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Abstract 
 

We have investigated the physics of Bloch oscillations (BO) of electrons, engineered 
in high mobility quantum wells patterned into lateral periodic arrays of nanostructures, 
i.e. two-dimensional (2D) quantum dot superlattices (QDSLs).  
 
A BO occurs when an electron moves out of the Brillouin zone (BZ) in response to a 
DC electric field, passing back into the BZ on the opposite side.  This results in 
quantum oscillations of the electron – i.e., a high frequency AC current in response to 
a DC voltage. Thus, engineering a BO will yield continuously electrically tunable 
high-frequency sources (and detectors) for sensor applications, and be a physics 
tour-de-force. More than a decade ago, Bloch oscillation (BO) was observed in a 
quantum well superlattice (QWSL) in short-pulse optical experiments. However, its 
potential as electrically biased high frequency source and detector so far has not been realized. 
This is partially due to fast damping of BO in QWSLs. In this project, we have investigated 
the possibility of improving the stability of BO by fabricating lateral superlattices of periodic 
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coupled nanostructures, such as metal grid, quantum (anti)dots arrays, in high quality 
GaAs/AlxGa1-xAs heterostructures. In these nanostructures, the lateral quantum confinement 
has been shown theoretically to suppress the optical-phonon scattering, believed to be the 
main mechanism for fast damping of BO in QWSLs. Over the last three years, we have made 
great progress toward demonstrating Bloch oscillations in QDSLs. In the first two years of 
this project, we studied the negative differential conductance and the Bloch radiation induced 
edge-magnetoplasmon resonance. Recently, in collaboration with Prof. Kono’s group at Rice 
University, we investigated the time-domain THz magneto-spectroscopy measurements in 
QDSLs and two-dimensional electron systems. A surprising DC electrical field induced THz 
phase flip was observed. More measurements are planned to investigate this phenomenon. In 
addition to their potential device applications, periodic arrays of nanostructures have also 
exhibited interesting quantum phenomena, such as a possible transition from a quantum Hall 
ferromagnetic state to a quantum Hall spin glass state.   
 

It is our belief that this project has generated and will continue to make important impacts in 
basic science as well as in novel solid-state, high frequency electronic device applications.  
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Accomplishments 
 
We have made great progress toward demonstrating Bloch oscillations in 
two-dimensional (2D) nanostructure arrays, e.g., metal grids and quantum (anti)dot 
superlattices (QDSL). We have observed a negative differential conductance and the 
Bloch radiation induced edge-magnetoplasmon resonance. In collaborating with Prof. 
Kono’s group at Rice University, we have also performed the time-domain THz 
magneto-spectroscopy measurements in QDSLs and in two-dimensional electron systems. 
During the past three years, numerous invited and contributed presentations were given, 
and four papers were published and submitted by team members. Overall, this project has 
generated and will continue to make important impacts in basic science as well as in 
novel solid-state, high frequency electronic device applications. 
 
In the following, we list a few results that manifest our progress. Firstly; a negative 
differential conductance (NDC) was seen at high source-drain bias (Vdc) in the I-V 
measurements. It is known that the occurrence of a BO and the associated 
Bragg-diffraction can induce a NDC. Our observation of this NDC may represent the first 
evidence of Bloch oscillations in 2D QDSLs. Secondly; in our magneto-transport 
experiments, under high Vdc, a resonance-like resistance spike was observed. The value 
of the magnetic (B) field where the spike occurs varies as Vdc is changed. In fact, when 
plotting Vdc vs B, a relationship of Vdc ∝ 1/B is observed. This 1/B dependence is 
probably due to the so-called edge-magnetoplasmon resonance (EMP). EMP resonance 
has been observed before in quantum dot array samples, however, under external high 
frequency radiation. In comparing with previous experiments, we can conclude that in 
our QDSL experiment the required high frequency radiation is probably provided by 
electron self-radiation, i.e., BO. Thirdly; in the time-domain THz magneto-spectroscopy 
measurements, a surprising DC electrical field induced THz phase flip was observed. 
FFT analyses seem to show possible evidence of THz gain due to Bloch oscillations in 
QDSLs. Fourthly; we studied the quantum physics under extreme conditions in QDSLs. 
At very low temperatures and high magnetic fields, fully developed quantum Hall states 
are observed at the Landau level fillings nu = 1, 2… What’s really interesting is that the 
strength of the nu = 1 state is significantly reduced. This observation is a totally surprise 
and vastly different from a bulk and unpatterned sample where the nu = 1 quantum Hall 
state is very strong. We believe that this weakening of the nu = 1 state and collapse of its 
energy gap at a critical effective disorder is due to a possible transition from a quantum 
Hall ferromagnetic state to a quantum Hall spin glass state. Finally; samples with 
different pitches and depths have been fabricated using the state-of-the-art E-beam 
lithography and interferometric lithography techniques.  
 
These above results are important for an ultimate direct demonstration of BO in QDSLs, 
and extremely well suited to Sandia’s unique expertise in RF electronics and quantum 
nanoelectronics. 
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Introduction 
 
Bloch oscillation 
Bloch oscillation (BO) [1] was originally proposed 
for electrons in three-dimensional (3D) crystals. 
Under an external electric field E, if an electron 
reaches the boundary of Brillouin zone (BZ) 
without being scattered, it undergoes Bragg 
reflection, passing back into the BZ on the opposite 
side. This results in a high frequency (f) quantum 
oscillation of electron at f = eEd/h, where d is the 
period of potential and h is Planck constant. 
However, natural mechanisms in 3D [2], such as 
electron scattering and Zener tunneling, occur 
before the electrons can complete a full oscillation, 
preventing the realization of BO. Realizing this 
difficulty, Esaki and Tsu [3] proposed using vertical 
quantum well superlattices (QWSLs). As shown in 
Fig.1, in this structure, the finite tunneling between 
two quantum wells creates so-called mini 
conduction bands and, thus, easily traversed 
mini-BZ’s. While tantalizing indirect evidence of 
BO’s has been obtained in QWSL with complex 
optical techniques [4], to date no direct evidence in 
electrical transport has been observed.   
 
The primary difficulties preventing Bo in the QWSL approach are (1) fast damping of 
oscillations by electron-optical phonon scattering, and (2) electric field domain formation 
[5], which is intrinsically related to the existence of the Wannier-Stark ladders and the 
so-induced negative differential conductance, and is believed to be even more detrimental 
in destroying BO. In the past, several ideas have been proposed to circumvent this 
problem, for instance, to replace the DC field with a strong AC field of a driving 
frequency much faster than the domain formation rate. However, this implies a need for 
cumbersome high frequency equipments. Another possibility to stabilize the electrical 
field in a QWSL is to shunt the current flow by semiconductor material at the superlattice 
edges [6]. But, fabricating this device structure is a daunting technical challenge.  
 
To overcome these technical obstacles, we propose to generate BO in lateral superlattices 
of periodic coupled nanostructures, i.e., quantum dot superlattices (QDSLs). A quantum 
dot is a semiconductor analog of an “atom”. Inside of a quantum dot, the motion of an 
electron is confined in all three dimensions by an engineered potential well and its energy 
is quantized into a series of eigenstates. This complete quantization is very similar to an 
electron in an atom. When many quantum dots form a periodic crystal lattice, or QDSL, 
the coupling between dots leads to the formation of coherent bonding-antibonding states, 
and thus the so-called Bloch minibands. When biased with an external electric field, a 
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Fig. 1 Schematic conduction-band 
diagram of quantum well/dot 
superlattice of period d, without 
(top) and with (bottom) electrical 
field E. Wannier-Stark ladder is 
shown in the bottom plot. When an 
electron jumps from one ladder to 
the immediate lower ladder, a 
photon is emitted. This is Bloch 
oscillation. The frequency of Bloch 
oscillation is f = eEd/h. 
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miniband transforms into even-spaced Wannier-Stark ladders (as shown in Fig.1), and 
BO is generated. Depending on the magnitude of DC electric field (e.g., ~ 10kV/cm) and 
the period of superlattice (50-350nm), the BO frequency can be continuously tuned from 
~70GHz (in the region of millimeter wave) to ~500GHz (the lower end of terahertz 
regime). In contrast to QWSL, in QDSL, by varying the strength of electric field and its 
orientation with respect to the crystal axes, it is possible to suppress completely the 
electron-optical phonon scattering [7]. As a result, the BO damping time, even at room 
temperature, may exceed the BO period. Furthermore, in QDSL, varying the coupling 
strength between two quantum dots allows us to finely tune the junction resistance. A 
finite junction resistance can be used as the shunt resistance, and may help to stabilize the 
electrical field in QDSL and prevent formation of electric field domains.  
 
Shallow two-dimensional electron systems 
This project proposes to fabricate novel periodic 
coupled nanostructures, i.e. a quantum dot 
superlattice, for generating coherent Bloch 
oscillation, and to use it as new source and 
detector for high frequency electromagnetic 
radiation. One of the challenges we had to face is 
the firm control of the quantum dot size. This 
will determine the overlap between two quantum 
dots. For this purpose, a shallow (e.g., ~ 80 nm 
below sample surface) yet high mobility 
two-dimensional electron gas (2DEG) is desired. 
These two requirements generally are traded 
against one another, but we have led the efforts 
to achieve this ability. Recently, we have shown 
that for a 2DEG about 80nm below surface electron mobility higher than μ=1x106 
cm2/Vs can be achieved (after illumination with a LED at low temperatures), as shown in 
Figure 2. 
 
Nanostructures patterning 
QDSLs are created by E-Beam lithography [8] and interferometric lithography [9] 
techniques. The high-resolution electron-beam lithographic techniques are best adapted to 
create arbitrarily shaped and positioned nanoscale features. The flexibility of 
electron-beam lithography, combined with controlled chemical wet etching, allows us to 
fabricate QDSLs with different geometry, i.e., square, rectangular, triangular, honeycomb 
lattices. This rich choice of the symmetry of electron confinement provides access to a 
large parameter space to optimize QDSL for the eventual observation of Bloch 
oscillation.  
 
Here, we show some impressive results, taken by Joel Wendt, from an initial exposure of 
a relatively new positive e-beam resist, ZEP520A, on the JEOL 9300FS, the newly 
equipped E-Beam machine at Sandia. A primary benefit of this resist is its superior etch 
resistance as compared to PMMA, but it also has excellent resolution and good process 
latitude. The resist thickness is a ‘standard’ and practical 300 nm, relatively thick for the 
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Fig.2 Electron density and mobility 
versus the distance between 2DEG 
and surface.  
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sub-100 nm features being exposed.  Figure 3a shows two 10 µm squares exposed with a 
0.1 µm gap between them and the resulting 0.1 µm line left behind. Normal PMMA just 
wouldn’t be able to achieve this, as the line would blow out in the middle without some 
fancy proximity correction. Figs. 3b and 3c show 1-D and 2-D gratings at 100 nm pitch 
with features down to 25 nm with excellent uniformity.  These features were evident 
across a relatively wide dose range (200-240 µC/cm2). 
 

   
  Fig. 3a        Fig. 3b       Fig. 3c 
Fig. 3: E-beam patterns using a new positive e-beam resist.  
 
The interferometric lithography (IL) is a perfect tool to create a macroscopic array, with 
overall dimensions extending from mm to cm of nanometer scale features. We have 
established a fruitful collaboration with Professor Steve Brueck at the University of New 
Mexico for using state-of-the-art IL technique to fabricate QDSLs.  
 
 

Negative differential conductance in two-dimensional electron 
grids 
 
Introduction   
In a periodic structure of electron potential, under an external electric field E, if an 
electron can reach the boundary of the Brillouin zone (BZ) without being scattered, it 
undergoes Bragg reflection, passing back into the BZ on the opposite side. This results in 
a high frequency (f) quantum oscillation of electron, i.e., Bloch oscillation (BO), at f = 
eEd/h, where d is the period of the potential, e is the electron charge, and h is Plank’s 
constant. When the magnitude of electric field and the period of potential are properly 
chose, the Bloch frequency can fall in the terahertz (THz) region. Proposed about 80 
years ago [1], recently, BO has gained a renewed interest, as a Bloch oscillator can be 
utilized as a solid-state, electrically-biased, frequency-tunable THz source and detector. 

 
So far, work on BO has mainly been carried out in vertical quantum well superlattice 
structures [3, 10-17]. On the other hand, a surface superlattice patterned in a two 
dimensional electron system (2DES) has long been proposed as an alternative device 
structure to generate BO [18-23]. A surface superlattice has three-dimensional 
quantization, as opposite to the conventional vertical quantum well superlattice [20]. As a 
result, gaps in the energy spectrum exist in all three dimensions. This provides the 
possible existence of BO at relatively moderate electric field. It has also been shown that 
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[20, 23], in surface superlattices, the electron-optical phonon scattering, one of the 
limiting mechanisms in achieving BO in the THz range in vertical superlattice, can be 
completely suppressed, and electrically generated BO can become possible. Furthermore, 
compared to a vertical superlattice, a surface superlattice offers various other advantages, 
for example, easy device fabrication and multiple fundamental frequencies. It can also 
fully utilize the benefit of long coherent transport time achieved in high mobility 2DES. 
To date, however, very few studies of BO in surface superlattices have been reported.  

 
Here, we report the experimental observation of negative differential conductance in 
surface superlattices, one of the signatures of BO. Two devices with varying coupling 
strengths are studied and in both samples NDC is observed. Our theoretical simulation, 
based on an energy relaxation-time approximation and a microscopic short-range elastic 
scattering model for the momentum relaxation [24], yields reasonable agreement with the 
experiment data.  
 
Device fabrications  
To minimize electron scattering by residual impurities and to achieve long coherent 
transport time, the starting material is a high mobility 2DES realized in a GaAs quantum 
well (QW) of width 300Å. The low temperature density and mobility of 2DES are n ~ 
2-3x1011 cm-2 and μ > 1x106 cm2/Vs, respectively, before patterning. After the patterning, 
the electron mobility was reduced somewhat. Two specimens (sample A and sample B), 
cut from two wafers, were studied. The growth structure for the two wafers basically is 
the same, except that in wafer A the quantum well is 200 nm below the surface, while in 
wafer B 150 nm below. A low frequency lock-in technique was used to measure the 
low-temperature magnetoresistance (Rxx) and a Keithley K236 source meter was used to 
supply the source-drain DC bias (Vdc) and to measure the source-drain current (Ids). 
  

 
 

Fig. 4 SEM picture of a metal grid device. 
 

In our experiments, a surface superlattice was realized in a two-dimensional (2D) 
electron grid device. The 2D electron grid was fabricated by depositing a periodic 2D 
metal grid on the surface of QW samples. The metal consists of Ti/Au, about 80 nm thick. 
A SEM picture of metal grid is shown in Fig. 4. The pitch of the metal grid is ~ 350 nm 
and diameter of the holes ~ 150 nm. To achieve this large-area nanometer scale 
patterning, the interferometric lithography technique was employed [25]. In experiments, 
the grid devices were cooled in darkness to 4K and a low temperature illumination by a 
red-light-emitting-diode was used to realize the low temperature density and mobility. 
During each cool down, the sample, including the metal grid was grounded. Due to the 
different thermal expansion coefficients of the metal and the GaAs/AlGaAs 
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semiconductor, the mechanical stress induces a two-dimensional electron potential 
modulation of the 2DES. 
 
Results and discussions 
To characterize this modulation, we have 
adopted well-documented methods [26] by 
measuring Rxx, as shown in Figure 5. Similar to 
previous results, a positive magnetoresistance 
near zero magnetic (B) field and the 
commensurate oscillations (marked by the red 
triangles) were observed. From the saturation B 
field of the positive magnetoresistance [27], we 
estimated that the modulation amplitude is ~ 3% 
of the Fermi energy (EF) (or ~ 0.3 meV) for 
sample A, and 15% (~ 1 meV) for sample B. To 
compare, in a reference sample without 
patterning neither positive magnetoresistance nor 
commensurate oscillation was observed in Rxx.  
 
Current-voltage (I-V) measurement was carried 
out at 4K, using a Keithley K236 source meter. 
In Fig.6, the I-V curves of sample A and sample 
B are shown. At small Vdc, both devices show ohmic behavior, and the corresponding 
resistance is ~ 1500 Ω for sample A and ~3000 Ω for sample B. These resistances include 
wire and contact resistance in addition to the sample resistance. In sample A (Fig. 6a), Ids 
reaches a maximal value of ~ 0.92 mA at Vdc ~ 2.7 V, and then decreases as Vdc 
continues to increases, reaching a local minimum of 0.89 mA around ~ 6.5V. After this, 
Ids increases again with increasing Vdc. In other words, a negative differential 
conductance is observed between ~ 2.7V and ~ 6.5 V. In sample B where a stronger 
modulation is achieved, again, a NDC is observed. In Fig. 6b and Fig. 6c, we show the 
I-V curves from two different cool-downs. Two features are worthwhile emphasizing: 1) 
The maximal current is significantly higher than that in sample A, ~ 2.5 mA at Vdc ~ 3.8 
V; 2) More complex structures are observed in the NDC regime. In particular, in Fig. 6c, 
3 current jumps are observed at Vdc ~ 3.8, 4.0, 4.6 V.  
 
The observation of NDC is exciting. Recall that NDC was predicted and taken as the 
evidence of Bloch oscillations in vertical quantum well superlattices by Esaki and Tsu in 
their original paper [2]. In surface superlattices, it was shown [18-23] that the bend-over 
in the I-V curve could also be due to the onset of Bloch oscillations, where electrons are 
able to cycle many times through the reduced Brillouin zone before a scattering even can 
happen [20]. Thus, the observed NDC may indeed represent the evidence of electron 
self-oscillations in our 2D electron grids. Furthermore, the I-V curves show different 
characteristics in the two samples, indicating that the I-V characteristics and the 2D 
electronic transport properties can be manipulated by adjusting the structure. Finally, we 
note the observation of current jumps in the NDC region in our GaAs surface superlattice. 
Similar current jumps have been observed in InGaAs/InAlAs vertical superlattices [28] 
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Fig.5 Magnetoresistance of a QDSL. 
The low field, low frequency 
oscillations are due to commensurate 
resonance, confirming the feasibility of 
electronic potential modulation by the 
QDSL. The high field ones are the 
Shubnikov-de Haas oscillations. The 
inset shows the QDSL pattern. 
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and in InAs/AlSb resonant-tunneling diodes [29], and were attributed to self-rectification 
of the electron oscillation [30].  
 

 
Fig. 6 (a) I-V trace in sample A. (b) I-V trace in sample B. Gray dash line represents the theoretical 
data. (c) Zoom-in plot of I-V trace in a different cool-down for sample B. Jumps in current in the 
negative differential conductance regime are apparent. 
 
Of course, other mechanisms, such as the formation of high electric-field domains and 
the so-called thermal runaway, can also induce an apparent NDC. It has been shown that 
stationary or propagating domains can form in 2D structures [31]. In this regard, it is 
possible that current jumps might be produced as the domain boundary moves through 
the interface fluctuations induced by surface superlattice [32]. On the other hand, the 
two-dimensional nature of conducting channels may help to stabilize the electrical field 
in surface superlattices and prevent the formation of high electric-field domains. It is 
interesting to study in future experiments whether the current jump observed in our 
device is related to the domain formation. 
 
To experimentally eliminate the possibility of thermal runaway origin, we employ a 
“differential” measurement setup (as shown in the inset of Fig. 7), where a thin film 
resistor of constant value R0 = 1500 Ω is connected in series with the two-dimensional 
electron grid (sample B). A small alternating current bias (Vac) is added to Vdc. The 
voltage measured by a lock-in amplifier is given by V = Vac×R0/(R0+r), where r = dV/dI is 
the differential resistance of the two-dimensional electron grid. Here, we have omitted the 
wire and contact resistance, since they are relatively small compared to |r| in the NDC 
region. If the observed NDC is of thermal runaway origin, r is always positive. 
Consequently, V is expected to be positive, at any Vdc. On the other hand, if r is caused by 
dynamic localization through BO, then r < 0. In the case of |r| >> R0, V is expected to be 
negative in the NDC region. In Fig.8, we show V as a function of Vdc. At small Vdc, V is 
nearly constant, consistent with the observation in Fig. 1 that our electron grid is ohmic at 
small Vdc. Starting from Vdc ~ 8V, V begins to decrease. At Vdc ~ 8.9V, V becomes 
negative [33]. The observation of negative V shows that, indeed, the observed NDC is not 
a result of thermal effects.  
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Fig. 7 “Differential” measurement for verifying the thermal runaway origin of the observed NDC. 
The inset shows the experimental setup. R0 is a thin-film resistor. 
 
To help understand the physical origin of NDC, a theoretical study was carried out for 
sample B with 15% modulation. We first calculate the energy band structures. In our 
device with a periodic in-plane potential modulation, the original modulation-free single 
conduction band is folded into many Bloch mini-bands with small mini-band 
gaps. Surprisingly, each mini-band can be represented by a few-component cosine 
function (similar to Esaki's band) with negligible contributions from higher harmonics. 
To calculate the I-V characteristic, we use a model similar to that by Gerhardt [24], 
except that our model treats a degenerate two-dimensional (2D) electron gas and assumes 
that the matrix element for elastic scattering is independent of the initial and final 
momentum (relevant to short-range impurity potentials), thereby treating 2D interband 
scattering with an equal weight. Also, in our calculation, a simplified model, where the 
electron potential modulation is one-dimensional in the field direction, is used. We 
believe that the physics for a qualitative understanding should essentially be the same as 
in the two-dimensional electron grid. Details of our theoretical calculations will be 
published elsewhere. The theoretical result is shown in Fig. 7b by the gray dash-line. 
Overall, the theoretical result is in a reasonable agreement with the experimental data, 
except that the decrease of current in the NDC regime is steeper than that of the 
experimental data. We also note here that the effective current cross section employed in 
theoretical calculations is smaller than the geometric cross section of real device by a 
factor of a few, and the electron scattering rate is larger than that deduced from the 
mobility. Those discrepancies probably are related to the assumptions of 1) a 1D model 
and 2) field-independent inelastic scattering rate we made in the calculation. Finally, for a 
self-consistent check, for a parabolic band in the absence of periodic potential modulation, 
our model yields linear field dependence of current and therefore no NDC. 
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Summary 
In conclusion, we have observed a negative differential conductance (NDC) in 
two-dimensional electron grid devices, and in one sample, several current jumps in the 
NDC region. Our theoretical modeling yields reasonable agreement with the 
experimental data. The observed NDC might represent the evidence of Bloch oscillation 
in our two-dimensional electron grids. 
 
 
 
Bloch oscillations induced edge magnetoplasmon resonance 
 
Introduction 
A two-dimensional electron system under periodic electronic potential modulation (i.e., 
QDSLs) and in quantizing magnetic field has been a model system to study electron 
dynamics. Over the years, many interesting phenomena have been discovered, for 
example, the edge magnetoplasmon resonance and the evidence of Butterfly spectrum.  
 
In a series of theoretical papers by Dmitriev and Suris [7], this structure of periodic arrays 
of weakly coupled quantum dots were thoroughly studied. In QDSL, the coupling 
between dots leads to the formation of coherent bonding-antibonding states, and thus the 
minibands. When biased with an external electric field, BO is expected to be generated. 
In contrast to QWSL, Dmitriev and Suris [7] showed that in QDSL, by varying the 
strength of electric field and its orientation with respect to the crystal axes, it is possible 
to suppress completely the electron – optical phonon scattering. Consequently, the BO 
damping time, even at room temperature, may exceed the BO period by several hundred 
times, therefore, making the observation of BO possible in electronic transport 
measurements.  
 
Experimental results and discussions 
In this section, we show results obtained from a metal grid sample, one type of QDSLs. 
Metal grid is created by inteferometric lithography technique combined with the lift-off 
technique. 
 
We have performed magnetotransport studies in this metal grid sample, and observed 
very exciting results. These results, we believe, may provide the first experimental 
evidence of Bloch oscillation (BO) in two-dimensional superlattice systems. In the 
experiment, we used four-terminal measurement technique. A fixed DC bias (Vdc) was 
applied between the source and drain, and the voltage drop across a pair of voltage leads 
was measured by a HP digital multimeter. At the same time, the magnetic (B) field was 
swept from 0 to 1T. In Fig. 8a, we show a single trace at Vdc = 1.4T. It is clearly seen that 
in whole B field range, Vxx varies quite smoothly, except at B ~ 0.35T where a 
resonance-like resistance spike is observed. In Fig. 8b, we show a series of traces at 
various Vdc’s. Interestingly, the spike only occurs at high Vdc and disappears when Vdc is 
small.  For example, at Vdc = 1.2V, no spike is apparent. In Fig.8c, we plot Vdc as a 
function of the B field where the spike occurs. Overall, it shows a dependence of Vxx ∝ 
1/B.  
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This 1/B dependence is exciting. To understand the physical origin of this 1/B 
dependence, we first point out that a similar 1/B dependence has been observed long 
before in a two dimensional semiconductor disk array under high frequency microwave 
radiation. It has been explained to be due to the so-called edge magnetoplasmon 
resonance [34], and its dispersion relationship is given by the following formula 
 

ω = -ωc/2 + (ω0
2+( ωc/2)2)1/2, 

 
where ω is the resonance frequency, ωc is the cyclotron resonance frequency, and ω0 is 
the plasmon frequency, determined by sample size. At high B fields where ωc >> ω0, ω ∝ 
1/B. Considering the similarity between our result and previous ones, we think that the 
1/B dependence in the metal grid might also be due to 
the edge magnetoplasmon resonance. Compared to 
previous experiments, however, no external radiation 
was applied to our metal grid. The required high 
frequency radiation, we believe, is due to the 
self-oscillation of electrons, i.e., Bloch oscillation. In 
other words, under a large Vdc, Wannier-Stark ladders 
are formed, and BO is generated. This high frequency 
radiation is then self-absorbed by the 2D electron 
system itself, coupled to the plasmon and cyclotron 
motions, which gives rise to the edge-magnetoplasmon 
resonance.   
 
The above traces were obtained in a metal grid sample. 
To address the effect of the metal grid on the surface of 
the quantum dot superlattice (QDSL) devices, we 
fabricated the two-dimensional “anti-dot” arrays 
without metal gird. In this new device, wet etching 
technique was utilized to “drill” holes on the top of the 
sample surface and thus to induce electrical potential 
modulation. Again, the negative differential 
conductance and the resonance-like magneto-transport 
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Fig.8 a) Voltage drop across a pair of leads Vxx vs B at a source and drain bias Vdc = 1.4 V. A 
resonance-like spike is clearly seen at B ~ 0.35 T.  b) Vxx vs B at several Vdc’s. c) Vdc as a 
function of the B field where the spike occurs. This set of data was obtained from the same 
sample, however, in a different cool-down. 
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Fig.9 Top panel shows the I-V 
characteristic in a 2D anti-dot 
array device. Bottom panel 
shows the resonant behavior in 
magneto-transport in the same 
device.   
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behavior were observed, as shown in Fig. 9. 
 
Before we finish this section, a few of remarks are inline. First, it is surprising that a 
collective, resonance-like can be generated, especially with so many electrons in our 
system. In previous work on Bloch oscillations in 1D QWSLs, the structures were not 
doped and a short laser pulse was used to generate a coherent electron ensemble. In our 
specimen, however, the carriers’ density is high, about 2x1011 cm-2. Their motion is most 
likely incoherent. Perhaps, by adding a magnetic field and forcing the electrons to 
undergo plasmon oscillations, it now becomes possible to generate a phase coherent 
ensemble of 2D electrons.  
 
Second, we notice that the resonance like behavior in the specimen with a metallic grid 
on the surface is much stronger than that in the specimen without a metallic surface. This 
might be due to the fact that the coupling between the BO induced radiation and the 
2DES becomes more efficient, through reflection of the metallic grid. 
 
Finally, the weak resonant behavior at high bias might be a temperature effect. In our 
experiment, the refrigerator temperature was kept at 4K. At small Vdc, e.g., Vdc = 1.4 V, 
the temperature reading from a nearby thermometer showed that the experimental 
temperature was still close to 4K. However, we did observe a heating effect at high DC 
biases. 
 
Summary 
To summarize, we have observed in later quantum dot arrays (or quantum dot 
superlattice) the negative differential conductance and a resonance –like behavior in the 
magnetic field. We show that this resonance like behavior is probably due to Bloch 
oscillations induced edge magnetoplasmon resonance. 
 
 
 
Theoretical studies of Bloch oscillations in lateral 1D 
superlattices 
 
Introduction 
Electrons driven by a high electric field E sweep through a Bloch band and yield 
oscillations in k space as well as in the real space. The oscillations are damped before the 
electrons sweep through the band many times because of scattering, reaching a steady 
state and yielding the negative differential conductance.  This fascinating phenomenon 
has received much attention in the past for its potential to yield THz generation and also 
for applications to negative differential conductance [3,13,24,35-45]. Esaki and Tsu [3] 
predicted that negative differential conductance can be observed in semiconductor 
superlattices without applying a huge electric field due to their large lattice periods, small 
Brilloin zones, and narrow bandwidths.  Investigations of Bloch oscillations have been 
carried out in THz emission [46-49], electro-optic detection [49,50], and four-wave 
mixing experiment [51].  
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In an extremely high field where the potential energy drop between the superlattice cells 
is larger than the bandwidth, full quantum mechanical approach in terms of 
Wannier-Stark ladders is convenient and conduction occurs through phonon-assisted 
hopping down the Stark Ladder [43,52]. In the opposite (but still nonlinear) limit, 
however, a semiclassical formalism based on the Boltzmann equation is preferable in 
studying the scattering effect. It is difficult to consider the interband tunneling effect in 
this approach. This effect is negligible if the bandgap is very large. In this paper, we 
present an exact analytic result for the time-dependent current and the distribution 
function in the latter nonlinear limit for a degenerate and non-degenerate electron gas in a 
one-dimensional superlattice miniband by employing a relaxation-time approximation for 
inelastic scattering with a constant (i.e., energy-independent) relaxation rate.  The 
current model is relevant to a quantum wire with a periodically modulated potential.   
The final transparent analytic results show clearly the distinct roles played by elastic and 
inelastic scattering in competition with the driving force for the damped Bloch 
oscillations and the steady-state current. They also show quantitatively how scattering 
damps the Bloch oscillation, the condition for the onset of the oscillations, and also the 
oscillation frequency. The present approach can serve as a guide to understanding the 
results of a more complicated full numerical treatment. A recent full numerical study 
which replaces the present relaxation-time approximation of inelastic scattering by 
microscopic electron-phonon scattering processes yielded results very similar to those 
predicted here [53]. A similar relaxation-time approach based on an iterative numerical 
solution [24] was employed earlier for a three-dimensional system for the steady-state 
current and yielded results qualitatively similar to those based on a microscopic treatment 
[40]. 
 
Relaxation-Time Model 
While our model can be generalized to multibands, we will study only the single-band 
situation for clarity. The time-dependent rate equation for the distribution function f(k,t) 
is given by 
 

 

where νin is a phenomenological inelastic scattering rate assumed to be a constant [24], 
f0(ε,k) is the Fermi function, and νel(k) is the elastic scattering rate given by 
 

 
Here, U(2k), D(εk})$ are the matrix element for the back scattering and the density of 
states at the energy εk, respectively. The total particle number is conserved in Eq.1 at all 
times. Here, we obtain the steady-state current for an arbitrary scattering potential U(2k) 
and the time-dependent current as well as the distribution function for a constant νel. In 
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the present one-dimensional lattice, the expression for elastic scattering in Eq.1 is exact 
in contrast to the past studies in three dimensions. In the latter case, similar 
back-scattering model νel [f(k,t) - f(-k,t)] was  employed by Ktitorov el al. [35] for a 
constant νel, neglecting elastic scattering to other directions. Similarly, Ignatov et al [41] 
studied the elastic momentum-relaxation model νel [f(kz,t) - f(-kz,t)], where � kz is the 
crystal momentum in the direction of the electric field. 
 
Defining 

 
from Eq.1 we obtain 
 

 
and 

 
 
where ωE= eEa/�, x = ka, a is the superlattice period, and  

 
We now carry out the Laplace transformation for the above expressions employing the 
notation 

 
 
using the initial conditions F-(x,0) = 0, F+(x,0) = f0(εk), and find 
 

 
 
and 
 

 
 
We then find from Eqs.8 and 9 
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where 

 
Equation 10 is solved by expanding 

 

 
 
Inserting Eqs.12-14 in Eq.10, we find 
 

 
 
where  
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are column vectors and B(s) is a symmetric square matrix given by 

 
 

If νel(k) = νel is independent of k, Eq.16 reduces simply to B(s){n,m}=(n2 + A0)δn,m, 
yielding 
 

 
For a tight-binding band structure, we consider 

 
 
The time-dependent current is given by 

 
 
Changing the sign x  -x for the interval (-π,0) and using Eq.3, we find  

 
 
For later numerical applications, we will adopt a single mode approximation and consider 
only the fundamental mode n=1 for simplicity: 

 
 
where t0= -t1= -Δ/2 in Eq.18. The Laplace transform of  J(t) is given  by 
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The steady-state current equals 

 
 
which can be found from Eq.15: 

 
 
For the simple case where νel(k) = νel is independent of k, Eq.22 reduces in view of Eq.17 
to 

 
 
where νtr= νin + 2 νel is the total transport relaxation rate. 
 
 
Time-dependent current 
In this section, we study the time-dependent current for the special case where the 
scattering rates are independent of k.  In this case, we find from Eqs.17 and 21, 
 

 
 
where νt= νin + νel is the total scattering rate. We find a damped non-oscillatory current 
for the low-field regime ν2

nE< � 0 and damped oscillatory solution for the high-field 
regime ν2

nE> > 0 defined by 
 

  
 
The inverse Laplace transform of Eq.25 yields 
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By replacing νnE<  i νnE> in the above expression, we find 
 

 
 
The oscillatory contribution to the current in Eq.28 appears starting from high values of n 
for a given electric field.  The steady state solution represented by the first terms in 
Eqs.27 and 28 is identical to the expression in Eq.24.  Damped Bloch oscillations and 
the steady-state current were also studied by previous authors in three dimensions 
[35,41,43-45]. 
 
In the remaining part of this section, we study some interesting properties of the 
time-dependent solution and the steady-state current employing the single mode 
approximation n=1. It is interesting to note that oscillation of the current is possible only 
in the high-field limit ωE > νel when the Bloch frequency exceeds  the elastic scattering 
rate: The condition for the onset of the oscillation depends  only on the elastic scattering 
rate which tries to  prevent the electrons from completing the cyclic motion in the 
Brillouin zone by reversing the direction of the motion.  Visible oscillations of the 
current can be seen only at high fields when the oscillation rate ν1E> is much larger than 
the damping rate νt. In the limit E  0, the current reduces to the linear response result J 
∝ τtr. For high fields ωE >> (νin νtr)

1/2, Eq.24 reduces to 
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Namely, the steady-state current becomes linear in νin and is independent of the elastic 
scattering rate.  It can be shown in general that the high-field current is linear in the 
strength of the inelastic scattering rate, independent of elastic scattering, and inversely 
proportional to the field beyond the relaxation-time approximation. The proof follows 
directly from Eq.1 as well from a microscopic expression for the electron-phonon 
scattering rate for the first term therein. In the high-field limit and for the steady state at 
t=�, we note that the gradient of the distribution function ∂f(k,t)/∂k in Eq.1 is very small, 
yielding a nearly uniform distribution f(k,t) = f� + O (1/ ωE), where  f� = f0

0 is a 
constant defined in Eq.14. Equation 1 can then be approximated to the first order in 1/ ωE 
as  

 
 
yielding Eq.29 via Eqs.14 and 19. The basic argument for the absence of the effect of 
elastic scattering for the high-field current in general relies on the fact that the initial 
equilibrium function fk

0 as well as the steady-state distribution function ≈ f� cancels out 
from the elastic scattering term of the Boltzmann equation due to energy conservation.  
 
The steady-state current in Eq.24 becomes maximum at 

 
 
and equals 

 
 
The optimum current condition in Eq.30 requires that the Bloch frequency equals 1/2π 
times the geometric average of the inelastic scattering rate and the transport relaxation 
rate. The maximum current becomes independent of the inelastic scattering rate for νin >> 
νel but decreases as (νin/νel)

1/2 in the opposite limit. Equations 30 and 31 satisfy correct 
scaling properties of Eq.1: Multiplying the inelastic and elastic scattering rates in Eq.1 by 
a constant has the effect of multiplying the field on the left hand side therein and that of 
Eq.30 by the same constant, while there is no other effect for the steady-state current as in 
Eq.31.  A recent full numerical study which treats the first (inelastic scattering) term of 
Eq.1 microscopically in terms of electron-phonon scattering yields results numerically 
similar to those given by Eqs.24, 29, 30, and 31 in their scale dependences on the 
inelastic and elastic scattering rates and ωE [53].  
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Time dependent distribution function 
The time-dependent distribution function is given by 

 
 
where Fn

-(t) was defined earlier and Fn
+(t) is the expansion coefficients for 

 
 
From Eqs.7,8,17, and 33, we find 
 

 
 
The inverse Laplace transform of Eqs.34 and 35 proceeds as before, yielding for the 
low-field case, 

 
and for the high-field case, 
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We also find for the low-field case 

 
 
and for the high-field case 

 
 
Note that the last term ∝ fn

0 in Eqs.36 and 37inserted Eq.32 yields the equilibrium Fermi 
function f(0)(εk). 
 
The quantity fn

0 can be evaluated for a general monotonous band at low temperatures 
T<<εb, where εb is the bandwidth, yielding  
 

 
 
where an= nkBT/ε’(xμ), ε’(x)=dε(x)/dx, ε(xμ) � μ,  and μ is the chemical potential.  The 
current model yields ε’(xμ) =Δ sin(xμ)/2. 
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Numerical studies and discussions 
For numerical studies, we consider only the fundamental mode n=1 for simplicity and 
assume a=100 nm. We first present numerical results for the case where νel is a constant. 
The time-dependent current given in Eqs.27 and 28 is displayed in Fig.10 for νin = 5x 
1010 sec-1 for several values of (νel, E) where νel is in units of  1010 sec-1 and the electric 
field is in V/cm.  A large total scattering rate νt damps the current oscillation quickly. 
Therefore, pronounced oscillations are seen only for small νel and large E, for example, 
for (νel, E)=(1, 20) (solid curve). The role of the lattice period in our model is to set the 
scale of E through the quantity Ea, which satisfies Ea<< Δ. For the upper two dash-dotted 
and dash-double-dotted curves, the oscillation is not visible because the oscillation 
frequency ν1E> (defined in Eq.26) is too small. The asymptotic currents for the lower 
three curves corresponding to the high filed E=20 V/cm are similar in magnitude and 
become nearly independent of νel, while this is not true for the two upper curves 
corresponding to the low field E=5 V/cm.  The temperature dependence is contained in 
the Fermi factor f1

(0) and also implicitly in νin.  

 
Fig. 10 The current as a function of the time for the inelastic scattering rate νin= 5x1010 sec-1 and 
the band width Δ=5 meV for several values of (νel, E) where νel is the elastic scattering rate in 
1010 sec-1, and E is the electric field in V/cm. 

 
The properties of the steady-state current J(�) in Fig. 10 is studied in more detail in Fig. 
11 which shows the current as a function of the field for several values of (νin, νel) given 
in units of 1010 sec-1. As seen from Fig.11 and Eq.24, J(�) decays as ∝ νin/E at high 
fields and becomes independent of νin and linear in νin.  The peak of the current 
becomes sharper for smaller νin ¥νtr.  Its magnitude depends only on the ratio νin/νtr as 
predicted by Eq.31 resulting in the same peak heights for the thin dash-double-dotted 
curve for  (νin, νel) = (1,1), the thin solid curve for (5, 5), and the thick solid curve for 
(10, 10).  The position of the peaks shifts as E ∝ (νin/νtr)

1/2.  The solid curve in the 
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upper right inset of Fig.11 displays the temperature dependence of the prefactor f1
(0) for 

the current on the left axis. At high fields, the IV curves decay as ∝ νin f1
(0)/E as 

mentioned above, where νin is proportional to a factor � = 1 + nph. Here, nph is the 
phonon occupation number for the phonon of energy kBTph and is large, viz. nph >> 1 at 
high temperatures T >> Tph. The phonon wave number along the wire for inelastic 
scattering can be at most q||=2π/a and is small. The characteristic phonon energy is then 
of the order �csqph �kBTph, where qph= (q||

2+qperp
2}1/2. Here, qperp ~ 1/l is the transverse 

component of the phonon wave vector and l is the radius of the wire. The quantity Tph is 
estimated to be 3.1 K for l = 20 nm and cs ≈ 5x105 cm/sec. The current then depends on 
the temperature through the factor Z(T)=� f1

(0) which is plotted on the right axis of the 
inset, showing a slow temperature dependence except at low temperatures, similar to the 
results obtained by previous authors for three dimensions [43,45]. 
 

 
 

Fig. 11 The steady-state current as a function of the field for several values of 

energy-independent scattering rates (νin, νel) in units of 1010 sec-1 and the bandwidth Δ = 5 meV. 
The upper right inset shows the temperature dependences of $f1

(0) (left axis) and the current J ∝ 
Z(T) (right axis) at high fields in the negative-differential-conductance region. The quantity Z(T) 
is defined in the text. 

 

For energy-dependent νel(k), only the steady-state current can be evaluated readily in our 
model.  Here, we consider the case where the scattering matrix element U(q) is 
independent of the momentum transfer q relevant for a short-ranged scattering potential, 
yielding 
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where δ = 2Γ/Δ << 1, G is the level damping introduced to avoid the one-dimensional 
van Hove singularity, and νel

* is the elastic scattering rate at the center of the band (i. e., x 
= ka = π/2).  The Fourier coefficients are then given by 

 
where Jn(t) is the nth order Bessel function, and νel,0 =0 for odd integers. We calculate 
J(�) from Eqs.22,23,15,11, and13. The result is displayed in Fig.12 for δ = 0.01 for the 
same set of values of (νin, ν∗el) as those of (νin, νel) studied in Fig.11.  The results are 
very similar not only in the shapes and magnitudes of the curves (considering the fact that 
ν∗el is somewhat different from νel) but also on the dependence of the peak heights and 
the positions on νin and ν∗el.  
 

 
 

Fig. 12 The steady-state current as a function of the field for the case where the elastic 
scattering matrix element is independent of the momentum transfer for several values of the 
scattering rates (νin, ν*el) in units of 1010 sec-1.  Here, ν*el is the elastic scattering rate at the 
band center, Δ is the bandwidth, and Γ is the level damping introduced to avoid the 
one-dimensional van Hove singularity in the density of states. 

 
Figure 12 displays the evolution of the distribution function f(k,t) in Eq.32 of an electron 
gas driven by an electric filed 20 V/cm for several time values corresponding to the time 



 29

points (represented by the symbols) for the current vs. time curve (solid line) of Fig. xxx 
repeated in the upper inset.  The system starts in equilibrium (dotted curve) at t=0. The 
distribution function is shifted maximally to the left at t=4.7 psec (indicated by the solid 
circles in the figure and the inset) as shown by the thick solid curve, yielding a maximum 
current indicated by the solid circle in the inset. The current becomes nearly zero at t=12 
psec (hollow square) and 19.5 psec (hollow triangle).  However, the distribution 
functions (thin solid curve and dash-dotted curve) are not symmetric with respect to x=0. 
The dash-double-dotted curve represents the steady-state distribution function beyond 
t>100 psec.   
 

 
Fig. 13 The evolution of the distribution function $f(k,t)$ at several time points (represented by 
the symbols, each lying on the concomitant curve) in units of pico second for the electric field 
E=20 V/cm, the bandwidth Δ=5 meV, and the  energy-independent scattering rates νin = 5x 1010 
sec-1 and νel =1010 sec-1$, relevant for the solid curve in Fig. 10. The symbols in the inset shows the 
current from Fig.10 at these time points for (νel, E) = (1, 20) where νel is in 1010 sec-1 and E is in 
V/cm. 

 
Comparing the thin dotted and the thick solid curves, it is interesting to note that f(k,t) is 
“rigidly” shifted, roughly speaking, to the left initially, yielding  the maximum current at 
t=4.7 psec. During this initial short time period, scattering plays a minor role compared 
with the acceleration and the drift imposed by a strong field. Note that the electron 
distribution function already spills over to the other side, i. e., ka ~ π at t=4.7, causing the 
current to decrease and start to oscillate. However, the maximum (minimum) value of 
f(k,t) decreases (increases) with time, as the electrons are scattered toward the final 
steady state, resulting in the flatter distribution given by the dash-double-dotted curve.  
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Fig. 14 (a) An image plot (i.e., the top view of (b)) and (b) a three-dimensional surface plot of the 
distribution function f(k,t) as a function of the time (in units of pico second) for E=20 V/cm, Δ=5 
meV, N=105 cm-1, T=4 K, and the energy-independent scattering rates νin = 5x 1010 sec-1 and νel = 
1010 sec-1, relevant for the curves in Fig.13. The function f(k,t) evolves from the Fermi function 
f(0)(k) at time t=0 when the field is applied. 

 
The oscillations of the distribution function and the decay of the peak amplitude toward 
the steady state are clearly demonstrated by an image plot of f(k,t) in Fig.xxx (a) and a 
three-dimensional surface plot in (b). The slanted red stripes in (a) and slanted ridges in 
(b) at early times indicate nearly regid drift motion of the populated band of the electrons 
in k space from the initial Fermi distribution inside -kF � k � kF toward the zone 
boundary at ka=-π, spilling over to the other zone boundary at ka = π with increasing 
time. These oscillations repeat for a longer period of time for a smaller total scattering 
rate νt according to Eq.28. Also, the oscillation frequency ν1E> = (ω2

E - ν2
el)

1/2 becomes 
faster for a larger field and a smaller elastic scattering rate. The red stripes in (a) and the 
ridges in (b) decay eventually into a uniform steady background due to diffusive 
scattering with time. The horizontal dark red stripe in (a) and the redish ridge along the 
time axis in (b) in the region near ka ~ - 1.5 for t>40 psec represent a region with a 
relatively larger electron population which emerges toward the steady-state.  This region 
of enhanced electron population is also seen near ka ~ - 1.5 from the dash-double-dotted 
curve in Fig.xxx. 
 
 
Summary 
We have presented an exact analytic result for the time-dependent current and the 
evolution of the distribution function in a nonlinear electric field for a degenerate and 
nondegenerate electron gas in a one-dimensional superlattice miniband employing a 
relaxation-time approximation for inelastic scattering.  Our results show clearly the 
distinct roles played by elastic and inelastic scattering and demonstrate the dynamics of 
the competition between the acceleration by the electric field and scattering by phonons 
and static impurities in a transparent way in producing the damped Bloch oscillations and 
the steady-state current.  They also show quantitatively how scattering damps the Bloch 
oscillation, the condition for the onset of the oscillations, and also the oscillation 
frequency. The present approach can serve as a guide to understanding the results of a 
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more complicated full numerical treatment. A recent full numerical study which replaces 
the present relaxation-time approximation of inelastic scattering by microscopic 
electron-phonon scattering processes yielded results very similar to those predicted here 
[53]. 
 
 
 
Transition from a quantum Hall ferromagnetic state to a 
quantum Hall spin glass state  
 
Introduction 
On the one hand, electron-electron interaction plays an important role in the 
two-dimensional electron system and has manifested itself in displaying many novel 
many body ground states. For example, due to strong Columbic interaction, at nu=1, all 
the electron spins align with the external magnetic field, giving rise to a ferromagnetic 
order [54-56]. Consequently, the energy gap (Eg) of the nu=1 state is much larger than 
that of bare Zeeman splitting (Ez). On the other hand, an equally important aspect in the 
many-body 2D electron physics is the interplay between disorder and e-e interaction. In 
the case of the nu=1 quantum Hall ferromagnetic state, it has been shown [57,58] that 
with more and more disorder, eventually, the ferromagnetic state will be destroyed and 
undergo a quantum phase transition to, for example, a possible quantum Hall spin glass 
(QHSG) state [58].  
 
So far, previous studies on the nu=1 QH state have mainly been carried out in the clean 
limit, where the ground state of QHF prevails. Little, however, has been performed 
systematically in studying the possible phase transition from QHF to QHSG as a function 
of increased disorder. This difficulty mainly originates from a lack of control in realizing 
a tunable disorder.   
 
In this section, we present experimental results of the nu=1 quantum Hall state in a 
quantum antidot array sample. In these samples, by continuously tuning the electronic 
potential modulation, or the “effective disorder” (ED) defined by the ratio of antidote 
modulation strength over the 2DES Fermi energy (EF), we have observed a sudden 
collapse of its energy gap at an apparent critical disorder, indicating a possible transition 
from QHF to QHSG. Furthermore, in the weak disorder regime, the tilted magnetic field 
measurements show that the energy gap shows a concave-like Btotal dependence, while in 
the strong disorder regime, the energy gap is linear with Btotal, with slope of 3g*μB.  
 
Samples 
The starting material is high mobility 2DES realized in a GaAs quantum well 
heterostructure. The well width is 300A. Before pattern, when cool in dark, the electron 
density is 1.6x1011 cm-2 and mobility is ~ 4x106 cm2/Vs. The 2DES density in the after 
patterned samples is tuned by the dose of a low temperature illumination using a light 
emitting diode, and can be tune from 0.2x1011 to 2.4x1011 cm-2.  
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Experimental results and discussions 

In Figure15, we show the temperature dependence of Rxx in high magnetic fields, with 
nu=2 and 1 well developed at T = 0.3K. In the whole measurement temperature range, 
the nu=2 quantum Hall state is still strong and the resistance minimum is virtually zero. 
On the other hand, the nu=1 state shows a very strong temperature dependence, Rxx 
rising from a vanishingly small value at T = 0.3 K to Rxx ~ 100 ohm at T = 1.2K. From 
the activation analysis, we deduce that the energy gap at nu=1 in this sample is ~ 4K.  
 
We have carried out a systematic density 
dependence of the energy gap at nu=1, as a 
function of 2D electron density. The 
electron density is continuously tuned by 
applying different LED illumination dose. 
In Figure 16, we show the energy gap as a 
function of the effective disorder (ED). 
The effective disorder is defined by ΔV/EF, 
where ΔV is the modulation strength, 
deduced from the positive MR around B=0, 
and EF is the Fermi energy. It is clearly 
seen that at small effective disorder, the 
energy gap decreases rather slowly, for 
example, from 25 K at zero modulation for 
a bare sample to a 22 at ED = 0.01. The 
decrease accelerates as ED continues to 
increase, and drop sharply at ED ~ 0.08, from 22K at ED = 0.08 to ~ 2K at ED ~ 0.1. 
 
Figure 17 shows the angular dependence of the energy gap at� nu=1 in a large 
modulation limit. It is clearly seen that over a large range of B field the energy gap 
increases roughly linearly with the total magnetic field, suggesting that in this disorder 
regime the Zeeman splitting is the dominant mechanism in determining the nu=1 energy 
gap, not the electron-electron interaction. The slope of 0.88K/T, however, is about 3g*μB 
and larger than that expected from a bare Zeeman splitting (g*μB). 

0.00 0.05 0.10 0.15
0

5

10

15

20

25

 

 

E
ne

rg
y 

G
ap

 a
t ν

=1
 (K

)

Effective Disorder (Bp/n)

critical disorder?

Fig.16 shows the effective disorder 
dependence of the nu=1 energy gap.   

 
 

Fig.15 Quantum Hall effect in QDSL. Left panel: Rxx vs B at T = 0.3K. Right panel: 
Temperature dependence of Rxx.  
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It is surprising that the energy gap at 
nu=1 is significantly reduced in our 
QDSL sample. In comparison, the nu=1 
energy gap in an unpatterned sample 
greatly exceeds the Zeeman energy, due 
to the formation of the ferromagnetic 
ground state. Of course, the presence of 
antidot makes the 2D system more 
disordered and will reduce the energy gap 
at nu=1. Our experiments show that this 
disorder, however, seems to affect more 
on the energy gap of the nu=1 state than 
nu=2. Indeed, in Fig.2a, the resistance 
minimum remains vanishingly small at 
2K, while the nu=1 minimum is clearly above zero. To understand this collapse of nu=1 
energy gap, we notice that in a series of paper, it was shown that the disorder plays an 
important role in determining the ground state at nu=1 in the quantum Hall regime, at 
small disorder, the ground state is a ferromagnetic state. As the disorder continues to 
increase, the ground state eventually becomes a quantum Hall spin glass state [58]. Our 
observation of the collapse of the energy gap at nu=1 at the critical effective disorder may 
present the first evidence of this long predicted transition.  
 
This possible phase transition from 
quantum Hall ferromagnetic state to 
quantum Hall spin glass state is 
exciting. To further study this 
transition, we carried out a very 
preliminary experiment on the 
resistively detected NMR (RDNMR) 
measurements. As shown in Fig. 18, 
the sample was mounted on a 
rotating stage, and an NMR coil of 
11 turns was wound around the 
sample. In the experiment, the filling 
factor was fixed and close to nu=1. 
All the measurements were done at 
the base temperature of the dilution 
refrigerator, ~ 20 mK. However, the 
electron temperature was visibly 
higher due to microwave radiation. 
In Fig. 10a, we show the 75As NMR 
signal at the tilt angle of 11.2° and 
the magnetic (B) field is 7.136T. A 
resonance is clearly seen at 52.123 
MHz.  In Fig. 18b, we plot the 
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Fig.17 Energy gap at ν=1 as a function of total 
B field. The straight line is a linear fit.
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Fig.18 a) 75As NMR signal at Btotal = 7.136T. The tilt 
angle is 11.2°. The FWHM of the resonance at 52.123 
MHz is ~ 17 KHz. b) Resonance frequency as a 
function of total B field. The straight line is a linear 
fit. The bottom picture shows the setup of NMR coil 
and sample on the rotating stage. 
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resonance frequency as a function of tilt angle or total B field (Btotal). A linear Btotal 
dependence is observed. It has a slope of 7.29 MHz/T, consistent with the gyromagnetic 
ratio of 75As nuclei. Surprisingly, a positive finite interception of ~ 74 KHz is observed at 
Btotal=0. At the present time, it is not known whether this finite value is an artifact. T1 
measurements were also performed. The above results are exiting, however, preliminary. 
For example, it does not tell the spin polarization directly. To gain this information, we 
need to perform Kight shift measurements. At the same time, we need to extend our 
studies to other integer quantum Hall states and the fractional quantum Hall states, and 
collaborate with theorists to explore in depth the underlying many-body quantum electron 
physics. This work will be performed in collaboration with scientists at the magnet lab in 
Tallahassee. 
 
Summary 
In summary, we study the energy gap at the Landau level filling nu=1 as a function of 
potential modulation strength in two quantum dot array sample. It is found that the 
energy gap of the nu=1 quantum Hall state is more or less constant as small effective 
disorder. As it approaches a ED of ~ 0.1, the energy gap drops quickly from ~ 22K at 
ED~ 0.08 to ~ 2K at ED ~ 0.10. This collapse of energy gap may present the first 
evidence of a proposed transition from quantum Hall ferromagnetic state to quantum Hall 
spin glass transition.   
 
 
 
Some preliminary experimental results  
 
Reversed Bloch oscillations measurements  
To further study the transport properties of a 
Bloch oscillator, we conducted the so-called 
reversed Bloch oscillation measurement [15] 
in an anti-dot array, where the I-V 
characteristic was measured while the device 
was under an external high frequency (f = 
136 GHz) radiation. In Figure 19, we show 
the results of dI/dV, measured in an anti-dot 
array sample. For sake of comparison, we 
also include here the dI/dV result, measured 
in the same sample without radiation. It is 
clearly seen that a resonant dip shows up at 
VDC ~ 1.5V with radiation, while no resonant 
behavior is observed without radiation. It is 
not clear to us at the present time what is 
responsible for the dip at VDC ~ 0.3V. Now, with a newly equipped high frequency 
back-wave-oscillator, more systematic measurements are now under plan. 
 
Bolometric measurements 

 
Fig.19 Reversed Bloch oscillation 
measurement -- dI/dV measured with and 
without an external high frequency radiation.  
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Bolometric measurements were carried out 
in one QDSL device. In this type of 
measurement, a very sensitive 
thermometer, a Cernox low temperature 
censor from Lake Shore Cryotronics, was 
used and glued on the chip very close to 
the QDSL. The resistance of the Cernox 
was measured as we swept the DC bias. 
Strong signal was indeed observed at high 
DC biases. Sharp resonant-like peaks, as 
shown in Figure 20, were observed. At the 
present time, more measurements are 
under going to understand the possible 
relationship between these resonant peaks 
and the Bloch oscillations. 
 
Time-domain THz spectroscopy measurements 
The use of optical techniques to semiconductor nanostructures has generated a lot of 
exciting results. In the above, we have summarized our progresses on the transport 
studies of Bloch oscillations in QDSL. In these experiments, the observed phenomena are 
of the ensemble average. It is very difficult to study the coherent properties of Bloch 
oscillations, since the oscillatory motion of individual electron is just averaged out, and 
the external current flow represents the ensemble motion. To overcome this difficulty, we 
need to perform ultra-fast optical spectroscopy for investigating coherent Bloch 
oscillations in QDSL. This kind of measurements has been a powerful technique in 
identifying the collective excitation modes in coupled nanostructures. In collaboration 
with Prof. Kono’s group at Rice University, we conducted time-domain THz 
magneto-spectroscopy measurements in QDSLs and in two-dimensional electron systems. 
A surprising DC electrical field induced THz phase flip was observed. Furthermore, FFT 
analyses of the data seem to show possible evidence of THz gain due to Bloch 
oscillations in QDSLs. More measurements will be carried out in this direction.   

 
Fig. 21 Photoluminescence in QDSLs under different DC bias. 

 
Photoluminescence in QDSLs 
We also conducted the PL measurement in the 2D anti-dot arrays, under various 
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Fig.20 shows the signal of a bolometer very 
close to QDSL. The measurement 
temperature is 4K. 
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source-drain biases, shown in Figure 21. It was observed that the PL peak, corresponding 
to the GaAs band edge emission, became surprisingly broadened at high source-drain 
biases. It almost disappeared at VDC = 4V where the system was close to the negative 
differential conductance regime. For the sake of comparison, we did more measurements 
on laser power and temperature dependence. It appears that the broadening in Figure 19 
is unlikely due to an electron heating effect. More studies are needed to understand this 
PL result.  
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