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Introduction

Formation of nanoparticles on mineral surfaces controls
the reactivity of mineral surfaces and soils and
the fate and transport of contaminants

Fe-rich soils

Environmental
Molecular

Approaches Contaminant sites

Environmental nanoparticles are often poorly-crystalline or meta-
stable structures, whose kinetics of formation and growth are poorly
understood. Further, the sorption or growth of nanoparticles on min-
eral surfaces may control the mineral surface’s reactivity and modify
its ability to influence contaminant transport. Due to the characteristic
length scale, a holistic of the i

and kinetics of nanoparticle formation on mineral surfaces is difficult
to achieve with traditional methodology. In this work, our intent is to
determine the molecular nature of nucleation on surfaces, the kinetics
of surface nucleation and growth, and the effect of crystal surface to-
pology using new synchrotron-based techniques.

We have approached these objectives by: (1) combining state-of-the-
art crystal-truncation rod diffraction (CTR) and grazing incidence
x-ray absorption fine structure spectroscopy (GIXAS) techniques to

the thi i le geometry of silicate
‘monomer sorption on the r-plane of hematite; and (2) developing a
new grazing-incidence small angle x-ray scattering (GISAXS) setup
at SSRL (0.08 nm-! < q <8 nm-) to explore the initial development
of environmental nanoparticles on various mineral surfaces. This
study also includes complementary techniques such as atomic force
microscopy (AFM), bulk SAXS, dynamic light scattering (DLS),
XRD, and TEM.

CTR allows detailed atomic
structural analysis of the
upper several layers of a
erystal and overlaying water
or sorbate layers.
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‘GIEXAFS yields direct information on
specific absorbate atom interatomic dis-
tances to atoms on the surface.
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Silicate Sorption on Hematite

CTR Analysis: Comparison between arsenate and
silicate sorption on the (1102) surface of hematite

Although both silicate and arsenate are the tetrahedral anions, silicate sorption geometry
to the hematite surfaces is different from that of arsenate
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Iron Oxide Nanoparticles on Quartz
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The CTR analysis of silicate sorbed on the hemati
nificant fraction as being ordered on the surface, af
with a monodentate-like geometry. This geometry|
observed in pyroxene and amphibole minerals, and
how the beginnings of a silicate surface phase ma

Complementing this work, the first Si K-cdge GIE|
collected and this data indicate that th

Nanoparticles on mineral surfaces under dry c
Measured with GISAXS

Silicate sorbs to hematite surface with a
rather than other sorption geometries
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The complexed silicate on the hematite (1102) surface is linked by a single
oxygen to surface Fe, i.e. a monodentate connection, with an interatomic Si-Fe
distance close to those observed in the nontronite and acmite structures. This is
the first evidence that identifies silicate as a well-defined sorption complex rather
than only as an amorphous surface precipitate.
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Using Local Monodisperse Approximation, Mean particle diameter of hematite nanoparticles: 7.86 nm
(Stdev: 0.32 in log-normal distribution)
This result is consistent with measurements using other techniques. Dprs = 7.18 nm and Dsaxs = 7.54 nm

Heterogeneous nucleation and growth of nanoparticles
at water-mineral interfaces

Surface steps direct the iron oxide nucleation and affect the kinetics of nucleation and growth of
iron oxide nanoparticles at water-quartz interfaces
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A4 min reaction time, iron oxide nanoparticle shape is disc shape (lateral diameter: 5.26 + 0.50 nm;

height: 1.87 £ 0.20 nm). Particle interspacing (Sinterparticle = 27/dm) is 10.4 + 0.3 nm.
With time, the particle interspacing decreases and polydispersity of particles increases.
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At4 min reaction time, iron oxide nanoparticle shape is disc shape. Particle interspacing is 10.4 0.3 nm.
At 31 min, the particle interspacing decreases quickly, which means the nuclei begin to coalesce with each
other and form larger surface clusters
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appears to precipitate on the surface as a poorly or
with a small Si-O-Si coordination number. This pl
the colloidal silica used in polishing samples, and
aged to form by the presence of such contaminants
To our knowledge, thi

the first detailed molecular analysis of silicate adsd
on iron oxide surfaces, and perhaps on any mineral
In the other part of our study, we devised the firs
plication of GISAXS in aqueous systems and studi
nucleation and growth of iron oxide nanoparticles
interfaces using in situ time-resolved GISAXS. Th
sizes and shapes of nuclei and the interspacing bet:
quartz surfaces are determined as a function of exp
the direction of x-ray beam with respect to that of
oxide nuclei started to grow close to steps rather t
31 min, the nuclei began to coalesce with each othg
surface clusters. We found that the surface steps di
nucleation and affect the kinetics of nucleation an¢
oxide nanoparticles at water-quartz interfaces. Thig
provide statistically improved morphological infor
ronmental nanoparticles compared with AFM and
real-time geochemical kinetics analysis of nanopa
reactions.

Molecular-Level Investigation Tools for|
Environmental Interfaces

CTR: ordered sorbate atomic structure at the mine|
GIEXAFS: sorbate sorption geometry (ordered an
mineral surfaces.

GISAXS: size, shape, distributions of the early nuy
ticles at water-mineral surfaces (/n sifu time-resol

AFM: Imaging of surface reactions in real time.

Future Plans

By using this arsenal of newly developed state
niques, we intend to investigate the mechanisr
the nucleation and growth of nanoparticles on
varying step density (i.e. varied surface topolof
ence of heavy metal ions or organic compound
ent temperatures.
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