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Thermal neutron imaging support with 
other laboratories
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Project overview

Goals:
Detect and locate a source of thermal neutrons
Distinguish a localized source from uniform background
Show shape and size of thermalizing material
Test thermal neutron imager in active interrogation environment
Distinguish delayed neutrons from prompt neutrons
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Technical approach

• Compressed He-3 position-sensitive wire chamber

• Cadmium coded aperture

• Continuous acquisition for passive mode

• Time-gated data acquisition for active mode 

• Fast Fourier Transform processing
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Early papers on coded apertures

• E.E. Fenimore and T.M. Cannon, “ Coded Aperture Imaging with 
Uniformly Redundant Arrays, ” Applied Optics, 17, 337-347, (1978)

• E.E. Fenimore and T.M. Cannon, “Uniformly Redundant Arrays: 
digital reconstruction methods”, Applied Optics, 20, 1858-64 (1981)

• S.R. Gottesman and E.E. Fenimore, “New family of binary arrays for 
coded aperture imaging”, Applied Optics, 28, 4344-52, (1989)
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Thermal neutron imaging support with 
other laboratories

Deliverables:
• Quarterly Technical Reports
• Quarterly Budget Reports
• Publications
• Presentations at Conferences 
• Final Technical Report

Capability improvement addressed by project success (relevant to the 
non-proliferation mission):

• Improved search capability
• Improved diagnostic capability
• Improved arms control signatures
• Improved active interrogation of shipping containers
• Improved explosives detection capability
• Improved monitoring of dry fuel storage containers
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Progress to date 

Various neutron sources
•Cf-252 (spontaneous fission)
•Am-241+Li (alpha,n)
•Bremsstrahlung + W or Pb (prompt photo-neutron)
•Bremsstrahlung + DU (photofission, delayed neutrons)
•D-T generator (14 MeV neutrons slowing to thermal)

Different moderators
•Polyethylene
•Paraffin wax
•Water
•Melamine

Object shapes and sizes
Single pixel
Multiple separated objects
Round, diameter up to 1/3 field of view
Triangle, rectangle, torus Demonstration of multiple-

source counting capability
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Pu oxide cans in water jackets at SRL

TOP VIEW SIDE VIEW

5 cm water is not enough
10 cm water 
gives good 
thermalization



9

Imaging experiments at INL

• 252Cf sources in three 10 cm polyethylene cubes

• The neutron diffusion length is less than the 10 cm cube size so the 
center cube is suppressed

• Agrees with Monte Carlo results (right- Alain Lebrun)

R = 3 m
Angular resolution ~ 2 deg
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Leakage of thermal neutrons from dry storage casks 
at INL Tech Area North

Thermal neutron image

Examples of storage casks at Idaho National Lab

Klaus-Peter Ziock, Gus Caffrey, Alain Lebrun, Leon Forman, Peter Vanier and Jason Wharton,
Conference Record  of IEEE Nuclear Science Symposium, 2005, Puerto Rico.
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Back illumination  with thermal neutrons

Photograph Neutron Image

BPE Shielding Wooden wedge

Neutron source
behind 

paraffin cylinder
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Cf-252 or Pu in melamine moderators
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Prompt photoneutrons from high-Z targets

• A pulsed electron 
accelerator produces high-
energy x-rays 
(10-MeV) to generate 
photonuclear reactions

• Nuclear materials will 
undergo photofission and 
generate prompt and 
delayed neutrons

• The delayed neutrons 
continue to be emitted after 
each prompt neutron 
emission

D.R. Norman, J.L. Jones, K.J. Haskell, P. Vanier and L. Forman, 
IEEE NSS-MIC Conference Record, October 23-29, 2005
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Thermal and epithermal neutron detection

Epithermal
neutron

Thermal
neutron

Cd
PE

He-3

Epithermal
neutron

Thermal
neutron

He-3

INL PHOTO-NUCLEAR DETECTOR BARE He-3 DETECTOR
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Neutron responses after short pulses of photons

Epithermal

Neutron Response for Image 3
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Delayed neutron images
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Depleted uranium in polyethylene
– 6.5-17.5 ms image window
– 69k neutrons, mean = 72, σ = 28

Tungsten in polyethylene
– 6.5-17.5 ms image window
– 17k neutrons, mean = 122, σ = 41
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Time progression of image and background 

• Fast neutrons slowed down to 
thermal energy in 10’s of 
microseconds

• Time-of-flight distribution for 
source pixel retains Maxwellian
distribution of delayed neutrons 
from fission in DU+poly target

• Background dies away as a 
function of distance from 
thermalization materials in 
scene

BNL and INL time spectra for DU plus poly target
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BNL/INL time spectra of W/poly
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Interlaced Linac and Detector Gating for Delayed Neutrons
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Detail of gating schematic 
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15 Meter Standoff Detection
DU target with poly, 10 min acquisition, gated (delayed) 1080 counts

Accelerator distance = 15 m
Detector distance = 2.4 m (a 1 m2 detector would have same solid angle at 16 m)

Bright spot in 1-second delayed image implies fissionable material 
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DU TARGET 15m FROM ACCELERATOR

1080 DELAYED THERMAL NEUTRONS

MEAN =106
SIGMA = 31
MAX =256

4.7 SIGMA
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REDUCING BACKGROUND
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Recent experiments at Idaho 
Accelerator Center

• Reduced high voltage on He-3 chamber to avoid saturation of preamps

• Higher count rates achieved for prompt component

• Explored effects of better shielding of accelerator and converter

• Explored time gates in the range 0.2 ms to 20 ms 

• Should be able to reduce background

Long time gate Shorter gate
More shielding

Extra shielding
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Future work for the remainder of the project

• Continued active interrogation experiments at INL 

• More quantitative estimates of fluxes of  
photons
fast neutrons
epithermal neutrons
thermal neutrons

• Suppression of effects of gamma flash on detector
• Time sliced imaging – separating direct signal from background scatter
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