

Figure 128. Detected natural logarithm hydraulic conductivity for individual wells for the lithologic modifier Bedded Tuff.

Figure 129. Detected natural logarithm hydraulic conductivity for wells in composite for the lithologic modifier Bedded Tuff.

Figure 130. Detected hydraulic conductivity with depth for the lithologic modifier lava.

Figure 131. Detected hydraulic conductivity for individual wells for the lithologic modifier lava.

Figure 132. Detected hydraulic conductivity for wells in composite for the lithologic modifier lava.

Figure 133. Detected natural logarithm hydraulic conductivity for individual wells for the lithologic modifier lava.

Figure 134. Detected natural logarithm hydraulic conductivity for wells in composite for the lithologic modifier lava.

Alteration	ER-EC-1		ER-EC-2a		ER-EC-4		ER-EC-5		ER-5-4#2		ER-EC-6		ER-EC-7		ER-EC-8	
Modifier	Screened Length (m)	Detected K Length (m)														
DV	53.6	23.8	0	0	39.8	23.9	0	0	0	0	29.3	3.0	1.4	0	8.4	0
GL	11.9	0	0	0	3.2	0	0	0	0	0	1.8	1.8	1.4	0	0	0
VP	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	7.2	0
ZE	22.3	3.0	6.0	1.5	3.2	0	0	0	46.8	20.3	Ö	0	0	0	0	0
QZ	6.0	3.0	0	0	0	0	0	0	0	0	0	0	0	0	46.6	20.9
QF	58.1	3.0	371.7	87.3	86.0	1.6	85.9	32.4	0	0	93.1	0	37.1	2.7	15.5	1.8

Table 17. Alteration modifiers encountered at multiple wells in tuff.

Gray shading indicates an alteration modifier that occurs in multiple wells Bold type indicates length of detectable hydraulic conductivity for alteration modifiers with detectable hydraulic conductivity in more than one well

The detected hydraulic conductivity with depth for devittified tuff is presented in Figure 135. Well ER-EC-6 has slightly lower hydraulic conductivity values than wells ER-EC-1 or ER-EC-4. Figures 136 through 139 present the detected hydraulic conductivity for the wells individually and in composite for normal and log-transformed values. Figure 136 shows that the individual wells have no visually discernible distributions. Figure 137 shows that in composite, there is a general trend of progressively fewer values of higher hydraulic conductivity. Figures 138 shows that wells ER-EC-1 and ER-EC-4 have similar distributions of log hydraulic conductivity. Well ER-EC-6 has much lower log hydraulic conductivities. Figure 139 shows that devitified tuff for wells in composite does not indicate a visually interpretable trend.

The detected hydraulic conductivity with depth for zeolitic tuff is presented in Figure 140. There are few values of detected hydraulic conductivity in wells ER-EC-1 and ER-EC-2a. Well ER-EC-2a has much lower hydraulic conductivity values than wells ER-EC-1 and ER-5-4#2. Figures 141 through 144 present the detected hydraulic conductivity for the wells individually and in composite for normal and log-transformed values. Most of the information for zeolitic alteration is based on well ER- 5-4#2. The data in Figures 141 through 144 do not indicate a recognizable statistical distribution.

The detected hydraulic conductivity with depth for quartzitic tuff is presented in Figure 145. Figures 146 through 149 present the detected hydraulic conductivity for the wells individually and in composite for normal and log-transformed values. Figures 146 and 147 indicate that well ER-EC-8 has detected hydraulic conductivity values forming an approximately normal distribution. There are too few data from ER-EC-1 to demonstrate an independent distribution. Figures 148 and 149 indicate a lognormal distribution of values.

The detected hydraulic conductivity with depth for quartz feldspathoidic tuff is presented in Figure 150. There are six wells with detectable hydraulic conductivity and this forms the most populated data set for the hydrogeologic characteristic of alteration modifier. Well ER-EC-2a again has the lowest values of hydraulic conductivity within the data set. Figures 151 through 154 present the detected hydraulic conductivity for the wells individually and in composite for normal and log-transformed values. Figure 151 demonstrates that no individual well has a discernible distribution except perhaps ER-EC-5. The wells are considered in composite in Figure 152 and appear to demonstrate that the low values of ER-EC-2a are not part of a continuous distribution. Log-transformed data for individual wells in Figure 153 are difficult to interpret. The distribution for well ER-EC-2a shows a decreasing number of values at low log hydraulic conductivity while well ER-EC-5 shows fewer values with increasing log hydraulic conductivity. The wells in composite are presented in Figure 154 and visually suggest that the values are of different distributions and that there is no overarching trend for quartz feldspathoidic tuff.

Hydraulic Conductivity and Hydrogeologic Unit

There are four hydrogeologic units with detected hydraulic conductivity in more than one well. The names of the hydrogeologic units and their abbreviations are provided in Table 11. The hydrogeologic unit association with screened intervals and hydraulic conductivity for all wells in tuff is presented in Table 18.

Figure 135. Detected hydraulic conductivity with depth for the alteration modifier Devitrified.

Figure 136. Detected hydraulic conductivity for individual wells for the alteration modifier Devitrified.

Figure 137. Detected hydraulic conductivity for wells in composite for the alteration modifier Devitrified.

Figure 138. Detected natural logarithm hydraulic conductivity for individual wells for the alteration modifier Devitrified.

Figure 139. Detected natural logarithm hydraulic conductivity for wells in composite for the alteration modifier Devitrified.

Figure 140. Detected hydraulic conductivity with depth for the alteration modifier Zeolitic.

Figure 141. Detected hydraulic conductivity for individual wells for the alteration modifier Zeolitic.

Figure 142. Detected hydraulic conductivity for wells in composite for the alteration modifier Zeolitic.

Figure 143. Detected natural logarithm hydraulic conductivity for individual wells for the alteration modifier Zeolitic.

Figure 144. Detected natural logarithm hydraulic conductivity for wells in composite for the alteration modifier Zeolitic.

Figure 145. Detected hydraulic conductivity with depth for the alteration modifier Quartz.

Figure 146. Detected hydraulic conductivity for individual wells for the alteration modifier Quartz.

Figure 147. Detected hydraulic conductivity for wells in composite for the alteration modifier Quartz.

Figure 148. Detected natural logarithm hydraulic conductivity for individual wells for the alteration modifier Quartz.

Figure 149. Detected natural logarithm hydraulic conductivity for wells in composite for the alteration modifier Quartz.

Figure 150. Detected hydraulic conductivity with depth for the alteration modifier Quartz Feldspathoidic.

Figure 151. Detected hydraulic conductivity for individual wells for the alteration modifier Quartz Feldspathoidic.

Figure 152. Detected hydraulic conductivity for wells in composite for the alteration modifier Quartz Feldspathoidic.

Figure 153. Detected natural logarithm hydraulic conductivity for individual wells for the alteration modifier Quartz Feldspathoidic.

Figure 154. Detected natural logarithm hydraulic conductivity for wells in composite for the alteration modifier Quartz Feldspathoidic.

Hydrogeologic	ER-EC-1		ER-EC-2a		ER-EC-4		ER-EC-5		ER-5-4#2		ER-EC-6		ER-EC-7		ER-EC-8	
Unit	Screened Length (m)	Detected K Length (m)														
Welded Tuff Aqufer	29.8	3.0	45.1	4.5	79.6	1.6	85.9	32.4	0	0	38.2	0	0	0	15.5	0
Tuff Confining Unit	59.6	3.0	319.0	79.8	12.7	0	0	0	46.8	20.3	54.9	0	1.4	0	62.1	22.7
Lava Flow Aquifer	52.1	26.8	0	0	39.8	23.9	0	0	0	0	31.0	4.8	66.0	8.2	0	0
Alluvial Aquifer	0	0	13.5	4.5	3.2	1.6	0	0	0	0	0	0	0	0	0	0

Table 18. Hydrogeologic units encountered at multiple wells in tuff.

Gray shading indicates an alteration modifier that occurs in multiple wells Bold type indicates length of detectable hydraulic conductivity for alteration modifiers with detectable hydraulic conductivity in more than one well

The detected hydraulic conductivity with depth for welded tuff aquifer units is presented in Figure 155. Well ER-EC-2a has lower hydraulic conductivity values than wells ER-EC-1, ER-EC-4, or ER-EC-5. Figures 156 through 159 present the detected hydraulic conductivity for the wells individually and in composite for normal and log-transformed values. Figure 156 shows that the individual wells have no visually discernible distributions except for ER-EC-5. This is caused by the sparse data for the wells other than ER-EC-5. Figure 157 shows that in composite, there is a general trend of a distribution to the data. Figures 158 and 159 show no visually discernible distribution of log hydraulic conductivity.

The detected hydraulic conductivity with depth for Tuff Confining Units is presented in Figure 160. Well ER-EC-2a has much lower hydraulic conductivity values than wells ER-EC-1, ER-5-4#2, and ER-EC-8. Figures 161 through 164 present the detected hydraulic conductivity for the wells individually and in composite for normal and log-transformed values. The distributions of detected hydraulic conductivity for the wells individually are presented in Figure 161 and indicate that only well ER-EC-8 has a discernible data distribution. Figure 162 presents the data for each well in composite and suggests a trend of a decreasing number of values for higher values of hydraulic conductivity. Logarithm transformation of the data for individual wells in Figure 163 indicates that well ER-EC-2a has a data distribution centered on much lower values than the other wells. Wells ER-EC-1, ER-5-4#2, and ER-EC-8 have a similar range of values. Figure 164 indicates that there is a unique distribution of data for ER-EC-2a and that the other wells in composite form an approximately lognormal distribution.

The detected hydraulic conductivity with depth for lava flow aquifer units is presented in Figure 165. Figures 166 through 169 present the detected hydraulic conductivity for the wells individually and in composite for normal and log-transformed values. Figure 166 indicates that well ER-EC-6 has detected hydraulic conductivity values that are somewhat lower than the other wells. There are no discernible data distributions for the wells when plotted individually. Figure 167 presents the detected hydraulic conductivity values plotted in composite. Figure 168 demonstrates no visually discernible distribution to the data. Figure 169 for data values in composite indicates a distribution of values that is weighted toward higher values.

The detected hydraulic conductivity with depth for alluvial aquifer units is presented in Figure 170. There are only four values of detected hydraulic conductivity in alluvial aquifer units. Well ER-EC-2a again has the lower values of hydraulic conductivity within the data set. Figures 171 through 174 present the detected hydraulic conductivity for the wells individually and in composite for normal and log-transformed values. Because the ranges of values for the two wells do not overlap, the plots for the wells individually and in composite are identical. The sparse data for this unit prevent interpretation of data trends.

Hydraulic Conductivity and Hydrostratigraphic Unit

There are three hydrostratigraphic units with detected hydraulic conductivity in more than one well. The names of the hydrogeologic units and their abbreviations are provided in Table 13. The hydrostratigraphic unit association with screened intervals and hydraulic conductivity for all wells in tuff is presented in Table 19.

Figure 155. Detected hydraulic conductivity with depth for the hydrogeologic unit Welded Tuff Aquifer.

Figure 156. Detected hydraulic conductivity for individual wells for the hydrogeologic unit Welded Tuff Aquifer.

Figure 157. Detected hydraulic conductivity for wells in composite for the hydrogeologic unit Welded Tuff Aquifer.

Figure 158. Detected natural logarithm hydraulic conductivity for individual wells for the hydrogeologic unit Welded Tuff Aquifer.

Figure 159. Detected natural logarithm hydraulic conductivity for wells in composite for the hydrogeologic unit Welded Tuff Aquifer.

Figure 160. Detected hydraulic conductivity with depth for the hydrogeologic unit Tuff Confining Unit.

Figure 161. Detected hydraulic conductivity for individual wells for the hydrogeologic unit Tuff Confining Unit.

Figure 162. Detected hydraulic conductivity for wells in composite for the hydrogeologic unit Tuff Confining Unit.

Figure 163. Detected natural logarithm hydraulic conductivity for individual wells for the hydrogeologic unit Tuff Confining Unit.

Figure 164. Detected natural logarithm hydraulic conductivity for wells in composite for the hydrogeologic unit Tuff Confining Unit.

Figure 165. Detected hydraulic conductivity with depth for the hydrogeologic unit Lava Flow Aquifer.

Figure 166. Detected hydraulic conductivity for individual wells for the hydrogeologic unit Lava Flow Aquifer.

Figure 167. Detected hydraulic conductivity for wells in composite for the hydrogeologic unit Lava Flow Aquifer.

Figure 168. Detected natural logarithm hydraulic conductivity for individual wells for the hydrogeologic unit Lava Flow Aquifer.

Figure 169. Detected natural logarithm hydraulic conductivity for wells in composite for the hydrogeologic unit Lava Flow Aquifer.

Figure 170. Detected hydraulic conductivity with depth for the hydrogeologic unit Alluvial Aquifer.

Figure 171. Detected hydraulic conductivity for individual wells for the hydrogeologic unit Alluvial Aquifer.

Figure 172. Detected hydraulic conductivity for wells in composite for the hydrogeologic unit Alluvial Aquifer.

Figure 173. Detected natural logarithm hydraulic conductivity for individual wells for the hydrogeologic unit Alluvial Aquifer.

Figure 174. Detected natural logarithm hydraulic conductivity for wells in composite for the hydrogeologic unit Alluvial Aquifer.

Hydrostratigraphic Unit	ER-EC-1		ER-EC-2a		ER-EC-4		ER-EC-5		ER-5-4#2		ER-EC-6		ER-EC-7		ER-EC-8	
	Screened Length (m)	Detected K Length (m)														
TCVA	0	0		Charles a subset	39.8	25.5	0	0	0	0	0	0	0	0	0	C
FCCM	0	0	153.5	57.2	3.2	0.0	0	0	0	0	0	0	67.4	8.2	46.6	20.9
TMCM	0	0	224.2	31.6	0	0	85.9	32.4	0	0	0	0	0	0	31.0	1.8
TMA	0	0	0	0	92.3	1.6	0	0	0	0	0	0	0	0	0	0
BA	31.3	23.8	0	0	0	0	0	0	0	0	31.0	4.8	0	0	0	(
UPCU	13.4	3.0	0	0	0	0	0	0	0	0	23.9	0	0	0	0	(
TCA	14.9	1,5	0	0	0	0	0	0	0	0	14.9	0	0	0	0	(
LPCU	7.4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
TSA	25.3	1,5	0	0	0	0	0	0	0	0	23.3	0	0	0	0	(
CHCU	19.4	0	0	0	0	0	0	0	0	0	31.0	0	0	0	0	(
CFCM	40.2	3.0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
LTCU	0	0	0	0	0	0	0	0	46.8	20.3	0	0	0	0	0	(

Table 19. Hydrostratigraphic units encountered at multiple wells in tuff.

Gray shading indicates an alteration modifier that occurs in multiple wells Bold type indicates length of detectable hydraulic conductivity for alteration modifiers with detectable hydraulic conductivity in more than one well
The detected hydraulic conductivity with depth for the Fortymile Canyon Composite Unit is presented in Figure 175. Well ER-EC-2a has lower hydraulic conductivity values than wells ER-EC-7 or ER-EC-8. Figures 176 through 179 present the detected hydraulic conductivity for the wells individually and in composite for normal and log-transformed values. Figure 176 shows a similar range for wells ER-EC-7 and ER-EC-8. The data for ER-EC-8 appear to approximate a normal distribution. Figure 177 shows that in composite, the data from ER-EC-2a have a different distribution from the other wells. Figures 178 and 179 show the log transform of the hydraulic conductivity data results in two distinct statistical distributions, with well ER-EC-2a having the lower values.

The detected hydraulic conductivity with depth for the Timber Mountain Composite Unit is presented in Figure 180. Well ER-EC-2a has much lower hydraulic conductivity values than wells ER-EC-5 and ER-EC-8. Figures 181 through 184 present the detected hydraulic conductivity for the wells individually and in composite for normal and logtransformed values. The distributions of detected hydraulic conductivity for the wells individually are presented in Figure 181 and indicate that only well ER-EC-5 has a discernible data distribution. Figure 182 presents the data for each well in composite and suggests a trend of a decreasing number of values for higher values of hydraulic conductivity. Logarithm transformation of the data for individual wells in Figure 183 indicates that well ER-EC-2a has a data distribution centered on much lower values than the other wells. Figure 184 indicates that there is a unique distribution of data for ER-EC-2a and that the other wells in composite form an approximately normal distribution.

The detected hydraulic conductivity with depth for the Benham Aquifer is presented in Figure 185. Figures 186 through 189 present the detected hydraulic conductivity for the wells individually and in composite for normal and log-transformed values. Figure 186 indicates no discernible data distributions for the wells when plotted individually. Figure 187 presents the detected hydraulic conductivity values plotted in composite. Figure 188 demonstrates no visually discernible distribution to the data for well ER-EC-6 and an approximately normal distribution for well ER-EC-1. Figure 189 showing data values for wells in composite indicates a distribution of values that is weighted toward lower values.

Wells Constructed in Carbonate Rock

Overview

Four wells logged in carbonate provided a total of 1,194 m of open borehole. Table 20 presents a summary of the detection of hydraulic conductivity in carbonate rock. Detection of hydraulic conductivity occurred in 65 percent of the open borehole. It should be noted that permeability in carbonate rock can be associated with discrete fractures and that well intervals having nondetectable permeability is expected. The percentage of hydraulic conductivity detection in carbonate rock cannot be directly compared with detection in tuff. The boreholes in carbonate rock were not always screened to the full depth of the well. Wells ER-6-1 and ER-6-1#2 were open boreholes at the logging depths. Wells ER-7-1 and ER-12-3 were screened but did not contain filter pack and provided an open conduit behind the well screen. The borehole flow data were linearized along vertical intervals of various lengths to remove instrument noise for calculation of hydraulic conductivity.

Figure 175. Detected hydraulic conductivity with depth for the hydrostratigraphic unit Fortymile Canyon Composite Unit.

Figure 176. Detected hydraulic conductivity for individual wells for the hydrostratigraphic unit Fortymile Canyon Composite Unit.

Figure 177. Detected hydraulic conductivity for wells in composite for the hydrostratigraphic unit Fortymile Canyon Composite Unit.

Figure 178. Detected natural logarithm hydraulic conductivity for individual wells for the hydrostratigraphic unit Fortymile Canyon Composite Unit.

Figure 179. Detected natural logarithm hydraulic conductivity for wells in composite for the hydrostratigraphic unit Fortymile Canyon Composite Unit.

Figure 180. Detected hydraulic conductivity with depth for the hydrostratigraphic unit Timber Mountain Composite Unit.

Figure 181. Detected hydraulic conductivity for individual wells for the hydrostratigraphic unit Timber Mountain Composite Unit.

Figure 182. Detected hydraulic conductivity for wells in composite for the hydrostratigraphic unit Timber Mountain Composite Unit.

Figure 183. Detected natural logarithm hydraulic conductivity for individual wells for the hydrostratigraphic unit Timber Mountain Composite Unit.

Figure 184. Detected natural logarithm hydraulic conductivity for wells in composite for the hydrostratigraphic unit Timber Mountain Composite Unit.

Figure 185. Detected hydraulic conductivity with depth for the hydrostratigraphic unit Benham Aquifer.

Figure 186. Detected hydraulic conductivity for individual wells for the hydrostratigraphic unit Benham Aquifer.

Figure 187. Detected hydraulic conductivity for wells in composite for the hydrostratigraphic unit Benham Aquifer.

Figure 188. Detected natural logarithm hydraulic conductivity for individual wells for the hydrostratigraphic unit Benham Aquifer.

Figure 189. Detected natural logarithm hydraulic conductivity for wells in composite for the hydrostratigraphic unit Benham Aquifer.

Well	Min. Pumping Rate (L/min)	Max. Pumping Rate (L/min)	Open Bore Length (m)	Vertical Evaluation Interval Length (m)	Possible Hydraulic Conductivity Detection (m)	Hydraulie Conductivity Detection (m)
ER-6-1	1,053	2,140	373.4	1.5	373.4	342.9
ER-6-1#2	1,050	2,072	353.6	1.5	353.6	234.7
ER-7-1	461	595	87.3	1.5	87.3	67.5
ER-12-3	79	112	379.4	9.5	379.4	132.8
TOTAL	n,a.	n.a.	1,193.7	n.a.	1,193.7	778.0

Table 20. Detection of hydraulic conductivity in carbonate rock.

The hydraulic conductivity with depth is presented in Figures 190 through 193. The position of the well screen or open borehole, where detection of hydraulic conductivity is possible, is indicated on the left-hand side of the figure.

Examination of Figures 190 through 193 indicates that hydraulic conductivity is detected in all portions of the well. Wells ER-7-1 and ER-12-3 have the highest values of hydraulic conductivity in the upper portions of the screened interval. The reader is referred to the Appendix to access the depths and hydraulic conductivity values if alternative data presentations are viewed as being valuable to their analysis needs.

Figure 190. Detected hydraulic conductivity with depth at well ER-6-1.

Figure 191. Detected hydraulic conductivity with depth at well ER-6-1#2.

Figure 193. Detected hydraulic conductivity with depth at well ER-12-3.

The analysis continues by examining hydraulic conductivity for the hydrogeologic classifications:

- stratigraphic unit,
- lithologic modifier, and
- hydrogeologic / hydrostratigraphic / alteration modifier.

The hydrogeologic unit, hydrostratigraphic unit, and alteration modifier do not vary within the hydrogeologic classifications. The hydrogeologic characteristics for all of the wells are carbonate aquifer, lower carbonate aquifer, and unaltered, respectively. Each of the other hydrogeologic classifications has several characteristics to designate the particular stratigraphic unit or lithologic modifier. Therefore, the data are not plotted for these hydrogeologic characteristics. The hydrogeologic characteristics are defined at the beginning of each report section.

Association of Hydraulic Conductivity with Well-specific Hydrogeologic Characteristics

The following sections describe the association of hydraulic conductivity with each hydrogeologic characteristic. The analysis goals of the figures are described in Table 2. These results are intended for the reader interested in the characteristics of a specific well. Wells ER-6-1 and ER-6-1#2 are located about 64 m apart (210 ft) and have similar lithologic and hydraulic characteristics. Each well is discussed in a separate section below.

Hydraulic Conductivity and Stratigraphy

Well construction in carbonate encountered eight different stratigraphic units. Each of the units encountered is presented in the tables and figures to aid the reader in understanding the stratigraphic section at each well and the context of well screening and the detection of hydraulic conductivity. Table 21 presents the stratigraphic abbreviations for the stratigraphic units encountered in each well. Table 22 presents a summary of the stratigraphic units associated with well screen and the detection of hydraulic conductivity. The value of these tables is that they provide a quick review of the stratigraphic units containing detectable hydraulic conductivity without the reader needing to examine each of the well-specific figures. Four stratigraphic units had well screen placed adjacent to the unit and hydraulic conductivity was detected in all of these stratigraphic units.

The vertical length of well screen in each stratigraphic unit and the length over which hydraulic conductivity was detected are presented for each well in Figures 194 through 197. The figures include carbonate stratigraphic units that were encountered during drilling but not screened, to aid the reader in understanding the stratigraphic context. This is especially important where there are intervening stratigraphic units between the screened units.

The average detected hydraulic conductivity within each stratigraphic unit is presented in Figures 198 through 201. This analysis demonstrates a range in hydraulic conductivity of about two orders of magnitude with wells ER-6-1, ER-6-1#2, and ER-12-3 having relatively low values and well ER-7-1 having higher values.

Stratigraphic Abbreviation	Stratigraphic Unit Name
ER-6-1	- 1
Al	Alluvium
Tuff	Tuff
DSs	Sevy Dolomite
DSI	Laketown Dolomite
Oes	Ely Springs Dolomite
Oe	Eureka Quartzite
ER-6-1#2	
Al	Alluvium
Tuff	Tuff
Col	Coluvium
DSI	Laketown Dolomite
Oes	Ely Springs Dolomite
Oe	Eureka Quartzite
ER-7-1	10 Defen
AI	Alluvium
Tuff	Tuff
Col	Colluvium
Pzu	Paleozoic Undifferentiated
ER-12-3	N N N N N N N N N N N N N N N N N N N
Al	Alluvium
Tuff	Tuff
Pzu	Paleozoic Undifferentiated

Table 21. Stratigraphic units for wells in carbonate rock.

Table 22. Stratigraphic units encountered in drilling. Stratigraphic units that are screened are shaded gray and units with detectable hydraulic conductivity are in bold type.

Well	Stratigraphic Unit								
ER-6-1	Al	Tuff	DSs	DSI	Oes	Oe			
ER-6-1#2	Al	Tuff	Col	DSI	Oes	Oe			
ER-7-1	AI	Tuff	Col	Pzu					
ER-12-3	Al	Tuff		Pzu					

Hydraulic Conductivity and Lithologic Modifier

Well construction in carbonate placed well screen adjacent to units containing seven different lithologic modifiers. Each of the modifiers encountered during well construction is presented in the tables and figures to aid the reader in understanding the context of well screening and the detection of hydraulic conductivity. Table 23 presents abbreviations for the lithologic modifiers encountered in the wells. Table 24 presents a summary of the lithologic modifiers associated with well screen and the detection of hydraulic conductivity. Well screen was placed adjacent to two unique lithologic modifiers in carbonate. Both of these lithologic modifiers are associated with detectable hydraulic conductivity. Lithologic modifiers have the lowest number of associations among the hydrogeologic characteristic.

Figure 194. Stratigraphic units adjacent to well screen and detectable hydraulic conductivity at well ER-6-1.

Figure 195. Stratigraphic units adjacent to well screen and detectable hydraulic conductivity at well ER-6-1#2.

Figure 196. Stratigraphic units adjacent to well screen and detectable hydraulic conductivity at well ER-7-1.

Figure 197. Stratigraphic units adjacent to well screen and detectable hydraulic conductivity at well ER-12-3.

Figure 198. Average detected hydraulic conductivity in stratigraphic units at well ER-6-1.

Figure 199. Average detected hydraulic conductivity in stratigraphic units at well ER-6-1#2.

Figure 200. Average detected hydraulic conductivity in stratigraphic units at well ER-7-1.

Figure 201. Average detected hydraulic conductivity in stratigraphic units at well ER-12-3.

Lithologic Abbreviation	Lithologic Unit Name				
At	Tuffaceous alluvium				
Tuff	Tuff				
Dol	Dolomite				
Ls	Limestone				
QTZT	Quartzite				
Col	Coluvium				
SS	Sandstone				

Table 23. Lithologic modifiers for wells in carbonate rock.

Table 24. Lithologic modifiers that are screened. Lithologic modifiers with detectable hydraulic conductivity are shaded gray.

Well	Lithologic Unit							
ER-6-1	At	Tuff	Dol	SS	QTZT			
ER-6-1#2	At	Tuff	Col	Dol	QTZT			
ER-7-1	At	Tuff	Col	Ls				
ER-12-3	At	Tuff	Dol	Ls				

The vertical length of well screen placed adjacent to each lithologic modifier and the length over which hydraulic conductivity was detected are presented for each well in Figures 202 through 205. Hydraulic conductivity was detected for each lithologic modifier that was screened or that was open borehole. Dolomite and limestone provide similar likelihood of detecting hydraulic conductivity. The average detected hydraulic conductivity for the lithologic modifiers is presented in Figures 206 through 209. No data trends are identified as being associated with lithologic modifiers.

Association of Hydrogeologic Characteristics with Well-specific Hydraulic Conductivity

The following sections describe the hydraulic conductivity for each hydrogeologic characteristic that occurs within multiple wells. When a hydrogeologic characteristic is found in only one well, the information is identical to that presented above. The analysis goals of the figures are described in Table 3. Each hydrogeologic classification is discussed in a separate section below. The figures in this section show the detected hydraulic conductivity data for each well plotted both separately and displayed as if all the values are at the same location.

Hydraulic Conductivity and Stratigraphy

There are three stratigraphic units with detected hydraulic conductivity in more than one well (e.g., the data for each well are plotted separately, and the data are displayed as if all the values are at the same location). The names of the stratigraphic units and their abbreviations are provided in Table 21. The stratigraphic association of screened intervals and hydraulic conductivity for all wells in carbonate rock is presented in Table 25.

Figure 202. Lithologic modifiers adjacent to well screen and detectable hydraulic conductivity at well ER-6-1.

Figure 203. Lithologic modifiers adjacent to well screen and detectable hydraulic conductivity at well ER-6-1#2.

Figure 204. Lithologic modifiers adjacent to well screen and detectable hydraulic conductivity at well ER-7-1.

Figure 205. Lithologic modifiers adjacent to well screen and detectable hydraulic conductivity at well ER-12-3.

Figure 206. Average detected hydraulic conductivity for lithologic modifiers at well ER-6-1.

Figure 207. Average detected hydraulic conductivity for lithologic modifiers at well ER-6-1#2.

Figure 208. Average detected hydraulic conductivity for lithologic modifiers at well ER-7-1.

Figure 209. Average detected hydraulic conductivity for lithologic modifiers at well ER-12-3.

	ER-6-1		ER-6-1#2		ER-7-1		ER-12-3	
Stratigraphic Unit	Logged Length (m)	Detected K Length (m)	Logged Length (m)	Detected K Length (m)	Logged Length (m)	Detected K Length (m)	Logged Length (m)	Detected K Length (m)
DSs	141.7	126.5						
DSI	208.8	208.8	324.6	221.0				
Oes	22.86	7.62	29.0	13.7				
Pzu					87.3	67.5	379.4	132.8

Table 25. Stratigraphic units encountered at multiple wells in carbonate rock.

Stratigraphic units are not presented in stratigraphic sequence

Gray shading indicates a stratigraphic unit that occurs in multiple wells

Bold type indicates length of detectable hydraulic conductivity for stratigraphic units with detectable hydraulic conductivity in more than one well

There are more stratigraphic units in carbonate rock than any other hydrogeologic characteristic. This tends to reduce the number of detected hydraulic conductivity values within any particular stratigraphic characteristic. Data associations with other hydrogeologic classifications exhibit more heavily populated data sets.

The detected hydraulic conductivity with depth for the Laketown Dolomite is presented in Figure 210. The results for wells ER-6-1 and ER-6-1#2 are similar as may be expected for wells located 64 m apart. Figures 211 through 214 present the detected hydraulic conductivity for the wells individually and in composite for normal and log-transformed values. The data trends are similar for these wells.

The detected hydraulic conductivity with depth for the Ely Springs Dolomite is presented in Figure 215. Wells ER-6-1 and ER-6-1#2 are essentially identical. Figures 216 through 219 present detected hydraulic conductivity for the wells individually and in composite for normal and log-transformed values. Because the ranges of values for the two wells are essentially the same, the figures for the wells individually and in composite are identical. No data trends can be identified by these data.

The detected hydraulic conductivity with depth for the Paleozoic Undifferentiated Carbonate is presented in Figure 220. Wells ER-7-1 and ER-12-3 have dissimilar hydraulic conductivity values, with the detected values for well ER-12-3 being much lower. Figures 221 through 224 presents the detected hydraulic conductivity for the wells individually and in composite for normal and log-transformed values. The distributions in Figures 221 through 224 indicate that the hydraulic values for well ER-12-3 are much lower than in well ER-7-1. The hydraulic conductivity values in Figure 222 visually appear to have a data trend of many low values with a decreasing number of higher values. Log transforming the data in Figures 223 and 224 does not aid in interpretation.

Hydraulic Conductivity and Lithologic Modifier

There are two stratigraphic units with detected hydraulic conductivity in more than one well. The names of the lithologic modifiers and their abbreviations are provided in Table 23. The lithologic association of screened intervals and hydraulic conductivity for all wells in carbonate rock is presented in Table 26. The detected hydraulic conductivity with depth for the lithologic modifier Limestone is presented in Figure 225. Wells ER-7-1 and ER-12-3 have dissimilar hydraulic conductivity values, with the detected values for well ER-12-3 being much lower. Figures 226 through 229 present detected hydraulic conductivity for the wells individually and in composite for normal and log-transformed values. The distributions in Figures 221 through 224 indicate that the hydraulic values for well ER-12-3 are much lower than in well ER-7-1. The hydraulic conductivity values in Figure 227 visually appear to have a data trend of many low values with a decreasing number of higher values. Log transforming the data in Figures 228 and 229 appears to indicate two distinct data distributions for wells ER-7-1 and ER-12-3.

The detected hydraulic conductivity with depth for the lithologic modifier Dolomite is presented in Figure 230. The results for wells ER-6-1, ER-6-1#2, and ER-12-3 are similar. Figures 231 through 234 present the detected hydraulic conductivity for the wells individually and in composite for normal and log-transformed values. The data trends are similar for these wells. Figures 231 and 232 illustrate a trend of higher occurrences of low hydraulic conductivity values. Figures 233 and 234 illustrate no identifiable trends to the data.

Figure 210. Detected hydraulic conductivity with depth for the stratigraphic unit Laketown Dolomite.

Figure 211. Detected hydraulic conductivity for individual wells for the stratigraphic unit Laketown Dolomite.

Figure 212. Detected hydraulic conductivity for wells in composite for the stratigraphic unit Laketown Dolomite.

Figure 213. Detected natural logarithm hydraulic conductivity for individual wells for the stratigraphic unit Laketown Dolomite.

Figure 214. Detected natural logarithm hydraulic conductivity for wells in composite for the stratigraphic unit Laketown Dolomite.

Figure 215. Detected hydraulic conductivity with depth for the stratigraphic unit Ely Springs Dolomite.

Figure 216. Detected hydraulic conductivity for individual wells for the stratigraphic unit Ely Springs Dolomite.

Figure 217. Detected hydraulic conductivity for wells in composite for the stratigraphic unit Ely Springs Dolomite.

Figure 218. Detected natural logarithm hydraulic conductivity for individual wells for the stratigraphic unit Ely Springs Dolomite.

Figure 219. Detected natural logarithm hydraulic conductivity for wells in composite for the stratigraphic unit Ely Springs Dolomite.

Figure 220. Detected hydraulic conductivity with depth for the stratigraphic unit Paleozoic Undifferentiated.

Figure 221. Detected hydraulic conductivity for individual wells for the stratigraphic unit Paleozoic Undifferentiated.

Figure 222. Detected hydraulic conductivity for wells in composite for the stratigraphic unit Paleozoic Undifferentiated.

Figure 223. Detected natural logarithm hydraulic conductivity for individual wells for the stratigraphic unit Paleozoic Undifferentiated.

Figure 224. Detected natural logarithm hydraulic conductivity for wells in composite for the stratigraphic unit Paleozoic Undifferentiated.

	ER-6-1		ER-6-1#2		ER-7-1		ER-12-3	
Lithic Modifier	Logged Length (m)	Detected K Length (m)						
Ls					87.3	67.5	284.6	75.9
Dol	342.9	342.9	353.6	234.7			94.9	56.9

Table 26. Lithic modifier units encountered at multiple wells in carbonate.

Lithologic units are not presented in stratigraphic sequence

Gray shading indicates a stratigraphic unit that occurs in multiple wells

Bold type indicates length of detectable hydraulic conductivity for stratigraphic units with detectable hydraulic conductivity in more than one well

Figure 225. Detected hydraulic conductivity with depth for the lithologic modifier Limestone.

Figure 226. Detected hydraulic conductivity for individual wells for the lithologic modifier Limestone.

Figure 227. Detected hydraulic conductivity for wells in composite for the lithologic modifier Limestone.

Figure 228. Detected natural logarithm hydraulic conductivity for individual wells for the lithologic modifier Limestone.

Figure 229. Detected natural logarithm hydraulic conductivity for wells in composite for the lithologic modifier Limestone.

Figure 230. Detected hydraulic conductivity with depth for the lithologic modifier Dolomite.

Figure 231. Detected hydraulic conductivity for individual wells for the lithologic modifier Dolomite.

Figure 232. Detected hydraulic conductivity for wells in composite for the lithologic modifier Dolomite.

Figure 233. Detected natural logarithm hydraulic conductivity for individual wells for the lithologic modifier Dolomite.

Figure 234. Detected natural logarithm hydraulic conductivity for wells in composite for the lithologic modifier Dolomite.

Hydraulic Conductivity and Hydrogeologic Unit / Hydrostratigraphic Unit / Alteration Modifier

The hydrogeologic unit, hydrostratigraphic unit, and alteration modifier do not vary within the hydrogeologic classifications and are carbonate aquifer, lower carbonate aquifer, and unaltered, respectively. The hydraulic conductivity values are presented in composite for all carbonate wells.

The detected hydraulic conductivity with depth for all carbonate wells in composite is presented in Figure 235. The results for wells ER-6-1, ER-6-1#2, and ER-12-3 are similar. Well ER-7-1 has notably higher values. Figures 236 through 239 present the detected hydraulic conductivity for the wells individually and in composite for normal and log-transformed values. Figures 236 and 237 illustrate a trend of higher occurrences of low hydraulic conductivity values. Figures 238 and 239 illustrate no identifiable trends to the data.

Summary of Phase One Analysis

The results of the Phase One analysis are summarized in a series of tables providing the average hydraulic conductivity and estimated statistical distribution for each of the hydrostratigraphic characteristics. The reader is reminded that these values are the average of the *detected* hydraulic conductivities. Nondetects are not included in the Stage One analysis and are addressed in the Stage Two analysis presented later in this report. Average hydraulic conductivity values detected for the various hydrogeologic characteristics should not be viewed as the average hydraulic conductivity for the entire thickness of the unit. The purpose of evaluating hydraulic conductivity is to understand the range and statistical characteristics of the permeability underlying the transmissivity of the major hydrogeologic units. These characteristics are particularly important for numerical simulation of radionuclide groundwater transport in calculating arrival times and concentrations.

Table 27 summarizes the hydraulic conductivity for stratigraphic units in tuff. The table indicates that many of the stratigraphic units have unknown or too few values to describe the statistical distribution of data. Comparing data for the same stratigraphic unit among wells indicates that the values may be similar such as for the unit Tfb (Tertiary Beatty Wash Formation) in wells ER-EC-7 and ER-EC-8 or may have very different values such the stratigraphic unit Tfbw (Tertiary Rhyolite of Beatty Wash Formation) in wells ER-EC-2a and ER-EC-7 and for the unit Tmar (Tertiary Mafic-Rich Ammonia tanks Tuff) in wells ER-EC-2a and ER-EC-5. There seems to be no identifiable trends in the average hydraulic conductivity based on stratigraphic unit. In general, well ER-EC-2a seems to have much lower hydraulic conductivity than the other wells. This aspect may be related to the specific fracture domain at that well.

Table 28 summarizes the hydraulic conductivity for lithologic units in tuff. The table indicates that almost all of the units have unknown statistical distribution of data. An interesting observation is that the average hydraulic conductivity seems unaffected by the degree of welding in tuff. The nonwelded tuff, partly welded tuff, moderately welded tuff and moderately to densely welded tuff have values over similar ranges. The average hydraulic conductivity values for lava (LA) are generally greater than for other lithologic units.

The summary of results for association of average hydraulic conductivity with alteration modifier for tuff is presented in Table 29. There are too few data to describe the statistical distributions for most wells. The statistical distribution is unknown nearly all of the remaining wells. There are no identifiable trends associating average hydraulic conductivity with alteration modifier.

The summary of hydrogeologic units in tuff and average hydraulic conductivity is presented in Table 30. Well ER-EC-2a has lower average hydraulic conductivity values for all hydrogeologic classifications. Evaluation of the average values for welded tuff aquifer (WTA), and lava flow aquifer (LFA) are similar to those for tuff confining units (TCU). This observation should be viewed with caution because these are average detectable hydraulic conductivity values and does not reflect the many nondetects within each type of hydrogeologic unit. The table is possibly indicating that the permeability of fractures is similar in welded tuff aquifers and tuff confining units and that it is the frequency of fractures that determines whether the unit is an aquifer or a confining unit.

Table 31 presents the average hydraulic conductivity for the various hydrostratigraphic units in tuff. Well ER-EC-2a is again unique in that the average values are lower than the other wells. Only three hydrostratigraphic units are found in more than one well (e.g., FCCM – Fortymile Canyon Composite Unit, TMCM – Timber Mountain Composite Unit, and BA – Benham Aquifer. Most of the hydrostratigraphic units do not have an identifiable statistical distribution. The average values do not indicate an association with hydrostratigraphic unit.

Wells in carbonate exhibit only two variations in hydrostratigraphic characteristics: the stratigraphic unit and the lithologic unit. These hydraulic conductivity values are based,

in part, on a linearization of the borehole flow rates that produces an average value over distances greater than the nominal 1.5 m vertical calculation interval used in screened wells. Therefore, short intervals containing nondetectable hydraulic conductivity are incorporated into the average values.

Table 32 presents the average hydraulic conductivity data for each stratigraphic unit in carbonate. The statistical distributions of hydraulic conductivity within each stratigraphic unit are generally unknown. The close similarity of values of ER-6-1 and ER-6-1#2 is the result of these wells being located only 64 m apart.

Table 33 presents the average hydraulic conductivity associated with lithologic unit. The values in dolomite (Dol) appear to be more similar than those in limestone (Ls). The statistical distributions in carbonate are generally lognormal. This is in contrast to tuff which apparently have more variability in the statistical distributions.

Figure 235. Detected hydraulic conductivity with depth for the hydrogeologic unit Carbonate and hydrostratigraphic unit Lower Carbonate Aquifer.

Figure 236. Detected hydraulic conductivity for individual wells for the hydrogeologic unit Carbonate and hydrostratigraphic unit Lower Carbonate Aquifer.

Figure 237. Detected hydraulic conductivity for wells in composite for the hydrogeologic unit Carbonate and hydrostratigraphic unit Lower Carbonate Aquifer.

Figure 238. Detected natural logarithm hydraulic conductivity for individual wells for the hydrogeologic unit Carbonate and hydrostratigraphic unit Lower Carbonate Aquifer.

Figure 239. Detected natural logarithm hydraulic conductivity for wells in composite for the hydrogeologic unit Carbonate and hydrostratigraphic unit Lower Carbonate Aquifer.

							St	ratigraph	nic Unit					
	Summary						_	_	_		_	_		
Well	Properties	Tfbw	Tfb	Tf	Ttc	Tpb	Tmaw	<u>Tmar</u>	<u>Ттар</u>	Tcb	Трст	Tptm	Тсре	Ттгр
ER-EC-I	Ave K (m/d)					27.6					2.3	8.4	11.1	
	Distribution					1n					unk	որ	unk	
ER-EC-2a	Ave K (m/d)	0.18		0.17			0.17	0.04						
	Distribution	la		few			unk	few						
ER-EC-4	Ave K (m/d)				27,6									16.4
	Distribution				unk									few
ER-EC-5	Ave K (m/d)							21.9	18.2					
	Distribution							n-s	In					
ER-5-4#2	Ave K (m/d)									5.2				
	Distribution									unk				
ER-EC-6	Ave K (m/d)					5.1								
	Distribution					unk								
ER-EC-7	Ave K (m/d)	28.2	13.0											
	Distribution	few	n											
ER-EC-8	Ave K (m/d)		15.3						5.6					
	Distribution		n						unk					

Table 27. Tuff stratigraphic units property summary.

Estimated statistical distribution types in = normal, n-s = normal skewed, in = log normal, few = too few values to estimate, unk = unknown

						Litholog	ic Unit					
Well	Summary Properties	NWT	PWT	PWT-MWT	MWT	MWT-DWT	LA	BED	TSLT	RWT	CL	FB
ER-EC-1	Ave K (m/d)		2.3	8.4			33.4	4.3				10.7
	Distribution		unk	unk			utik	few				unk
ER-EC-2a	Ave K (m/d)	0.14			0.04			0.2	0.11	0.24		
	Distribution	In			few			In	unk	unk		
ER-EC-4	Ave K (m/d)		16.4				28.8				8.5	
	Distribution		unk				unk				unk	
ER-EC-5	Ave K (m/d)				21.9	18.2						
	Distribution				n-\$							
ER-5-4#2	Av¢ K (m/d)	5.2										
	Distribution	unk										
ER-EC-6	Ave K (m/d)						5.1					
	Distribution						unk					
ER-EC-7	Ave K (m/d)						18.0					
	Distribution						few					
ER-EC-8	Ave K (m/d)	14.6										
	Distribution	In										

Table 28. Tuff lithologic modifiers property summary.

Estimated statistical distribution types in = normal, n-s = normal skewed, in = log normal, few = too few values to estimate, unk = unknown

				Alteration	1 Modifier		
Well	Summary Properties	DV	GL	ZE	QZ	QF	VAR
ER-EC-1	Ave K (m/d)	29.9		4.3	10.6	11.1	
	Distribution	unk		few	few	few	
ER-EC-2a	Ave K (m/d)			0,4		0.2	
	Distribution			few		unk	
ER-EC-4	Ave K (m/d)	28.8				16.4	
	Distribution	unk				few	
ER-EC-5	Ave K (m/d)					21.5	
	Distribution					n-\$	
ER-5-4#2	Ave K (m/d)			5,2			
	Distribution			ln			
ER-EC-6	Ave K (m/d)	1.6	10.9				
	Distribution	few	unk				
ER-EC-7	Ave K (m/d)					28.2	13.0
	Distribution					few	unk
ER-EC-8	Ave K (m/d)				15,3	5.6	
	Distribution				unk	few	

Table 29. Tuff alteration modifiers property summary.

Estimated statistical distribution types n = normal, n-s = normal skewed, ln = log normal, few = too few values to estimate, unk = unknown

Table 30.	Tuff hydrogeologic units summary	properties.
		N

			Hydrogeo	logic Unit	
Well	Summary Properties	WTA	тси	LFA	AA
ER-EC-1	Ave K (m/d)	5,4	4,3	28.4	
	Distribution	few	few	սու	
ER-EC-2a	Ave K (m/d)	0.04	0.2		0.1
	Distribution	few	unk		few
ER-EC-4	Ave K (n/d)	16.4		28.8	8.5
	Distribution	few		սոհ	few
ER-EC-5	Ave K (n/d)	21,5			
	Distribution	D-5			
ER-5-4#2	Ave K (m/d)		5.2		
	Distribution		1n		
ER-EC-6	Ave K (m/d)			5.1	
	Distribution			ատե	
ER-EC-7	Ave K (m/d)			18.0	
	Distribution			In	
ER-EC-8	Ave K (m/d)		14.6		
	Distribution		1 n		

Estimated statistical distribution types n = normal, n-s = normal skewed, ln = log normal, few = too few values to estimate, unk = unknown

					ŀ	Iydrostratigra	phic Unit				
Well	Summary Properties	FCCM	тмсм	TCVA	ТМА	LTCU	BA	UPCU	TCA	TSA	CFCM
ER-EC-1	Ave K (m/d) Distribution						30.6 1a	4.3 ឃាk	2.3 unk	8.4 unk	1 1.1 աղե
ER-EC-2a	Ave K (m/d) Distribution	0. 2 In	0.2 unk								
ER-EC-4	Ave K (m/d) Distribution			27.6 Unk	16.4 vnk						
ER-EC-5	Ave K (m/d) Distribution		21.5 In								
ER-5-4#2	Ave K (m/d) Distribution					5.2 unk					
ER-EC-6	Ave K (m/d) Distribution						5.1 µлк				
ER-EC-7	Ave K (m/d) Distribution	18.0 In									
ER-EC-8	Ave K (m/d) Distribution	15.3 In	5.6 few								

Table 31. Tuff hydrostratigraphic units summary properties.

Estimated statistical distribution types n = normal, n-s = normal skewed, in = log normal, few = too few values to estimate, unk = unknown

	Summary		Stratigra	phic Unit	
Well	Properties	DSs	DSI	Oes	Pzu
ER-6-1	Ave K (m/d)	1.1	4.3	6.7	
	Distribution	unk	ĺn	unk	
ER-6-1#2	Ave K (m/d)		3.3	6.7	
	Distribution		unk	unk	
ER-7-1	Ave K (m/d)				33.1
	Distribution				unk
ER-12-3	Ave K (m/d)				0.4
	Distribution				unk

Table 32. Carbonate stratigraphic units property summary.

Estimated statistical distribution types n = normal, n-s = normal skewed, ln = log normal, few = too few values to estimate, unk = unknown

Table 33. Carbonate lithologic modifiers property summary.

	Summary		Lithologic Unit
Well	Properties	Dal	Ls
ER-6-1	Ave K (m/d)	3.2	
	Distribution	ln	
ER-6-1#2	Avc K (m/d)	3.5	
	Distribution	սոհ	
ER-7-1	Avc K (m/d)		33.1
	Distribution		ln
ER-12-3	Ave K (m/d)	0.8	0.02
	Distribution	few	ln

Estimated statistical distribution types n = normal, n-s = normal skewed, ln = log normal, few = too few values to estimate, unk = unknown

STAGE-TWO ANALYSIS

Introduction

The purpose of this stage of the study is to explore the data at a more detailed level using exploratory data analysis with censored data. The data are evaluated without prior assumptions of distribution or other behavior.

Recall that conductivity values (K) were obtained under more than one flow rate, resulting in up to three values of K at each measured depth in a well. In the previous stage of this study, low values, or values less than the assigned minimum value, were evaluated qualitatively and either averaged or discarded to produce a composite K. This results in one value of K for each depth in a well.

In this stage, all measured values of K were analyzed, regardless of whether or not the value was below its minimum acceptable value. Data identified only by a range, or a 'less-than' value, is called censored data. A detailed explanation of censored data and methods of analysis is included below.

Also, only the wells in tuff are analyzed in this stage. As noted above, wells in carbonate rock exhibit very little variation in rock type and it was decided that, for this stage, the analysis would be performed only on the characteristics of tuff.

As an example using fictitious data, table 34 illustrates the difference in data sets used for the previous stage and this one.

			Raw Data	I			Raw Da	ta used in	Stage 2	Raw Data used in Stage 1
	K for	min	K for	min	K for	min				
depth	Q1	К	Q2	K	Q3	К	KL	K2	K3	composite K
110	3	4	4	3	6	6	<4	4	6	5
111	3	4	4	3	6	6	<4	4	6	5
112	2	4	4	3	6	6	<4	4	6	5
113	2	2	3	3	5	6	2	3	<6	3.7
114	3	2	4	3	6	6	3	4	6	4.3
115	4	4	5	4	4	6	4	5	≪6	4.5
116	5	4	6	4	2	6	5	6	<6	5,5

Table 34. Comparison of data sets between stage one and stage two.

In the table above, if the minimum K is greater than the measured K, the value used in the analysis would be " $<(\min K)$." For example, using the fictitious data in Table 34, at depth 110 under flow Q1 the measured K is 3, while the minimum K is 4; this results in a data point of <4. Using a composite method, the first tier analysis would have 7 values to analyze and the second-tier analysis would have 21 values. Even though the presence of censored data complicates any statistical analysis, their values are retained in this stage.

Exploratory Data Analysis

Exploratory Data Analysis (EDA) is an approach to analyzing data described in Tukey (1977). This approach uses mostly graphical techniques to maximize use of our natural pattern recognition abilities. Typically, the data are not assumed to follow any model or distribution and are used to develop models and hypotheses rather than test assumptions about the data.

This part of the study relies heavily on EDA methods, particularly graphical and summary techniques. Typically, after the initial analysis (usually graphical), standard statistical tests can be performed. In this study, nonparametric tests are used whenever possible. As described below, the presence of censored data lends itself well to a nonparametric approach.

Among the many graph styles used in EDA, boxplots are often considered most useful. However, using boxplots with censored data presents a problem—specifically, how to present the 'less-than' values. Censored data can be thought of as a value in a range, rather than a discrete point. In the case of environmental data, that range is usually between zero and the censoring/detection limit. Boxplots in this report will use the maximum value for display. For example, a value of less than 4 will plot as 4. The effect of this technique is a misleading plot, one where data are skewed toward higher values. This compromise was necessary to compare data sets, but one should be aware that these plots do not represent actual data. Any statistical tests will use robust nonparametric techniques on the original censored dataset; the presentation of the maximum possible value for the censored data points is only for visual analysis.

The National Institute of Science and Technology e-Handbook of Statistics (2006) summarizes well the purpose and methods of EDA:

"The primary goal of EDA is to maximize the analyst's insight into a data set and into the underlying structure of a data set, while providing all of the specific items that an analyst would want to extract from a data set. "Insight implies detecting and uncovering underlying structure in the data. Such underlying structure may not be encapsulated in the list of items above; such items serve as the specific targets of an analysis, but the real insight and "feel" for a data set comes as the analyst judiciously probes and explores the various subtleties of the data. The "feel" for the data comes almost exclusively from the application of various graphical techniques, the collection of which serves as the window into the essence of the data. Graphics are irreplaceable--there are no quantitative analogues that will give the same insight as well-chosen graphics.

"To get a "feel" for the data, it is not enough for the analyst to know what is in the data; the analyst also must know what is not in the data, and the only way to do that is to draw on our own human pattern-recognition and comparative abilities in the context of a series of judicious graphical techniques applied to the data."

In this study, the following methods are used extensively:

- Graphical/survival curves
- Description using nonparametric methods
- Nonparametric analysis of variance (ANOVA) to describe differences in populations

Approach

In this portion of the study, the following questions will be addressed:

- What are typical values for K?
- Does K follow any trend within a well? Does K decrease with depth?
- Are rock characteristics homogeneous? For example, do the K values for an HSU of BA in one location differ from the K values for an HSU of BA in another location?
- Are there differences in K within rock classifications? Or, which rock classifications best describe variability in K?
- Are Ks affected by fractures?

Note: Throughout the Stage 2 analysis, the following abbreviations for rock characteristics are used extensively: Hydrostratigraphic Unit (HSU), Hydrogeologic Unit (HGU), Stratigraphic Unit (STRAT), and Lithology (LITH).

OVERVIEW OF CENSORED DATA METHODS

There are several methods available to deal with censored data. Sometimes, nondetects are eliminated from the data set. This results in a data set skewed toward higher values and does not provide a random sample of the population. Often, one-half of the detection limit is substituted for the actual (albeit unknown) value. This method is sometimes recommended in manuals by federal agencies (EPA [1998]; U.S. Army Corps of Engineers [1998]). A third common practice is to assume the data follow a distribution (with environmental data, the log-normal distribution is often used) and replace the censored data with data that follow the assumed distribution. Helsel (2005) provides an overview of these techniques and describes the problems and errors associated with them. Helsel also recommends statistically rigorous methods to deal with censored data without fabricating or discarding values, or assuming the data belong to a distribution. The nonparametric techniques described in Helsel are used in this stage of the study.

Correlation

The Kendall Tau rank correlation coefficient is used in this analysis to measure to correspondence between two rankings. This non-parametric method is commonly-used in the environmental sciences to determine trends (correspondence between a measured value and time) and, in this study, to determine correspondence between hydraulic conductivity and depth. The correlation coefficient (τ) is an intuitively simple measure of the strength of relationship between two variables (Noether, 1986).

The Kendall Tau is defined below:

$$t = \frac{4P}{[n(n-1)]}$$

where n is the number of samples and P is the number of concordant pairs—or data pairs where X increases as Y increases, or X decreases while Y decreases. The Kendall-Tau test was used below to identify a relationship between K and depth.

Comparison of Populations

The Peto-Peto generalization of the Wilcoxon statistic is used in this study to test for the differences in populations. It is a non-parametric alternative to the paired Student's t-test. As applied to this study, the test statistic is used to determine if there is a difference between two survival curves. Example survival curves are shown in Figure 240.

Figure 240. Example of survival curves.

Survival curves, commonly used in medical statistics, plot percent survival as a function of some variable. Modified for the left-censored data in this study, survival curves plot the probability of non-exceedance—or the probability that the true K is less than K computed by the survival function. A survival curve can be thought of as a non-parametric q-q plot; when several survival curves are plotted together, differences in the populations become apparent. Survival curves are also appropriate for censored data (Helsel, 2005). Differences between the curves are then computed using the Peto-Peto generalization of the Wilcoxon signed-rank test. In this study, the significance of the test statistic is computed at p=0.05.

In this study, survival curves and the Peto-Peto Wilcoxon test are used extensively to evaluate differences in populations.

Visual comparison of populations can also be done with boxplots. Boxplots (see the figure below) are used extensively in this study to highlight differences in populations. Please note, however, the difficulty in representing censored values in any plot. The boxplots used in this study were used for visual comparison only.

SUMMARY OF ENTIRE DATASET

First, to get an overview, the entire dataset is summarized below:

 All values lie between 0 and 109 m/d. The smallest value for K is unknown, since any of the censored values could be the smallest, but the smallest uncensored value is 0.0011 m/d. The largest value is 109 m/d. The plot below shows all values of K plotted against depth and grouped by well.

- Eighty-one percent of the values are censored. Since more than half are censored, a median or interquartile range (IQR) cannot be computed.
- The density of the data set (using maximum values in the case of censored data) is given below in Figure 241.

Figure 241. Density of all Ks.

DESCRIPTION OF K WITHIN EACH WELL

In this section, conductivity within a well is described and analyzed. Data are isolated according to their rock classification and characteristic and Kendall's tau is computed.

In each well, a test for a trend with depth was performed for every rock characteristic present (Table 35). For example, in well ER-EC-1 there are seven classifications of HSU, four HGUs, 10 LITHs, five ALTERATIONs, and five STRATs, for a total of 31 tests. Only those tests that resulted in a statistically significant (at the 0.05 level) correlation of K with depth are presented below.

The purpose of this section is to determine if K varies with depth within a rock characteristic. The detected correlation between K and depth may be due to several underlying factors such as: increased lithostatic pressure with depth, correlation of K to occurrence of fractures, or friction loss impeding flow from lower intervals. The determination of the causal factors is beyond the scope of this report, though the section below, titled "Compare K with Fractures," gives a brief discussion of a possible correlation between the presence of fractures and high hydraulic conductivity.

Also, many of the significant correlations between K and depth are the result of analysis on populations spanning less than 100 meters in depth. Extrapolation of these results to greater depths, or generalizing these results for use in large-scale models, may not be appropriate.

significant concian	on of depin and K were detected.	
Well	Characteristic	Classification
ER-EC-1	HSU	BA
	HGU	LFA
	ALTERATION	DV
	\$TRAT	Трв
ER-EC-2a	HGU	TCU
	ALTERATION	QF
	LITH	NWT
ER-EC-4	HSU	TCVA
	HGU	LFA
	ALTERATION	DV
	LITH	LA
	\$TRAT	Ttc
ER-EC-5 and ER-5-4#2	none	
ER-EC-6	HSU	BA
	HGU	LFA
	LITH	LA
	STRAT	Трв
ER-EC-8	HSU	FCCM
	HGU	TCU
	ALTERATION	QZ
	LITH	NWT
	STRAT	Tfb

 Table 35. Characteristics and classifications of intervals within wells in which a statisticallysignificant correlation of depth and K were detected.

K versus Depth: Well ER-EC-1 HSU:BA

Figure 242. K versus depth for ER-EC-1 by HSU.

Figure 243. K versus depth for ER-EC-1 by HGU.

ALTERATION:DV

Figure 244. K versus depth for ER-EC-1 by ALTERATION.

Figure 245. K versus depth for ER-EC-1 by STRAT.

K versus Depth: Well ER-EC-2a

HGU:TCU

In well ER-EC-2a, there is a slight decrease in K with depth for an HGU of TCU, though the highest values occur in the middle screened section.

Figure 246. K versus depth for ER-EC-2A by HGU.

ALTERATION:QF

K decreases slightly with depth in ALTERATION QF.

Figure 247. K versus depth for ER-EC-2A by ALTERATION.

LITH:NWT

Figure 248. K versus depth for ER-EC-2A by LITH.

K versus Depth: Well ER-EC-4 HSU:TCVA

Figure 249. K versus depth for ER-EC-4 by HSU.

HGU:LFA

Figure 250. K versus depth for ER-EC-4 by HGU.

ALTERATION:DV

Figure 251. K versus depth for ER-EC-4 by ALTERATION.

LITH:LA

Figure 252. K versus depth for ER-EC-4 by LITH.

Figure 253. K versus depth for ER-EC-4 by STRAT.

K versus Depth: Wells ER-EC-5, ER-5-4#2

There are no significant correlations between depth and K for wells ER-EC-5 and ER-5-4#2.

K versus Depth: Well ER-EC-6 HSU:BA

Figure 254. K versus depth for ER-EC-6 by HSU.

Figure 255. K versus depth for ER-EC-6 by HGU.

LITH:LA

Figure 256. K versus depth for ER-EC-6 by LITH.

Figure 257. K versus depth for ER-EC-6 by STRAT.

K versus Depth: Well ER-EC-8 HSU:FCCM

Figure 258. K versus depth for ER-EC-8 by HSU.

HGU:TCU

Though there is a significant correlation between depth and K for an HGU of TCU, nearly all K values greater than 10 m/d are associated with fractures. However, the presence of only low values (<10 m/d) below 500 m depth suggest the correlation between K and depth may indeed exist.

Figure 259. K versus depth for ER-EC-8 by HGU.

ALTERATION QZ

Figure 260. K versus depth for ER-EC-8 by ALTERATION.

LITH:NWT

Though there is a significant correlation between depth and K for a LITH of NWT, nearly all K values greater than 10 m/d are associated with fractures. However, the presence of only low values (<10 m/d) below 500 m depth suggest the correlation between K and depth may indeed exist.

Figure 261. K versus depth for ER-EC-8 by LITH.

STRAT:Tfb

Figure 262. K versus depth for ER-EC-8 by STRAT.

Summary

Twenty-one of 88 classifications have decreasing K with depth at the 95-percent confidence level. The cause of this phenomenon is not explored in this study. However, a preliminary and qualitative analysis of fracture location suggests many of the high Ks are associated with fractures, which occur primarily in the shallower depths.

HETEROGENEITY OF ROCK CHARACTERISTICS

In this section, the heterogeneity of rock characteristics is explored to investigate if Ks from a rock characteristic in one well come from the same population as those in another well. For example, do the Ks from an HSU of BA in one well look the same as those from an HSU of BA in another well?

In addition to a visual analysis, samples will be compared to see if they are statistically different. In this case, 'statistically different' is defined as the difference between two or more empirical cumulative distribution functions using the Peto and Peto modification of the Gehan-Wilcoxon test (Lee, 2006), a nonparametric test of equivalence of populations. This test was performed at the 95-percent confidence level.

For each rock characteristic that occurs in multiple wells, the Gehan-Wilcoxon test was performed. The results of the multiple comparison statistical test for each two-well combination are presented below.

Heterogeneity of HSUs

The following HSU characteristics occur in multiple wells: BA, CHCU, FCCM, TCA, TMCM, TSA, and UPCU.

Classification	Wells Co	mpared	p-value	
BA	ER-EC-1	ER-EC-6	0.0	
CHCU	ER-EC-1	ER-EC-6	0.0	
FCCM	ER-EC-2a	ER-EC-4	0.0	
FCCM	ER-EC-2a	ER-EC-8	0.0	
FCCM	ER-EC-4	ER-EC-8	No significant	
			difference	
TCA	ER-EC-1	ER-EC-6	0.0	
TMCM	ER-EC-2a	ER-EC-5	0.0	
TMCM	ER-EC-2a	ER-EC-8	0.0	
TMCM	ER-EC-5	ER-EC-8	2.4E-05	
TSA	ER-EC-1	ER-EC-6	0.0	
UPCU	ER-EC-1	ER-EC-6	0.0	

Table 36. HSU characteristic two-well comparison by rock classification.

Figure 263. Heterogeneity of HSU: BA.

Figure 264. Heterogeneity of HSU: CHCU.

Figure 265. Heterogeneity of HSU: FCCM.

Figure 266. Heterogeneity of HSU: TCA.

Figure 267. Heterogeneity of HSU: TMCM.

Figure 268. Heterogeneity of HSU: TSA.

Figure 269. Heterogeneity of HSU: UPCU.

The results of the multiple comparison tests show that of the seven characteristics of HSU that occur in multiple wells, significant heterogeneity exists for all of them (BA, CHCU, FCCM, TCA, TMCM, TSA, and UPCU). The other five characteristics each occur in one well and could not be tested for heterogeneity.

Heterogeneity of HGUs

The following HGU characteristics occur in multiple wells: AA, LFA, TCU, and WTA.

Table 37. HGU characteristic two-well comparison by rock classification

Classification	Wells Cor	Wells Compared	
AA	ER-EC-2a	ER-EC-4	0.000
LFA	ER-EC-1	ER-EC-4	no difference
LFA	ER-EC-1	ER-EC-6	0.000
LFA	ER-EC-4	ER-EC-6	0.000
TCU	ER-EC-1	ER-EC-2a	0.000
TCU	ER-EC-1	ER-EC-4	no difference
TCU	ER-EC-1	ER-5-4#2	0.003
TCU	ER-EC-1	ER-EC-6	0.000
TCU	ER-EC-1	ER-EC-8	no difference
TCU	ER-EC-2a	ER-EC-4	0.000
TCU	ER-EC-2a	ER-5-4#2	0.000
TCU	ER-EC-2a	ER-EC-6	0.000
TCU	ER-EC-2a	ER-EC-8	0.000
TCU	ER-EC-4	ER-5-4#2	0.001
TCU	ER-EC-4	ER-EC-6	0.000
TCU	ER-EC-4	ER-EC-8	no difference
TCU	ER-5-4#2	ER-EC-6	0.000
TCU	ER-5-4#2	ER-EC-8	0.001
TCU	ER-EC-6	ER-EC-8	0.000
WTA	ER-EC-1	ER-EC-2a	0.000
WTA	ER-EC-1	ER-EC-4	no difference
WTA	ER-EC-1	ER-EC-5	0.000
WTA	ER-EC-1	ER-EC-6	0.000
WTA	ER-EC-I	ER-EC-8	no difference
WTA	ER-EC-2a	ER-EC-4	0.000
WTA	ER-EC-2a	ER-EC-5	0.000
WTA	ER-EC-2a	ER-EC-6	0.000
WTA	ER-EC-2a	ER-EC-8	0.000
WTA	ER-EC-4	ER-EC-5	no difference
WTA	ER-EC-4	ER-EC-6	0.000
WTA	ER-EC-4	ER-EC-8	no difference
WTA	ER-EC-5	ER-EC-6	0.000
WTA	ER-EC-5	ER-EC-8	0.000
WTA	ER-EC-6	ER-EC-8	0.000

Figure 270. Heterogeneity of HGU: AA.

Figure 271. Heterogeneity of HGU: LFA.

Figure 272. Heterogeneity of HGU: TCU.

Figure 273. Heterogeneity of HGU: WTA.

The results of the multiple comparison tests show that of the four characteristics of HGU, significant heterogeneity exists for all of them (AA, LFA, TCU, and WTA).

Heterogeneity of LITHs

The following LITH characteristics occur in multiple wells: AA, LFA, TCU, WTA.

Classification	Wells Compared		p-value
BED	ER-EC-1	ER-EC-2a	0.000
BED	ER-EC-1	ER-EC-4	no difference
BED	ER-EC-1	ER-EC-6	0.000
BED	ER-EC-2a	ER-EC-4	0.000
BED	ER-EC-2a	ER-EC-6	0.000
BED	ER-EC-4	ER-EC-6	0.000
LA	ER-EC-1	ER-EC-4	no difference
LA	ER-EC-1	ER-EC-6	0.000
LA	ER-EC-4	ER-EÇ-6	0.000
MWT	ER-EC-1	ER-EC-2a	0.000
MWT	ER-EC-1	ER-EC-4	no difference
MWT	ER-EC-1	ER-EC-5	0.000
MWT	ER-EC-1	ER-EC-6	0.000
MWT	ER-EC-2a	ER-EC-4	0.000
MWT	ER-EC-2a	ER-EC-5	0.000
MWT	ER-EC-2a	ER-EC-6	0.000
MWT	ER-EC-4	ER-EC-5	no difference
MWT	ER-EC-4	ER-EC-6	0.000
MWT	ER-EC-5	ER-EC-6	0.000
NWT	ER-EC-2a	ER-EC-4	0.000
NWT	ER-EC-2a	ER-5-4#2	0.000
NWT	ER-EC-2a	ER-EC-6	0.000
NWT	ER-EC-2a	ER-EC-8	0.000
NWT	ER-EC-4	ER-5-4#2	no difference
NWT	ER-EC-4	ER-EC-6	0.000
NWT	ER-EC-4	ER-EC-8	no difference
NWT	ER-5-4#2	ER-EC-6	0.000
NWT	ER-5-4#2	ER-EC-8	no difference
NWT	ER-EC-6	ER-EC-8	0.000
PWT	ER-EC-1	ER-EC-4	no difference
PWT	ER-EC-1	ER-EC-6	0.000
PWT	ER-EC-1	ER-EC-8	no difference
PWT	ER-EC-4	ER-EC-6	0.000
PWT	ER-EC-4	ER-EC-8	no difference
PWT	ER-EC-6	ER-EC-8	0.000
PWT-MWT	ER-EC-1	ER-EC-8	no difference
VT	ER-EC-1	ER-EC-4	no difference
VT	ER-EC-1	ER-EC-8	no difference
VT	ER-EC-4	ER-EÇ-8	no difference

Table 38. LITH characteristic two-well comparison by rock classification.

Figure 274. Heterogeneity of LITH: BED.

Figure 276. Heterogeneity of LITH: MWT.

Figure 277. Heterogeneity of LITH: NWT.

Figure 278. Heterogeneity of LITH: PWT.

Figure 279. Heterogeneity of LITH: PWT-MWT.

The results of the multiple comparison tests show that of the seven characteristics of LITH that occur in multiple wells, significant heterogeneity exists for five of them (BED, LA, MWT, NWT, and PWT), while two LITH types (PWT-MWT and VT) show no spatial heterogeneity. The other eight characteristics each only occur in one well and could not be tested for heterogeneity.

Heterogeneity of ALTERATIONs

The following ALTERATION characteristics occur in multiple wells: DV, GL, QF, and ZE.

Classification	Wells Co	mpared	p-value
DV	ER-EC-1	ER-EC-4	no difference
DV	ER-EC-1	ER-EC-6	0.000
DV	ER-EC-1	ER-EC-8	no difference
DV	ER-EC-4	ER-EC-6	0.000
DV	ER-EC-4	ER-EC-8	no difference
DV	ER-EC-6	ER-EC-8	0.000
GL	ER-EC-1	ER-EC-4	no difference
GL	ER-EC-1	ER-EC-6	0.000
GL	ER-EC-4	ER-EC-6	0.000
QF	ER-EC-1	ER-EC-2a	0.000

Table 39. ALTERATION characteristic two-well comparison by rock classification.

Classification	Wells Cor	npared	p-value		
QF	ER-EC-1	ER-EC-4	no difference		
QF	ER-EC-1	ER-EC-5	0.000		
QF	ER-EC-1	ER-EC-6	0.000		
QF	ER-EC-1	ER-EC-8	no difference		
QF	ER-EC-2a	ER-EC-4	0.000		
QF	ER-EC-2a	ER-EC-5	0.000		
QF	ER-EC-2a	ER-EC-6	0.000		
QF	ER-EC-2a	ER-EC-8	0.000		
QF	ER-EC-4	ER-EC-5	no difference		
QF	ER-EC-4	ER-EC-6	0.000		
QF	ER-EC-4	ER-EC-8	no difference		
QF	ER-EC-5	ER-EC-6	0.000		
QF	ER-EC-5	ER-EC-8	0.000		
QF	ER-EC-6	ER-EC-8	0.000		
QZ	ER-EC-1	ER-EC-8	no difference		
ZE	ER-EC-1	ER-EC-2a	0.000		
ZE	ER-EC-1	ER-EC-4	no difference		
ZE	ER-EC-1	ER-5-4#2	no difference		
ZE	ER-EC-2a	ER-EC-4	0.000		
ZE	ER-EC-2a	ER-5-4#2	0.000		
ZE	ER-EC-4	ER-5-4#2	0.001		

Table 39. ALTERATION characteristic two-well comparison by rock classification (continued).

Figure 281. Heterogeneity of ALTERATION: DV.

Figure 282. Heterogeneity of ALTERATION: GL.

Figure 283. Heterogeneity of ALTERATION: QF.

Figure 284. Heterogeneity of ALTERATION: QZ.

Figure 285. Heterogeneity of ALTERATION: ZE.

The results of the multiple comparison tests show that of the five characteristics of ALTERATION that occur in multiple wells, significant heterogeneity exists for four of them (DV, GL, QF, and ZE), while one ALTERATION type (QZ) shows no spatial heterogeneity. The other two characteristics each only occur in one well and could not be tested for heterogeneity.

Heterogeneity of STRATs

The following STRAT characteristics occur in multiple wells: Tfb, Tfbw, Thr, Tmap, Tmar, Tmaw, Tpb, Tpcm, Tptm.

Classification	Wells Cor	p-value	
Tfb	ER-EC-2a	ER-EC-8	0.000
Tfbw	ER-EC-2a	ER-EC-4	0.000
Thr	ER-EC-1	ER-EC-6	0.000
Tmap	ER-EC-4	ER-EC-5	no difference
Tmap	ER-EC-4	ER-EC-8	no difference
Tmap	ER-EC-5	ER-EC-8	0.000
Tmar	ER-EC-2a	ER-EC-5	0.000
Tmaw	ER-EC-2a	ER-EC-8	0.000
Tpb	ER-EC-1	ER-EC-6	0.000
Tpcm	ER-EC-1	ER-EC-6	0.000
Tptm	ER-EC-1	ER-EC-6	0.000

Table 40. STRAT characteristic two-well comparison by rock classification.

Figure 286. Heterogeneity of STRAT: Tfb.

Figure 287. Heterogeneity of STRAT: Tfbw.

Figure 288. Heterogeneity of STRAT: Thr.

Figure 289. Heterogeneity of STRAT: Tmap.

Figure 290. Heterogeneity of STRAT: Tmar.

Figure 291. Heterogeneity of STRAT: Tmaw.

Figure 292. Heterogeneity of STRAT: Tpb.

Figure 293. Heterogeneity of STRAT: Tpcm.

Figure 294. Heterogeneity of STRAT: Tptm.

The results of the multiple comparison tests show that of the nine characteristics of STRAT that occur in multiple wells, significant heterogeneity exists for all of them (Tfb, Tfbw, Thr, Tmap, Tmar, Tmaw, Tpb, Tpcm, and Tptm). The other six characteristics each only occur in one well and could not be tested for heterogeneity.

Conclusions

Many rock characteristics are only found in one well, and therefore cannot be analyzed for heterogeneity. Of the 32 classifications that occur in multiple wells, 29 exhibit some significant spatial heterogeneity. Furthermore, of the 126 possible combinations of tests, a significant difference was found in 90 of them (71 percent of the tests). Summarizing by rock classification:

HSU: 10 of 11 (91%) of the pairs showed a significant difference.

HGU: 22 of 34 (65%) of the pairs showed a significant difference.

LITH: 25 of 39 (64%) of the pairs showed a significant difference.

ALTERATION: 20 of 31 (64%) of the pairs showed a significant difference.

STRAT: 6 of 11 (54%) of the pairs showed a significant difference.

Conclusion: All rock classifications showed significant spatial heterogeneity.

HETEROGENEITY WITHIN ROCK CLASSIFICATIONS

In this section, the heterogeneity of each rock classification (HSU, HGU, etc.) is investigated. For example, comparisons are made between an HSU of BA and an HSU of TCA. Comparison of characteristics within each classification will yield insight into the suitability of using that classification to describe K. In other words, the greater the difference among the characteristics, the better that classification is at describing the data.

To test for differences between rock characteristics, multiple comparison tests using the nonparametric Wilcoxon method were performed. In this method, one performs a series of two-group score tests between each pair of groups. If the p-value for the test is less than the Bonferroni individual comparison level, the two groups can be declared to have different distribution functions at the chosen overall error rate. The Bonferroni comparison level is similar to the comparison level for a two sample test, but modified to account for multiple comparisons. For example, for the classification HGU, there are four (n) characteristics (AA, LFA, TCU, and WTA). This will yield six (n(n-1)/2) comparisons: [AA-LFA], [AA-TCU], [AA-WTA], [LFA-TCU], [LFA-WTA], and [TCU-WTA], which results in a Bonferroni comparison level of alpha/6.

The following are the results of the multiple comparison Wilcoxon test. The reader is reminded that boxplots can be misleading in this case since censored data cannot be plotted accurately and descriptively, but they still have value for visual comparisons.

Heterogeneity of HSUs

Figure 295. Heterogeneity of HSUs. Results: 42 percent (28 of 66 comparisons) are different.

Heterogeneity of HGUs

Heterogeneity of LITHs

Figure 297. Heterogeneity of LITHs. Results: 16 percent (17 of 105 comparisons) are different.

Heterogeneity of STRATs

Figure 298. Heterogeneity of STRATs. Results: 50 percent (53 of 105 comparisons) are different.

Heterogeneity of ALTERATIONSs

Figure 299. Heterogeneity of ALTERATIONs. Results: 28 percent (6 of 21 comparisons) are different.

Summary

Using the fraction of possible comparisons that result in a significant difference, stratigraphic unit best describes differences in K, with 53 of 105 combinations yielding a significant difference. HSU is the next best, where 28 of 66 (42%) combinations have a significant difference in the distribution of K. Lithology is the worst descriptor of K, with 17 of 105 (16%) combinations with a difference in K.

COMPARE K WITH FRACTURES

Throughout this study, analyses were performed on data sets classified by their rock type. A casual investigation of the fracture data collected for each well (data found in U.S. Department of Energy (DOE), 2001) reveals a potential correlation between fracture location and conductivity. The figure below presents a plot of depth versus K with points identified by their proximity to a fracture.

The green points show those K values at a depth within 5 m of a fracture, which suggests that all Ks greater than 25 m/d are associated with a fracture. In other wells, this relationship is not as strong, but it does raise the question of how strongly correlated are K and fracture location? If there is a strong correlation, is the presence of a fracture, and not rock type, the only reason for high Ks? With regard to flow and transport, how significant are the fractures, and are they more significant than rock type?

Further investigation is required to answer the questions above, but a cursory analysis suggests the fractures may be very important in describing the permeability in all rock types.

Figure 300. Correlation between fracture location and K: ER-EC-8.

STAGE 2 CONCLUSIONS

In this stage of the study, the permeability found in several wells was investigated using statistics for censored data. The purpose was to use the raw data from the flow logs, regardless of whether or not the data were below the minimum detection limit, and extract as much information as possible. The Exploratory Data Analysis (EDA) approach was used as described in Tukey (1977) and Helsel (2005). The following is a summary of the findings:

- The range of hydraulic conductivity is unknown, due to the presence of censored data. However, the smallest uncensored value is 0.001 m/d and the largest value is 109 m/d.
- Of the 88 possible values for rock classification, 21 show a statistically significant decrease in K with depth. However, of those 21, 16 occur within a small fraction of the total depth and extrapolation of this correlation to larger depths may not be appropriate.
- Of the 32 rock classifications that occur in multiple wells, 29 exhibit some spatial heterogeneity, which calls into question the usefulness of the classification. HSU showed the most heterogeneity among all classifications.
- For each rock classification (HSU, HGU, LITH, STRAT, and ALTERATION), there
 is significant overlap in K among the characteristics of the classification. However,
 stratigraphic unit showed the greatest differences among the characteristics, and may
 be the most appropriate way to describe conductivity. There was very little difference
 in the permeability described by lithology, making lithology a poor descriptor of
 conductivity.
- The presence of fractures may be correlated to high values of conductivity.

REFERENCES

- Helsel, D.R., 2005. <u>Non-Detects and Data Analysis</u>. John Wiley and Sons, Inc. ISBN 0-471-67173-8.
- Lee, L., 2006. Documentation for the NADA package, Nondetects and Data Analysis for Environmental data. Available online at http://cran.r-project.org/doc/packages/ NADA.pdf.
- National Institute of Science and Technology, 2006, e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/.
- Noether, G.E., 1986. Why Kendall Tau? In Best of Teaching Statistics. http://science.ntu.ac.uk/rsscse/TS/bts/noether/text.html
- Oberlander, P.L. and C.E. Russell, 2003. Depth-specific Hydraulic Testing of Yucca Flat and Frenchman Flat Environmental Restoration Wells FY 2003, Desert Research Institute, Division of Hydrologic Sciences Publication No 45199.
- Oberlander, P.L. and C.E. Russell, 2006. Process considerations for trolling borehole flow logs. Ground Water Monitoring and Remediation 26, no.3, Summer 2006, pages: 60-67.
- Tukey, J.W., 1977. Exploratory Data Analysis. Addison-Wesley. ISBN 0-201-07616.
- U.S. Army Corps of Engineers, 1998. Evaluation of dredged material proposed for discharge in waters of the U.S. – Testing manual: published by the U.S. Environmental Protection Agency, Office of Water, as EPA-823-B-98-004.
- U.S. Department of Energy (DOE), 2000a. Completion Report for Well ER-EC-1, DOE/NV/11718-381, Environmental Restoration Division, Nevada Operations Office, December 2000.
- U.S. Department of Energy (DOE), 2000b. Completion Report for Well ER-EC-4, DOE/NV/11718-397, Environmental Restoration Division, National Nuclear Security Administration, Nevada Site Office, September 2000.
- U.S. Department of Energy (DOE), 2000c. Completion Report for Well ER-EC-6, DOE/NV/11718-360, Environmental Restoration Division, National Nuclear Security Administration, Nevada Site Office. May 2000.
- U.S. Department of Energy (DOE), 2001. Underground Test Area Fracture Analysis Report: Analysis of Fractures in Volcanic Rocks of Western Pahute Mesa-Oasis Valley, ITLV/13052-150, June 2001.
- U.S. Department of Energy (DOE), 2002a. Completion Report for Well ER-EC-2a, DOE/NV/11718-591, Environmental Restoration Division, National Nuclear Security Administration, Nevada Site Office, March 2002.
- U.S. Department of Energy (DOE), 2002b. A Hydrostratigraphic Model and Alternatives for the Groundwater Flow and Contaminant Transport Model of Corrective Action Units 101 and 102: Central and Western Pahute Mesa, Nye County, Nevada, DOE/NV/11718-706, National Nuclear Security Administration, Nevada Site Office, July 2002.

- U.S. Department of Energy (DOE), 2004a. Completion Report for Well ER-EC-5, DOE/NV/11718-424, Environmental Restoration Division, National Nuclear Security Administration, Nevada Site Office, October 2004.
- U.S. Department of Energy (DOE), 2004b. Completion Report for Well ER-EC-7, DOE/NV/11718-467, Environmental Restoration Division, National Nuclear Security Administration, Nevada Site Office. October 2004.
- U.S. Department of Energy (DOE), 2004c. Completion Report for Well ER-EC-8, DOE/NV/11718-435, Environmental Restoration Division, National Nuclear Security Administration, Nevada Site Office. October 2004.
- U.S. Department of Energy (DOE), 2004d. Completion Report for Well Cluster ER-6-1, DOE/NV/11718-862, Environmental Restoration Division, National Nuclear Security Administration, Nevada Site Office. October 2004.
- U.S. Department of Energy (DOE), 2004e. Completion Report for Well ER-7-1, DOE/NV/11718-865, Environmental Restoration Division, National Nuclear Security Administration, Nevada Site Office. November 2004.
- U.S. Department of Energy (DOE), 2005a. Letter Report: Analysis of Hydraulic Conductivity and Fracture Porosity in ER-5-3#2 and ER-5-4#2 Based on Fracture Data from Borehole Image Logs with Implications for the Tuff Confining Unit Flow Framework, Nevada Test Site, Nevada, National Nuclear Security Administration, Nevada Site Office, August 2005.
- U.S. Department of Energy (DOE), 2005b. A Hydrostratigraphic Framework Model and Alternatives for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 98: Frenchmen Flat, Clark, Lincoln and Nye Counties, Nevada, DOE/NV/11718-1064, National Nuclear Security Administration, Nevada Site Office, September 2005.
- U.S. Department of Energy (DOE), 2005c. Underground Test Area Fracture Analysis Report for Yucca Flat Wells ER-2-1, ER-6-1#2, ER-7-1, and ER-12-2 Nevada Test Site, Nevada, S-N/99205-040, March 2005.
- U.S. Department of Energy (DOE), 2006a. A Hydrostratigraphic Model and Alternatives for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 97: Yucca Flat – Climax Mine, Lincoln and Nye Counties, Nevada, DOE/NV/11718-1119, National Nuclear Security Administration, Nevada Site Office, January 2006.
- U.S. Department of Energy (DOE), 2006b. Completion Report for Well ER-12-3, Corrective Action Unit 99: Rainier Mesa – Shoshone Mountain, DOE/NV/11718-1182, Environmental Restoration Division, National Nuclear Security Administration, Nevada Site Office, May 2006.
- U.S. Environmental Protection Agency, 1998. Guidance for data quality assessment. Practical methods for data analysis; EPA/600/R-96/084. Available at: <u>http://www.epa.gov/swerust1/cat/epaqaj9.pdf</u>.

Center of	Yokanic Tuff					
Calculation	11vd comilie	Assigned	Assigned	Assigned	Assigned	Assigned
Interval	Conductivity	Stratioranhic	Lithic	Lithic	Hydrogenlogic	Hydrostratieranhic
(111)	(m/d)	Unit	Modifier	Alteration	Unli	Unit
701 77	25.01	Teb	TA	υγ	1.64	R4
703.51	97.76	Teb	LA	ΰV	LEA	BA
705.09	33.47	Teb	LA	DV.	1.64	BA
706.67	43 74	Teb	T A	inv.	1 6 5	BA
708 29	44.51	Teb	LA	DV.	1 64	BA
773 29	10.03	Teb	TA	DV DV	164	BA BA
725 02	14 10	Teb	1.4	DV		DA DA
776.61	1.1.1	100	54	24	LIA	DA
720 14	17.94	Tals	т. ж.	DV.	1 64	R A
720 21	13 75	Tels	LA	DV	164	BA
747 01	1 × 7 2 51 7 4	тро Тек	I.A.	DV	164	DA Ba
744 61	AL 70 00 96	Teb	LA		1 6 4	DA BA
740 32	547.80	Teh	1. 4	10 10	1.64	D.4.
740 50	0.07	тро Так	1.73	DV	LEA LEA	DA DA
749.39	26.63	ть	LA	DV	LFA	DA DA
751 27	55 57	ть	L.4.	07	LFA	84
705 13	/ 32	тро	FB	04	LFA	B.4.
768 00	13.20	Ipo	FB	Q2	DFA	BA
769 53	-	-	-	-	-	-
770 99	-	-	-	-	-	-
772.61	-	-	-	-	-	-
787 66				<u>.</u>		
789 37	5 75	Трь	DED	ZE	160	UPCC
790 93	-	-	-	-	-	-
792 42	•	•	•	•	•	•
794.06	•	•	•	•	•	
809 12	•	•	•	•	•	-
\$10 \$3	•	•	•	•	•	-
812 38	•	•	•	•	•	•
813 88	•	•	•	•	•	
815 52	2 82	Трь	BED	ZE	TCU	UPCU
\$30.58	-	-	-	-	-	-
832 32	•	•	•	•	-	•
833 90	-	-		-	-	-
835 43	-	-	-	-	-	-
\$37.10	2 31	Треш	PWT	DV	WTA	TCA
852 16	•	•	•	•	•	
853 90	-	-	-	-	-	-
855 48	-	-	-	-	-	-
857.01		•	•		•	•
858 68	•	•	•	•	•	
1.021 69	•	•	•	•	•	
1.023 40		•	•		•	•
1,024 95		•	•		•	•
1,026 47	•	•	•	•	•	
1.028 15	-	-	-	-	-	-
1,030 83	841	Трин	PWT-MWT	DV	WTA	TSA
1,032 54			•		•	•
1.034.09	-	-		-	-	-
1.035 62	-	-	-	-	-	-
1.037 30	-	-		-	-	-
1.052 29	•	•	•	•	•	
1.054 03	-	-		-	-	-
1.055.61	-	-	-	-	-	-
1,057 14					•	
1,058 81					•	
1.073 81					•	
1.075 55					•	•
1,077 13					•	•
1,078 66					•	
1.080 33	-	-	-	-	-	-

APPENDIX. Hydraulic Conductivity at Depth (Dashes indicate hydraulic conductivity values are below detection within the interval).

ER-EC-1

Center of	Vokanic Tuff					
Calculation	11 yd caulic	Assigned	Assigned	Assigned	Assigned	Assigned
Enterval	Conductivity	Stratigraphic	I.Idhic	Lithle	Hydrogeologic	Hydrostratigraphic
(m)	(m/d)	Unit	Modifier	Alteration	Unit	Unit
1.095 39					•	•
1.097 13						
1.098 71	-	-	-	-	-	-
1.100 24	-	-	-	-	-	-
1,101 91						
1.116 85					•	
1.118 56	-	-		-	-	-
1.120 11					•	•
1,121 63					-	•
1.123 31	-	-	-	-	-	-
1.138 31	-	-	-	-	-	-
1,140.04					•	•
1.141 63					•	
1.143 15	-	-	-	-	-	-
1.144 83	-	-	-	-	-	-
1,357 27						
1.358 98					•	
1.360.54	-	-	-	-	-	-
1,362.06					•	•
1,363 74					•	
1.378 73						
1.380 47	-	-		-	-	-
1.382.05				-	•	•
1,383 58				-	•	•
1.385 26						
1.400 19	-	-	-	-	-	-
1,401 87				-	•	•
1,403 39	11 65	Тере	FD	OF	LFA	CFCM
1,404 88	10.52	Tepe	FB	ÔF	1.FA	CFCM
1.406 53	-	-	-	-	-	-
1.421 53					•	•
1.423 26						
1.424 85	-	-	-	-	-	-
1.426 37	-	-	-	-	-	-
1,428.05						
1.430 73					•	
1.432 44	-	-		-	-	-
1,433.99					•	•
1,435 49					•	
1.437 13					•	
1.439 81	-	-	-	-	-	-
1,441 37				-	•	•

ER-EC-1 (continued)

ER-EC-2a

Center of Colculation Interval	Volcanic Tuff Hydraulic Conductivity	Assigned Stratigraphic	Assigned Lithic	Assigned Lithic	Assigned Hydrogeologie	Assigned Hydrostratigraphic
(=)	(m/d)	Unit	Modifier	Alteration	Unk	Umit
522 14	0.39	Tfbw	BED	QF	TCU	FCCM
523 68	0 19	Thw	BED	QF	TCU	FCCM
525 26	0.26	Tfbw	BED	QF	TCU	FCCM
526 85	•		•	•	•	•
528 43	0 15	Tfbw	BED	QF	TCU	FCCM
530 02	•	•	•	•	•	-
231 20	•	•	•	•	•	•
232 62	- 0.74	- Tê	PED	-	-	- FCCM
536 77	0.16	Tibur	BED	OF OF	TCU	FOOM
\$19 71	10	10.6		<u>v</u>	140	10014
539 89	-	-	_	-	-	_
541 48	-	-	-	-	-	-
543.06						
544 60						
545 90	-	-	-	-	-	-
548 29	0 21	TIDW	BED	QF	TCU	FCCM
\$49 83	0 [5	Tfbw	BED	QF	TCU	FCCM
551 41	•	•	•	•	•	•
553 00			-	-	-	-
554 58	•	•	•	•	•	-
556 17	•	•	•	•	•	•
557 71	-	-	-	-	-	-
559 00		-	-	-	-	-
261.52	0 17	Ifow	BED	10	TCU	FCUM
562 87	014	Irbw	BED	QF	ICU I	FCCM
204 40 566 04	-	-	-	-	-	-
467.63	-	-	-	-	-	-
569.71						
570 75						
572.05				-		
574 40	0.31	Tfbw	BED	OF	TCU	FCCM
575 92	015	Tiby	BED	ÔF	TCU	FCCM
577 50	•	•	-	-	-	-
579 09						
\$80.67	•	•	•	•	•	•
582 26	-	-	-	-	-	-
583 80				-	-	-
585 09	•		· · ·		-	
587 49	0 14	Tfbw	BED	QF	TCU	FCCM
589 03	013	Trbw	BED	QF	TCU	FCCM
590.61	-	-	-	-	-	FOOL
292 20	10.08	IIDW	DEVA	Qr	ico	FCCM
495 77				•		-
196.91		-	-	-		_
598 20						
600.55	0.19	Tibw	BED	OF	TCU	FCCM
602 07	0 13	Tfbw	BED	ÔF	TCU	FCCM
603 66	•	•			•	
605 24						
606 83	-	-	-	-	-	-
608 41				-	-	-
609 95	•	•	•		•	•
611 25	-	-	-	-	-	-
613 59	0 19	Tibw	BED	QF	TCU	FCCM
615 12	0 4	Tfbw	BED	QF	TCU	FCCM
616 70						
618 29	010	Tibw	BED	QF	TCU	FCCM
619 87	-	-	- PED	-	-	-
673.00	013	HOW	DED	Qr	100	TCCM
043 00	•	•	•	•	•	•

Center of	Volcanic Tuff					
Calculation	I fyd contic	Assigned	Assigned	Assigned	Assigned	Assigned
Interval	Conductivity	Strafigraphic	1.1thúc	Lithle	Hyd mgeologic	Hydrostratigraphic
(m)	(m/d)	Unit	Modifler	Alteration	UNK	ં પતારંં
624 29						
676.68	0.11	Tibu	BED	OF	TCU	ECCM
678 72	011	Tibu	BED	ČF.	TCU	ECCM
620 21	015	1105	DED	~		10014
421.20	0.14	There	PED	OF.	TOU	FOCH
631 39	012	HOW	DED	Qr	100	LC C M
037.38	•	•	•	•	•	•
034.30		-	-	-	-	-
636 10	0.16	HOW	BED	QF	ICU	FCUM
637 40	•		•	•	•	•
639 74	0 12	Tibw	BED	QF	TCU	FCCM
641 27	0 09	Tfbw	BED	QF	TCU	FCCM
642 85	•	•	•	•	•	•
644 44	0 20	Tibw	BED	QF	TCU	FCCM
646 02	0.10	Tfbw	BED	QF	TCU	FCCM
647.61	-	-	-	-	-	-
649-15				•		
650 44	0 22	Tibw	NWT	OF	TCU	FCCM
652 84	018	Tfbw	NWT	OF	TCU	FCCM
654 38	0.24	Tfbw	NWT	ÔF	TCU	FCCM
655.96	0.12	Tfbw	NWT	ŎF	TCU	FCCM
617 11				×.		
659 13		_	_	_	_	_
660.71	0.36	Tibu	NWT	OF	TCU	FCCM
463.35	0.00	110.6	1414	V	140	1 CCM
442 74	•	•	•	•	•	-
003 (3	•	•	•	•	•	•
939 61	-	-	-	-	-	-
941 13	0.57		KW1	Z.E.	ICU	FCUM
942 72	•	•	•	•	•	•
944 30	-	-	-	-	-	-
945 89	-	-	-	-	-	-
947 47	•	•	•	-	•	•
949-01	•	•	•	•	•	•
950 31	-	-	-	-	-	-
952 70	-	-	-	-	-	-
954 24	0 14	TT	TSLT	QF	AA	FCCM
955 82				•		
957 41				-	-	-
958 99	0.07	TT	TSLT	OF	AA	FCCM
960 58	0.10	π	TSLT	OF	AA	FCCM
962 12	0 14	Tmaw	BED	ÔF	TCU	TMCM
963 41	1 24	Tmaw	BED	ÔF.	TCU	TMCM
965 76	0.15	Tonaw	BED	ÔF	TCU	TMCM
967.28	0.14	Tunaw	BED	ŎF	TCU	TMCM
962 27		-	-	ו		
976.45	-	_	_	_	_	
073.04	-	-	_	_	_	
077.63	•	•	•	•	•	•
973 02	•	•	•	•	•	•
97.3 10	-	-	-	-	-	-
970 40	-	-	-	-	-	-
9/8 85					-	
980 39	0 10	Imaw	KW.L	QF	100	IMCM
981 97	•	•	•	-	-	-
983 56	•	•	•	•	•	•
985 14	•	•	•	•	•	•
986 73	•	•	•	•	•	•
988 27	-	-	-	-	-	-
989-56	•	•	•			-
991.91	•			-		
993 43	-	-	-	-	-	-
995 02	-	-	-	-	-	-
996 60						
998 19						
999 77	0 30	Tmaw	NWT	OF	TCU	TMCM
1.001 31	-	-	-		-	

ER-EC-2a (continued)

Center of	Volcanic Tuff					
Calculation	Hyd coulic	Assigned	Assigned	Assigned	Assigned	Assigned
Lnferval .	Conductivity	Stratigraphic	Lithic	Lithle	Hydrogeologic	Hydrostratigraphic
(m)	(m/d)	Unit	Modifier	Alteration	้ แต้ห	ี้ แม่เ ้
1.002.61						
1.005.00						
1.006.54		•		-	-	-
1.009.13	0.12	Tesass	NWT	-	-	THEM
1,008 13	0.12	T	19696	QF OF	TOU	TRACIN
1,009.71	0.19	Imaw	NW	Qr	100	L MC M
1.011.30	•	•	•	•	•	•
1.012 88	•	•	•	-	-	-
1.014 42	•	•	•	•	•	•
1,015 72	•	•	•	•	•	-
1.018 06	-	-	-	-	-	-
1.019 59	0 05	Tmaw	NWT	QF	TCU	TMCM
1,021 17	•	•	•	•	•	•
1.022 76	•	•	•	•	•	•
1.024 34	-	-	-	-	-	-
1.025 93	-	-	-	-	-	-
1,027 47						
1.028 76						
1.031 15	-	-	-	-	-	-
1.032.69						
1.034 28						
1.035 86						
1.037.45				-	-	-
1 039 03	6.18	Town	NWT	OF	TCH	TMCM
1.040.57	. 10				140	-
1 (0.41 97						
1.041.07	•	•	•	•	•	-
1.0444-21	-	-	-	-	-	-
1,045.74	•	•	•	•	•	•
1,047.36	•	•	•	•	•	•
1.048.91	-	-	-	-	-	-
1.050 49	-	-	-	-	-	-
1.052.08	•	•	•	•	•	-
1.033 62	•	•	•	•	•	•
1.054 91	-	-	-	-	-	-
1.057 31	-	-	-	-	-	-
1,058 84	0.04	Tmaw	NWT	QF	TCU	TMCM
1.060 43	•	•	•	•	•	•
1.06201	0.03	Tmaw	NWT	QF	TCU	TMCM
1.063.60	0.09	Tmaw	NWT	QF	TCU	TMCM
1,065 18	0.19	Tmaw	NWT	QF	TCU	TMCM
1.066 72	0.11	Tmaw	NWT	QF	TCU	TMCM
1.068.02	0 04	Tmaw	NWT	QF	TCU	TMCM
1,070.37						
1,071 89	0.02	Tmaw	NWT	OF	TCU	TMCM
1.073 48	-	-	-	-	-	-
1.075.06	-	-	-	-	-	-
1.076 65						
1.078 23						
1 079 77	-	-	-	-	-	-
1.081.76	0.08	Трола	NWT	OF	TCU	TMCM
1 369 50						
1 371 02						
1 2 2 2 4 1	•	•	•	•	•	-
1.372.01	•	•	•	-	-	-
1.374 19	•	•	•	•	•	•
1,077,06	•	•	•	•	•	•
1.377.30	•	•	•	•	•	•
1.378 90	-	-	-	-	-	-
1,380 20	•	•	•	•	•	•
1,382.59	•	•	•	•	•	•
1.384 13	-	-	-	-	-	-
1.385 71	-	-	-	-	-	-
1.387 30	•	•	•	-	•	•
1.388 88	•	•	•	•	•	•
1.390 47	-	-	-	-	-	-
1.392 01	-	-	-	-	-	

ER-EC-2a (continued)

Center of Calculation	Volcanic Tuff Hydraulic	Assigned	Assigned	Assigned	Assigned	Assigned
Lnterval	Conductivity	Stratigraphic	1.1thúc	Lithle	Hydrogeologic	Hydrostratigraphic
(m)	(m/d)	Unit	Modifier	Alteration	UMM	Unit
1.393.40	•	•	•	•	•	•
139303	•	•	•	•	•	•
1 398 76	-	-	-	-	-	-
1 400 34	-	-	-			-
1,401 93						
1,403 51				-	-	-
1,405 05						
1,406 35						
1.408 69	-	-	-	-	-	-
1.410 22	-	-	-	-	-	-
1,411 80	•	•	•	•	•	-
1.413 39	•	•	•	•	•	•
1.414 97	-	-	-	-	-	-
1.410.30	-	-	-	-	-	=
1,410 10			:			
1 471 79						
1.423.32	-	-			-	
1.424 91						
1.426 49						
1.428 08				-	-	-
1.429 66						-
1,431 20	•	•	•			-
1.432 50	•	•	•	•	•	•
1.434 85	-	-	-	-	-	-
1,436.37	•	•	•	•	•	•
1,437 95	•	•	•	•	•	•
1.4.39 54	-	-	-	-	-	-
1.442.71	-	-	-	-	-	-
1 444 75			:			
1.445 54	-	_	_	-	-	-
1.447 89	-	-	-	-	-	-
1,449 42						
1.431.00			•		•	
1.452 59			-	-	-	-
1.454 17	•	•	•	•	•	-
1,455 76	•	•	•	•	•	-
1.437 29	•	•	•	•	•	•
1.428.59	-	-	-	-	-	-
1,460,94				•	•	
1,464.05						-
1.465.63	-	-	-	-	-	-
1.467 22						
1.468 80						
1.470 34	0.07	Tma	MWT	QF	WTA	TMCM
1.471 64	-	-	-	-	-	-
1,473 98	•	•	•	•	•	•
1.475 51				•	•	
1.477 09	0.03	Tmar	MWT	QF	WTA	TMCM
1.478 68	•	•	•	•	•	•
1,480 25	•	•	•	•	•	•
1.481 85			Mart		WT *	THEN.
1.465 57	0.02	INT	MW I	QI.	WIA	1 10 200
1.487.07			:		-	-
1,488.61	-	-	-	-	-	-
1.489 41	-	_	_	-	-	-

ER-EC-2a (continued)

Center of Calculation	Volcanic Tuff Dydrwolic Can dwatiaitu	Assigned Exactlery ship	Assigned	Assigned	Assigned	Assigned
Jimervali (m)	Conductivity	Strangraphic Distr	Madifas	Alteration	Hydrogeniogen L'mit	Hydrostrangrapme
302.25	19.5	Bo	1.5	DV	L FA	TCVA
3/14/36	250	The state	14	DV	LEA LEA	TOVA
306.11	126	The	14	DV	L FA	TOVA
307.63	120	-	<u></u>	174	UA.	IC (A
309 31						
311.99	\$4.8	Tie	1.4	DV	I F A	TCVA
313 73	24.8	Tie	LA	DV	LEA	TCVA
315 32	38 1	Tie	1.4	DV	LEA	TCVA
316.84	370	Tie	LA	DV	LEA	TCVA
318 52	378	The	LA	DV	LFA	TCVA
333 51	316	Tic	LA	DV	LFA	TCVA
335 25	74.0	Tic	1.A	DV	LEA	TCVA
336 83						
338 36	32	Tic	LA	DV	L.F.A	TCVA
340 03	25	Tto	LA	DV	LFA	TCVA
355.09	23 2	Tie	LA	DV	LFA	TCVA
356 83	42.6	The	LA	DV	LFA	TCVA
358 41	56	Tic	LA	DV	LFA	TCVA
359 94	•		•	•		
361 61	•	•		•	•	•
364 30	85	Tie	CL	UNK	AA	TCVA
366 03	-		-	-	-	-
367 62	•	•	•	•		-
369 [4	•	•	•	•		•
370 82	•	•		•	•	•
583 51	-	-	-	-	-	-
585 25	•	•	•	•	•	-
586-83	•	•	•	•	•	-
588.36	-	-	-	-	-	-
590 03	-	-	-	-	-	-
592 71	•	•	•	•	•	•
594 42	•	•	•	•	•	•
595 98	-	-	-	-	-	-
297.20	-	-	-	-	-	-
59918	-	•	•	-	•	•
61417	•	•	•	•	•	•
613 91	-	•	-	-	-	-
617 49	•	•	•	•	•	•
617.02	•	•	•	•	•	•
625 75	•	•	•	-	•	
637.40	-	-	-	-	-	-
639.07						
640 64	-			-	-	
642.27	-	-	-	-	-	-
657 33	-		-	-	-	
659 04					-	•
660 59	-	-	-	-	-	-
662 12	-	-	-	-	-	-
663 79						
678 85						
680 59	-		-	-	-	-
682 17	•		•	•		
683 70	•		•	•		
68537						
947 26	-	-	-	-	-	-
948 96	16.4	Tmrp	PWT	QF	WTA	TMA
950 52	•	•	•	•		
952 04	-	-	-	-	-	-
953 72	-	-	-	-	-	-
956 40	•		•	•		
958 11	•			•	•	•
959.66	-	-	-	-	-	-
961 19	-	-	-	-	-	-

ER-EC-4

Center of Calculation Interval	Volennie Tuff Hydraolie Conductivity	Assigned Stratigraphic	Assigned Likhie Mariifan	Assigned Läthic	Assigned Hydrogeologic Cate	Assigned Hydrostratigraphic
0(0.0)	(00.4)	VIIIt	MOUTHER	AINE140.08		
967.86	•	•	•	•	•	•
977 B6	-	•	•	•	•	•
979 54	-	-	-	-	-	-
981.06	-	-	-	-	-	-
982 55	•	•		•	•	•
984 20	•			•		
986 88	-		-	-	-	-
988 62	•		•	•		
990 20	•		•	•		
991 73	-	-	-	-	-	-
993 40	-	-	-	-	-	-
1,008 46	-		•	•		
1.010 20	•			•		
1.011 78	-	-	-	-	-	-
1,013 31	-	-	-	-	-	-
1,014 98	•	•		•	•	
1.029 98	•	•		•	•	
1.031 69	-	-	-	-	-	-
1,033 24	-		•	•		
1,034 77	•			•		
1.036 44	•			•		

ER-EC-4 (continued)

Center of Calculation	Volcanic Tuff Hydraulic	Assigned	Assigned	Assigned	Assigned	Assigned
Interval	Conductivity (m/d)	Strangraphic	J JEROC Mendeller	A Itemation	Hydrogenlogic	Hydrostrangraphic
265.76	(111(9)	Teast	LOWIT			Thick
366 37	17.89	Trave	MUNT	ÅF ÅF	97 LA 10 LA	Th 47-54
264.09	17 69	LINAL	141.54	Qr	WIA	TRICIT
3040 78	-	-	-	-	-	-
368 30		-	-		-	-
368.81	1770	Tenar	LOVT	OF	WTA	TMCM
369.47	14 45	Troor	NWT	ĂF.	WTA	Thicki
370.03	11.67	Toost	MWT	ÕF .	WTA	TMCM
370.64						100001
371 25			-		-	_
371 26	-	-	_	-	_	_
372 47						
373.08						
375 15	12.91	Tmar	MWT	OF	WTA	TMCM
375 76	-	-	-	×.	-	-
376 37						
376 98						
377 59	-	-	-	-	-	-
378 20						
378 81						
379 42						
380 02				-		-
380 63	47 59	Tmar	MWT	OF	WTA	ТМСМ
381 24						
381.85						
382 46	-	-	-	-	-	-
396 67	46 42	Tmar	MWT	OF	WTA	TMCM
397 28	20.08	Tmar	MWT	ÕF	WTA	TMCM
397 89	-	-	-	-	-	-
398 50	14 52	Tmar	MWT	QF	WTA	TMCM
399.11	12 72	Tmar	MWT	ÕF	WTA	TMCM
399 71						
400.32	-	-	-	-	-	-
400 93	-	-	-	-	-	-
401 54						
402.15						
402 76				-		-
403-37	•	•	•		•	
403 86	•	•	•	•	•	•
418 19	12 47	Tmar	MWT	QF	WTA	TMCM
413 30	8 52	Tmar	MWT	QF	WTA	TMCM
419 40	•	•	•		•	•
420.01	•	•	•	•	•	•
420 62	-	-	-	-	-	-
421 23	-	-	-	-	-	-
421 84	•	•	•	•	•	•
422 45	•	•	•	•	•	•
423 06	-	-	-	-	-	-
423 67	-	-	-	-	-	-
424 28	•	•	•	•	•	•
424 89	•	•	•	•	•	•
425 38			-	-		
57784					1.175	
578 45	\$ \$9	l mar	MWT	QF	WIA	TMCM
3/9 06	•	•	•	•	•	•
5/96/	-	-	-	-	-	-
280 28	•	•	•	•	•	•
280 89	•	•	•	•	•	•
00 180	-	-	-	-	-	-
582 1	-	-	-	-	-	-
302 12	•	•	•	•	•	•
262 400	•	•	•	•	•	•
.163 74	-	-	-	-	-	-

ER-EC-5

Center of	Volcanic Tuff					
Colculation	llyd cantic	Assigned	Assigned	Assigned	Assigned	Assigned
Interval	Conductivity	Stratigraphic	Lithic	Lithic	Hydrogeniogic	Hydrostratigraphic
(m)	(m/d)	Unit	Modifier	Alteration	Ünit	Unit
584 55		•				
121.00	17.06	Tenur	KONT	OF	WTA	That ha
CO7 04	12.00		171.01	V.	014	THORE
307 04	18.16	- -	-	-	-	THEN
387 63 500 br	18 33	i mar	NU W 1	Qr	WIA	
588 26	27.97	Timar	MWT	QF	WIA	IMCM
588 B7	32 90	Tmar	MWT	QF	WTA	TMCM
589 48	27 62	Tmar	MWT	QF	WTA	TMCM
590 09	28 21	Tosr	MWT	QF	WTA	TMCM
590 70	37.80	Tmar	MWT	QF	WTA	TMCM
591 31	30.54	Timar	MWT	QF	WTA	TMCM
591 92	14 46	Tmar	MWT	QF	WTA	TMCM
592 53	16.00	Tmar	MWT	ÔF	WTA	TMCM
593.14						
193 71	21 47	Tmar	MWT	OF	WTA	TMCM
594 30	24.74	Tmar	MWT	ÕF.	WTA	TMCM
AD 90A	25.60	Tense	K CIVET	ŎF	WTA	Thicks
ST40 1 7	36.08	Term	14634 T	ÅF.	WTA	1 (MK-101 (Th 47) k (
007 L) KNA 70	20 70	1 mar T	141 XY 1	Ar Ar	17 TA	The Arch of
009 78	3164	l mar	IVL VY I	Qr or	WIA	
610.19	37.92	lmar	MWT	QF	WIA	IMCM
611.00	44 99	Tmar	MWT	QF	WIA	TMCM
611.61	28 40	Tmar	MWT	QF	WTA	TMCM
612 22	11 44	Tmar	MWT	QF	WTA	TMCM
612 83	•	•	•		•	•
613 44	•	•	•	•	•	
614 05	10 33	Tmar	MWT	QF	WTA	TMCM
614 6 6	20 27	Tmar	MWT	OF	WTA	TMCM
615 27	27 85	Tmar	MWT	ÕF	WTA	TMCM
615 82	48.34	Tusar	MWT	ÕF	WTA	TMCM
630.08	14.45	Tmar	MWT	ÕF	WTA	TMCM
630.69	15 32	Troor	MWT	ÕF.	WTA	TMCM
421 20	10.07	Town	LIWT	Å.	WTA	TMCM
631.00	10.07		IVL 9Y 1	Qr	W1.5	1000-01
651 91		~··	. /1127			
032 32	12.37	l mar	MINY I	QF	WIA	THEM
053 15	15.40	l mar	MW I	QF	WIA	TMCM
633 74	9.09	Tmar	MWT	QF	WTA	TMCM
634 35	•	•	•	•	•	•
634 96	11 64	Tmar	MWT	QF	WTA	TMCM
635 57	9.00	Tosr	MWT	QF	WTA	TMCM
636 18	•	•	•	•	•	•
636 79	16 96	Tmar	MWT	QF	WTA	TMCM
637 34	26 14	Tmar	MWT	QF	WTA	TMCM
685 56	18 50	Tmap	MWT-DWT	ÖF	WTA	TMCM
686 17	1591	Tuse	MWT-DWT	OF	WTA	TMCM
686 78	-		_	-	-	-
687.38	-	-	-	-	-	-
627 99						
688.60						
X90 11	•	•		-	•	-
007 21 XB0 97	-	-	-	-	-	-
089 82	-	-	-	-	-	-
690 43	•	•	•	•	•	•
691.04	•	•	•	•	•	•
691 65	-			-		
692 26	•	•	•		•	•
692 75	13 35	Tmap	MWT-DWT	QF	WTA	TMCM
707 08	•	•	•	•	•	
707 68	-	-	-	-	-	-
708 29						
708 90						
709 51	-	-	-	-	-	-
710 17	-	-	-	-	-	-
710 72	-	-	-	-	-	-
711 24	•	•				•
711.34	•	•	•	•	•	•
/11/93	-	-	-	-	-	-

ER-EC-5 (continued)

Center of Calculation Interval (m)	Volcanic Tuff Hydraulic Conductivity (m/d)	Assigned Stratigraphic Unit	Assigned Lithic Modifier	Assigned Little Alteration	Assigned Hydrogeologic Unit	Assigned Hydrostratigraphic Unit
712 56	•	•	•	•		
713 17						
713 78	-	-	-	-	-	-
714 33	11 36	Ттар	MWT-DWT	QF	WTA	TMCM
728 59						
729.20	13 75	Tmap	MWT-DWT	QF	WTA	TMCM
729 81				-		-
730 42						
731 03						
731 64	-	-	-	-	-	-
732 25	-	-	-	-	-	-
732 86	23.36	Tmap	MWT-DWT	QF	WTA	TMCM
733 47				•		
734 08	-	-	-	-	-	-
734 6 9	31 00	Ттар	MWT-DWT	QF	WTA	TMCM
735 30				•		
735 91		•	•	•	•	

ER-EC-5 (continued)

Center of	Volcanic Tuff	1	11		•	A
Calculation	Live raulic	Assigned	Assigned	Assigned	Assigned	Assigned
Interval	Conductivity	Stratigraphic	Linke	Link	Hydrogenlogic	Hydrostrafigraphic
	(004)	Olat	Modifier	Alteration	Unit	Unit
1.974 8.5	•	•	•	•	•	•
1.975 50	•	•	•	•	•	•
1.976 11	-	-	-	-	-	-
1.97672	-	-	-	-	-	-
1,977 33						
1.977 94	4 36	Teb	NWT	ZE	ICU	LICU
1.978 55	21.06	Teb	NWT	ZE	TCU	LICU
1.979 16	24 53	T¢b	NWT	ZE	TCO	LICU
[,979 77	12 16	T¢b	NWT	ZE	ICO	LICU
1.980 38	4 50	Teb	NWT	ZE	TCU	LICU
1.980 99	1 89	Teb	NWT	ZE	TCU	LICU
1,981.60	•	•	•	•	•	•
1.982 21	•	•	•	•	•	•
1.982 82	-	-	-	-	-	-
1.983 43	-	-	-	-	-	-
1,984 03	•	•	•	•	•	•
1.984 64	•	•	•	•	•	•
1.985 25	-	-	-	-	-	-
1,986 02	•	•	•	•	•	•
1,988 12	•	•	•	•	•	•
1.988 91	•	•	•	•	•	•
1.989 52	-	•	-	-	•	-
1.990 13	•	•	•	-	•	•
1,990 74	3 26	Т¢в	NWT	ZE	TCU	LTCU
1.991 35	3 21	Teb	NWT	ZE	TCU	LTCU
1.991 96	-	-	-	-	-	-
1,992 57	6 73	Tcb	NWT	ZE	TCU	LTCU
1,993-18	•	•	•	•	•	•
1.993 79	-	-	-	-	-	-
1. 9 94 40	-	-	-	-	-	-
1.995 01	•	•	•	•	•	•
1.995 62	•		•	•	•	•
1.996 23	24	Teb	NWT	ZE	TCU	LTCU
1.996 84	-	-	-	-	-	-
1,997 45	3 89	T¢b	NWT	ZE	TCU	LTCU
1.998.06	•	<u>.</u>	•	•	-•	
1.998 67	10 02	Teb	NWT	ZE	TCU	LTCU
1.999 21	8 09	T¢b	NWT	ZE	TCO	LICU
2,001 01	•	•	•	•	•	•
2.001 71	•	•	•	•	•	•
2.002 32	-	-	-	-	-	-
2,002 93	5 94	Teb	NWT	ZE	TCO	LTCU
2,003 54	3 63	Teb	NWT	ZE	TCU	LTCU
2.004 15	3 46	Tcb	NWT	X.E.	TCU	LTCU
2.004 76	2 05	Тев	NWT	ZE	TCU	LTCU
2.005 37	260	Tcb	NWT	ZE	TCU	LTCU
2.005 98	•	•	•	•	•	•
2.006 59	-	-	-	-	-	-
2.007 20	-	-	-	-	-	-
2,007.81	•	•	•	•	•	•
2.008 42	•		•	-		
2.009 03	4 24	Teb	NWT	ZE	TCU	LTCU
2,009.64	2 80	T¢b	NWT	ZE	TCU	LICU
2,010 25	3 42	T¢b	NWT	ZE	TCU	LTCU
2.010 86	2 24	Teb	NWT	ZE	TCU	LICU
2.011 47	-	-	-	-	-	-
2,012.08		•	-	•	•	•
2,014 36					•	

ER-5-4#2

Center of Calculation Interval (14)	Volcanic Tuff Hydraulic Conductivity (m/4)	Assigned Stratigraphic Unit	Assigned Lithic Modifier	Assigned 120ble Alteration	Assigned Hydrogeologic Unit	Assigned Hydrostrafigraphic Unit
2.015 12	•	•	•	•	•	•
2.015 73	4 51	Teb	NWT	ZE	TCU	LTCU
2.016 34	-	-	-	-	-	-
2.016 95	2 03	Tcb	NWT	ZE	TCU	LTCU
2,017.56	234	Т¢Ь	NWT	ZE	TCU	LTCU
2.018 17	3 24	Тев	NWT	ZE	TCU	LTCU
2.018 78	-		-	-		
2,019,39	121	T¢b	NWT	ZE	TCO	LTCU
2,020.00	\$ 32	T¢b	NWT	ZE	TCU	LTCU
2.020 61	4 58	Teb	NWT	ZE	TCU	LTCU
2.021 22	180	Тев	NWT	ZE	TCU	LTCU
2,021 &3	212	Tcb	NWT	ZE	TCU	LTCU
2.022 44	1.52	Тев	NWT	ZE	TCU	LTCU
2.023-05	-	-	-	-	-	-
2.023 66	5 9 0	Тев	NWT	ZE	TCU	LTCU
2,024 27						
2.024 88						
2.025 46	-	-	-	-	-	-

ER-5-4#2 (continued)

Center of Volcanic Tuff Calculation llyd rwalie Assigned Assigned Assigned Assigned Assigned Interval Conductivity Stratigra phic [.Mhic 1.Mhic Hydrogenlogic Hydrostratigraphic (m/d) Unit Modifier Alteration Unit Unit (m) 497 37 15 33 Tpb 1.A GL/ I.FA BA 497 98 15 44 ΰL LFA BA Трб LA 498 59 1.85 Tpb LA GL LFA BA 499 20 ---_ 499.81 • 500 42 501.03 -----501.64 -. . -. . 502 25 • . 502 86 ------503 47 _ _ 504 08 0 82 DV Tρb 1.A LEA. BA 504.63 3 28 Трб LA DV LFA BA 518.95 1.79 DV L.F.A LA. BA Tpb 519 56 1 47 Трб LA DY LFA BА 520-17 520 78 521 39 _ -_ --522.00 • • • ÷ . 522.61 523 22 523 83 _ -_ -_ 524 44 ÷ • • ÷ . 525.05 . . --525 66 526 15 _ ---540 47 • . • • 541.08 . . . 541 69 _ _ _ _ 542 30 ----542.91 -. . . -543 52 . . . 544 13 _ _ _ 544 74 _ _ -_ 545 35 545 96 . . . 546 57 _ . _ _ _ 547 18 • . . -547 66 • . . -. 561.99 . 562 **6**0 _ _ _ _ _ 563 21 • . • • 563-82 564 43 565 04 _ _ _ -_ 565 **6**5 • . . • 566 26 566 87 567 48 _ -----568 09 • • . • • • 368 70 569 18 0.70 Трб LA DV LFA ΒA 669 95 . -. . . 670 56 • • • ÷ . . 671 17 671 78 _ _ _ -_ 672.39 -. . -673,00-. . • _ 673.61 _ _ _ 674 22 _ _ _ _ 674 83 -. . -. . 675 44 676 05

ER-EC-6

Center of	Volcanic Tuff					
Calculation	Dydraulic	Assigned	Assigned	Assigned	Assigned	Assigned
Interval	Conductivity	Stratigraphic	[.Mblc	Link	Hydrogenlagic	Hydrostratigraphic
(10)	(m/d)	Unit	Molifier	Alteration	Cult	linii
676.66	(11.47			-		
67714			•	•		
601 47	•	•	•	-	•	•
691 47	-	-	-	-	-	-
092.08	-	-	-	-	-	-
692 69	•	•	•	-	•	•
693 30	•	•	•	•	•	•
693 91	-		-	-	-	-
694 52	•	•	•	-		
695 13	•		•	-		
695 74	-	-	-	-	-	-
696.35	-	-	-	-	-	-
606.06		-	-	-		_
607 17				•		
400 17	•	•	•	-	•	•
093 17	-	-	-	-	-	-
698 72	-	-	-	-	-	-
712.99	•	•	•	-	•	•
713.60	•	•	•	•	•	•
714 21	-	-	-	-	-	-
714 82	•		•	-		
715 43	•					
716.04						
716.65			-	-		-
717.26	_		_	_	_	_
717.06	•	•	•	•	•	
717.00	•	•	•	•	•	•
/16 4/	•	•	•	-	•	•
719.08	-	-	-	-	-	-
719 69	•	•	•	•	•	•
720 18	•	•	•	-	•	-
734 45	-	-	-	-	-	-
735 0 6	-	-	-	-	-	-
735 67	•		•	-		
736 27						
736 88		-	-	-		-
737 49	_		_	_	_	_
720 10		_				
736 [1]	•	•	•	•	•	
730 /1	•	•	•	-	•	
739 34	-	•	-	-	-	-
739 93	•	•	•	-	•	-
740 54	•	•	•	•	•	•
741.15	•	•	•	•	•	•
741 64	-	-	-	-	-	-
755 90	•		•	-		
756 51	•		•	-		
757 12	-	-	-	-	-	-
757 73	-	-	-	-	-	-
752 14		-	-	-		_
758.05				•		
730 73	•	•	•	•	•	
739 30	-	-	-	-	-	-
700 17	-	-	-	-	-	-
760 78	•	•	•	-	•	•
761 39	•	•	•	•	•	•
762 00	-		-	-	-	-
762.61	•		•	-		
763 10	•		•	•		
1.048 82	•					
049 43	-	-	-	-	-	-
1,050,04	-	-	-	-	-	_
1,000 04	•	•	•	-		-
1,000 00	•	•	•	•	•	•
1.051 26	-	-	-	-	-	-
1,051 8 6	-	-	-	-	-	-
1,052 47	•	•	•	-	•	-
1.053 08	•	•		•	•	•
1.053 69	-	-	-	-	-	-

ER-EC-6 (continued)

Center of	Volcanic Tuff					
Calculation	Dydrwalie	Assigned	Assigned	Assigned	Assigned	Assigned
Interval	Conductivity	Strafigraphic	ſ.Mhic	Lithic	Hydrogenlogic	Hydrostratigraphic
(16)	(m/d)	Unit	Modifier	Alteration	້ບ້ໜ້	Unit
1.054.30				•		
105491						
1.055.52	-	_	-	_	-	
1.056.01	-	-	-	-	-	-
1,000 01	-	-	-	-	-	-
1,037.96	•	•	•	-	•	•
1.038.57	•	•	•	-	•	•
1.059 18	-	-	-	-	-	-
1.059 79	•	•	•	•	•	•
1,060 40	•	•	•	•	•	•
1.061.01	-	-	-	-	-	-
1,061 62	-	-	-	-	-	-
1,062 23	•	•	•	•		-
1.062 84	•	•		•	•	•
1.063 45	-	-	-	-	-	-
1,064 06	-	-	-	-	-	-
1.064 67	•					
1.06515	•					
1 067 17			-	-		-
1.067.78				-		_
1,007 70	•			•		
1,000.00	•	•	•	-	•	•
1.006 99	•	•	•	-	•	•
1.009.00	-	•	-	-	-	-
1.070 21	•	•	•	•	•	•
1,070 82	•	•	•	-	•	•
1.071 43	•	•	•	-	•	•
1,072.04	-	-	-	-	-	-
1,072.65	•	•	•	-		•
1,073 26	•	•	•	•		•
1.073 87	-	-	-	-	-	-
1,074 42	-	-	-	-	-	-
1,088 75	•		•	-		
1.089 36	•					
1.089 96	-	-	-	-	-	-
1.090.57	-	-	-	-	-	-
1 091 18						
091 79						
1.092.40	_		_	_		_
1.092 (1)	_	-	_	_	_	_
1.093.01	•	•	•	•	•	•
1,093.02	•	•	•	•	•	•
1.074 27	•	•	•	-	•	•
1,054 84	-	-	-	-	-	-
1,095 45	•	•	•	•	•	•
1,096 00	•	•	•	-	•	•
1.110 26	-	-	-	-	-	-
1,110 87	-	-	-	-	-	-
1,111 48	•	•	•	•	•	-
1.112.09	•	•	•	•	•	•
1.112 70	-	-	-	-	-	-
1,113 31	-	-	-	-	-	-
1,113 92	•	•		•		
1.114 53	•			•		
1.115 14	-		-	-	-	-
1.115 75	•		•	-		
1.116.36	•			-		
1,116,97						
1,117.52	-	-	-	-	-	-
1 1 7 2		-	-	-	-	-
1 132 30	•	•	•	•	•	•
1,132,37	•	•	•	-	•	-
1.133.00	-	-	-	-	-	-
1,133.61	-	-	-	-	-	-
1,1.14 22	•	•	•	-	•	-
1.134 83	•	•	•	-	•	•
1.135 44	-	-	-	-	-	-

ER-EC-6 (continued)

Center of Calculation Interval (m)	Volcanic Tuff Dydraolic Conductivity (m/d)	Assigned Stratigraphic Unit	Assigned Lithic Modifier	Assigned Lählic Alteration	Assigned Hydrogeologic Unit	Assigned Hydrostratigraphic Unid		
1,136.05	•		•	-				
1.136.66	•			•				
1.137.27	-	-	-	-	-	-		
1,137 88	-	-	-	-	-	-		
1,138 49	•			•				
1.139.04	•			•				
1.153 36	-		-	-	-	-		
1.153 97	•		•	•				
1,154 58	•		•	-				
1.155 19	-	-	-	-	-	-		
1,155 8 0	-	-	-	-	-	-		
1,156 41	•		•	-				
1.157 02	•			•				
1.157.63	-	-	-	-	-	-		
1,158 24	-	-	-	-	-	-		
1,158.85	•			•				
1.159 46	•	•		•	•			
1.160.07	-	-	-	-	-	-		
1,160.62	•		•	•				

ER-EC-6 (continued)

Center of Calculation Interval (m)	Vokanic Tuff Dydraulic Conductivity (m/d)	Aasigned Stratigraphic Unit	Assigned Lithic Modifier	Assigned Lähic Alteration	Assigned Hydrogeologic Unit	Assigned Hydrostratigraphi Unit
281.39	50 31	Tfbw	LA	OF	LFA	FCCM
282.00						
282.61	-	-	-	-	-	-
283 22	-	-	-	-	-	-
283 83						
284 44	613	Tibw	LA	OF	LFA	FCCM
285 05	-		-	-	-	-
285 66	•		•	•		
286 27	•		•	•		
286 88	-	-	-	-	-	-
287 49	-	-	-	-	-	-
288 22	•		•	•		
292 18						
292 79	-	-	-	-	-	-
293 40	-	-	-	-	-	-
294 01						
294 62						
295 23	-	-	-	-	-	-
295 84	-		•	•		
296 45						
297.00						
297 45	-		-	-	-	-
299.34	-			•		
304 07	-		•	•		
310 16						
346 74	-	-	-	-	-	-
352 84	•		•	•		
358 93	•		•	•		
365 03	-	-	-	-	-	-
369 23	-	-	-	-	-	-
370 70	•		•	•		
371 31	17.53	ТЪ	LA	var	LFA	FCCM
371 92	14 26	ТЪ	LA	VAL	LFA	FCCM
372 53	6 67	Тfb	LA	VAF	LFA	FCCM
373 [4						
373 75	•			•		
374 36	-		-	-	-	-
374 96	•		•	•		
378 50	•		•	•		
379.08	•			•		
379 78	-	-	-	-	-	-
380.39	13 37	TIIh	1.A	var	LEA	FCCM
381.00	-		•	•		
381.61	-	-	-	-	-	-
382 22	-	-	-	-	-	-
382 83	-		•	•		
383 44	•			•		
384 05	-	-	-	-	-	-
384 66	-	-	-	-	-	-

ER-EC-7
Center of	Volcanic Tuff	havi-and	4	••	h	L
L arcumon	Conductivity	Assigned	Assigned	Assigned	Assigned Hydroseologic	Assigned Hydrosteationable
(16)	(m/d)	Unit	Modifier	Alteration	Unit	Unit
209 03	27.95	Tíb	NWT	OZ.	TCU	FCCM
209 64	26 89	тњ	NWT	QZ	TCU	FCCM
210 25	12 07	тњ	NWT	QZ	TCU	FCCM
210 86	10.55	Тів	NWT	QZ	TCU	FCCM
211 47	•	•	•	•	•	•
212 08	6 09	ТſЬ	NWT	QZ	TCU	FCCM
212 69	10 25	ть	NWT	QZ	TCU	FCCM
213 30	16 97	ть	NWT	QZ	TCU	FCCM
213.91	16.61	116	NWT	Q2	reu	FCCM
214 52	-	-	-	-	-	-
215 15	-	-	-	-	-	-
210.74						
218 18				-		
218 79	-	-	-	-	-	-
219 40						
220 00	9 84	ТЪ	NWT	QZ	TCU	FCCM
220 61	18 08	тњ	NWT	QΖ	TCU	FCCM
221 22	34 30	TID	NWT	QZ	TCU	FCCM
221 83	36-21	ТЮ	NWT	QZ	TCU	FCCM
222 44	21 22	Т b	NWT	QZ	TCU	FCCM
223 05	17 59	тњ	NWT	QZ	TCU	FCCM
223 66	17 57	тъ	NWT	QZ	TCU	FCCM
224 27	11 34	ТЮ	NWT	QZ	TCU	FCCM
224 88	14 86	ТЮ	NWT	Q2	TCU	FOCM
225 49	11 82	тњ	NWT	QZ	TCU	FCCM
236 59	13 97	TIN	NWT	QZ.	TCD	FCCN
237 20	22 79	110	NWT	02	TCU TCU	POON
237 80	24 32	110	NW1 NWT	07.	TCU	FCCM
236 41	20 31	110 T(b	NWI	02	TCU	FCCM
239 02	17 08	тњ	NUT	07	TX:11	FCCN FCCN
239 03	18 93	TIL	NUT	0Z	TCU	FOCM
240.85	15 55	TÍb	NWT	oz	TCU	FCCM
241 46	9 74	TIL	NWT	ŎŹ	TCU	FCCM
242 07	7.51	ТЪ	NWT	ŏž	TCU	FCCM
242 68	-		-	-		
243 29						
243 90	4 \$8	ТſЬ	NWT	QZ	TCU	FCCM
234 93	7 28	тњ	NWT	QZ	TCU	FCCM
255 54	10 83	Тіб	NWT	QZ	TCU	FCCM
256 15	12 25	ТІЬ	NWT	QZ	TCU	FCCM
256 76	6 95	TIL	NWT	QZ	TCU	FCCM
257 37	-	-	-	-	-	-
257 98	-	-	-	-	-	-
258.39	•	•	•	•	•	•
209 20	•	•	•	•	•	•
237 61	-	-	-	-	-	-
761.03		-			-	
261 64						
262 25	-		-	-		
273.34						
273 95						
274 56	2.85	ТЮ	NWT	QZ.	TCU	FCCM
275 17	-	-	-	-	-	-
275 78						
276 39	•	•			•	•
277.00	-	-	-	-	-	-
277 61	-	-	-	-	-	-
278 22	•	•	•	•	•	•
278 83	•	•	•	•	•	•
279 44	-	-	-	-	-	-

ER-EC-8

Center of	Volcanic Tuff	L	aa	••	۰	<u>ار مناطق</u>
L'ARTENDO	Conductivity	Assigned	Assigned	Assigned Lithle	Assigned Hydrogeologic	Assigned Hydrosteatian abia
(16)	(m/d)	Unit	Modifier	Alteration	Unit	Unit
280 05	•					
280.66						
291 63	-	-	-	-	-	-
292 24	6 36	Тів	NWT	QZ	TCU	FCCM
292 85	•	•	•	•	•	•
293 46	•	•	•	•	•	•
294 07	-	•	-	-		-
294 68	•	•	•	•	•	•
295 29	•	•	•	•	•	•
275 70	-	-	-	-	-	-
290 31	-	-		-	-	-
297 73						
298 34	-	-	-	-	-	-
298 95	-	-	-	-	-	-
441 90						
442 51	•	•	•	•	•	•
443 12	-	-	-	-	-	-
443 73	•	•		•	•	•
444 34	•	•	•	•	•	•
444.95	•	•	•	•	•	•
445 56	-	•	-	-	•	•
445 J7 446 TO	•	•	•	•	•	•
440 76						
448.00					-	_
448 60						
449 21						
451 04	-	-	-	-	-	-
451.65	-	-	-	-	-	-
452 26		•		-	•	•
452 87	•	•	•	•	•	•
453 48	-	-	-	-	-	-
454 09	-	-	-	-	-	-
434 70	•	•	•	•	•	•
400.01	•	•	•	•	•	•
400 92	-		-	-		
457 14						
457 75				•		
458 36	-	-	-	-	-	-
512.00						
512 61				-	•	
513 22	5.68	Тпар	NWT	QF	TCU	TMCM
513 83	-	-	-	-	-	-
514 44	•	•	•	-	•	•
515.05	•	•	•	•	•	•
515.00	-	-	-	-	-	-
516 27 (16 90	-	-	-	-	-	-
210-00 417-00						
518 10	4 68	Ттар	NWT	OF	TCD	TMCM
518 71	•			· ·		
519 32		-		-	-	
530 29						
530.90	-	-	-	-	-	-
531 51				-	•	
532 12		_ ·	•	. –		
532 73	516	Тпыр	NWT	QF	TCU	TMCM
533 34	-	-	-	-	-	-
5.3.3 95		•	•	-	•	•
254 36	•	•	•	•	•	•
71 666	-	-	-	-	-	-

ER-EC-8 (continued)

Center of Calculation Interval (18)	Volemie Tuff Hydraulie Conductivity (m/4)	Assigned Stratigraphic Unit	Assigned Lithic Modifier	Assigned Lithle Alteration	Assigned Hydrogeologic Unit	Assigned Hydrostrafigraphic Unit
535 78	•	•	•	•	•	
536 39	•	•	•	•	•	
537.00	-	-	-	-	-	-
537.61	-	-	-	-	-	-

ER-EC-8 (continued)

ER-6-1

Center of	Volcanic Tuff			h	1	4
Colculation	Hydroulic Conductinity	Assigned Structure while	Assigned	Assigned	Assigned	Assigned Huducaterations which
(De)	(m/d)	Unit	Modifier	Alteration	Enit	Unit
540 56	-	-	-	-	-	-
542.09	•			-		
543 61	•			-		
545 13	•			•		•
546 66	-		-	-	-	-
548 [8	•	•	•	-	•	•
549 71	•	•	•	-	•	•
551 23	-	-	-	-	-	-
552 75	-	•	-	-	-	-
224 28		Dé-	Det	- 		10.
557 33	155	135	Dof	Unalt	CA CA	
558.85	1 55	DSa	Dol	Unalt	CA	LCA
560 37	1.55	DSs	Dal	Unalt	CA	LCA
561.90	1 55	DSs	Dof	Unalt	ČA	LCA
563 42	1 55	DS ₅	Dof	Umalt	CA	LCA
564 95	1.55	DSs	Dol	Unalt	ÇA	LCA
566 47	L \$5	DSs	Dol	Unalt	CA	LCA
567 99	1.55	DSs	Dof	Unalt	CA	LCA
569 52	1 55	DSs	Dol	Unalt	CA	LCA
571.04	1 55	DSs	Dol	Unalt	ÇA	LCA
572 57	1.55	DSs	Du	Unalt	ÇΛ	LCA
574 09	1.55	DSs	Dol	Unalt	CA	LCA
27261	1.35	DSB	Dol	Unant	CA	LCA
277 [4 \$79 66	1 4 2	D85	Dol	ւ դոր Մուսի	СA СА	LCA
580 19	1 57	Dos DSs	Dof	Unalt	CA	
581 71	1 52	DSa	Dol	Unalt	CA	LCA
583 23	1 52	DSs	Dol	Unalt	CA	LCA
584 76	1 52	DSs	Dof	Unalt	CA	LCA
586 28	1 52	DS ₅	Dof	Umalt	CA	LCA
587 81	1 52	DSs	Dol	Unalt	ÇA	L C A
589 33	L \$2	DSs	Dol	Unalt	CA	LCA
590 85	1 52	DSs	Dof	Unalt	CA	LCA
592 38	1 52	DSs	Dol	Unalt	CA	LCA
593 9U	1 52	DSs	Dol	Unait	CA CA	LCA
597 43 506 95	1.52	Des	Dat	Unan	CA CA	LCA
502 47	1 52	DSs DSs	Dol	Unait	CA CA	LCA
600.00	1 52	DSs	Dol	Unalt	CA	LCA
601 52	3 42	DSs	Dol	Unalt	ČA	LCA
603 05	3 42	DSs	Dol	Unalt	CA	LCA
604 57	3 42	DSs	Dol	Unalt	CA	LCA
606 09	3 42	DSs	Dol	Unalt	CA	LCA
607 62	3 42	DSs	Dof	Unalt	CA	LCA
609 14	3 42	DS6	Dol	Umalt	CA	LCA
610 67	3 42	DSs	Dol	Unalt	ÇA	LCA
61219	3 42	DSs	Dol	. mait	CA	LCA
01371 61624	343	DSs DC-	Dol	Unall	CA	LCA
616 76	0.42	Das DS:	Dol	Unant	CA CA	LCA
618 29	0 43	DSs	Dul	Unalt	ČA.	LCA
619 81	0 43	DSs	Dol	Unalt	CA	LCA
621 33	0 43	DSe	Dol	Unalt	CA	LCA
622 86	0 43	DSs	Dol	Unalt	ÇA	LCA
624 38	0.46	DSs	Dof	Unalt	CA	LCA
625 91	0 47	DSs	Dof	Unalt	CA	LCA
627 43	0 47	DSs	Dol	Unalt	CA	LCA
628 95	0 47	DSs	Dol	Unalt	CA	LCA
630 48	0 47	DSs	Dol	Unalt	CA	LCA
632 00	0.47	DSs	Dol	Umait	CA	JCA LCA
033 23	047	DSS	Twi	CUDAIL	ፍለ	LCA

Center of	Volcanic Tuff					
Calculation	11yd raalic	Assigned	Assigned	Assigned	Assigned	Assigned
Interval	Conductivity	Stratigraphic	[.Mhic	1.Mhic	Hydrogenlogic	Hydrostratigraphic
(m)	(mid)	Unit	Modifier	Alteration	Cult	linii
635.05	0.47	DS:	Dal	Linalt	C 4	
676 87	0.47	Dê.	Dat	Limate	CA CA	LCA
630 37	047	Des	Doi D-1	Unan	CA CI	
638 10	047	DSs	Dol	Unait	CA C1	
039 02	0 40	DS6	100	Unalt	CA	LCA
641 15	0 19	DSs	Du	Unalt	ÇΛ	LCA
642 67	0 19	DSs	Dof	Unalt	CA	LCA
644 19	0 19	D\$s	Dof	Unalt	CA	LCA
645 72	0 19	DSs	Dol	Unalt	ÇA	LCA
647 24	0.19	DSs	Dul	Unalt	¢Λ	LCA
648 77	0 19	DSs	Dof	Unalt	CA	LCA
650 29	0 19	DSa	Dol	Unalt	CA	LCA
651 21	0.26	DS:	Dol	línalt	CA	LCA
653 34	0.30	Diê.	Def	Linati	CA	LCA
664.96	0.00	D03	Def	Unan	CA CA	LCA
034 80	0.00	DOM DOM	1001	Chair	CA CI	I.C.A
000 39	0.30	DZ6	100	Unait	CA Ci	LCA
637 91	0.301	DSs	Dat	Unalt	ÇA	LCA
659 43	0.30	DSs	Dol	Unalt	CA	LCA
660 96	0.30	DSs	Dof	Unalt	CA	LCA
662 48	0.30	DSs	Dol	Unalt	ÇA	LCA
664 01	0.30	DSs	Dul	Unalt	¢Δ	LCA
665 53	0.30	DSs	Dof	Unalt	CA	LCA
667.05	0.30	D\$s	Dof	Unalt	ĊA	LCA
662 58	0.30	DSs	Del	Línalt	CA	LCA
670.10	0.20	DQ.	Dal	Linalt	СA	LCA
471 43	0.22	Data	Dal	L facale	<u>с</u> л	LCA
671 60	0.20	Des	Doi	Unait	CA	
673 15	0 28	DSe	101	Unant	CA	LCA
674 67	0.28	DSs	Dal	Unalt	CA	1.CA
676 20	0 28	DSs	Do	Unalt	ÇA	LCA
677 72	0.28	DS6	Dof	Umalt	CA	LCA
679 25	0.28	DS6	Dol	Unalt	CA	LCA
680 77	0 28	DSs	Dol	Unalt	CA	LCA
682 29	0.28	D81	Dof	Unalt	CA	LCA
683 82	0.52	DSI	Dof	Unalt	CA	LCA
685 34	0.57	DSI	Dol	Umalt	CA	LCA
686.87	0.52	DSI	Del	linalt	C A	ICA
688.30	0.45	D81	Def	Linalt	6A	LCA
600 37	0.45	D01	Def	Unan	CA CA	LCA
007 71	0.52	1031	1201	Unait	CA CA	
691 44	0 52	DSI	Del	Unan	ÇA	LCA
692.96	0.52	DSI	Du	Unalt	ÇA	LCA
694 49	0 52	DSI	Dol	Unalt	CA	LCA
696 01	0.52	DSI	Dol	Unalt	CA	LCA
697 53	0.53	DSI	Del	Unalt	CA	LCA
699.06	0 53	DSI	Dol	Unalt	ÇA	LCA
700 58	0 54	DSI	Dof	Umalt	CA	LCA
702.11	0.55	DSI	Dol	Unalt	CA	LCA
703 63	0.55	DSI	Del	Unalt	CA	LCA
70515	0.55	D81	Def	límali	CA.	ICA
705 15	791	59	Def	Unant	6A	LCA
700 08	701	D31	Doi D-1	Unan	CA C1	LCA
703 20	7 81	131	100	Unaut	CA CI	
7199 73	7 81	DSI	Dul	Unalt	ÇΛ	LCA
711.23	7 BI	DSI	Dol	Unalt	CA	LCA
712 77	7 82	DSI	Dof	Unalt	CA	LCA
714.30	7 83	DSI	Dol	Unalt	ÇA	LCA
715 82	7 83	D8I	Dol	Unalt	¢Λ	LCA
717 35	49 56	DSI	Dol	Unalt	CA	LCA
718 87	49 66	DSI	Dol	Unalt	CA	LCA
720 39	49 72	ופת	Del	Upalt	CA	LCA
721 97	49.90	DSI	Del	Linelt	CA.	LCA
753 44	40 99	50	Def	L family	90 64	LOA
723 44	47 68	1201	1001	C TIBIC	CA	JAA LCA
724 77	49 90	121	10	Unait	CA C1	LCA
726 49	.1 48	1321	1961	Unat	CA	ICA
728 01	3 48	DSI	Dol	Unalt	CA	LCA
729 54	3 48	DSI	Dol	Unalt	CA	LCA

ER-6-1 (continued)

Center of	Volennie Tuff					
Calculation	Elydraulic	Assigned	Assigned	Assigned	Assigned	Assigned
Luterval	Conductivity	Stratigraphic	Lithle	Lithle	Hydrogenlogic	Hydrostratigraphic
(IA)	(m/d)	Unit	Modifier	Alteration	Unit	Unit
731.06	3 48	DS1	Dol	Unalt	CA	LCA
732 59	3 47	DSI	Dol	Unah	CA	LCA
734 11	3 47	DSI	Dol	Unalt	CA	LCA
735 63	3 47	DSI	Dol	Unalt	CA	LCA
737 16	3 47	DSI	Dol	Unalt	CA	LCA
738 68	3 48	DSI	Dol	Unah	CA	LCA
740 21	3 48	DSI	Dol	L'noit	ĊA	LCA
741 73	3 48	DSI	Dol	L'oalt	CA	LCA
743.25	3 48	DSI	Dol	Unalt	CA	LCA
744 78	3 48	DSL	Dol	l'nah	CA	LCA
246 30	3.48	DSI	Dol	L'oat	CA	LCA
747 83	348	DSI	Dol	L'oat	CA	LCA
749.35	149	DSI	Dat	L'malt	CA.	LCA
750 87	2.90	DSI	Dol	L'ash	CA CA	LCA
752.40	2.90	DSI	Dol	L'nat	CA CA	LCA
753.97	2 90	DSI	Dol	L'est	CA	LCA
755 45	7 89	DSI	Dat	L'mah	CA CA	ICA
756.97	2 89	DSI	Dol	L'osk	CA CA	ICA
758 40	1 80	DSI	Dol	Look	CA CA	
760.07	2 02	DSI	Dal	Lask	6A 6A	
761 54	ራ የን ት ድር	Dal	Dat	Lash	64	LCA
701 04	207	Del	Dat	L'esk	CA CA	LCA
763 67	2 80	1081	Dol	Look	CA CA	LCA
764 07	207	Del	Dal	Chart	сл С А	
700 1	2 20	1001	Dat	Char	CA CA	LCA
707.04	0.002	Dol	Dol	Charl	CA CA	
709 10	0.002	D21	Del	Laak		LCA
770 09	0.002	1351	D.I	t nan L'ask		1.2.4
772 21	0.002	DSI	Dol	Chan	CA CA	
773 73	0.002	1381	Dol	t nan	CA	ICA LCA
775 26	0.002	DSI	Dol	Lnan	CA	LCA
776 78	0.002	1321	1001	Loan	CA ¢1	I.CA
778 31	0.002	DSI	Dol	Cnah	CA	LCA
779 83	0 002	DSI	Dol	Unat	CA	LCA
781.35	0.002	DSI	Dol	Lnaft	CA 21	LCA
782 88	0.002	DSI	Dol	Unan	ÇA	LCA
784 40	0.002	DSI	Dol	Cnan	CA	LCA
785 93	0 002	DSI	Dol	Crott	CA	LCA
787 45	0 002	DSI	Dol	Cualt	ÇA	LÇA
788 97	0 002	DSI	Dol	Unat	ÇA	LÇA
790 30	0 002	DSI	Dol	Lnaft	CA	LCA
792 02	-	-	-	-	-	-
793 55	•	•	•	•	•	•
795 07	•	•	•	•	•	•
796 59	-	-	-	-	-	-
798 12	-	-	-	-	-	-
799 64		•	•	•		.:
801 17	0.50	DSI	Dol	Cnah	CA	LCA
802 69	0.50	DSI	Dol	Cnalt	CA	LCA
804 21	0.50	DSI	Dol	Unalt	CA	LCA
805 74	0.50	D81	Dol	Unat	ÇA	LCA
807 26	0.50	DSI	Dol	Unah	CA	LCA
808 79	0.50	DSI	Dol	Unak	CA	LCA
810.31	0.50	DSI	Dol	Unaft	ÇA	LÇA
811 83	0.50	DSI	Dol	Unalt	ÇA	LCA
813 36	0.50	DSI	Dol	Unalt	CA	LCA
81488	0.50	DSI	Dol	Unalt	CA	LCA
816 41	0.50	DSI	Dol	Unalt	CA	LCA
817 93	0.50	D31	Dol	Unalt	ÇA	LCA
819 45	0.50	DSI	Dol	l'nah	CA	LCA
820 98	0.50	DSI	Dol	Unalt	CA	LCA
822 50	0.50	DSI	Dol	Unalt	CA	LCA
824 03	0.51	DSI	Dol	Unah	CA	LCA
825 55	0.51	DSI	Dol	Unalt	ĊA	LCA

ER-6-1 (continued)

Center of	Volcanic Tuff					
Calculation	Dydrwalie	Assigned	Assigned	Assigned	Assigned	Assigned
Interval	Conductivity	Strafigraphic	[.Whic	Lithic	Hydrogenlogic	Hydrostratigraphic
(16)	(m/d)	Unit	Modifier	Alteration	ŪNI	ไหน้
827.07	0.51	DSI	Dol	Unalt	CA	LCA
828.60	0.51	DSI	Dat	línali	CA.	LCA
830 12	031	DSI	Dol	Unalt	ČA.	LCA
831.65	0.51	DSI	Dol	Linalt	C 4	LC4
022 17	0.51	Del	Dul	Linat	CA	LCA
020 [7	0.21	D01	Def	C man	сл Сл	LCA
034 07	0.71	D01	Dol	Unan	CA CI	LCA
830 22	0.01	DSI	12-1	Onaic	CA	
837 74	0.21	DSI	Del	Unan	ÇA C.	LCA
839 27	0 >1	DSI	Dol	Unan	ÇA	DCA
840 79	0.51	DSI	Dol	Unalt	CA	LCA
842 31	0.51	DSI	Dol	Unalt	CA	LCA
843 84	0.51	DSI	Dal	Unalt	CA	LCA
845 36	0.51	DSI	Dol	Unalt	CA	LCA
846 89	0.51	DSI	Dol	Unalt	CA	LCA
848 41	0.51	DSI	Dol	Unalt	CA	LCA
849 93	2 70	D81	Dol	Unalt	CA	LCA
851 46	2 70	DSI	Dol	Unalt	CA	LCA
852 98	271	DSI	Dol	Unalt	CA	LCA
854 51	271	DSI	Dol	Unalt	ÇA	LCA
856 03	271	DSI	Do	Unalt	¢Δ	LCA
857 55	271	DSI	Dol	Unalt	CA	LCA
859.08	2 72	DSI	Dof	Unalt	ĊĂ	LCA
860.60	2 72	DSI	Del	Unalt	CA	LCA
867 13	2 72	DSI	Dol	Unalt	ČA.	LCA
863.65	2 72	nsi	Del	Livelt	CA.	LCA
965 12	2.73		Dol	Unak	C 4	
944.70	277		Dol	Unat	CA CA	LCA
000 70	2.72	1381	Del	Unan		14.3
808 22	271	DSI	Dol	Chart	ÇA A	DCA LOA
809 /5	271	1381	1001	Unalt	CA	ICA
871 27	2.71	DSI	Dol	Unalt	CA	LCA
872 79	6 69	DSI	Dol	Unalt	CA	ICA
874 32	6 70	DSI	Dol	Unalt	CA	LCA
875 84	6 70	DSI	Dol	Unalt	CA	LCA
877 37	6 70	DSI	Dol	Unalt	CA	LCA
878 89	6 70	DSI	Do	Unalt	¢Δ	LCA
880 41	671	D81	Dol	Unalt	CA	LCA
881 94	671	DSI	Dol	Unalt	CA	LCA
883 46	671	DSI	Dol	Unalt	ÇA	LCA
884 99	671	DSI	Do	Unalt	¢Λ	LCA
886 51	6 72	DSI	Dol	Unalt	CA	LCA
883 03	6 72	DSI	Dol	Unalt	CA	LCA
889 56	6 72	DSI	Dol	Unalt	CA	LCA
891.08	6 72	Oes	Dul	Unalt	CA	LCA
892.61	6 72	Oes	Dof	Umalt	CA	LCA
89413	673	Oes	Dol	Unali	CA	LCA
895.65	6 73	CL-s	Dol	Línalt	CA	LCA
89718	677	()es	Def	Inali	CA.	LCA
898 70	V ()	040	100	onun	v.n	LA .
900 72	-	-	-	-	-	-
001 75	-	-	-	-	-	-
901 70	•	•	•	-	•	•
903 27	•	•	•	-	•	•
904 80	-	-	-	-	-	-
906.32	•	•	•	-	•	-
907 85	•	•	•	•	•	•
909 37	•	•		-	•	•
910 89	-	-	-	-	-	-
012.47	-	-	-	-	-	_

ER-6-1 (continued)

Center of Volcanic Tuff Calculation 1)yd rwalie Assigned Assigned Assigned Assigned Assigned Interval Conductivity Stratigra phic [.Mhic 1.Mhic Hydrogenlogic Hydrostratigraphic (m/d) Unit Modifier Alteration Unit Unit (m) 568 73 • -570 25 571 77 -_ -_ --573-30 ------574 82 • 576 35 577 87 ----_ -579.39 • . . -. . 580.92 . 582 44 _ _ _ _ --583 97 ----_ 585 49 -. . -. . 587.01 588 54 _ _ ----590 OG _ _ _ _ _ -591.59 593 11 594 63 _ _ _ _ _ 596-16 • . . • . . 597 68 599.21 600 73 _ 602.25 0.64 DSI ¢A LCA DolUnalt 603 78 0.64 D8I Dol Unalt ¢Λ LCA 605 30 064 D81 Dol Unalt ĊA LCA 606 83 0 64 DSI Dol Unalt CA LCA 608.35 0.64DSI Unalt LCA Dol $\mathbf{C}\mathbf{A}$ 609 87 0.64 DSI Dol Unalt ÇA LCA 611.40 0.64 DSI Dof Unalt LCA ĊA 612 92 0.64 DSI Dol Unalt CA LCA 614 45 064 וצת Dol Unalt $\mathbf{C}\mathbf{A}$ LCA 613.97 0.64 D81 Dof Unalt ĊA LCA 617 49 0.64 LCA DSI Dof Unalt ĊA 619 02 0.64 DSI \mathbf{Dol} Unalt CA LCA 620 54 D8I Unalt LCA 0.64Dul ¢Λ 622.07 0.64 D81 Dof Unalt ĊA LCA 623 59 0.64 DSI Dof Unalt ĊA LCA 625 [1] 0.64 DSI Dol Unalt ¢A LCA. Ī**C**Λ D8I 626 64 233 Dol Unalt ¢Λ 628 16 233 D81 Dol Unalt ĊA LCA 629 69 DSI Unalt LCA 233 Dol CA 631 21 2.33 DSI Dol Unalt CA LCA 632 73 233 D8I Dol Unalt ÇA LCA 634 26 233 DSI Dof Unalt ĊA LCA 635 78 233 DSI $\mathbf{D}\mathbf{o}\mathbf{I}$ Unalt CA LCA 637 31 • . . • • -638 83 640 35 -_ _ -_ -641 88 _ _ ----643 40 . • • . . . 644 93 646 45 _ _ _ _ 647.97 ÷ . . ÷ . . 649 50 ÷ . • • . . 651.02 . . 9.06 DSI CA LCA 652 55 Dol Unalt 654 07 9.06 DSI Dol Unalt CA LCA 655 59 9.06 DSI $\mathbf{D}\mathbf{u}$ Unalt ÇA LCA 65712 _ -_ _ --658 64 _ _ _ _ -_ 660 17 . . ÷ . . -661 69 663 21 13.05 DSI Dof Unalt ĊA LCA

ER-6-1#2

Center of	Volcanic Tuff					
Calculation	Dydraulic	Assigned	Assigned	Assigned	Assigned	Assigned
Interval	Conductivity	Strationanhic	Lithic	1 Mblc	Hydrogeologic	Hydrostratigraphic
(10)	(m/d)	Dolt	Molifier	Alteration	l'alt	الندري المراجع
664.74	12.05		Dal	Linak	C 4	
664 74	13 05	50	Def	L fan de	CA	LCA
000 20 << 7 7 0	13 03	D01	Doi:	Unan	CA OI	LOA
667 79	13.05	DSI	Dol	Unait	CA	
009.31	13.05	DSI	Dol	Unalt	CA	LCA
670 83	13.05	D8I	Du	Unalt	¢Λ	LCA
672 36	13.05	DSI	Dof	Unalt	CA	LCA
673 88	13 05	DSI	Dof	Unalt	ĊA	LCA
675 41	13 05	DSI	Dol	Unalt	ÇA	LCA
676 93	13.05	D8I	Dol	Unalt	¢Λ	LCA
678 45	13.05	DSI	Dof	Unalt	CA	LCA
679.98	13.05	DSI	Dol	Unalt	CA	LCA
681 50	13.05	120	Dol	Linalt	C.4	ICA
693.63	12.05	50	Dut	Linak	C.1	LCN
60.00	13.03	D81	Doi	Unan	CA O	
084 35	13.05	1081	1961	Unalt	CA	ICA
686 07	-	-	-	-	-	-
687.60	•	•	•	•	•	•
689 12	•	•		•	•	•
690 65	-	-	-	-	-	-
692 17	•		•	-		
693 69	•					
695 22						
696 74				-		
402 27		-	_	_		
626 20	•	•	•	•	•	•
507979 10101	•	•	•	•	•	•
701.31	•	•	•	-	•	•
702 84	-	-	-	-	-	-
704.36	•	•	•	-	•	•
705 89	•	•	•	-		•
707 41	-	-	-	-	-	-
708 93	-	-	-	-	-	-
710 46	•			-		
711.98						
713 41	_	_	_	_		_
715 62	-	-	-	-	-	-
712 43	-	-	-	-	-	-
/10 22	· · · ·					
718.08	2 54	DSI	Dol	Unalt	CA	LCA
719 60	2 54	DSI	Dol	Unalt	CA	LCA
721 13	2 54	DSI	Dol	Unalt	ÇA	LCA
722 65	2.54	D81	Do	Unalt	¢Λ	LCA
724 17	2 54	DSI	Dol	Unalt	CA	LCA
725 70	2 54	DSI	Dol	Unalt	CA	LCA
727 22	2.54	DSI	Dol	Unalt	CA	LCA
728 75	2.54	DSI	Dal	Unalt	CA	LCA
720.27	244	DSI	Def	Linght	CA.	ICA
73170	254		Del	Unalt	C 4	ICA
731 77	2.54	Dal	Dol	Unan	CA C1	LCA
733 32	2.34	1721	1001	Unan	CA O	JCA LOA
734 64	2 54	DSI	Dol	Unall	CA	LCA
736 37	2 54	DSI	Dol	Unalt	CA	LCA
737 89	2 54	DSI	Dol	Unalt	CA	LCA
739 41	2.54	DSI	Do	Unalt	¢Δ	LCA
740 94	•			•		
742 46	-		-	-	-	-
743 99	•			-		
745 51						
747 03		-				-
747 93	-	•	•	•	•	-
740 70	-	-	-	-	-	-
80.025	•	•	•	•	•	•
751.61	•	•	•	-	•	-
753 13	-	-	-	-	-	-
754 6 5	-	-	-	-	-	-
75618	•	•	•	-		-
757 70	2 56	D81	Dof	Unalt	CA	LCA
759 23	2 56	DSI	Dof	Unalt	CA	LCA

ER-6-1#2 (continued)

Center of	Volcanic Tuff					
Calculation	1)yd rwalic	Assigned	Assigned	Assigned	Assigned	Assigned
Interval	Conductivity	Stratigraphic	f.Mhic	1.Mhlc	Hydrogenlogic	Hydrostratigraphic
(16)	(m/d)	Unit	Modifier	Alteration	Cinit	Unit
760 75	2 56	DSI	Dol	Unalt	CA	LCA
762 27	2 56	DSI	Dof	Unalt	ĊA	LCA
763 80	2.56	DSI	Dof	Unalt	ĊA	LCA
765 32	2.56	DSI	Dol	Unalt	C A	LCA
766.85	2 56	DSI	Del	linalt	CA.	LCA
768 37	2 4 6	D81	Def	Livalt	CA CA	LCA
700 37	2.50	D91	Def	Unat	CA CA	LCA
207 07	2.50	1031	Dal	Unalt	CA	LCA
771 92	2,00	Del	Dat	C nan Líocate	CA	
774 47	2,20	1081	Dat	Chair	4A	LC:A
774 47	2 50	121	Dol	Unat	CA CA	LCA
775 77	2 50	121	Dol	Unan	CA CA	LCA LCA
777.51	2.30	1081	Deil Deil	Unan	CA OF	TCA
779.04	2.50	D81 D91	Dol D-1	Unait	CA	LCA
780 30	2.50	1381	1001	Unat	CA	ICA
782 09	2 30	DSI	101	Unait	CA CI	LCA
783 61	0.35	DSI	Dat	Unar	CA	LCA
785 13	035	DSI	Dol	Unall	CA	LCA
786 66	035	DSI	Dol	Unalt	CA	LCA
788 18	0.35	DSI	Do	Unalt	ÇA	LÇA
789 71	0.35	DSI	Dul	Unalt	ÇΛ	LCA
791.23	0.35	DSI	Dof	Unalt	CA	LCA
792 75	0.35	DSI	Dol	Unalt	CA	LCA
794 28	0.35	DSI	Dol	Unalt	ÇA	LCA
795 80	0.35	DSI	Du	Unalt	¢Λ	LCA
797 33	0.35	DSI	Dol	Unalt	CA	LCA
798 85	0.35	DSI	Dol	Unalt	CA	LCA
800.37	0.35	DSI	Dol	Unalt	CA	LCA
801.90	0.35	DSI	Do	Unalt	ÇA	LCA
803 42	0.35	DSI	Dof	Umalt	CA	LCA
804 95	0.35	DSI	Dol	Unalt	CA	LCA
806 47	0.35	DSI	Dol	Unalt	CA	LCA
807.99	0.35	D81	Dof	Unalt	ĊA	LCA
809 52	0.35	DSI	Dof	Unalt	CA	LCA
811.04	0.35	DSI	Dol	Unalt	CA	LCA
812 57	0.35	D8I	Dol	Unalt	ÇΛ	LCA
814 09	0.35	DSI	Dof	Unalt	CA	LCA
815 61	0.35	DSI	Dol	Unalt	CA	LCA
81714	0.35	DSI	Dol	Unalt	ÇA	LCA
818 66	035	DSI	Du	Unalt	ÇA	LCA
820 19	0.35	DSI	Dol	Unalt	CA	LCA
821 71	0 35	DSI	Dol	Unalt	CA	LCA
823 23	0.35	DSI	Del	Unalt	CA	LCA
824 76	035	DSI	Do	Unalt	ÇA	LCA
826 28	0.35	DSI	Dol	Unalt	CA	LCA
827 81	0 35	DSI	Dol	Unalt	CA	LCA
829.33	0.35	DSI	Dol	Unalt	CA	LCA
830 85	0.35	DSI	Dol	Unalt	CA	LCA
832 38	0.35	DSI	Dof	Unalt	CA	LCA
833 90	0 35	DSI	Dol	Unalt	CA	LCA
835 43	0.35	DSI	Dul	Unalt	ÇΛ	LCA
836 95	0.35	DSI	Dol	Unalt	CA	LCA
838 47	0 35	DSI	Dol	Unalt	CA	LCA
840 00	0.35	DSI	Dol	Unalt	ÇA	LCA
841 52	0 35	D8I	Du	Unalt	ÇA	LCA
843 05	035	D81	Dol	Unalt	CA	LCA
844 57	0 35	DSI	Dol	Unalt	CA	LCA
846 09	0.35	120	Del	Unalt	CA	LCA
847.62	035	DSI	Dol	Chait	ÇA	LCA
849 14	0.35	DSI	Dol	Unalt	CA	ICA
850 67	0 35	DSI	Dol	Unalt	CA	LCA
852 19	0.35	13Cl	10CL	Unait	CA	DCA LCA
853 71	035	DSI	Dol	Unall	CA	LCA
805 24	035	DSI	Dol	Onalt	CA	LCA.

Er-6-1#2 (continued)

Center of Calculation Interval	Voleanie Tuff Dyd raulie Conductivity	Assigned Stratigraphic	Assigned f.Whic	Assigned Lithic	Assi <u>e</u> ned Hydrogeologic	Assi gn ed Hydrostratigraphie
(in)	(m/đ)	Unit	Modifier	Alteration	Cinit	Unif
856 76	0.35	DSI	Del	Unalt	CA	LCA
858 29	0.35	DSI	Dol	Unalt	ĊA	LCA
859 81	0.35	DSI	Dol	Unalt	ĊA	LCA
861 33	0.35	DSI	Dol	Unalt	CA	LCA
862.86	0.35	D81	Do	Unalt	¢Δ	LCA
864 38	0.35	D81	Dof	Unalt	CA	LCA
865 91	815	DSI	Dol	Unalt	CA	LCA
867 43	8 [5	DSI	Dol	Unalt	ÇA	LCA
868 95	8 [5	D81	Dol	Unalt	¢Δ	LCA
870 48	815	DSI	Dol	Unalt	CA	LCA
872 00	8 15	DSI	Dol	Unalt	CA	LCA
873 53	\$ 15	DSI	Dol	Unalt	CA	LCA
875.05	815	D81	Dof	Unalt	CA	LCA
876 57	6 68	DSI	Dof	Unalt	CA	LCA
878 10	6 68	DSI	Dol	Unalt	CA	LCA
879.62	6 68	DSI	Dul	Unalt	CA	LCA
881.15	6.68	DSI	Dat	Unali	ĊA	LCA
882.67	6.68	DSI	Dol	Unalt	ČA	LCA
884 10	6 68	DSI	Dol	Unalt	CA	LCA
885 77	6.68	DSI	Dol	Unalt	ČA.	LCA
887 34	6.68	D81	Def	Linalt	CA	LCA
888 77	6.68	581	Dol	Unalt	ČÅ	LCA
800.70	6 6 8	1051	Del	Unalt	CA CA	LCA
020 27	6 6 8	DOI	Dal	L facalt	сл Сл	LCA
021.01	4 4 4	000	Dol	C'Hair Lí-Adt	<u>са</u>	LCA
873-34 90-1-96	0.00	Oes	Dol	Unalt	CA CA	LCA
874 80 804 30	6 68	Ocs	Dol	Unan	CA CA	LCA
090.17	0.00	Oes	Del	Unan	CA	ICA
027.71	0.00	Oes	Dol Dol	Chait	ÇA	LCA
899 4.1	0.08	Oes	1001	CINER	CA	ICA
900 96	0.08	Ues	Dol	Unait	CA	ICA
907.48	6 68	Cles	Dot 1	Unan	CA	ICA ICA
904 01	800	Oes	Dol	Unalt	CA	LCA
905 53	6.68	Oes	Dol	Unalt	CA	LCA
907 05	-	-	-	-	-	-
908 58	•	•		•	•	•
910-10	•	•		•	•	•
911 63	-		-	-	-	-
913-15	•	•	•	•	•	•
914 67	•	•	•	•	•	•
916 20	•	•		•	•	•
917 72	-	-	-	-	-	-
919 25	•	•	•	•		
920.65	•			-		

ER-6-1#2 (continued)

Center of Volcanic Tuff Calculation 1)yd rwalie Assigned Assigned Assigned Assigned Assigned Interval Conductivity Stratigra phic [.Mhic 1.Mhic Hydrogenlogic Hydrostratigraphic (m/d) Unit Modifier Alteration Unit Unit (m) 669 87 125 43 Pzu 1.8 Unalt CA LCA 671 34 191 98 LCA Lø Unalt ĊA Pzu 672 74 100.02Pzu La Unalt ĊA LCA 674 14 63 01 Lδ Unalt CA LCA Pzu 676.00 44 79 Pzu Ls Unalt ¢Λ LCA 678 26 Lø LCA 41 16 Pzu Unalt ĊA 680 10 29.67 Pzu Ls Unalt ĊA LCA 681.56 29 10 LÇA Pzu L8 Unalt ¢A 683-06 65 24 Pzu Lø Unalt ¢Λ LCA 20.65 684 55 La Pzu Unalt CA LCA 685 98 28 42 Pzu La Unalt CA LCA 687 42 891 Pzu 1.8 Unalt CA LCA 689 29 916 Pzu Lø Unalt ĊA LCA 691 55 17.61 l.a Unalt ĊA LCA Pzu 693 34 32 20 Fzu Lä Unalt CA LCA 694 75 28 49 Ls Unalt CA LCA Pzu 696 21 46 73 Pzu Lø Unalt ĊA LCA 697 67 La 12.90 Pzu Unalt ĊA LCA 22 78 699.04 Pzu L8 Unalt ¢А LÇA 700 42 15 83 LCA Ls Unalt ¢Λ Pzu 702.27 949 Pzu Lø Unalt ĊA LCA 704 53 \$ 33 Ls Pzu Unalt CA LCA 706 36 • • . . 707 81 709 30 26 43 Lø LCA Pzu Unalt ĊA 710 79 7 89 Pzu La Unalt CA LCA 39.04 712 23 Pzu 8 Unalt $\mathbf{C}\mathbf{A}$ LCA 713-66 21 23 Pzu Lø Unalt ¢А LCA 715 53 17.76 Lъ Unalt LCA. Pzu CA 717.79 15 11 Fzu Lä Unalt CA LCA 719 62 40.06 Pzu 1.8 Unalt $\mathbf{C}\mathbf{A}$ LCA 721.07 30.58 Lø Unalt ĊA LCA Pzu 722 56 La LCA 29 32 Unalt Pzu ĊA 724 05 17.57 Fzu Lδ Unalt CA LCA 725 48 12.75 LCA Pzu Lş Unalt ¢Λ 726 92 315 Pzu Lø Unalt ĊA LCA 728 79 3 58 Pzu L۵ Unalt ĊA LCA 731.05 • ÷ . -. . 732 88 . . . -734 32 5.06Pzu Lø Unalt ĊA LCA 735 82 _ 737.310.38Pzu 8 Unalt CA LCA 738 74 -LCA 738 80 124 43 Pzu Lъ Unalt ĊA 742.05 3 59 Lä Unalt CA LCA Fzu 744 31 • • . . . -746 14 747 58 _ _ -_ _ -749 08 _ _ ----750 57 . . 751.99 9 29 Pzu Lø Unalt ĊA LCA 753 40 LÇA 755 28 016 Unalt ÇA Pzu Ŀs

ER-7-1

Dashes indicate hydraulic conductivity values are below detection within the interval

Only the intervals within well screen are presented

Center of Calculation Interval	Volcanic Tuff Dydraulic Conductivity	Assigned Stratigraphic	Assigned Lithle	Assigned Lithic	Assigned Hydrogenlogic	Assigned Hydrostratigraphic
(m)	(m/d)	Unit	Modifier	Alteration	Cinit	Unif
1,099 75	÷		•	•		
1.106.09						
1.112.55	-	-	-	-	-	-
1,118.95	-	-	-	-	-	-
1,125 35	1 79	Pzu	Dul	Unalt	CΔ	LCA
1.131 75	1.02	Pzu	Dof	Unalt	CA	LCA
1.138 15	0 80	Pzu	Dol	Unalt	ĊA	LCA
1,144 55	0.59	Pzu	Dol	Unalt	CA	LCA
1,150.96	0.53	Tzu	Dul	Unalt	¢Λ	LCA
1.157.36	0.20	Pzu	Dol	Unalt	CA	LCA
1.250 62		-	-	-	-	-
1,256 96	-			•		
1 263 43						
1.269.83	-	-	-	-	-	-
1.276 23	-	-	-	-	-	
1,282,63						
1 289 03						
1 295 43	-	-	-	-	-	-
1.301.83	-					
1.308 23						
1 314 57						
1.321.03	0.02	Pzu	Ls.	Unnit	CA	LCA
1 327 43	0.00	Pzn	1.8	Línalt	CA	LCA
1 333 84	• • •					20.1
1 340 24						
1 346 64	0.00	Pzu	-	Línalt	C.A.	ICA
1353.04	0.01	Pzu	Le	Linalt	CA CA	LCA
1 359 44	-		-	-	-	-
1 365 84	-		_	-	-	
1 377 18	_	_	_	_	-	
1 378 64	-	-	-		-	
1 385.04						
1 391 44	-		-			
1 397 84	_	_	_	_	-	
1 404 24	0.02	D710	- I.v	L (malt	CA.	ICA
1,410,64	V V4		L3	C. Date	4/A	
1.417.04	-	•	-	-	•	•
1 473 45	-		-	-	-	-
1.420 70	0.03	Dan		Límot	Č.	ICA
1,429.79	0.03	1.24	Lő	Chair	¥0	14/1 -
1.430 25		• D=11		Linak	C.4	101
1.442.05	007	P20		Unant	CA CA	LCA LCA
1,449.03	0.01	FZU	1.8	COMME	LA	14.4
1,433,43	•	•	•	•	•	•
1.401.62	-	-	-	-	-	-
1,406 25	-	-	-	-	-	-

ER-12-3

DISTRIBUTION

Christine D. Andres, Supervisor Bureau of Federal Facilities Nevada Division of Environmental Protection 2030 E. Flamingo Road, Suite 230 Las Vegas, NV 89119

Naomi Becker Los Alamos National Laboratory P.O. 1663, EES-6, MSF-665 Los Alamos, NM 87545

Jeff Daniels Lawrence Livermore National Laboratory P.O. Box 808 M/S J514 CST-7 Livermore, CA 94551

Bruce Hurley Hydrology Program Manager Environment, Safety & Health Division Nevada Site Office National Nuclear Security Administration U.S. Department of Energy P.O. Box 98518 Las Vegas, NV 89193-8518

Marjory Jones Division of Hydrologic Sciences Desert Research Institute 2215 Raggio Parkway Reno, NV 89512-1095

John McCord Stoller-Navarro Joint Venture 7710 W. Cheyenne Avenue Las Vegas, NV 89129

Ken Ortego Bechtel Nevada P.O. Box 98521 Las Vegas, NV 89193-8521

Gayle Pawloski Lawrence Livermore National Laboratory P.O. Box 808 L-221 Livermore, CA 94551 Greg Ruskauff Stoller-Navarro Joint Venture 7710 W. Cheyenne Avenue Las Vegas, NV 89129

Chuck Russell Division of Hydrologic Sciences Desert Research Institute 755 E. Flamingo Road Las Vegas, NV 89119-7363

Peter Sanders Environmental Restoration Division Nevada Site Office National Nuclear Security Administration U.S. Department of Energy P.O. Box 98518 Las Vegas, NV 89193-8518

Reina Serino, Contracting Specialist Office of Business Services NNSA Service Center Pennsylvania and H Street, Bldg. 20388 P.O. Box 5400 Albuquerque, NM 87185-5400

David Shafer Division of Hydrologic Sciences Desert Research Institute 755 E. Flamingo Road Las Vegas, NV 89119-7363

Bonnic Thompson Water Resources, Nevada District U.S. Geological Survey 160 N. Stephanie Street Henderson, NV 89074

K.C. Thompson Environmental Restoration Division Nevada Site Office National Nuclear Security Administration U.S. Department of Energy P.O. Box 98518 Las Vegas, NV 89193-8518 Bill Wilborn Environmental Restoration Division Nevada Site Office National Nuclear Security Administration U.S. Department of Energy P.O. Box 98518 Las Vegas, NV 89193-8518

Janet Appenzeller-Wing, Director Environmental Restoration Division Nevada Site Office National Nuclear Security Administration U.S. Department of Energy P.O. Box 98518 Las Vegas, NV 89193-8518

Mavrik Zavarin Lawrence Livermore National Laboratory P.O. Box 808, M/S L-231 Livermore, CA 94551

Nevada State Library and Archives State Publications 100 North Stewart Street Carson City, NV 89701-4285

Archives Getchell Library University of Nevada, Reno

DeLaMare Library/262 University of Nevada, Reno

Document Section, Library University of Nevada, Las Vegas 4505 Maryland Parkway Las Vegas, NV 89154 Library Stoller-Navarro Joint Venture 7710 W. Cheyenne, Bldg. 3 Las Vegas, NV 89128

Library Southern Nevada Science Center Desert Research Institute 755 E. Flaming Road Las Vegas, NV 89119-7363

Public Reading Facility c/o Nuclear Testing Archive Nevada Site Office National Nuclear Security Administration U.S. Department of Energy P.O. Box 98521, M/S 400 Las Vegas, NV 89193-8521

Technical Library Nevada Site Office National Nuclear Security Administration U.S. Department of Energy P.O. Box 98518 Las Vegas, NV 89193-8518

Office of Scientific and Technical Information U.S. Department of Energy P.O. Box 62 Oak Ridge, TN 37831-9939 (electronic copy)