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ABSTRACT

We present a measurement of B(π0 → e+e−γ)/B(π0 → γγ) using data taken in 1999

by the E832 KTeV experiment at Fermilab. The π0s were produced by KL decays

in flight that are fully reconstructed. We find 63, 693 KL → 3π0 → γγ γγ e+e−γ

decays in KTeV data (an increase of a factor of ∼ 20 in event statistics over previous

experiments), and normalize to KL → 3π0 → 6γ, to extract

B(π0 → e+e−γ,me+e− > 15MeV/c2)/B(π0 → γγ) = (3.920 ± 0.016 ± 0.036)×10−3,

where the first error is statistical and the second is systematic. Using the Mikaelian

and Smith prediction for the e+e− mass spectrum as implemented in the KTeV Monte

Carlo to correct to the full e+e− mass range yields

B(π0 → e+e−γ)/B(π0 → γγ) = (1.1559 ± 0.0046 ± 0.0107)%.

This result is consistent with previous measurements and with theoretical predictions,

and the uncertainty is a factor of three smaller than any previous measurement.
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CHAPTER 1

INTRODUCTION

1.1 Motivation for Studying B(π0 → e+e−γ)/B(π0 → γγ)

Richard H. Dalitz first postulated the decay π0 → e+e−γ in 1951 while thinking

about the images cosmic rays produced on photographic plates. These images of

large nuclear ‘stars’ (as they were called at the time) had allowed experimentalists

to establish the existence of neutral π mesons. The decay π0 → γγ was confirmed

by looking at the energies of electrons created when the photons converted in the

plates; this method was also used to establish an upper limit on the lifetime of the

π0. However, the lifetime measurement was limited by the fact that most (∼ 97%) of

the photons converted too far away from the nuclear ‘star’ for the resulting electrons

to be identified. Dalitz realized that the interactions describing the two-photon decay

process implied the existence of another decay mode, that of the π0 into one real

photon and one virtual photon, which would immediately internally convert to an

electron-positron pair. Although he calculated the rate for this mode to be down

by almost two orders of magnitude from π0 → γγ, Dalitz suggested that identifying

these decays would allow an improved π0 lifetime measurement [1]. This decay,

π0 → e+e−γ, was confirmed experimentally soon after the 1951 paper, and was

dubbed the π0 Dalitz decay.

The current world average for the measured π0 Dalitz branching fraction has a

large uncertainty (see Section 1.4). Since it is used experimentally as the normaliza-

tion mode for measuring branching ratios of many rare pion and kaon decay modes,

our relatively poor knowledge of the π0 Dalitz branching ratio limits these measure-

ments, since it must be taken as an external systematic error. A partial list of decay

1
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modes where π0 → e+e−γ has been used as a normalization mode (including cases

where KL → 3π0 → γγ γγ e+e−γ is the normalization mode) follows.

• π0 → e+e−

• KL → e+e−γ

• KL → e+e−e+e−

• KL → π+π−π0e+e−

• KL → π0e+e−γ

• KL → π0π0γ

Also, π0 → e+e−γ is a source of leptons in hadronic environments, meaning

knowledge of this process may be important in understanding background at the

LHC since the Dalitz decay could fake exotic signatures. Finally, the measurement of

B(π0 → e+e−γ)/B(π0 → γγ) has not been improved in 25 years. The quality of the

KTeV detector and the accuracy of the simulation combined with the vast amount of

data recorded during the experiment provide an opportunity to improve on previous

measurements.

Before discussing our measurement of B(π0 → e+e−γ)/B(π0 → γγ) using KTeV

data, it will be useful to have a basic understanding of the theoretical calculations

of the decay rate as well as a general idea of experimental approaches used in past

measurements. After a brief introduction to the neutral pion in Section 1.2, a review

of the theoretical work on this subject is given in 1.3, and a description of previous

experimental work is in Section 1.4.

1.2 The Neutral Pion: Properties and Decays

The neutral pion is a spinless pseudoscalar meson that was discovered by Jack Stein-

berger in 1950 [2, 3]. In the quark model, the neutral pion is composed of up and
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k1; ε2

k2; ε2

π0(p)

Figure 1.1: The Feynman diagram for the most common decay mode of the neutral
pion, π0 → γγ. k1 and k2 are the momenta of the photons; ε1 and ε2 are the
polarizations.

down quarks:

π0 =
1√
2

(
uu − dd

)
. (1.1)

The π0 decays electromagnetically, the dominant decay mode being π0 → γγ with

a branching ratio of (98.798 ± 0.032) % as of the 2006 listings of the Particle Data

Group [4]. The next most common decay is the Dalitz decay, π0 → e+e−γ, which

has a branching ratio of (1.198 ± 0.032) %. The Dalitz decay rate is usually reported

as a fraction of the π0 → γγ rate, that is, B(π0 → e+e−γ)/B(π0 → γγ), which is

(1.213 ± 0.033) % currently [4].

Both decays proceed via the pion coupling to a quark loop, which can then emit

real and/or virtual photons; the case where both are real photons is dominant, and

is shown in Fig. 1.1. The Dalitz decay occurs when one of the photons is virtual (γ∗)

and internally converts to an electron-positron pair directly at the point of the pion

decay. The Dalitz decay is thereby distinguished from the conversion of a real photon

in material (called external conversion), in which the e+e− pair is emitted away from

the primary decay point after the photon has travelled some distance. The Dalitz

decay is shown in Fig. 1.2.
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π0(p)

e+

e−
γ∗(k1)

k2; ε2

Figure 1.2: The Feynman diagram for the π0 Dalitz decay, π0 → e+e−γ. The virtual
photon, γ∗, immediately internally converts to the e+e− pair.

1.3 Theoretical Predictions

1.3.1 B(π0 → γγ) and the π0γγ Form Factor

We begin with the decay π0 → γγ because it is so closely related to the Dalitz decay. If

the pion were a point-like particle, its electromagnetic decay would be fully described

by quantum electrodynamics (QED); however, because the pion has an internal quark

structure, an electromagnetic transition form factor comes into the amplitude at the

π0γγ vertex [5]. (For a general review of form factors, see [6].) Since neutral pions

cannot couple to a single photon due to charge conjugation invariance, the simplest

electromagnetic vertex contains two photons, as given in the diagram for π0 → γγ,

shown in Fig. 1.1. The matrix element that describes this diagram is:

〈
γ(k1, ε1), γ(k2, ε2)|T |π0(p)

〉
, (1.2)

where (k1, ε1) and (k2, ε2) are the momenta and polarizations of the two photons, and

p is the momentum of the pion. This matrix element can be rewritten as

F

mπ
f

(
p2

m2
π
,

k2
1

m2
π
,

k2
2

m2
π

)
× εµνρσεµ1 ε

ν
2kρ1kσ2 , (1.3)
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where F is a dimensionless constant, mπ is the mass of the π0, and f

(
p2

m2
π
,

k2
1

m2
π
,

k2
2

m2
π

)

is the form factor of the π0. The case of two real photons (k2
1 = k2

2 = 0) is used to

normalize the form factor:

f(1, 0, 0) = 1. (1.4)

Together, Eq. 1.3 and Eq. 1.4 give

Γ0 = Γ(π0 → γγ) =
mπ|F |2

64π
. (1.5)

We can use this result to normalize the branching ratio of the Dalitz decay.

1.3.2 B(π0 → e+e−γ) at Leading Order

For π0 → e+e−γ, one photon is real and one is virtual, so the π0γγ form factor

becomes f

(
1,

k2
1

m2
π
, 0

)
, which is sometimes shortened to f

(
k2
1

m2
π

)
. In the me = 0

limit, k2
1 = E2

γ∗ − &k1
2 ≈ 4E+E− sin2(θ/2) is the virtual photon mass squared. E+ is

the energy of the positron, E− is the energy of the electron, and θ is the angle between

the electron-positron pair. Note that the virtual photon mass squared is equivalent

to the e+e− mass squared, and in the analysis, we will usually use the latter name

to refer to this quantity.

We can write the e+e− (γ∗) mass squared as a fraction of the π0 mass squared:

x =
k2
1

m2
π
, (1.6)

where

r =
4m2

e

m2
π

≤ x ≤ 1 (1.7)

is the range for x. For the decay to proceed, the virtual photon mass must be at
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least twice the electron’s rest mass (since we have an e+e− pair in the final state)

and cannot be greater than the invariant mass of the π0, its parent particle. The

differential rate for the π0 Dalitz decay (per π0 → γγ event) is, in terms of x:

dΓ

dx
=

(
dΓ

dx

)

QED
× |f(x)|2 , (1.8)

where (again, per π0 → γγ event)

(
dΓ

dx

)

QED
=

2α

3π

1

x
(1 − x)3

(
1 +

r

2x

)(
1 − r

x

)1/2
. (1.9)

Given the current experimental precision, the form factor is usually represented

as a function of a single parameter, a: f(x) = (1 − ax)−1. Furthermore, for small

a, we can use the linear approximation, f(x) ≈ (1 + ax), where a is the π0 slope

parameter [7]. The calculation of a is model-dependent, and has been done in several

frameworks, including vector meson dominance, fermion loop models, and lattice

QCD. Most models predict small values of a, in the range 0.02 − 0.04 [8]. Note that

the differential decay rate is strongly peaked at small x, while the effect of a is the

greatest for large x. Therefore, for the commonly accepted range of a values, the form

factor has a small (∼ 0.2%) effect on the total (integrated) decay rate [9, 10].

The tree-level branching ratio, B(π0 → e+e−γ)/B(π0 → γγ), was first calculated

in 1951 by Dalitz in the same paper in which he proposed the existence of the decay

mode (hence the nomenclature – e+e− pairs from internal photon conversions are

dubbed Dalitz pairs, and decays which involve these pairs are called Dalitz decays) [1].

He integrated
(

dΓ
dx

)

QED
from Eq. 1.9, and found that internal conversion should occur

with probability ∼ 1
160 for one photon, or ∼ 1

80 for either photon from the pion decay.
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His result can be expressed as

Γ(π0 → e+e−γ)
Γ(π0 → γγ)

=
α

π

{
4

3
ln

mπ

me
− 7

3
+

a

3
+ O

((
me

mπ

)2
)}

, (1.10)

where the first two terms are from the QED calculation, the third involves the strong

interaction parameter a (from the π0γγ form factor), and the fourth is due to next-to-

leading order (radiative) corrections as well as higher order terms in the form factor

expansion. Numerically, the first two terms give the leading order (QED) result of

B(π0→e+e−γ)
B(π0→γγ) = 1.185%.

In 1955, Kroll and Wada reproduced this leading order QED calculation and

included predicted distributions of B(π0 → e+e−γ)/B(π0 → γγ) as a function of

kinematic variables such as energy and angle [5]. They write the probability of π0 →

e+e−γ (normalized to π0 → γγ) as a function of x and y, where x is essentially the

same as in Eq. 1.6 and y is the energy partition between the electron and positron:

y =
|E+ − E−|
|&q1 + &q2|

. (1.11)

We have denoted the electron and positron momentum vectors as &q1 and &q2. The

possible values of y are between 0 and 1. Note that in the e+e− rest frame, y =

−β cos(θ), where β =
√

1 − r2

x is the velocity of the electrons in this system and θ

is the angle between the momentum of the positron and the pion. In this frame, the

range for y is −β ≤ y ≤ β.

Kroll and Wada note that x is an invariant, and therefore independent of the

motion of the π0, and y is essentially independent of the motion of the π0 as long as

the electron and positron are both highly relativistic and the angle between them is

small. We can see that this is generally the case: If the virtual photon’s momentum is
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large compared to the electron mass, the energy of the intermediate state (containing

the virtual photon) is very close to the energy of the final state. Because this scenario

has a small energy denominator, it is favored, and the emitted pairs do tend to have

small transverse momenta (and small angle between them) [5].

This tendency towards small angles between the electron and positron is an im-

portant point for this analysis, because it means that the electron and positron tra-

jectories will be nearly parallel (until they are bent in the magnet between the drift

chambers); therefore, the track separation in the first two drift chambers (before the

magnet) will tend to be small. Accurately simulating the drift chamber inefficiency

for close tracks is a challenge in the analysis, and will be discussed in several contexts

later (see Sections 2.4 and 6.1, among others).

1.3.3 Radiative Corrections to B(π0 → e+e−γ)

The first computation of the electromagnetic radiative corrections (of order α relative

to the leading order calculation) to B(π0 → e+e−γ)/B(π0 → γγ) was done in 1960 by

Joseph as his thesis at the University of Chicago, working under Dalitz himself [11].

He numerically calculated those corrections that would contribute significantly at

second order in α. The correction to the total rate was only about 1% of the leading

order result: (
B(π0 → e+e−γ (γ))

B(π0 → γγ)

)

rad
= 0.0105%. (1.12)

Combining this contribution from radiative corrections with the leading order result

of 1.185%, Joseph’s result for the total rate (at order α2) is:

B(π0 → e+e−γ (γ))

B(π0 → γγ)
= 1.196%. (1.13)
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The first semi-analytical calculation of radiative corrections was done in two re-

lated papers; the first was by Lautrup and Smith in 1971 [10] and the second was a

follow-up paper by Mikaelian and Smith in 1972 [12]. In describing radiative correc-

tions to the π0 Dalitz branching ratio, we focus on these papers for two reasons. First,

KTeV’s Monte Carlo Dalitz decay generator was based on the 1972 paper which, in

addition to giving an analytic calculation of radiative corrections to the total decay

rate for the π0 Dalitz decay, provides a table of numerical values for the radiative

corrections to the differential decay rate. Second, although these authors calculate

only those radiative corrections that are most significant at order α2, subsequent pa-

pers (such as [13] and [14]) have evaluated corrections neglected by these authors,

and confirmed that they have a negligible effect on the total decay rate.

The main contributions to the lowest order radiative corrections to the tree-level

diagram involve two types of corrections: virtual and real corrections. Virtual cor-

rections arise from the interference of the lowest order diagram with the one-photon

exchange diagrams (one-loop electromagnetic corrections to the virtual photon line

and photon exchange between the electron and positron lines – see Fig. 1.3). Real

corrections involve one of the electrons emitting a real photon (see Fig. 1.4). Both of

these corrections are essentially independent of the hadronic structure of the pion, and

hence computable in QED. Other corrections, which depend heavily on the pion struc-

ture, require a model of strong interactions and are difficult to compute. An example

of this type of correction is that due to the interference of one-photon and two-photon

exchange diagrams (essentially π0 → e+e− with bremsstrahlung). Because the two-

photon exchange diagrams have a virtual loop involving two off-mass-shell photons,

they require a model of the pion form factor for k2
1 and k2

2 both nonzero. Fortu-

nately, this contribution is not significant except possibly at high e+e−-mass, where

the overall rate is suppressed. Lautrup and Smith drew on the work of Brown [15] to
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π0(p)

e+

e−
π0(p)

e+

e−

Figure 1.3: The Feynman diagrams for the virtual corrections to π0 Dalitz decay,
π0 → e+e−γ. The left diagram represents an electromagnetic loop correction to the
virtual photon line, and the right diagram shows photon exchange between the e+

and e− lines.

justify neglecting this contribution.

π0(p)

e+

e−
π0(p)

e+

e−

Figure 1.4: The Feynman diagrams for the real (bremsstrahlung) corrections to π0

Dalitz decay, π0 → e+e−γ. Each of these counts twice, since there are two other
identical diagrams with the radiative and decay photons interchanged.

Theorists debated the importance of the two-photon exchange diagrams to the

radiative corrections during the 1980s [8, 9]. Lambin and Pestieau claimed they

are suppressed by a factor of m2
e

m2
π

[16], but this was disputed by Tupper, et al. [17]

and also by Beder, whose approximate calculations suggested these contributions are

completely negligible [18]. In any case, these contributions can only be important for

relatively large values of the e+e−-mass (x ≥ 0.6), where we have very few events in

this analysis (∼ 1% of our data).

Lautrup and Smith analytically compute the radiative corrections to the total

rate at second order in α in the 1971 paper to obtain a correction of 1.05 × 10−4, in

agreement with Joseph’s previous numerical calculation. This gives the total result,

including electromagnetic corrections, in Eq. 1.13. The lowest order differential decay
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rate,

1

Γ0

d2Γ(π0 → e+e−γ)
dxdy

=
α

π
|f(1, x, 0)|2 (1 − x)3

4x

(
1 + y2 +

r2

x

)
(1.14)

is also computed. To evaluate the radiative corrections to the differential decay rate,

the authors write
d2Γrad

dxdy
= δ(x, y)

d2Γ

dxdy
, (1.15)

where δ(x, y) = δvirtual + δreal. In the calculation of the real corrections, δreal, they

use the soft-photon limit, in which a maximum energy is imposed on the radiated

photon. This result cannot be used for small values of x, and therefore, they cannot

integrate their result over x to find the total corrected decay rate. It is clear that

using the soft-photon limit is not acceptable because the corrections they obtain are

negative for all values of x, but the total correction to the rate is known to be positive

(recall Eq. 1.12). To get the correct result, they know they must do the calculation

for all radiated photon energies, thus making their evaluation of radiative corrections

to the differential decay rate valid over the entire x range.

The work of Mikaelian and Smith in the 1972 paper does just this [12]. They

rework the calculations with no restriction on the radiated photon energies and find

that the corrections are small and positive for low x and large and negative for high x;

since most of the events are at low x, the small positive correction in that region has a

significant impact on the overall correction. Integrating their result yields a correction

to the total rate of 0.95 × 10−4. The slight disagreement with the previous result

of 1.05 × 10−4 is due to the numerical inaccuracy of computing a three-dimensional

integral which is badly behaved for small x.

The main result of the Mikaelian and Smith paper that is important for this
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analysis is a table giving the numerical values of the radiative corrections δ(x, y) for

x and y values over the whole kinematic range for each variable. The calculations

used to produce this table were repeated to produce a very finely binned (in x and

y) table of corrections for generating the π0 Dalitz decay in the KTeV Monte Carlo.

The Monte Carlo will be discussed in Chapter 4, with the mechanics of the Dalitz

decay event generation described in Section 4.9.2.

Recently, a group of theorists has revisited the radiative corrections to the π0

Dalitz decay [13, 14]. They have done some of the previously neglected calculations

that depend on the pion structure using Chiral Perturbation Theory. They com-

pute the contributions from two-photon exchange diagrams (which are corrections

to B(π0 → e+e−γ)/B(π0 → γγ) at order α2, but which had been assumed to be

negligible because they are proportional to m2
e

m2
π
) as well as corrections of order α4.

They find these contributions do have some impact on the corrections to the differ-

ential decay rate, but are only significant at large x, as expected. Significantly, they

find that the impact on the total rate is negligible, and they agree with the previous

results (Eq. 1.13) for the corrected decay rate.

1.4 Previous Measurements of B(π0 → e+e−γ)/B(π0 → γγ)

The 2006 PDG average for the π0 Dalitz branching fraction is B(π0→e+e−γ)
B(π0→γγ) =

(1.213 ± 0.030)%. It has a 2.5% uncertainty, and it is based on three measurements,

the most recent of which is 25 years old. The PDG listing [4] of these measurements

follows.

• (1.25 ± .04)% Schardt 1981, π−p → nπ0 [19]

• (1.166 ± .047)% Samios 1961, 3071 events, π−p → nπ0 [20]
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• (1.17 ± .15)% Budagov 1960, 27 events [21]

The earliest measurements of the Dalitz decay were done using π− beams and

hydrogen targets. The two most probable reactions in this set-up are:

π−p → nπ0 → nγγ (1.16)

π−p → nγ (1.17)

After Dalitz’s observation that, in addition to π0 → γγ, the decay π0 → e+e−γ was

also possible, the process in Eq. 1.16 could be used to look for that new decay [20].

First observations of a few events came in emulsions [22, 23, 24] and then via counter

techniques where a γ and an electron were detected in coincidence [25]. Following that,

two cloud chamber experiments yielded around 30 events each [21, 26]. One of these

is the Budagov measurement in the PDG listing. Although it had only 27 events

(and, therefore, large uncertainties), this result was significant because it showed

general agreement with the angular and energy distributions predicted by Kroll and

Wada (see Section 1.3.2). In particular, Budagov found an x distribution peaked

at small values of e+e− mass (corresponding to small angles between the electron

and positron) and a y distribution that showed a flat energy partition between the

electron and positron [21], both as predicted.

Experimental advances came with the advent of the hydrogen bubble chamber.

In 1961, Samios was able to gain a factor of 100 in event statistics using a negative

pion beam and a hydrogen bubble chamber, allowing more meaningful comparison

with predictions. The experimental result was B(π0→e+e−γ)
B(π0→γγ) = (1.166 ± 0.047)%, in

agreement with the predicted value of 1.196%. The angular and energy distributions

also coincided with theoretical predictions.
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It was 20 years before another dedicated measurement of B(π0→e+e−γ)
B(π0→γγ) was made

by Schardt [19]. The π−p → nπ0 reaction was again used; this time, a π− beam and

a CH2 target were used with a shower counter and a magnetic spectrometer, where

coincidences of a photon and an e+e− pair were required. To generate Dalitz decays,

the Monte Carlo used the same calculations of electromagnetic radiative corrections

that the KTeV Monte Carlo uses (based on the 1971 Lautrup and Smith paper and

the 1972 Mikaelian and Smith paper, both described in Section 1.3.3). The Schardt

result of B(π0→e+e−γ)
B(π0→γγ) = (1.25 ± 0.04 ± 0.01)% was limited by statistics.

In the analysis of KTeV data, we find 63, 693 KL → 3π0
D decays in KTeV data (a

gain of a factor of ∼ 20 in event statistics over the last experiments), and normalize

to KL → 3π0 (of which we find 3, 529, 065), to extract B(π0→e+e−γ)
B(π0→γγ) = (1.1559 ±

0.0046 ± 0.0107)%. The statistical error is 0.40% and the systematic error is 0.93%,

giving a total relative uncertainty of 1.01%.

1.5 Overview of this Dissertation

We have now discussed the motivation for studying the π0 Dalitz decay, as well as

the previous results from both theory and experiment. In the rest of this dissertation,

we will give a new result for this decay mode based on data from the KTeV experi-

ment. The next chapter describes KTeV’s experimental technique and its detectors,

with emphasis on those components most important for this analysis. Chapter 3

gives an overview of the measurement technique, discusses the data samples used,

and explains the analysis and event selection criteria. The measurement technique

relies on a detailed simulation of the detector; this Monte Carlo simulation is the

subject of Chapter 4. Next, we will give the results of the analysis and simulations

in Chapter 5, followed by a discussion of the systematic uncertainties on the mea-
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surement in Chapter 6. We performed several cross-checks to test our result; these

are described in Chapter 7. Finally, we discuss the importance of this new result and

other measurements that are affected by it in Chapter 8.

Throughout the remainder of this document, the intention is not only to make

the analysis conceptually clear to a broad audience of physicists, but also to include

enough specific details to enable someone familiar with KTeV to understand how the

analysis was actually carried out. This means that KTeV jargon and variable names

from KTeV analysis code have been included in some places, along with descriptions

of what the terms mean. It is the author’s hope that this will help those interested

in the details of the analysis without distracting or confusing the more casual reader.



CHAPTER 2

THE KTEV DETECTOR

This measurement of B(π0 → e+e−γ)/B(π0 → γγ) uses data from the KTeV ex-

periment at Fermi National Accelerator Laboratory (FNAL) in Batavia, Illinois. A

fixed-target experiment at the Tevatron, KTeV has two distinct operational modes

which use slightly different hardware and software: E799 searches for CP-violating

rare decays of the KL, while E832 was designed to measure the direct CP viola-

tion parameter, Re(ε′/ε) [27]. Data-taking periods for these two experiments were

interleaved, and took place during 1996, 1997, and 1999.

2.1 Overview of the Detector

For the Re(ε′/ε) analysis, which was the focus of E832, the experiment was designed

to produce two KL beams, one of which went through a regenerator (it was called the

regenerator beam to distinguish it from the other beam, called the vacuum beam) to

create a beam of particles in linear superposition of KL and KS . (In contrast, in the

E799 configuration, there is no regenerator, and, therefore, both beams are vacuum

beams.)

In addition to measuring Re(ε′/ε), the KTeV experiment produced many pions as

intermediate decay products of the kaons. In particular for this analysis, the vacuum

beam is a source of neutral pions, since it is composed of KL particles, about 19.6%

of which decay to three π0s [4]. We study this sample of 3π0 events to measure

B(KL → 3π0 → γγ γγ e+e−γ)/B(KL → 3π0 → γγ γγ γγ), which leads directly

to a measurement of B(π0 → e+e−γ)/B(π0 → γγ) after taking into account the

different detector efficiencies in each mode and the factor of 3 from the presence of

three neutral pions (as explained in Section 5.3). This analysis uses 1999 data from

16
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the E832 configuration, as this is the only configuration and data-taking period which

had a suitable trigger and enough statistics for this measurement.

The signal mode (the Dalitz decay) is detected by observing two charged tracks in

the spectrometer (four drift chambers and a dipole magnet) and seven electromagnetic

clusters in the Cesium Iodide calorimeter (CsI). The normalization mode is detected

by observing six photons in the calorimeter. A veto and trigger system help to

discriminate these events from other kaon and pion decays.

Several aspects of the KTeV detector are instrumental for making a precision

measurement of the Dalitz decay branching ratio. Energies and momenta of elec-

tromagnetic particles are measured at the sub-percent level, allowing excellent event

reconstruction. The total amount of material upstream of the calorimeter is ap-

proximately 4% of a radiation length, reducing particle interactions. The electron

and positron in the decay are easily identified due to being separated by a magnet.

Finally, years of experience and effort to understand the detector and to create a

very accurate simulation make it possible to use data from the KTeV experiment to

improve on previous measurements of the Dalitz decay branching ratio.
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Figure 2.1: The KTeV detector in the E832 configuration, viewed from above.
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The E832 configuration of the KTeV detector, shown in Fig. 2.1, has been de-

scribed in detail in many places [27, 28, 29]; here, we will give a general description

of the experimental setup and each detector component, with emphasis on those that

are most important for this analysis, while referring the interested reader to other

papers and theses for further information where appropriate.

2.2 Beamline and Target

KTeV is a fixed-target experiment located at Fermi National Accelerator Laboratory

(FNAL). The FNAL Tevatron’s 800 GeV/c proton beam is incident on a Beryllium

Oxide (BeO) target. The beam operates on a cycle approximately one minute and 20

seconds long, consisting of about 40 seconds when protons are injected and acceler-

ated and about 40 seconds when the accelerated protons are delivered to the target.

Protons arrive at the target in 1-2 ns-wide pulses in an “RF-bucket” of 19 ns. During

each ∼ 40 second “spill”, up to 7 × 1012 protons are delivered. (This is in contrast

to the one minute-long beam cycle during the 1997 data-taking periods, in which the

spills were ∼ 20 seconds.)

The rod-shaped target is 30 cm long (approximately one proton interaction length),

and 3 × 3 mm2 in the dimensions transverse to the beam. The RMS size of the beam

spot on the target (in the x−y dimensions) is about 250 µm [30]. In order to strike a

balance between maximizing the kaon flux and minimizing the neutron to kaon ratio,

the proton beam is incident on the target at a downward angle of 4.8 mrad with

respect to the line between the target and the center of the detector [27].
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2.2.1 Experimental Coordinate System

The center of the BeO target is the origin of the KTeV coordinate system. The line

from the target to the center of the detector is the positive z-axis, the positive y-axis

is up, and the coordinate system is right-handed.

2.2.2 Purifying and Collimating the Beams

The beamline is approximately 100 meters long, allowing purification and collimation

of the two kaon beams. Other hadrons, muons, neutrons, and photons, along with

the remains of the primary proton beam, are removed with a combination of sweeping

magnets and lead and beryllium absorbers. For each beam, there is a 1.5 meter long

primary collimator at z = 20 m and a 3 meter long defining collimator at z = 85

m. Each collimator’s two square holes are tapered to reduce scattering. Additionally,

there is a crossover absorber at z = 40 m to prevent kaons that do scatter from

crossing into the other beam. The locations of the absorbers and collimators are

shown in Fig. 2.2.

After passing through the collimators, the beams contain mostly neutrons and

kaons (in a 1.3:1.0 ratio), along with a small contamination (at a level several orders

of magnitude smaller than the level of kaons and neutrons) of other neutral particles

such as photons, neutral hadrons, cascades, and lambdas. Most of the neutrons do

not interact within the detector due to their long lifetimes. The beams pass through

holes in the mask anti veto (MA), which is just upstream of the regenerator (see

Fig. 2.2). The veto system, including the MA, will be discussed in more detail in

Section 2.6.
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Figure 2.2: The KTeV beamline, as viewed from above. The target is located at
z = 0.
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2.2.3 Accidental Counters

A set of counters are used to trigger on primary beam activity uncorrelated with

activity in the detector. (For a discussion of the trigger system, see Section 2.7.)

This accidental activity is recorded during data-taking and is later used in the Monte

Carlo to create a realistic simulation of underlying detector activity. The main set of

accidental counters are three counters that make up the 90◦ target monitor, so-called

due to their right-angle orientation with the primary beam at a small hole in the

target pile.

2.3 Decay Region: Vacuum and Regenerator Beams

There is an evacuated region from z = 28 m to z = 159 m, held at 10−6 Torr, through

which the beams travel. The vacuum reduces interactions between the neutral beams

and surrounding matter to a negligible level, and suppresses the scattering of charged

decay products. The detector reconstructs decays downstream of the defining colli-

mator (at z = 85 m). A vacuum pipe surrounding the evacuated volume increases

in diameter to 243.84 cm at the vacuum window, which seals the vacuum region

at z = 159 m. The window is made of kevlar and mylar and is 0.14% radiation

lengths [27]. The window is 7.6 mm thick, supports a force of 222 kN, and deflects

by almost 15 cm at its center under this force [28].

Although the regenerator beam is not used as a source of physics in this analysis,

the regenerator is used to determine the energy scale to apply to the data. This

will be described in Section 3.5.4. The regenerator is the source of KS particles in

the Re(ε′/ε) analysis, via coherent conversion of KL particles to KS particles. The

regenerator is composed of 84 scintillator modules, as shown in Fig. 2.3, and is located

from about z = 123.8 m to z = 125.5 m. To reduce systematic biases in the Re(ε′/ε)
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analysis, the regenerator was moved from one beam to the other every few minutes

during data-taking. This means that each event must be identified in the analysis as

coming from the vacuum or regenerator beam based on event reconstruction.

Figure 2.3: (a) Diagram of the regenerator, and (b) detailed view of the downstream
end of the regenerator. The kaon beam enters from the left.

To reduce interactions from the neutral beams and to reduce multiple scattering

and photon conversions of decay products, Helium fills the space between detector

components downstream of the vacuum window (z = 159 m). Additionally, there is

very little material (4% of a radiation length) between the vacuum window and the

calorimeter, most of which (60%) is in the trigger hodoscope (see Section 2.7.1) and

10% of which is upstream of the first drift chamber [27].
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2.4 Spectrometer

The spectrometer consists of four drift chambers (DCs); one pair is downstream of

a dipole magnet and the other pair is upstream of the magnet. The drift chambers

measure the x and y positions of the charged particles, and, by bending the charged

particle trajectories, the magnet allows us to determine the momentum of the particle

using the x and y slopes of the trajectories in both pairs of drift chambers. The z

positions (distance from the target) of the spectrometer components are given in

Table 2.1.

Chamber Distance from target (m)
DC1 159.44
DC2 165.59
magnet 170.00
DC3 174.61
DC4 180.51

Table 2.1: z-positions of the midplanes of the four drift chambers and the analysis
magnet.

2.4.1 Analysis Magnet

The analysis magnet between the upstream and downstream pairs of drift chambers

(at z = 170 m) is a dipole magnet with a 3 × 2 m2 aperture and a current of

1600 A [30]. While the experiment was running, the field produced was uniform to

better than 1%, and provided a 0.41 GeV/c momentum kick in the horizontal plane.

Even the small deviations in the field uniformity were studied and mapped, so that

the momentum of tracks traversing the field at different locations could be precisely

determined. The magnet polarity was reversed every 1-2 days during data-taking

runs to reduce systematic biases relating to the field orientation [27]. We return to

this point briefly as part of our cross-checks in Section 7.6.
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The field falls from a maximum field of 3000 Gauss to 60 Gauss at the location

of DC2 (4.4 m from the center of the magnet). This “fringe field” extending past

DC2 and DC3 slightly displaces the hit positions in these chambers. The magnitude

of the fringe field is measured using data, and a correction is applied in the tracking

algorithm (described in Section 3.4.1) to obtain the correct hit positions.

2.4.2 Drift Chambers

Each drift chamber is composed of four planes of sense wires. There are two planes

with horizontal wires to measure y hit positions (called the y-view) and two planes

with vertical wires to measure x hit positions (called the x-view). Interleaved between

layers of sense wires are layers of field-shaping wires. There are also field wires at each

drift chamber window so that the sense plane nearest the window is fully surrounded

by field wires.

The x − y size of the drift chambers increases as one goes downstream; DC1 is

1.26×1.26 m2 in the transverse dimensions, while DC4 is 1.77×1.77 m2. The number

of sense wires increases with the size of the chambers. DC1 has 101 sense wires per

plane, while DC4 has 140 sense wires per plane [27].

Each plane has a hexagonal cell geometry resulting from the six field-shaping wires

that surround each sense wire. Shown in Fig. 2.4, each cell is 6.35 mm wide and the

drift velocity is about 50 µm/ns in the equal parts argon-ethane gas. The “in-time”

window is 150 ns, corresponding to the maximum drift time across a cell [27]. The

two planes of sense wires in each view (x and y) are offset from each other by half

a cell to resolve the left-right ambiguity. In order to reconstruct tracks, the x and

y hit positions in the four chambers must be combined with energy and position

information from the calorimeter.
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Track 1 Track 2
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Figure 2.4: The drift chamber cells are formed by the six field wires (open circles)
around each sense wire (black dots). The vertical dashed lines are the boundaries of
the off-set cells, formed by the other plane in the same view.
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When a charged particle goes through a drift chamber, it ionizes atoms in the

gas mixture. The resulting electrons are accelerated by the electric field toward the

anode sense wires. As the ionization electrons gain energy, they ionize more and

more gas atoms, eventually creating an avalanche. When this avalanche of electrons

reaches a sense wire, it creates a current, as shown in Fig. 2.5. The wire-positions

and timing of these “hits” can be used to reconstruct the charged particle’s track.

The hits in the two x planes (or two y planes) are called a “hit-pair.” For a track

that is perpendicular to the drift chamber, perfect resolution would mean that the

sum of drift distances (SOD) from each hit pair should be exactly the width of a cell

(6.35 mm). An angular correction is applied for tracks that are not perpendicular to

the chamber. To be used in the track reconstruction, a hit-pair must have a SOD

within 1 mm of the cell width. The SOD resolution is 150 µm, resulting in a typical

single-hit position resolution of 110 µm and a hit-pair resolution of 80 µm [27]. The

track reconstruction algorithm will be described in more detail in Section 3.4.1, and

the tracking inefficiency will be discussed in Section 6.1.

Lecroy 3373 multi-hit time-to-digital converters (TDCs) measure the drift times

relative to the Level 1 trigger (see Section 2.7.2). The TDC time window is 2.5 times

longer than the in-time window and is centered around the in-time window. For track

reconstruction, only the earliest in-time hit on each wire is used, although hits before

the in-time window are recorded as early hits. Note that the TDC resolution is 0.25

ns, resulting in a 13 µm contribution to the position resolution [27].

Calibration of the drift chambers is a complex process. It is described in summary

here, with much more detail available in [28]. First, raw hit-times in a given plane

are aligned by determining a timing offset for each wire. Then, x(t) maps are used to

convert each drift time, t, into a drift distance, x. The time to distance calibration

is measured for each of the 16 planes using the assumption that the tracks uniformly
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Figure 2.5: A typical charged particle track through a drift chamber. The thin lines
are the drift paths of the ionization electrons towards the sense wires.
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illuminate each cell. This method assumes that the earliest TDC hits come from

positions closest to the sense wire, that the latest TDC hits come from positions

at the edge of the cell, and that larger times correspond to larger distances. The

x(t) calibrations were performed every 1-2 days, when the magnet polarity was being

reversed.

The position of each drift chamber relative to everything else in the experimental

setup is very important for accurate reconstruction of tracks. DC alignment measure-

ments were made every 1-2 days, when the magnet polarity was being reversed, using

dedicated high-intensity muon runs with no magnetic field. The transverse position

of the target relative to the drift chambers is found using K → π+π− decays in

the vacuum beam; the reconstructed kaon trajectory is projected back to the target.

Measurement of the CsI position relative to the drift chambers uses KL → π±e∓ν

decays [27].

After all calibration and alignment, the drift chambers measure x and y positions

with a resolution of about 110 µm and track momentum with a resolution of 0.4% at

36 GeV/c.

2.5 The CsI Calorimeter

The electromagnetic calorimeter is used to measure energies and positions of elec-

tromagnetic decay products. For the Re(ε′/ε) measurement, the calorimeter needed

to have excellent energy resolution and linearity as well as good position resolution

and fast signals. It also needed to be able to stand up to fairly high doses of ra-

diation without serious degradation. Because scintillating crystals met all of these

requirements, they were chosen for the calorimeter, despite several drawbacks. The

crystals are susceptible to bending and scratching and require a dry environment for
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handling and storage. Careful handling and specially built dehumidified rooms were

the solutions to these issues.

1.9 m
Figure 2.6: Transverse view of the CsI calorimeter. There are 868 5.0×5.0 cm2 outer
crystals and 2232 2.5× 2.5 cm2 inner crystals. The beam holes are 15× 15 cm2 each
and are 30 cm apart from center to center.

As seen in Fig. 2.6, the calorimeter is composed of 3100 pure Cesium Iodide

(CsI) crystals (also called blocks). In overall dimensions, it is 1.9 × 1.9 m2 by 50

cm deep. The 868 outer crystals are each 5.0 × 5.0 cm2, and are each viewed by

a 3.8 cm Hamamatsu R5330 photomultiplier tube (PMT). The 2232 inner crystals
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are each 2.5 × 2.5 cm2, and are each viewed by a 1.9 cm Hamamatsu R5364 PMT.

The smaller crystals allow for finer position resolution in the central region of the

calorimeter where most of the interactions take place. Each crystal is 50 cm long;

this corresponds to 27 radiation lengths for electromagnetic particles – therefore, the

energy from photons and electrons is virtually entirely contained in the calorimeter.

The calorimeter’s better than 1% electromagnetic energy resolution was attained by

individually wrapping, testing, and calibrating (see Section 2.5.2) each crystal for

longitudinal uniformity. Two square holes made of carbon fiber allow the neutral

beams to go through the calorimeter without hitting any material. Each beam hole

is 15× 15 cm2. For more information about the properties and characteristics of the

calorimeter, see [28].

2.5.1 Digitization

A Schott UV filter between each crystal and its PMT picks out the fast component

of the scintillation light; this results in an average light yield of 20 photo-electrons

per MeV of energy deposited [27]. Behind the PMTs are digitizers (DPMTs) which

integrate the charge from the PMT: the PMT anode is connected by a very short

cable to a circuit which digitizes the signal, stores the digitized value, and transmits

the signal on demand. Each DPMT records the charge from its PMT in several time

slices, providing information about the time profile of the energy deposit in the crystal.

Each time slice is equal to three buckets, and the first time slice includes the in-time

bucket [30]. For more specifics on these DPMTs, see [31]. The digitizers, which were

able to measure energies from a few MeV to 100 GeV, were located directly behind

the PMTs to reduce electronic noise to less than 1 MeV.



31

2.5.2 Energy Calibration

Calibration is required to convert the integrated charge measured by the DPMTs to

an energy measurement. First, the DPMT response to its PMT was calibrated with

a laser. Laser scans were done approximately once a week throughout data-taking;

they revealed deviations from a linear fit of the combined DPMT and PMT response

versus light level of less than 0.1% (rms) for each channel. Additionally, the laser was

used at 1 Hz at fixed intensity while data was being taken to correct for short-term

gain drifts, typically of less than 0.2% per day [27].

Second, the electrons from KL → π±e∓ν decays were used to calibrate the en-

ergy scale of each channel (that is, to determine the conversion from DPMT counts

to energy). Because the electrons are highly relativistic, we expect the ratio of their

energy to their momentum (E/p) to be peaked at 1. The momentum measurement

is made by the spectrometer; the energy measurement is made by converting the

DPMT signals into energies using a rough set of energy calibration constants. The

calibration constants are refined offline in several iterations so that the E/p distribu-

tion is centered at 1. Figure 2.7 shows this distribution after calibration. Figure 2.8

shows the energy resolution of the calorimeter after subtracting out the momentum

resolution (from the drift chambers).

The energy measurements are made using “clusters” of crystals centered on the

crystal with the maximum energy (the “seed block”): a cluster is a 3 × 3 group of

large crystals or a 7 × 7 group of small crystals. The energy is corrected for the

shower leakage outside the cluster crystals, leakage at the beam holes and calorimeter

edges, and for channels with energies below the 4 MeV readout threshold [27]. The

clustering algorithm and corrections to the energy measurement will be described in

more detail in Section 3.4.2.
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Figure 2.7: CsI calibration using electrons from KL → π±e∓ν decays. Figure cour-
tesy of E. Worcester.
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Figure 2.8: Energy resolution of the calorimeter. Figure courtesy of E. Worcester.
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2.6 Veto System

A system of veto counters is used to reduce trigger rates and backgrounds, as well

as to define apertures and edges that limit detector acceptance. The main vetoes

are the photon veto counters (groups of these are in various locations throughout

the detector), the mask anti (MA), the collar anti (CA), the hadron anti (HA), the

back anti (BA), and the muon vetoes. The placement of these detectors is shown

in Fig. 2.9. Each is briefly discussed below. For each veto counter, a signal above a

certain threshold generates a digital pulse which is sent to the trigger system. The

veto involvement in triggering is discussed in Section 2.7.

2.6.1 Photon Veto Counters

There are several sets of photon veto counters at various places in the detector config-

uration; a different name refers to each set, and their locations are given in Table 2.2.

Five circular ring counters (RCs) directly surround the vacuum decay pipe (upstream

of the vacuum window) to detect photons that leave the decay region; Fig. 2.10(a)

shows a ring counter. Each RC is made of 24 alternating layers of lead and scintillator,

totalling 16 radiation lengths.

Veto Counter Distance from target (m)
RC6 132.60
RC7 138.60
RC8 146.60
RC9 152.60
RC10 158.60
SA2 165.12
SA3 173.99
SA4 180.02
CIA 185.19

Table 2.2: Z-positions of the photon veto counters: ring counters (RCs), spectrometer
antis (SAs), and Cesium Iodide anti (CIA).
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Figure 2.9: Three-dimensional cut-away view of the KTeV apparatus. The compo-
nents that differ between E799 and E832 are labelled; recall that this analysis uses
the E832 configuration. Figure courtesy of E. Pod.
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Three spectrometer antis (SAs) are just upstream of drift chambers 2, 3, and 4,

again, to detect photons that are leaving the detector’s fiducial region as well as to

define the chamber apertures. The SAs detect stray photons down to energies of 100

MeV [32, 33].

The Cesium Iodide anti (CIA) is a photon veto counter around the outer edge of

the calorimeter. Analogous to the SAs, the CIA is just upstream of the calorimeter,

and detects photons that would escape the calorimeter. The missing energy due to

this photon leakage would cause misreconstruction of events. The CIA covers half a

crystal on the perimeter of the calorimeter.

(a) Photon Veto

66 cm

(b) Mask Anti (MA)

Figure 2.10: (a) Transverse view of a ring counter photon veto detector. Five of these
are between the regenerator and the vacuum window. The square hole is approxi-
mately 1 meter. (b) Mask anti (MA) photon veto detector at z = 123 m. The beam
holes are 9×9 cm2, and they are separated by 20 cm from center to center. The black
areas represent the active veto region on both diagrams. The PMTs are located at
the outer edges of the two detectors.

2.6.2 The Regenerator

Inelastic interactions in the regenerator contaminate the KS beam; to eliminate these

events, the regenerator PMT signals are part of the veto system. The inelastic inter-

actions leave deposits of a few MeV to 100 MeV from the recoil nuclear fragments.

Therefore, a signal of 8 MeV or more from any scintillator element in the regenerator
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causes the event to be rejected.

2.6.3 The Mask Anti

The mask anti (MA), as mentioned in Section 2.2.2, is just upstream of the regenerator

at z = 123 m. The MA aperture is slightly smaller than the regenerator to eliminate

beam particles that would miss the regenerator. The MA has two 9 × 9 cm2 holes

through which the beams pass. Figure 2.10(b) is a diagram of the MA.

2.6.4 The Collar Anti

The two beam holes in the calorimeter are surrounded by the collar anti (CA), shown

in Fig. 2.11, which is just upstream of the CsI. The CA defines the beam hole apertures

Figure 2.11: The collar anti (CA) is the dark square surrounding each of the calorime-
ter’s beam holes. The inner 1.50 cm (60%) of the crystals around each beam hole
are covered by the CA. The beams travel into the page. Wavelength-shifting fibers
transmit signals to the PMTs at the outer edges of the calorimeter.

by detecting photons that hit a beam-hole-edge of the calorimeter and rejecting those

events due to the energy leakage into the beamhole. Made of three layers of tungsten

and scintillator, the CA signals are transmitted by fibers to PMTs on the outer edge

of the calorimeter.



38

2.6.5 The Hadron Anti and Back Anti

The hadron anti (HA) and back anti (BA) are behind the calorimeter, downstream

of a 15 cm thick wall of lead bricks. Although the CsI is 27 electromagnetic radiation

lengths, it is only 1.4 hadronic interaction lengths, meaning that pions and other

hadrons may not shower in the calorimeter. The lead wall absorbs any leftover elec-

tromagnetic energy in addition to inducing any pions which did not shower in the CsI

to shower. These hadronic showers are then detected by the HA, and vetoed.

The lead wall and the HA each have a hole in them through which both beams

pass; the beams then go through a hole in a 1-meter thick steel wall, which is part

of the muon veto system (see Section 2.6.6). Behind this steel wall, the beams are

dumped into the BA. The steel wall between the HA and the BA prevents any back-

splash from the beam dump from producing signals in the HA. The positions of the

lead wall, HA, BA, and steel wall are given in Table 2.3.

2.6.6 Muon Veto Counters

Detector Element Distance from target (m)
Lead Wall 188.53
HA 188.97
Steel Filter (MF1) 189.09 - 190.09
BA 191.09
Steel Filter (MF2) 191.74 - 194.74
MU2 194.83
Steel Filter (MF3) 195.29 - 196.29
MU3 196.36

Table 2.3: Z-positions of the detector components downstream of the calorimeter.

The muon veto system is a series of steel walls and muon counters downstream

of the calorimeter. The first element, as was described in Section 2.6.5, is a 1 meter

thick steel wall (MF1) between the HA and the BA, used to shield the HA from
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the beam dump. Another steel wall, MF2, constitutes the neutral beam dump; it

is 3 m deep, 3.4 m high, and 4.3 m wide. Following this is MU2, a hermetic veto

of 56 overlapping counters which helps identify events with muons in the final state.

Another 1 meter thick filter wall of steel (MF3) and another set of counters (MU3)

are behind MU2. MF3 is intended to stop any remaining non-muonic activity (a 20

GeV/c pion has only a 0.5% chance of getting past MF3), while allowing most muons

to make it through and be identified (muons with momenta down to 7 GeV/c will

reach the MU3 counters). The positions of the elements of the muon system are given

in Table 2.3.

2.7 Trigger System

Kaon decays occur at such a high rate that it is impossible to record every event to

tape. In order to make efficient decisions about which events to record and which

ones to throw out, KTeV uses a three-level trigger system. A data acquisition system

(DAQ) manages the actual event recording. Since only a small fraction of the kaon de-

cays are interesting, the three levels of the trigger become progressively more detailed

in the signals they look at, as well as more time-consuming in their decision-making

process.

Levels 1 and 2 of the trigger system are hardware stages, while Level 3 is a

software stage. An online data split places all events that fall under a particular

physics category onto one set of tapes. Finally, a data crunch is done as a first pass

to filter through the events on a certain set of tapes to further narrow the sample for

a particular analysis. Below is a brief description of the way the trigger works; for a

more complete explanation, see [34]. In Section 3.2, we discuss the trigger and veto

requirements specific to this analysis.
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2.7.1 Trigger Hodoscope: V V ′ Counters

The so-called “trigger hodoscope” consists of two 0.95 m square banks of scintillator

counters called V V ′, viewed from the top and bottom by PMTs attached to lucite

light guides. The banks are located just upstream of the calorimeter, with the V

bank at z = 183.90 m and V ′ at z = 183.95 m. Because drift chamber signals

are delayed (due to the drift times of the electrons), the V V ′ banks provide fast

Level 1 trigger information on charged particles. Each of the 1.0 cm thick banks

has vertical scintillator paddles; the two banks are overset by half of a paddle to

reduce the possibility of missing a track through a gap between paddles. Tracks are

bent in the x plane by the analysis magnet; the hodoscope’s vertical paddles allow

for quick determination of the number of tracks in an event. As seen in Fig. 2.12,

there are beam holes in each bank to avoid radiation damage to the calorimeter from

interactions in the hodoscope.

2.7.2 Level 1 Trigger

The first level of the trigger system must make very fast decisions about whether an

event might be of interest by evaluating the state of the detector for each RF bucket.

It uses fast signals (Boolean “sources”) synchronized to the Tevatron beam structure

and simple logic to do basic pattern identification in each of the 19 ns buckets. Level 1

either decides the event is uninteresting or accepts the event for further consideration,

which begins the digitization of the detector. Importantly, Level 1 operates without

any deadtime, ensuring all events are looked at on the first pass.

Each source is either ‘on’ or ‘off’, depending on the signal from a particular de-

tector component. For instance, one source indicates whether there are at least two

counters hit in the V bank of the trigger hodoscope (another source operates anal-
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V1

V0

Figure 2.12: Diagram of the V and V ′ (also called V0 and V1) banks that make
up the trigger hodoscope. The V counters are offset from the V ′ counters by half a
paddle to minimize the possibility of missing a charged particle. The dark squares
are the beam holes.
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ogously for the V ′ bank). Another source, called “Energy-Total” (ET), indicates

whether there is at least 24 GeV of energy in the calorimeter, based on an analog

sum of PMT outputs. There are also sources corresponding to each veto detector.

The information provided by the sources is combined in logical requirements, reducing

the trigger rate. The raw Level 1 rate is 60 kHz, with no deadtime.

2.7.3 Level 2 Trigger

An accept decision by Level 1 begins the digitization of the detector in the form of

ADCs, TDCs, and latch modules, in addition to storing the continuously digitized

calorimeter information in the first-in-first-out buffers (FIFOs). The Level 2 trigger

uses custom electronics to do more complicated pattern recognition than Level 1,

using information from individual DC wires and calorimeter channels.

For charged triggers, Level 2 looks for hits in the y-view of the drift chambers,

as described in [28]. Only the y-view is used in hit-counting because the Re(ε′/ε)

analysis is very sensitive to systematic biases between the vacuum and regenerator

beams; since the wires in the y-view run in the x direction, events coming from both

beams will use the same wires (whereas events from one beam will preferentially use

the x-view’s vertical wires that are on the same side of the drift chambers as that

beam). It takes ∼ 800 ns to make a hit-counting decision. For some charged-mode

triggers, the y Track Finder (YTF) then determines whether the hits are consistent

with two straight tracks coming from a common vertex in the y-view; this typically

takes a few hundred ns.

For both charged and neutral triggers, Level 2 uses the Hardware Cluster Counter

(HCC), which counts isolated clusters of energy in the calorimeter. As described in

Section 2.5, a cluster is a set of contiguous channels with at least 1 GeV of energy.
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(Channels which touch only at a corner are not considered contiguous.) The HCC

takes each channel’s ‘on’ or ‘off’ signal from the ET board and looks at the crystals

surrounding the channels that are ‘on’ to form a cluster. The Dalitz decay trigger

requires seven or more “hardware clusters,” since the final state has seven decay

products. The algorithm for finding clusters is described in [28]; cluster-counting is

the most time-consuming part of the Level 2 decision, taking 1.5 µs on average.

If Level 2 issues an accept decision, digitization of the detector continues and the

detector is read out into VME buffers. If the event fails Level 2, the detector’s front-

end modules are cleared and the trigger system is re-set. The Level 2 rate is 10 kHz,

and the fractional deadtime is 35% (coming from 2-3 µs for a Level 2 decision and

∼ 15 µs for readout on a Level 2 accept). There is enough memory to store the data

from the entire spill, which is then used in Level 3 to make a final decision to accept

or reject the event.

2.7.4 Level 1 and 2 Trigger Definitions

The Level 1 and 2 trigger definitions for 1999’s 14 physics triggers are in a text

file that specifies the logic that the sources have to satisfy for each trigger. The

prescales are also kept in this file; some decays such as KL → 3π0 are so numerous

that we do not want to keep all of them, so the hardware prescale of 2 tells the

KL → 3π0 trigger (trigger 6) to keep only one of every two events that pass the

hardware trigger requirements. Prescaling common decay modes saves valuable disk

space and processing time for more rare events that are the objects of study.

The beam triggers include those for the Re(ε′/ε) analysis (K → π+π− and

K → π0π0), those for studying trigger inefficiencies, and those for studying rare

kaon decays. Additionally, there are beam triggers that record accidental activity
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from the accidental counters used later in the Monte Carlo to realistically simulate

underlying detector activity. There is also a set of calibration triggers, used to monitor

detector performance, such as the trigger for the laser calibration of the calorimeter

discussed in Section 2.5.2. Most of the calibration triggers are taken in the ∼ 40

seconds between spills, although some are taken continuously. Each of the triggers

has its own Level 1, 2, and 3 requirements; the requirements for a single trigger are

the same for both beams (vacuum and regenerator) and both regenerator positions

(left and right). For a detailed description of each of the various triggers, see [34].

2.7.5 Level 3 Trigger and Online Data Split

The Level 3 trigger decision is made in software by the data acquisition (DAQ) system.

If data from a spill has been written to memory, Level 3 has until the next spill

to make its decision before incurring deadtime. The system consists of 24 CPUs

running in parallel on four SGI Challenge servers, and does basic reconstruction with

very loose kinematic requirements to make a final accept or reject decision. Because

Level 3 reconstruction is happening in real-time, it uses online calibration constants.

These constants are refined later for the final analysis. Each of the four SGI servers

is referred to as a “DAQ plane.” Planes 1, 2, and 4 were used in a round-robin

manner to filter physics events while plane 3 was reserved for detector monitoring

and calibration triggers. We will return to the DAQ planes briefly in Section 3.3.

Very generally, for charged events, if the Level 3 software identifies a vertex can-

didate, it unpacks the calorimeter information and looks for clusters that match the

tracks. For neutral events, it looks for clusters that match the ones found by the

HCC. A fraction of all input events are tagged as “random accepts,” and kept re-

gardless of the Level 3 decision. Events are tagged according to which data sample(s)
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they belong to, and are written either to tape (for more common decay modes) or

to a large array of disks such that each disk holds events of like type based on the

tag. When a disk became full, it was spooled to an output tape. The split tapes for

a particular type of decay can then be used as a starting point for an analysis. It is

still time-consuming to read through an entire set of tapes corresponding to the decay

under study, so a crunch of those tapes is used to loosely filter through the events,

eliminating ones that are clearly not candidates for a specific analysis. This reduces

the number of events on which the final analysis code must be run.

Further prescales may also be applied at this time to reduce the rate for very

common decay modes; for instance, trigger 6 (the KL → 3π0 trigger) has a software

prescale of 5/2. Combining this with the hardware prescale of 2 (see Section 2.7.4)

gives trigger 6 an overall prescale of 5; that is, one in every five accepted events is

kept.
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DATA ANALYSIS

This chapter describes the data analysis necessary for the measurement of B(π0 →

e+e−γ)/B(π0 → γγ). Starting with the signal and normalization mode event sam-

ples provided by the requirements of two of the E832 triggers, we progressively ex-

clude more and more candidate events through a check of data-sample integrity, basic

track-finding and clustering algorithms, reconstruction of the decay vertex and parent

particle invariant mass, and a series of selection criteria. These steps result in refined

event samples for both the normalization mode and the signal mode that can then

be used to make the B(π0 → e+e−γ)/B(π0 → γγ) measurement.

3.1 Overview of Analysis Technique

The signal decay mode is KL → 3π0 with one π0 decaying to e+e−γ and the remaining

two π0s each decaying to γγ, denoted KL → 3π0
D, and the normalization mode

is KL → 3π0 → 6γ. Ideally, both signal and normalization samples would come

from the same trigger to reduce systematic errors associated with relative trigger

inefficiencies. However, the only trigger that would have been suitable for this, trigger

6, requires exactly six clusters at Level 3, while Dalitz decays produce seven clusters

in the calorimeter. Thus, trigger 6 (with a hardware prescale of 2, a software prescale

of 5/2, and an analysis prescale of 10) is used for KL → 3π0, the normalization mode.

Trigger 14 (with no prescale), which requires seven or more hardware clusters, is used

for KL → 3π0
D. (As a historical note, the original motivation behind trigger 14 was to

study the CsI energy reconstruction for close electrons; however, insufficient statistics

prevented such a study from being completed.) Trigger definitions for both triggers

are given below. Systematic errors associated with using two different triggers are

46
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discussed in Sections 6.5, 6.6, and 6.7.

3.2 Trigger and Veto Requirements

The detector sources discussed in Section 2.7.2 are combined in specific ways to form

the hardware (Level 1 and 2) trigger requirements for triggers 6 and 14. Below are

the logical trigger definitions (where * indicates the logical AND, and ! indicates the

logical NOT), followed by an explanation of each element in the definitions.

Trigger6 = SPILL * ET NEUT * VETO NEUT * !CA * HCC GE6

Trigger14 = SPILL * 2V * DC12 * ET NEUT * VETO CHRG * !HA PION * !CA

* HCC GE7 * 1HCY

Both VETO NEUT and VETO CHRG are formed out of basic veto sources:

VETO NEUT = !SA2 * !SA3 * !SA4 * !CIA * !REG * !HA NEUT

VETO CHRG = !SA2 * !SA3 * !SA4 * !CIA * !REG * !MU2

3.2.1 Trigger Elements Common to Both Modes

The trigger and veto elements required by both trigger 6 and trigger 14 and a brief

explanation of each are below.

• SPILL: Information regarding detector problems during data-taking was stored

in a database, where individual spills could be marked “bad” for various reasons;

both triggers require that none of the bad spill bits is on.

• ET NEUT: As discussed in Section 2.7.2, this source indicates whether an ana-

log sum of the calorimeter PMT signals shows an in-time energy deposit of at

least 24 GeV in the CsI.
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• !CA: There is one CA source for each of the two beamholes; if any of the CA’s

PMTs registers greater than 14 GeV of energy, the corresponding source turns

on, vetoing the event.

• HCC GE6(7): This requires that the HCC found at least 6(7) clusters in the

CsI.

• !SA2(3,4): None of the photon vetoes around the three downstream drift cham-

bers can have more than a 500 MeV energy deposit.

• !CIA: The photon veto around the outer edge of the calorimeter is required to

have less than 500 MeV of energy.

• !REG: The sources corresponding to the regenerator veto should not be on.

3.2.2 Trigger Elements Unique to Signal Mode

Trigger 14 has additional requirements associated with identifying charged events.

These requirements are summarized below.

• 2V: This is shorthand for the requirement of two hits in one view and one hit

in the other view for the V V ′ banks. This somewhat loose requirement allows

for the possibility that one of the tracks may have gone through a crack in one

of the banks (see Section 2.7.1).

• DC12: This is shorthand for the requirement that there are hits in three of the

four views in the first two drift chambers. This helps to eliminate cases where

the kaon decays downstream of the drift chambers, leaving hits in V V ′, but no

tracks in the spectrometer.
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• 1HCY: There must be at least one hit in every drift chamber y-view. As dis-

cussed in Section 2.7.3, only the y-views are used because events from both

beams use the same wires in this view.

• !MU2: To eliminate charged events that produce muons instead of electrons,

events with an appreciable amount of energy in a MU2 counter are vetoed.

3.2.3 Equalizing the HA and MU2 Requirements in the Two Triggers

The original trigger definitions for triggers 6 and 14 have different veto thresholds

for the HA. Trigger 6 includes !HA NEUT, which vetoes events with more than 14

minimum ionizing particles (MIPS) in the HA. Trigger 14 includes !HA PION, which

has a lower (stricter) veto threshold, at 3 MIPS in the HA. This means that trigger 14

will reject more events than trigger 6 based on the HA information. Since this could

bias the analysis, we needed to equalize the HA requirement between the two triggers.

This was accomplished by requiring that events in both triggers (both modes) pass

the 3-MIP threshold in order to make it into the event samples. It is worth noting

that tightening the HA requirement in the normalization mode has a negligible effect

on the number of KL → 3π0 events in the final sample for this analysis.

Similarly, trigger 14 requires that the MU2 counters not be hit, while trigger 6

does not include this requirement. In order to ensure that this difference does not

cause a bias in the analysis, we impose the MU2 requirement in trigger 6. We note

that making this change has an effect on B(π0 → e+e−γ)/B(π0 → γγ) that is smaller

than the Monte Carlo statistical uncertainty.
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3.2.4 Level 3 Trigger Requirements

The Level 3 requirements for both trigger 6 and trigger 14 are very loose. As discussed

in Section 2.7.5, basic kaon mass reconstruction is done. Trigger 6 requires that the

reconstructed 6-γ mass be between 0.400 and 99.0 GeV/c2 (recall that the kaon mass

is 0.498 GeV/c2), and that the reconstructed decay vertex be anywhere from z = 0.0

to z = 170.0 meters from the target. Trigger 14 requires that the E/p of each track

be between 0.75 and 1.25, to roughly check that the tracks are consistent with being

electrons. Additionally, trigger 14 only processes events which have less than 400 two-

track candidates, to eliminate events which would have very long processing times.

3.3 Data Sample Integrity

Triggers 6 and 14 provide the event samples that are the starting point for the analysis.

Because the two samples are from different triggers, we need to exclude runs and spills

that have events in one mode but not in the other (due to trigger or data tape problems

that are not common between the two modes). First we exclude blocks of runs that

are on data tapes that fail one of the two crunches; second, we look at the ratio of

trigger 6 to trigger 14 events within each run to search for other possible problems.

These two steps are described below.

The normalization mode data (from trigger 6) is found on the “QKT” tapes

(QKT001-QKT055). The events on these tapes go through a crunch, which looks

for events from trigger 6 and writes every tenth event out to a data file. The final

analysis will be run on this data. Because KTeV collected so many 3π0 events, the

prescale of 10 included in the crunch allows us to keep plenty of statistics while saving

time by not processing every event. Two of the tapes (QKT042 and QKT049) fail in

the crunch; we add the runs and spills from those tapes to the bad runs and spills
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list, and they are not included in the analysis.

A very similar process is used for the signal mode (from trigger 14). The Dalitz

events come from the “QKSM” tapes (QKSM01-QKSM20). The events on these

tapes go through a crunch job which looks for trigger 14 events and writes them to

a data file. Tapes QKSM01 and QKSM10 fail in the crunch; the runs and spills in

those tapes are removed from the analysis for both modes.

The next step in refining these samples is to perform checks on the quality of the

data. The data for this analysis comes from the 1999 data-taking run of E832. This

data-taking period occurred from mid-June to mid-September in 1999. Within this

period, data were collected in “runs,” which lasted up to about eight hours, if the

Tevatron was running smoothly. The maximum run length of about eight hours was

because a new run needed to be started when the data tapes in use became full. Runs

could be stopped at any time for a number of other reasons, such as beam or detector

problems.

We have already excluded some runs based on the results of the crunch for each

mode. We perform a check to refine the remaining samples by comparing the run-

by-run ratios of the number of trigger 6 (3π0) events to trigger 14 (Dalitz) events to

the average of this ratio over all runs. This is done by looking for individual runs

with ratios that are more than four sigma from the average. Eight outlying runs are

identified. Two of these runs have spill distributions that are different between signal

and normalization mode; the analysis is modified to include only spill ranges that are

present in both modes. The other six outlying runs have 3π0 to Dalitz event ratios

that are approximately two-thirds of the average ratio. Further investigation shows

that the trigger 6 sample is missing one of the three DAQ planes (see Section 2.7.5)

in each of these six runs. This was due to problems during the split. These runs are

removed from both modes.
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Figure 3.1: The sigma distribution, fit to a gaussian, for the ratio of trigger 6 (3π0)
events to trigger 14 (Dalitz) events in each DAQ plane in each run, relative to the
average ratio over all included runs.
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After removing these runs and spills, run ratios are re-evaluated, this time com-

paring the ratio in each DAQ plane (within each run) to the overall ratio across all

planes and runs. The distribution of the number of sigma away from average for each

plane’s ratio is shown in Fig. 3.1. Since the sigma distribution is consistent with a

gaussian centered at 0 with a width of ∼ 1, this plot suggests that we have eliminated

all planes and runs in which problems occurred during data-taking, tape splits, and

tape migration.

3.4 Event Reconstruction

Following the data quality checks, the event samples undergo basic event reconstruc-

tion, consisting of a track-finding algorithm based on drift chamber information and

a clustering algorithm to determine the energies and positions of decay products in

the calorimeter. The reconstruction uses final calibration constants that are stored

in databases.

3.4.1 Track Finding

The track-finding algorithm begins by unpacking the drift chamber TDC informa-

tion and converting hit times to drift distances using the x(t) maps described in

Section 2.4.2. Only the earliest hit on a wire within the in-time window is counted.

Once all the hits are found, the algorithm “walks” across each view in a chamber and

looks for pairs of hits on complementary wires and for isolated hits.

Hit pairs are assigned to a quality category based on the sum of drift distances

(SOD) for the two wires. Good-SOD pairs are those within 1 mm of the 6.35 mm cell

size. Low-SOD pairs, those with SODs below 5.35 mm, can result from two tracks

traversing the same cell (so that each sense wire sees the charge from the nearest
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track), or from a single track emitting a delta-ray (an energetic electron knocked

out of the DC gas starts an avalanche that reaches the sense wire earlier than the

electrons from the track itself, causing an early signal and an underestimated drift

distance). High-SOD pairs, those with SODs above 7.35 mm, can result from tracks

passing too close to a sense wire because the wires do not always register the current

from a single drift electron. In the case of a close track, often the first drift electron

will reach the wire, but will not induce enough current to constitute a hit; a short

time later, enough avalanche electrons reach the wire to produce a signal, but that

signal is late, causing the drift distance to be overestimated [30].

Without any inefficiencies or imperfections, a two-track event would leave 32 hits

in the chambers (one hit per plane for each track), and pairs of hits in complementary

planes would have good-SODs. There is an intrinsic inefficiency of less than 1% for

each wire. Because there are various sources of inefficiencies in the chambers, the

track-finding algorithm also identifies and considers single hits.

Examples of types of SODs and hits are shown in Fig. 3.2. The event shown would

result in the following list of pairs (from left to right).

• Good-SOD pair in cell 2

• Low-SOD pairs in cell 3 (from a combination of other hits) and in cell 4, from

a real low-SOD pair

• High-SOD pair in cell 9

• Isolated singles in cell 12

To facilitate track-finding, good-SOD pairs are given a value of 4, low-SOD and

high-SOD pairs are given a value of 2, and isolated hits are given a value of 1. For

the purposes of forming tracks, pairs of any quality and isolated hits are all referred
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Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6 Cell 7 Cell 8 Cell 9 Cell 10 Cell 11 Cell 12 Cell 13 Cell 14

Good
SOD

Low
SOD

High SOD
(pathological)

Isolated
(direction ambiguous)

Figure 3.2: Diagram of types of SODs and hits used in the track-finding algorithm.
The diamonds are sense wire positions in the drift chamber and the vertical dashed
lines are the tracks. The horizontal solid lines are the true drift distances; the hor-
izontal dotted lines show the same drift distance for a track on the opposite side of
the sense wire. The pairs that the tracking algorithm would find in this example are
described in the text.

to generically as “pairs,” and the algorithm creates a list of pair positions and values

for each chamber. Isolated hits are added to the list twice, once for each side of the

wire (see Fig. 3.2). Each hit in a low-SOD or high-SOD pair is added to the list

separately. Each good-SOD pair is added to the list as a pair.

All x and y track candidates will be required to consist of pairs whose quality

values add up to at least 11 (out of a possible 16). This allows the track to contain

two low-SOD (or high-SOD) pairs, one isolated hit, or one low-SOD (or high-SOD)

pair and one isolated hit.

After hit-pairs have been identified and classified, the algorithm searches for track

candidates separately in the two views by looping over all the points in space at

which hits have been found, starting with the y-view for simplicity (the analysis

magnet bends the trajectories in the x-view, making it slightly more complicated to

reconstruct tracks). The track candidates must form a straight line in the y-view. If

the algorithm cannot find at least two track candidates in the y-view, the process ends.

In the x-view, the upstream and downstream track segments must meet at the magnet
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within 6 mm. All track candidates which meet the hit-pair quality requirements are

kept. At this stage, track candidates may share hit-pairs.

With the x and y track candidates in hand, the algorithm must rely on information

from the calorimeter to match up the x and y coordinates of a single track. The

algorithm loops over each possible pair of x− y candidates to see if the track formed

by the pair points within 7 cm of a cluster at the calorimeter (more on clustering in

Section 3.4.2). Finally, we want to require that the two tracks came from a common

decay vertex in the vacuum decay region; because the hit resolution is not perfect, a

2 mm “slop” in the position of each space point is allowed when determining whether

two tracks point back to a common vertex. For a given vertex candidate, the two

tracks cannot share any hits.

At this point, the algorithm applies a series of corrections to the hit positions (for

example, to correct for any drift chamber misalignment and for the finite propagation

speed of the signals on the wires). Each pair’s SOD is recalculated, correcting for

the track angle. SODs which are low by more than 0.6 mm are assumed to be low

due to delta ray emission, and the algorithm chooses a replacement hit which is

more consistent with the hits in the other chambers. The fringe magnetic field (see

Section 2.4.1) effect is corrected in DC2 and DC3 x-view hits. In the y-view, tracks

are refit, this time allowing for bending in the magnet; this is because the three-

dimensional magnetic field does actually cause some “vertical focusing” (bending

and displacement of charged particles in the y-view). Finally, the track momentum is

recalculated using the field integral specific to the location of the track in the magnet.

After all corrections, the track-finding algorithm provides a list of vertex candi-

dates, from which we choose the best candidate, by minimizing a quantity called the

vertex χ2. The x tracks and y tracks are extrapolated upstream to define an x − z

and y − z vertex. The vertex χ2 is calculated based on the difference between these
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two vertices, ∆zvtx:

χ2 =
∆zvtx

σ∆z

. (3.1)

The lower the value of the vertex χ2, the more likely it is that the two track candidates

came from the same z position. The final determination of which track candidates to

use for an event is based on a combination of minimizing the vertex χ2, finding the

tracks that match best at the magnet, and the number of low-SOD (or high-SOD)

and single hits used in the tracks [28].

3.4.2 Clustering

There are photons in the final state in both the signal mode (five photons) and the

normalization mode (six photons). The calorimeter is the sole source of information

about photon energies and positions. The Level 2 trigger includes the basic require-

ment that the HCC finds at least seven clusters (five of which correspond to photons)

in the signal mode trigger, and at least six clusters in the normalization mode trigger.

In our offline analysis, the clustering algorithm refines the measured photon energies

and positions.

The cluster-finding algorithm begins by unpacking the calorimeter data and get-

ting the energy in each channel. The DPMTs provide the integrated charge in

each time slice from each PMT. The laser calibrations and electron studies from

KL → π±e∓ν decays (described in Section 2.5.2) are used to convert this charge to

an energy.

In Level 2 of the trigger, the HCC finds crystals with at least 1 GeV of energy

and turns on the HCC bit for those channels. From the channels whose HCC bits

are ‘on,’ we need to determine which ones are “seed” blocks. A block is a seed block

if none of its neighbors has an HCC bit set, or if it has the highest energy of its
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neighbors which have their HCC bits on. Requiring seed blocks to have their HCC

bits on helps to verify the trigger, and helps to reduce contamination by accidental

hits by ensuring that the particles are in-time. Around each seed block, a 3×3 (large

blocks) or 7 × 7 (small blocks) cluster is defined. The raw energy of the cluster is

the sum of the block energies, and the x (y) position of the cluster is determined by

summing the energies in each column (row) of the cluster and comparing the ratios

of column (row) energies against look-up tables from a sample of real photons. The

x and y position resolutions are approximately 1 mm in the small blocks and 1.8 mm

in the large blocks (after all corrections).

Clusters found by the HCC during Level 2 of the trigger are referred to as hardware

clusters. A second round of clustering is performed during the software analysis. Any

crystal (which is not part of a hardware cluster) with greater energy than its neighbors

is a seed block for the purposes of software clustering. Software clusters, formed in the

same manner as the hardware clusters, are additional low-energy clusters. Although

we do not explicitly use software clusters in the event reconstruction in this analysis,

the distribution of software clusters is sensitive to both accidentals and radiative

corrections, making it useful for systematic studies (see Section 6.2 and Section 6.4).

A number of corrections are applied to the raw cluster energies and positions. The

“uniformity correction” is necessary because the light collection along the length of a

crystal is intrinsically nonuniform. The corrections for each crystal were determined

with studies using cosmic ray muons. A cluster near a beam hole or near the edge of

the calorimeter may be missing blocks in its 3×3 or 7×7 grid; the energy that would

have been in these blocks is estimated (using a look-up table) and included in the

cluster energy. The “overlap correction” is done for clusters that share some blocks

using an iterative procedure for dividing the energy in the common channels. Another

correction is done for blocks which are close to another cluster (but do not overlap);
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some of the cluster’s energy may have leaked into these blocks. Samples of electrons

were used to study the response of the calorimeter as a function of various factors.

These studies reveal that the calorimeter response varies as a function of transverse

position within a crystal; the response can be lower by a few percent at the edges of

the crystal relative to the response at the center. The “intra-block correction” takes

care of this. Calorimeter variations with temperature and with time (due to crystal

degradation from radiation damage) were also measured and corrected. Much more

information on each of these corrections is available in [29].

3.5 Reconstructing the Decay Vertex

The basic method of identifying candidate events in the analysis is to reconstruct the

kaon’s decay position (z-distance from the target). Recall that in each mode, the

kaon decays into three pions, each of which then decays into the final state particles

that we observe in the detector. Information about the final state particles allows

us to determine where each pion decays; because the π0 lifetime is extremely short

(cτ ≈ 25 nm), the pion decay position can be considered to be that of the kaon decay.

Reconstructing the kaon decay position is similar for both modes; however, since the

normalization mode is slightly simpler, we describe it first.

3.5.1 Vertex z Position: Normalization Mode

In the normalization mode, we search for three π0s, each of which decays to two

photons. Our normalization mode event sample contains events with six hardware

clusters in the calorimeter, due to the requirements of trigger 6. We need to determine

which clusters (photons) came from which π0; this amounts to determining the correct

pairing of the photons out of the 15 possible pairings. (There are 6! ways to order
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the photons, but the order of each pair does not matter, so divide by 2 for each pair,

and the order of the three pairs does not matter, so divide by 3! to get 6!
8×6 = 15.)

This is done (in a KTEVANA routine called KTPAIRS) by looping over all possible

pairings and calculating the z positions of the three pions, assuming the pion mass.

To see how this is done, consider one pair of photons. Let the four-momenta of the

photons be p1 and p2. We have

m2
π = (p1 + p2)

2 = (E1 + E2)
2 − ( &p1 + &p2)

2 (3.2)

m2
π = E2

1 + E2
2 + 2E1E2 − | &p1|2 − | &p2|2 − 2 &p1 · &p2. (3.3)

Since the photon is massless, E2
i − |&pi|2 = 0, and |&pi| = Ei where Ei is the photon

energy. Then,

m2
π = 2E1E2 (1 − cos (θ12)) (3.4)

m2
π = 4E1E2 sin2

(
θ12
2

)
, (3.5)

where θ12 is the angle between the photons and we have used a trigonometric identity.

Assuming this angle is small (justifiable, since the distance the photons must travel to

reach the calorimeter is large relative to the transverse size of the calorimeter), we can

use the small-angle approximation (sin(α) ≈ α for small α), and also approximate:

θ12 ≈ r12
z12

. (3.6)

Here, r12 is the distance separating the two photons at the calorimeter and z12 is the

distance between the pion decay position for this photon pair and the calorimeter,



61

the quantity of interest. We have

z12 ≈ r12
mπ

√
E1E2. (3.7)

This z calculation is used to determine the best pairing of the six photons, as described

next.

3.5.2 Pairing χ2

The best pairing of the six photons is the one which results in consistent z positions

for the three π0s, since all the pions should have decayed at the same place (at the

kaon decay position). For the more simple case of two pions, Fig. 3.3 shows the

three possible pairings of the four final state photons. In our six photon case, for

each pairing, a χ2 is formed based on the three reconstructed pion z distances from

the calorimeter, the uncertainties on those positions (σz), and the weighted average

of the three z distances (z). If za (σza), zb (σzb), and zc (σzc) are the z positions

(uncertainties) calculated for a particular pairing of the six photons, the χ2 for that

pairing is

χ2 =
(za − z)2

σ2
za

+
(zb − z)2

σ2
zb

+
(zc − z)2

σ2
zc

. (3.8)

The best pairing is the one which has the smallest pairing χ2; Fig. 3.4 shows the

χ2 distribution of the best pairing for each event in data. The distance between the

calorimeter and the reconstructed kaon vertex is z, the average z associated with

the best pairing. Since the target is at z = 0 in the experimental reference frame,

to get the z position of the kaon decay vertex, we subtract the vertex distance to

the CsI (z) from the z position of the mean photon shower depth in the CsI. This

reconstructed kaon vertex position allows us to construct the four-momenta of the
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(a)

(b)

(c)

Figure 3.3: The three ways to pair four photons to make two π0s. Pairing (a) is the
best pairing, since the two vertices are at the same position, within reconstruction
uncertainties. Both modes in this analysis have more possible pairings (15 each) since
there are more than four photons in the final states, but this diagram illustrates the
basic idea of reconstructing the π0s by looking at all possible pairing combinations.
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six photons, from which we reconstruct the 3π0 invariant mass; this procedure will

be described in Section 3.6.
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Figure 3.4: The pairing χ2 distributions in the data for both the signal and normal-
ization mode samples. The arrow indicates the analysis requirement that the pairing
χ2 be less than 75 in each sample in order to reduce cases of mispairing.

3.5.3 Vertex z Position: Signal Mode

In the signal mode, we require seven hardware clusters in the calorimeter and two

reconstructed tracks. After matching two of the clusters with the tracks, the best
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pairing of the five remaining “neutral” clusters (to make two π0s) is determined

using the method described in Sections 3.5.1 and 3.5.2. (Again, there are 15 possible

pairings, since there are now 5! ways to order the photons, but the order within the

two pairs does not matter nor does the order of the two pairs, so we have 5!
4×2 = 15.)

The two z distances from the calorimeter are calculated for each pairing using

Eq. 3.7, and a pairing χ2 is formed for each combination using the two pion z distances

(as in Eq. 3.8, modified for only two π0s). The pairing which minimizes this χ2 is

chosen. Figure 3.4 shows the χ2 distribution of the best pairing for each event in data.

The corresponding weighted average distance (z) is subtracted from the z position

of the mean photon shower depth in the CsI to obtain the reconstructed kaon decay

position. The leftover neutral cluster which does not belong to either pair is tagged

as the photon coming from the Dalitz decay, π0 → e+e−γ, and is ‘paired’ with the

two tracks.

Recall that the tracking algorithm described in Section 3.4.1 finds the vertex

corresponding to the two tracks. The vertex z position based on tracking should be

consistent with that from the pairing χ2 based on the neutral clusters. As discussed

in Section 1.3.2, the Dalitz decay tracks tend to be very close together, making them

more difficult to reconstruct than well-separated tracks. Therefore, the vertex based

on the tracks has a much larger uncertainty than the “neutral vertex,” based on the

photon pairing, (∼ 80 cm versus ∼ 25 cm) and is not used.

3.5.4 The Energy Scale

The reconstruction of the kaon decay vertex depends on the measured photon energies

(see Eq. 3.7). Recall that electrons are used to calibrate the calorimeter’s energy

response (see Section 2.5.2). The combination of the small difference in the shower
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profiles of electrons versus photons in the CsI blocks and the non-uniformity of the

light collection in a crystal results in a slightly different calibration for photons than

for electrons.

To measure the difference in the calorimeter’s response to photons (relative to the

response to electrons), we use decays in the regenerator beam near the downstream

edge of the regenerator (as mentioned in Section 2.3). Because the effect we are

measuring is small, we use the high statistics sample of KL → 3π0 decays to study

it. Using the surveyed position of the regenerator and the calorimeter’s simulated

response to photons, our Monte Carlo (described in Chapter 4) predicts the recon-

structed z position of the decays; this distribution turns on sharply at the regenerator

edge, as shown in Fig. 3.5. Comparing this distribution in data and Monte Carlo will

reveal any remaining energy scale problem with the data calibration.

Figure 3.5 (a) shows that, initially, the regenerator edge is shifted between data

and Monte Carlo. This shift corresponds to an energy scale of 0.15%; this means

that for photons, the measured energy needs to be multiplied by 0.9985 for proper

calibration. After applying this photon calibration to the neutral clusters in data,

the data and Monte Carlo show agreement for the position of the regenerator edge,

as shown in Fig. 3.5 (b).

3.5.5 Vertex x and y Positions

In order to reconstruct the invariant mass of the final state particles, we need to

determine a four-vector for each one. With the energies and vertex z position in hand,

we only need to find the x and y coordinates of the vertex. In the normalization mode,

KL → 3π0, this is done by assuming that the vertex is along the line between the

target and the center of energy at the calorimeter. The x (y) location of the center of
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Figure 3.5: The reconstructed vertex z position for KL → 3π0 decays in the re-
generator beam. The dots are data and the solid histogram is Monte Carlo. The
downstream end of the regenerator is located at about z = 125.5 m. In (a), the
energy scale has not been applied, and the data-Monte Carlo mismatch is clear. In
(b), an energy scale of 0.9985 has been applied to the data, and the data and Monte
Carlo agree.
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energy is just the average x (y) position of all the clusters, weighted by their energies.

The known z position of the vertex, combined with the slope of the line between the

target and the center of energy, yields the vertex x and y positions.

As an aside, the x position of the center of energy combined with the known

position of the regenerator at the time of an event tells us which beam (vacuum or

regenerator) the event came from. Recall that for this analysis, only vacuum beam

events are used.

The signal mode, KL → 3π0
D, is slightly more complicated because the electrons

bend in the magnet; the center of energy at the calorimeter is not what it would have

been had all the particles travelled in a straight line from the vertex. To correct for

this, the upstream segments of the two tracks (the parts of the tracks found in DC1

and DC2, before bending occurs) can be projected to the calorimeter, to see where

the electrons would have been had they travelled in a straight line. Replacing the

true positions of the charged clusters with these two projected positions allows us to

do the same weighted average of cluster positions that was done in the normalization

mode to find the x and y center of energy at the calorimeter. The x and y vertex

positions are found using the known z position and the center of energy, as above.

Just as the tracks can be used to find the vertex z position in the signal mode

(see Section 3.5.3), the tracking algorithm also returns the x and y vertex positions.

To maintain consistency between the signal and normalization modes, the x and y

positions based on neutral information are used in both modes.

3.6 Reconstructing the Mass

The track-finding algorithm assumes the electron mass in order to calculate the

energy-momentum four-vectors for the two tracks. The cluster energies, photon pair-
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ing, and vertex position, allow us to form the four-vector for each photon. Adding

the four-vectors and squaring gives the 3π0
D and 3π0 invariant mass (squared) in the

signal and normalization modes, respectively.

3.7 Selection Criteria

After vertex position and mass reconstruction, a series of quality criteria are used

to select the final data samples in each mode. These criteria are listed in Table 3.1

and are described below. For quantities that exist in both signal and normalization

modes, selection requirements are as similar as possible so that uncertainties asso-

ciated with making the requirements largely cancel in the ratio of the two modes.

This is confirmed by varying these cuts in both modes and seeing that the ratio of

branching ratios does not change significantly (see Section 6.11 for a discussion of the

systematic uncertainty associated with the selection requirements). For requirements

on quantities appearing only in the signal mode, we vary the cut to see that the

Monte Carlo matches the data well in the region of the cut.

3.7.1 Criteria Used in Both Signal and Normalization Modes

The selection criteria used in both modes include requirements designed to avoid

event topologies that have poor reconstruction efficiencies and/or that are not well-

simulated in the Monte Carlo (see Chapter 4), to reduce background, and to cleanly

define the acceptance. We first eliminate events with extra tracks in the signal mode

and events with extra hardware clusters (more than 6 or 7, in the normalization and

signal mode, respectively). Since it is possible that accidental hits in the detector

could have caused an event to pass the trigger requirements, we verify that that the

reconstructed hits satisfy the Level 1 trigger elements in each mode.
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Quantity Selection Criteria

***Both Modes*** Cut Window

Reconstructed 3π0, 3π0
D Mass (GeV/c2) (0.490, 0.505)

Reconstructed Vertex z Position (m) (123.0, 158.0)
Reconstructed Kaon Energy (GeV) (40.0, 160.)

Pairing χ2 (0.0, 75.0)
Shape χ2 (0.0, 100.0)

Minimum Cluster Energy (GeV) (3.0, ∞)
Minimum Cluster Distance (m) (0.075, ∞)

Maximum Seed Ring (0.0, 19.0)
Minimum Small Ring (4.0, ∞)

Minimum Pipe Fraction (0.04, ∞)
Ring Number (cm2) (0.0, 110.0)

***Dalitz Only*** Cut Window

e+e−γ Mass (GeV/c2) (0.115, 0.155)
Minimum Track Momentum (GeV/c) (4.0, ∞)

Track E/P (0.9, ∞)
Vertex χ2 (0.0, 100.0)

Track-MA distance (m) (.003, ∞)
Track-V bank distance (m) (.002, ∞)
Track-V ′ bank distance (m) (.002, ∞)

Track-CA distance (m) (.002, ∞)
Track-CsI distance (m) (.029, ∞)

Brem-γ Distance at CSI (m) (0.01,∞)
Cell Separation (cells) (3.0, ∞)
e+e− Mass (GeV/c2) (0.015,∞)

Table 3.1: Selection criteria for signal and normalization modes.
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The reconstructed 3π0 and 3π0
D masses are required to be within about 7 MeV/c2

of the PDG value of the kaon mass, 497.6 MeV/c2, to reduce combinatoric background

(from mispairing the photons). The resolution on the reconstructed 3π0 (3π0
D) mass

is about 1 (2) MeV/c2. The reconstructed vertex z position is required to be between

123 and 158 meters, so that it is downstream of the MA and upstream of the vacuum

window. The only significant background for the Dalitz decay is due to photon

conversions in material. There is very little probability of conversion in the vacuum

beam, but a relatively significant number of conversions occur in the vacuum window;

requiring that the decay occur before the vacuum window essentially eliminates this

background. The reconstructed kaon energy must be between 40 and 160 GeV. The

lower bound is chosen because the detector acceptance decreases significantly for lower

kaon momenta; the higher bound is chosen because it matches the energy window that

has been optimized and studied for the Re(ε′/ε) analysis. The pairing χ2 is required

to be less than 75 in both modes; along with the reconstructed mass requirements,

this reduces the number of events where the photons are mispaired. The threshold

of 75 removes roughly the same fraction of events in both modes (after all other

requirements are applied).

There are several requirements on the clusters in the calorimeter. We want to

discriminate between clusters that are photons and clusters that are either hadrons

(pions) or that are a “fusion” of two particles. The shape χ2 is a measure of how close

a cluster’s transverse energy profile is to the expected transverse energy distribution

for a photon shower. We require the shape χ2 to be less than 100; this is very loose,

due to the fact that the Monte Carlo (described in Chapter 4) does not model this

distribution very well, as shown in Fig. 3.6. Each cluster must be greater than 3 GeV

in energy, reducing the dependence on the trigger simulation. The minimum distance

between any pair of clusters is 7.5 cm. This requirement decreases the sensitivity
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to two things: the modelling of the transverse energy distribution and the energy

correction for overlapping clusters. The maximum seed ring and minimum small ring

requirements reject events where a seed block is at the outer edge of the calorimeter

or at either of the beam holes, respectively. For a particle whose seed block borders an

inner or outer edge of the CsI, a significant fraction of its energy will not be contained

in the calorimeter; to reduce our sensitivity to how well we model this missing energy,

we eliminate this type of event. The so-called “minimum pipefrac” requirement is

redundant with the minimum small ring cut; the “pipe fraction” refers to the fraction

of a cluster’s energy that escapes down the beam pipe for clusters with seed blocks

in the first ring of crystals around either beam hole. (Since the minimum small ring

requirement rejects exactly these events, we do not expect the pipefrac cut to have

any effect in the nominal analysis.) We include it in the analysis to be used as a cross

check when we vary the minimum small ring cut.

The x and y positions of the center of energy at the calorimeter (described in

Section 3.5.5) can be used to help reduce instances where the kaon may have scattered.

If the energy centroid is outside both of the beams, then we can conclude that the

kaon scattered before decaying. Each beam is centered on one of the two beam holes,

and is 9.3 cm square at the calorimeter. If an event’s energy centroid falls inside

an area ∼ 86.5 cm2 centered on either beam hole, that event is within one of the

beams. For any event, we can find the area of the square which includes the center

of energy on one of its edges and which is centered on the beam hole nearest that

energy centroid. The area of this square is called the ring number. If ∆x (∆y) is the

horizontal (vertical) distance in meters between the energy centroid and the center

of the nearest beam hole, then the ring number (in cm2) is:

ring number = 40, 000 × max(∆x2, ∆y2). (3.9)
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Figure 3.6: The data to Monte Carlo overlay of the shape χ2 distribution, in both
signal and normalization modes. The dots are data and the solid histogram is Monte
Carlo. All selection criteria have been applied, except the one on the shape χ2. The
arrow indicates the selection requirement of a shape χ2 of 100 or less.
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Smearing of the beam (as well as smearing during reconstruction) can result in ring

numbers greater than 86.5 cm2; therefore, we allow events with ring numbers up to

110 cm2. Although this reduces kaon scatters in our sample, it does not eliminate

them; a kaon from the regenerator beam could scatter into the vacuum beam and have

a low ring number. This scattering should be the same in signal and normalization

modes, and cancel in the ratio. Figure 3.7 shows the ring number distribution in both

signal and normalization mode in data.

3.7.2 Criteria Unique to Signal Mode

There are additional selection criteria for the Dalitz mode, associated with tracking

and with reconstruction of the π0
D (e+e−γ). The reconstructed invariant mass of

the e+e−γ is required to be consistent (within 20 MeV/c2) with the π0 mass of

135 MeV/c2. The resolution on the reconstructed e+e−γ mass is approximately 1.5

MeV/c2. Along with the requirements on the reconstructed 3π0
D mass and the pairing

χ2 described in Section 3.7.1, this requirement reduces photon mispairings.

There are several track-quality requirements. Each track must have a minimum

momentum of 4 GeV/c, and an energy to momentum ratio (E/p) greater than 0.9,

since we have calibrated such that the E/p distribution for electrons is sharply peaked

at 1.0. Figure 3.8 shows the E/p distribution for one of the tracks in data. The vertex

χ2 (see Section 3.5.5) must be less than 100 to reduce events with misreconstructed

tracks. This is a fairly loose requirement, as seen in Fig. 3.9.

Additionally, there is a set of fiducial cuts on the tracks; they ensure that neither

track passes too close to the MA, the V V ′ beam holes, the CA, or the CIA. The

tracks must be at least 3 mm away from the edges of the MA, at least 2 mm away

from the beam holes in the trigger hodoscope, at least 2 mm away from the CA, and
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Figure 3.7: The ring number distribution in data, in both signal and normalization
modes. All selection criteria have been applied, except the one on the ring number.
The arrow indicates the selection requirement of a ring number of 110 or less.
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Figure 3.8: The E/p distribution for the track with the higher momentum. All
selection criteria have been applied except the requirement that E/p be greater than
0.9. The arrow indicates where this cut is.
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Figure 3.9: The vertex χ2 distribution in data. All selection criteria have been applied
except the requirement that the vertex χ2 be less than 100. The arrow indicates where
this cut is.
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at least 2.9 cm away from the outer edges of the calorimeter [30]. These requirements

reduce our sensitivity to how well we know the physical locations and dimensions of

these detector components.

It is possible for an electron to emit a bremsstrahlung photon as it bends in the

magnet. This “brem” photon changes the electron momentum, and can be confused

with one of the final state photons, resulting in misreconstruction. To reduce these

effects, we need to identify and eliminate events with a brem photon. The brem

photon is typically emitted parallel to the original direction of the electron (prior

to bending in the magnet); we project the upstream segment of each track to the

calorimeter and find the distance to the closest photon cluster. This distance is

referred to as the “brem-γ distance,” and the distribution is shown in Fig. 3.10. If

the nearest photon is within 1 cm of the upstream track projection, it is likely that

that photon is a brem photon and not one of the original decay products. Thus, we

require the brem-γ distance to be less than 1 cm.

The final two selection criteria are related; they are the cell separation requirement

and the e+e− mass requirement. The former requires that the tracks be separated

by more than three cells in the first and second drift chambers. Each cell is 6.35 mm

centered around a sense wire as shown in Fig. 3.11, so the distance requirement is

around 2 cm. If two tracks are in the same drift chamber cell or in adjacent cells,

then a hit from one track can obscure a hit from the other track on the same wire.

This alone will not cause the tracking code to fail, unless the tracks are this close

in at least three chambers or are less than 1 mm apart in any one chamber [30];

however, modelling the combination of close tracks with other complications in the

drift chambers (such as accidental hits, delta rays, and high-SOD pairs) is difficult.

Requiring a separation greater than three cells in the first two chambers reduces our

sensitivity to the tracking simulation. Although this cut eliminates approximately



78

1

10

10 2

10 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Figure 3.10: The brem-γ distance in data. The brem-γ distance is defined as the
distance between the projection of the upstream track segment at the CsI and the
nearest neutral cluster. All selection criteria have been applied except the requirement
on the brem-γ distance; that requirement is that the brem-γ distance must be more
than 1 cm, as indicated by the arrow.
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half of the Dalitz events that are left after all other cuts are made, it ensures that we

understand our tracking efficiency.

0 1 2 3 4 5 6 7 8

Track 1 Track 2 Track 3
Cell boundary
Sense wire

Figure 3.11: The definition of the wire-centered cells used in the cell separation cut.
In the diagram, Track 2 is three cells away from Track 1, while Track 3 is six cells
from Track 1.

Knowing the tracking efficiency is extremely important for this analysis, as it is one

of the few effects that does not cancel in the ratio between the signal and normalization

modes. For well-separated tracks, we take advantage of tracking efficiency studies that

have been done for the recent Vus analysis [35] which indicate that the inefficiency

falls off sharply at a separation of around 3 cells. Although these studies were done

using 1997 π+π−π0 data, we have redone them for the 1999 sample. We have also

demonstrated that the tracking loss is mainly due to accidentals in 1999 (due to the

higher beam intensity), and thus, largely affects pion and electron tracks in the same

fashion. Details of these tracking inefficiency studies are in Section 6.1.

Finally, we require the reconstructed e+e− mass to be greater than 15 Mev/c2.
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Recall from Section 1.3.2 that the e+e− mass can also be thought of as the mass of

the virtual photon in the Dalitz decay. Small values of e+e− mass correspond to close

tracks; thus, the cell separation requirement described above eliminates most of the

events with an e+e− mass less than ∼ 10 MeV/c2. Figure 3.12 shows how the cell

separation requirement affects the e+e− mass distribution. The analysis cut at 15

MeV/c2 cleanly defines the kinematic region of our measurement, by excluding the

region where the acceptance is very small.

Additionally, the low e+e− mass region is more sensitive to the real and vir-

tual radiative corrections than the region above 15 MeV/c2. Measuring B(π0 →

e+e−γ)/B(π0 → γγ) for e+e− masses above 15 MeV/c2 reduces our sensitivity to

the theoretical predictions in the low e+e− mass region, and allows our measurement

to be updated in the future for new predictions for radiative corrections in the low

e+e− mass region.

3.8 Final Data Samples

Applying all of the requirements discussed in Section 3.7 leaves us with refined event

samples in the signal and normalization modes. We will use these data samples,

along with samples of simulated events (discussed in Chapter 4), to calculate B(π0 →

e+e−γ)/B(π0 → γγ) in Chapter 5.

To “see” our final data samples, reconstructed mass plots are shown in Fig. 3.13

and Fig. 3.14 for the Dalitz and 3π0 modes, respectively. In each plot, all cuts have

been applied except the cut on the quantity plotted.
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Figure 3.12: The e+e− mass distribution. The top line is the distribution for all
generated events, the middle line is the distribution with all selection requirements
except the cell separation cut (and except the requirement on the e+e− mass itself),
and the bottom line is the e+e− mass distribution with all selection requirements
(except that on the e+e− mass).
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Figure 3.13: (a) The reconstructed 3π0
D mass and (b) the reconstructed e+e−γ mass

in the signal (Dalitz) mode. The dots are data, and the solid histogram is Monte
Carlo. All cuts have been applied except the cut on the quantity plotted.



83

10 2

10 3

10 4

10 5

10 6

0.48 0.485 0.49 0.495 0.5 0.505 0.51 0.515

Figure 3.14: The reconstructed 3π0 mass in the normalization mode. The dots are
data, and the solid histogram is Monte Carlo. All cuts have been applied except the
cut on the reconstructed 3π0 mass.



CHAPTER 4

MONTE CARLO SIMULATION

This chapter provides an overview of the KTeV Monte Carlo (MC) event simulation.

A more detailed description of the MC can be found in [28, 29].

4.1 Overview of Simulation

Determining a branching fraction from the observed number of events for a certain de-

cay mode requires knowledge of the flux of parent particles as well as knowledge of the

acceptance, or fraction of decays that are identified by the detector and reconstructed

in the analysis. However, measuring a ratio of branching ratios using a set of data

collected all at one time, as in this measurement of B(π0 → e+e−γ)/B(π0 → γγ),

renders the flux of parent particles irrelevant, since it is the same between the signal

and normalization modes. The acceptance for the decays KL → 3π0
D and KL → 3π0

are quite different, though. We rely on our Monte Carlo simulation to determine the

z-dependent acceptance in each mode.

We use version 6.03 of the KTeV Monte Carlo (the same as was used for the recent

Vus analysis [35]) to generate signal and normalization mode events and to simulate

the detector response. The Monte Carlo includes generation and propagation of the

kaons; the physics of the signal and normalization mode decays (including radiative

corrections for the Dalitz decay); propagation of the decay products through the

detector; the detector geometry, efficiency, and response; and the effects of accidental

activity in the detector. The simulated event format is essentially the same as that

for data, with additional information regarding the “true” (or “generated”) value of

many quantities included for studies. The data and MC events are analyzed with the

same reconstruction algorithm and selection criteria (the subject of Chapter 3).

84
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4.2 MC Beamline and Detector Geometry

The geometry of the KTeV experimental setup used by the simulation is based on

both survey measurements of the physical system as well as data studies. Survey

results are used for the transverse dimensions and z positions of beamline and detector

components. The relative offsets among the drift chambers and the calorimeter are

measured using data (see Section 2.4.2), and the MA and CA aperture locations and

sizes are determined with electron samples from KL → π±e∓ν decays.

4.3 Kaon Propagation and Decay

For each event, the MC begins by choosing a beam (vacuum or regenerator, and left

or right) and an initial kaon eigenstate (K0 or K0). The kaon energy and angle

relative to the primary beam are chosen using a parametrization [36] that is adjusted

to match KTeV K → π+π− data. The MC propagates the K0 and K0 amplitudes

along the beamline, accounting for regeneration and scattering in the absorbers and

regenerator. The upstream collimators are treated as perfectly absorbing; however,

scattering is allowed in the defining collimator and the regenerator, using models

based on data studies.

The decay position is based on the calculated z distribution for the initial K0 or

K0 state. The range of z positions allowed for the decays is user-specified, and is

slightly larger than the z range to be used in the analysis. This method is chosen to

reduce CPU time, but introduces complications in the code. Weighting factors must

be calculated at the beginning of the simulation to obtain the correct proportions of

vacuum beam to regenerator beam coherent decays and scatters from the regenerator

and collimator, all of which produce different quantum states at the beginning of the

decay region [30].
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Each kaon decay mode has a separate subroutine which generates the decay in

the kaon rest frame. For kaon decays to π0s, as in this analysis, a decay mode can be

specified for each π0. In addition to the dominant π0 → γγ decay mode, the user can

choose among other options, including the Dalitz decay and rare decay modes. Once

the final state particles have been generated, they are boosted into the lab frame for

tracing through the detector.

The decay products undergo various interactions as the simulation traces them

through the detector. Charged particles receive a transverse momentum kick from the

analysis magnet; the magnitude of the kick depends on the field integral at the parti-

cle’s transverse position at the midplane of the magnet. Charged particles can scatter

in the vacuum window and spectrometer material. Electrons can emit bremsstrahlung

photons, and photons can convert in material (such as the vacuum window), produc-

ing an e+e− pair; these secondary particles are also traced through the detector.

When a particle hits a photon veto detector or the trigger hodoscope during tracing,

the energy deposit in the counter is simulated. Tracing of a particle (except in the

case of muons) ceases once it hits a photon veto counter or any passive material,

when it leaves the detector volume, or when it finally hits the CsI or BA. Muons are

propagated through detector material and through the steel filters and counters in the

muon system. The simulation records and saves the particle positions in each drift

chamber and in the calorimeter to be used later in simulating the detector response,

described in the next several sections.

4.4 Accidental Overlays

Before describing the simulation of the detector response, we briefly discuss the sim-

ulation of accidental activity. Due to the high flux of kaons and neutrons, we expect
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that events with real kaon decays will also contain a significant amount of unrelated

activity in the detector. After the veto requirements, the average accidental energy

contained in each CsI cluster is a few MeV, and there are roughly 20 extra in-time

DC hits in each event [27]. Using the accidental counters (see Section 2.2.3) and a

trigger designed to collect accidental events (see Section 2.7.4), we have samples of

accidentals from the data. We can use these accidental samples in the MC, over-

laying an accidental event on top of each simulated decay, to study the effect of the

underlying activity and to take it into account in the acceptance.

Energy deposits from the accidentals are added to the energy deposits from the

kaon decay in the calorimeter and in the veto system. The accidentals’ effect in the

drift chambers is more complicated. Although merging the hit lists is straightforward,

an empirical model is needed to describe the various ways an accidental hit can obscure

a signal hit on the same wire (see Section 4.5). The trigger source information is

summed, and the trigger is evaluated based on the combined information.

It is important to note that the MC event generation is based on an accidental

file; the accidental file specifies the run-range for the simulation and, for each run,

points to accidental events collected during that run. In this way, the MC determines

how many events to generate in a particular run so that longer runs containing more

data will also have more MC events. The MC also decides at what beam intensity the

events in a particular run should be produced based on the accidental events since

the beam intensity varies over the run range. Further, the accidental event added

to a simulated event comes from the same run as that simulated event, ensuring

that the intensity-dependence of the underlying activity is simulated. This point is

important for studying our tracking inefficiency (see Section 6.1) and for our cross

check involving the intensity-dependence of our result (see Section 7.3).
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4.5 Simulation of the Drift Chambers

During particle tracing, charged particle positions in each drift chamber are recorded

(see Section 4.3). This information is the starting point for the drift chamber simu-

lation. The simulation calculates a hit’s distance to the closest sense wire in a given

plane (see Section 2.4.2), smearing the distance based on the measured resolution for

this plane, and converts the distance to a drift time using the inverse of the x(t) maps

(see Section 2.4.2).

Several effects observed in data were added to the MC to model sources of ineffi-

ciencies more accurately. These effects include wire inefficiency, high-SOD pairs from

delayed hits, accidental hits that obscure signal hits, and low-SOD pairs from delta

rays. We briefly describe each of these effects.

Each wire has an intrinsic inefficiency that can result in a missing TDC hit. The

inefficiency is measured as a function of position along a wire, and as a function of

the transverse distance from the wire. A model of this wire inefficiency is included in

the simulation.

Recall that the inefficiency for a wire detecting a single drift electron can result in

high-SOD pairs (see Section 3.4.1) because the signal on the sense wire is delayed. If

the SOD is more than 1 mm too high, the hit-pair is not accepted. The probability for

such a delayed hit varies as a function of transverse location in a chamber, with the

highest probability near where the neutral beams pass through the chamber. A map

of this spatial dependence is included in the simulation. The delayed-hit probability

also depends on the track position within a cell, with higher probability for tracks

close to the sense wire. Additionally, the probability changed over time during data-

taking. The simulation mimics this variation using the run number of an event.

As noted in Section 4.4, if an in-time accidental hit reaches a sense wire before
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the signal hit, the signal hit will not be recorded, since only the first hit in the in-

time window is used. This results in underestimation of the drift time, leading to a

low-SOD pair. If the SOD is more than 1 mm too low, the hit-pair is not accepted.

Early accidental hits on a wire can also affect an in-time signal hit on that wire in

two ways. First, the discriminator has a deadtime of 42 ns, during which no hit can

be detected. Second, large signals can remain above the discriminator threshold for

longer than 42 ns; this effect is modelled and tuned to data.

In Section 3.4.1, we discussed how delta rays can result in low-SOD pairs. The

MC simulation creates delta rays in the same cell as the track, and the rate is tuned

so that the low-SOD distribution matches data.

4.6 Simulation of the CsI Calorimeter

The CsI calorimeter can measure electromagnetic energies and positions very pre-

cisely. In order to take full advantage of this precision, we need to understand the

detector’s response and possible systematic effects in great detail; this requires a very

accurate simulation of the calorimeter. The simulation is especially important to

model the energy leakage (in the beam holes and at the outer edge of the calorime-

ter) and to model the way nearby clusters share energy.

Because electromagnetic showers involve thousands of particles, the time needed

to simulate each one every time the MC runs is prohibitive. The simulation therefore

relies on a shower library created using the GEANT package [37]. GEANT simulates

all relevant processes in the crystals and tracks all shower particles down to a few

MeV. The shower library contains photons and electrons generated at six different

energies (2, 4, 8, 16, 32, and 64 GeV) and at 325 different positions on the face of the

central crystal. For each shower, the library contains the energy deposited in a 13×13
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array of small blocks (which can be converted to the equivalent array of large blocks

depending on the cluster location in the calorimeter), the longitudinal profile of the

energy deposit for the central 7 × 7 array (collectively), and the longitudinal energy

profile for the four blocks with the most energy (individually). There is a separate

library of pion showers (which are sometimes just minimum-ionizing energy deposits)

generated with GEANT using the FLUKA package for hadronic interactions. The

pion showers are not used in this analysis, but they play a role in the tracking efficiency

studies discussed in Section 6.1.

For each decay product that hits the CsI, the simulation chooses a shower from

the library based on particle type, energy, and position in the central crystal. The

simulation “interpolates” between the discrete shower energies available in the library

by randomly selecting a shower using weights calculated from the logarithms of the

energies. Next, block-by-block scaling is done based on the ratio of the incident

particle energy to the shower’s generated energy. Some of the particle’s energy will

be outside the 13 × 13 array of crystals included in each shower. To account for

this, a GEANT-based parametrization models energy deposits in a 27 × 27 array.

To reproduce the nonlinearities in the CsI energy resolution, the longitudinal energy

profile is convolved with the longitudinal light collection efficiencies for each crystal

near the center of the shower.

To simulate digitization, the light output for each crystal is given a time profile

and divided into DPMT time slices. The signal in each slice is smeared according to

photostatistics, and then digitized with code that mimics the behavior of the DPMTs

(using the inverse of the calibrations obtained from data). Just as in data, the sum

of four consecutive DMPT time slices must be at least six counts above pedestal in

order to be read out [30].
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4.7 Simulation of the Veto Counters

As mentioned in Section 4.3, when a particle hits a photon veto detector, the energy

deposit is simulated using an energy-dependent Gaussian resolution parametrized

from the data. For minimum-ionizing particles, the resolution is fixed, but varies

among counters (from 30% to 40%) [30].

In the muon system, muons going through the steel filters lose energy accord-

ing to Bethe-Bloch ionization loss, with Landau fluctuations from a GEANT-based

parametrization. If a muon does not stop in the steel, it will reach the muon veto

counters in the simulation.

4.8 Simulation of the Trigger

The Monte Carlo simulates all three levels of the trigger. The gaps between counters

in the V V ′ banks are measured using the KL → π±e∓ν sample, to simulate the

hodoscope inefficiency for charged modes. Simulation of the hit-counting in the drift

chambers (DC12) as well as y track finding (1HCY) (see Section 3.2.2) is based on

digital information from the chambers. Simulation of the Energy-Total and HCC

systems for the calorimeter information is sensitive to the modelling of the analog

turn-on thresholds for HCC bits. We use KL → π±e∓ν decays to measure the

positions and widths of these thresholds. The Monte Carlo trigger decision uses the

same trigger definition files (see Section 2.7.4) as were used during data-taking.

4.9 Aspects of the Simulation Important for this Analysis

The simulation of KL → 3π0
D decays uses the basic MC version 6.03 package, with a

few modifications. The “unsmearing” routine developed for version 7.00 of the KTeV
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MC was imported and is used to correct the position resolution of neutral clusters.

The radiative corrections routines developed by the University of Colorado group

(based on [12]) are used in generating the π0 → e+e−γ decay. The following two

sections describe the unsmearing routine and implementation of radiative corrections.

Additionally, the ring counters (RC6-RC10) were added in veto to the trigger file for

the simulation of both modes; since we require these counters to be silent in the

analysis, adding them to the trigger saves computing time for the simulation.

4.9.1 Unsmearing the Cluster Positions

Typically, one has to smear simulated quantities to correct for effects that have not

been well-modelled so that the MC resolution matches data. In the KTeV Monte

Carlo, the simulated position resolution for neutral clusters was found to be worse

than the position resolution in data. To fix this, we add an unsmearing routine to

make the MC position resolution better, with the unsmearing factor determined by

comparison with data.

For MC events, the routine (called SMEAR MCRECPOS) takes the neutral clus-

ters and first attempts to match up the reconstructed clusters to the generated (true)

clusters based on energies and calorimeter positions. If the matching procedure en-

counters difficulty, the routine returns without changing the cluster positions. If

matching is successful, each cluster’s x and y positions at the CsI are moved toward

the generated position by an amount that depends on the (user-supplied) unsmearing

factor. The unsmearing factor is chosen so that the data and Monte Carlo position

resolutions agree.

The routine then performs a logical check: if the new position is in a block that

is different from the cluster’s seed block, the routine returns without doing anything.
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The seed is, by definition, the block with the most energy, so logically the cluster

position should be within the seed block; we don’t want to move the cluster position

outside of its seed block. If the new x and y positions are within the cluster’s seed

block, then we keep these new positions for the cluster. Reconstruction of the vertex

z position and mass proceed as usual with these modified positions.

4.9.2 Radiative Corrections to the Dalitz Decay

Simulation of both KL → 3π0
D and KL → 3π0 decays begins by producing three pions

in the kaon center of mass frame based on a flat three-body phase space and forcing

the pions to decay immediately. Two of the π0s are allowed to decay into γγ, while

a special routine (PI0DAL) is called for the Dalitz decay of the remaining π0. This

routine chooses one of three options, depending on user input: π0 → e+e−γ with

full radiative corrections (including the real radiative corrections, π0 → e+e−γγ),

π0 → e+e−γ with no radiative corrections, or π0 → e+e−γγ only. For the nominal

analysis, we use the first option to generate π0 → e+e−γ with both real and virtual

radiative corrections. The other options are used to study potential systematic effects

due to radiative corrections (see Section 6.2).

The Monte Carlo simulation of the π0 → e+e−γ decay with radiative corrections

is based on the 1972 Mikaelian and Smith paper [12] discussed in Section 1.3.3. QED

processes up to second order in αEM are included in the corrections. This includes the

virtual corrections shown in Fig. 1.3 (one-loop terms that interfere with the tree-level

diagram) and the real corrections shown in Fig. 1.4.

In the case of real corrections, the radiated photon can, in principle, have any

value for its energy. However, for simulation, we need to specify an energy threshold

for the real radiated photon. This is achieved by generating real radiative events
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(π0 → e+e−γγ) for mγγ greater than 1 MeV. Below this threshold, the real radiative

process is indistinguishable (in the KTeV detector) from the tree-level process, π0 →

e+e−γ. This results in a probability of 16.18% for π0 → e+e−γγ to occur instead of

π0 → e+e−γ.

The MC simulates a π0 → e+e−γγ decay by choosing mγγ and me+e− within

kinematic limits, and then choosing whether to continue the simulation of that event

based on a calculated phase space weight. If simulation continues, the γγ and e+e−

systems are each given a momentum and a direction. From there, the simulation

computes the four-momentum of each photon in the γγ frame and the four-momenta

of the electron and positron in the e+e− frame. Each four-momentum is boosted to

the pion center of mass frame. The center of mass vectors are rotated to arbitrary

directions, and all decay products are boosted into the lab frame.

In the case of virtual corrections (i.e., the other ∼ 84% of the decays), the simu-

lation chooses values for the Kroll-Wada x and y variables, which are the e+e− mass

squared as a fraction of the π0 mass squared and the energy partition between the

electron and positron, respectively (recall Eq. 1.6 and Eq. 1.11 from Section 1.3.2).

A two-dimensional look-up table binned in x and y contains the correction factor for

decays over the range of possible x and y values. This table is based on Mikaelian and

Smith’s calculations of the radiative corrections to the differential decay rate [12], as

discussed in Section 1.3.3, and was implemented in the KTeV MC by the University

of Colorado group. The tree-level rate is calculated, and the appropriate radiative

correction factor from the table is applied.

Next, the form factor correction is applied. Recall from Section 1.3.1 that the

pion’s internal structure nessecitates an electromagnetic transition form factor to

describe the π0γγ vertex. Also recall from Section 1.3.2 that, for the Dalitz decay,

the form factor only depends on x (x = m2
e+e−/m2

π0). We can approximate the form
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factor as f(x) ≈ (1 + ax) where a is the π0 slope parameter. The MC uses the 2006

PDG [4] average of 0.032±0.004 for the slope parameter. We consider the systematic

uncertainty related to the form factor in Section 6.8.

Finally, as in the case of real radiative corrections, the MC chooses whether to

continue the simulation of the event based on a phase space weight. If simulation

continues, the three decay products are given four-momenta in the pion frame. The

center of mass vectors are rotated to an arbitrary orientation and boosted into the

lab frame for tracing through the detector.

4.10 Background Simulation

The Monte Carlo is also used to estimate the background levels for this analysis. The

only potential background for the Dalitz decay is from photons converting in material

to e+e− pairs. Since the vacuum window is the only significant source of material in

the decay volume, we expect most photon conversion to occur at the vacuum window.

Since the z-range in our analysis is 123 to 158 meters, ending 1 meter upstream of

the vacuum window (at z = 159 m), we expect very little background in our sample.

As noted in Section 4.3, the Monte Carlo can simulate photon conversions. To

obtain a sample of background events, 3π0 events are generated using trigger 14. Be-

cause of the tracking requirements and the requirement of seven CsI clusters in trigger

14, the resulting event sample contains 3π0 events in which one of the photons has

converted to an e+e− pair. The Dalitz analysis code is used to analyze the event

sample. In Section 6.10, we describe how this allows us to estimate how many back-

ground events are in our Dalitz sample. In short, this study confirms that conversions

produce negligible background, such that background subtraction is unnecessary.



CHAPTER 5

RESULTS

This chapter presents the number of reconstructed events in the signal mode and

in the normalization mode in both data and Monte Carlo. The final data samples

contain 63, 693 Dalitz decays and 3, 529, 065 3π0 decays, and the MC samples con-

tain 265, 901 reconstructed Dalitz events and 12, 668, 419 reconstructed 3π0 events.

Table 5.1 summarizes these findings. We then calculate the acceptance using the MC

results and determine B(π0 → e+e−γ)/B(π0 → γγ).

Mode Data Events MC Reconstructed MC Generated

3π0 3, 529, 065 12, 668, 419 334, 675, 893
Dalitz 63, 693 265, 901 226, 985, 152

Table 5.1: Number of events reconstructed in data and Monte Carlo and number of
events generated in Monte Carlo for both signal and normalization decay modes.

5.1 Monte Carlo Acceptance

The acceptance is defined as the number of simulated events that pass all analysis

requirements as a fraction of the number of events generated:

acceptance =
number of events reconstructed

number of events generated
, (5.1)

where the only generated events that count are those within our kinematic range. In

both decay modes, the kaon z range is (123, 158) meters and the kaon energy range

is (40, 160) GeV, as discussed in Section 3.7.1. Additionally, in the signal mode,

our kinematic range includes events with e+e− masses greater than 15 MeV/c2 (see

Section 3.7.2).
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It is possible for events with a true decay position (or kaon energy) that is just

outside the range we select to be reconstructed just within our range, due to resolu-

tion effects. This is possible in both the data and in the Monte Carlo. To be sure

we simulate this “migration,” we generate events in larger kinematic ranges than the

ranges we intend to use, as mentioned in Section 4.3. Specifically, we generate kaons

in a z range of (110, 161) meters and an energy range of (35, 165) in both modes;

in the signal mode, we generate events with e+e−-masses down to 0 MeV/c2. Ad-

ditionally, the event generation for both modes is based on a single accidental file

(see Section 4.4), ensuring that the two MC samples correspond to the same set of

runs. The number of events generated in our kinematic range in the 3π0 simulation

is 334, 675, 893, and the number in the Dalitz simulation is 226, 985, 152.

The Monte Carlo simulates the physics of the decays and the detector response

as described in Chapter 4, and the events are analyzed with the same analysis code

as the data as described in Chapter 3. In the normalization mode, 12, 668, 419 3π0

events pass all selection requirements (this is equivalent to ∼ 3.6 datasets). In the

signal mode, 265, 901 Dalitz events (∼ 4.2 datasets) pass all selection requirements.

With the relevant numbers in hand, we can now calculate the acceptance in each

mode according to Eq. 5.1.

acceptanceDalitz =
265, 901

226, 985, 152
= (1.1714 ± 0.0023) × 10−3 (5.2)

acceptance3π0 =
12, 668, 419

334, 675, 893
= (3.7853 ± 0.0010) × 10−2 (5.3)



98

5.2 Corrections to the MC Acceptance

The signal mode acceptance is what allows us to determine the number of Dalitz

decays that occurred during data-taking from the number we observe via our de-

tector and reconstruction code. Because we rely on the simulation to measure the

acceptance, the acceptance needs to be corrected for any differences between data

and Monte Carlo.

As part of our systematic studies (the subject of Chapter 6), we have investigated

possible sources of data-Monte Carlo discrepancies. We find two such discrepancies

that are significant enough in magnitude to warrant a correction to the acceptance.

The first is related to the tracking inefficiency in the signal mode, and the second is

related to the relative trigger inefficiencies between the two decay modes; the details

of each of these studies are discussed in Section 6.1 and Section 6.5, respectively.

Here, we will explain each one conceptually and correct the acceptance in the signal

mode for these effects.

5.2.1 Tracking Inefficiency Correction

In order to look for possible data-Monte Carlo discrepancies, we need to use event

samples that are separate from our signal and normalization mode samples. Using a

sample of KL → π+π−π0 decays, we can cleanly identify cases when a track existed

in the spectrometer but was not reconstructed by the tracking algorithm. Comparing

the frequency of this tracking failure in data to that in Monte Carlo, we find that the

Monte Carlo underestimates the tracking inefficiency by 0.68%. Because the Monte

Carlo essentially reconstructs tracks too well (compared to data), the acceptance in

the simulation is higher than the true acceptance. To correct this, we multiply the

MC acceptance for Dalitz events by (1 − 0.68%), or 0.9932.
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5.2.2 Trigger Inefficiency Correction

The true acceptance in each mode is sensitive to the trigger efficiency for that mode.

Trigger inefficiencies can occur during data-taking due to hardware failures or elec-

tronic glitches in the trigger system. If trigger 6 and trigger 14 have different inefficien-

cies, and if these inefficiencies are not simulated, the ratio of signal to normalization

mode acceptances measured in MC will differ from the true ratio.

In order to study relative trigger inefficiencies, we need a sample of events that

have a chance of passing both triggers; thus, neither of our nominal samples can

be used. However, recall that random accepts are events that are kept during the

software stage of the trigger regardless of the Level 3 decision (see Section 2.7.5).

We use the sample of random accepts from trigger 6 to measure the relative trigger

inefficiency in data by analyzing this sample for Dalitz decays. If any of the trigger 6

random accepts are reconstructed as Dalitz decays, but are not tagged as belonging

to the trigger 14 sample, there is a relative trigger inefficiency between triggers 6 and

14. We measure this inefficiency to be 0.14%. (Note that any absolute inefficiency in

trigger 6 will also affect our measurement; in Section 6.6, we find the magnitude of

this inefficiency to be negligible.)

We find that the Monte Carlo does not mimic the relative trigger inefficiency found

in data; therefore, the signal mode acceptance will be too high (if the MC exactly

modelled reality, some of the simulated events would have been accidentally thrown

out by trigger 14, reducing the final MC sample). To correct this, we multiply the

acceptance for Dalitz events by (1 − 0.14%), or 0.9986.
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5.2.3 Corrected Acceptances

Based on these tracking and trigger inefficiency studies, we can correct the Dalitz

mode acceptance that we calculated in Section 5.1 by multiplying the raw Dalitz ac-

ceptance by the tracking inefficiency correction and the trigger inefficiency correction.

We find

corrected acceptanceDalitz =
(
(1.1714 ± 0.0023) × 10−3

)
× 0.9932 × 0.9986, (5.4)

corrected acceptanceDalitz = (1.1619 ± 0.0023) × 10−3. (5.5)

Table 5.2 gives the acceptances in the two decay modes, with the Dalitz mode accep-

tance corrected for the inefficiencies related to the tracking and the trigger. We will

use these acceptances in the calculation of B(π0 → e+e−γ)/B(π0 → γγ).

Corrected
Mode MC Acceptance Error

(×10−2) (×10−2)
3π0 3.7853 0.0010

Dalitz 0.11619 0.00023

Table 5.2: The Monte Carlo acceptances (with uncertainties) for both normalization
(3π0) and signal (Dalitz) modes. The Dalitz mode acceptance has been corrected for
the tracking and trigger inefficiencies as described in the text.

5.3 Calculation of B(π0 → e+e−γ)/B(π0 → γγ)

We now have the observed numbers of events and acceptances for our signal mode,

KL → 3π0
D, and for our normalization mode, KL → 3π0. There are several simple

steps to get from these numbers to B(π0 → e+e−γ)/B(π0 → γγ). We observe (with

the detector and our reconstruction) only a fraction of the Dalitz decays that occur

during the data-taking period. The acceptance tells us what this fraction is; in fact,
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for this reason, the acceptance is often referred to as an efficiency. Then, dividing the

number of Dalitz decay events we observe in data by the acceptance we find using our

MC gives us the number of Dalitz decays that actually occurred during data taking.

Similarly, we can find the number of 3π0 events that occurred during data-taking

by dividing the number we find in data by the acceptance; however, in this case, one

more step is necessary. At both the trigger-level and at the crunch-level, we prescaled

the 3π0 events to avoid analyzing the entire data sample. The trigger prescale was

5 (see Section 2.7.4 and Section 2.7.5) and the prescale in the crunch job was 10

(see Section 3.3). Therefore, our sample contains 1/50 of the 3π0 events that were

produced in the detector during the data-taking period under consideration. Since the

simulation does not include any prescales, we need to correct for this by multiplying

the number of 3π0 data events by 50.

The final adjustment we need to make is to translate between the KL → 3π0 → 6γ

decays and KL → 3π0 → γγ γγ e+e−γ decays in our samples to a measurement of

B(π0 → e+e−γ)/B(π0 → γγ). We only need to note that, in the signal mode, once

the kaon decays into three π0s, any one of the three pions can undergo the Dalitz

decay. Since we care about the probability of a single pion undergoing the Dalitz

decay, we need to divide the number of KL → 3π0
D events by 3. In Eq. 5.6, we give

the general expression for finding B(π0 → e+e−γ)/B(π0 → γγ) and, in the following

equations substitute the appropriate numbers into the expression to arrive at our

result:

B(π0 → e+e−γ,me+e− > 15MeV/c2)

B(π0 → γγ)

=
# KL → 3π0

D data events

acceptanceDalitz

(
1

3

)
acceptance3π0

# KL → 3π0 data events

(
1

50

)
(5.6)
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=
63, 693

0.0011619

(
1

3

)
0.037853

3, 529, 065

(
1

50

)
(5.7)

= (3.920 ± 0.016) × 10−3. (5.8)

We have included the statistical uncertainty of 0.40% from data in the result in

Eq. 5.8; the next chapter explores sources of sytematic uncertainty.



CHAPTER 6

SYSTEMATIC UNCERTAINTIES

Table 6.1 is a summary of the sources of systematic uncertainty for the measurement of

B(π0 → e+e−γ)/B(π0 → γγ). For each line in the table, there is a subsection below

giving more details describing the source of the error and how the estimate of the

uncertainty was obtained. Most of the sources of error are related to the uncertainty

in our simulation of the relative acceptance. The total systematic uncertainty on the

ratio of branching ratios is 0.93%.

Source of Systematic Error Level of Uncertainty

Tracking Inefficiency 0.68%
Radiative Corrections 0.29%
Detector Material 0.47%
Accidentals 0.13%
Relative Trigger Inefficiency 0.14%
Trigger 6 Inefficiency < 0.01%
Trigger 6 Prescale 0.02%
Form Factor 0.06%
Photon Inefficiency 0.01%
Background < 0.01%
Cut Variations 0.10%
e+e− mass scale 0.06%
Monte Carlo Statistics 0.20%

Total Systematic Error 0.93%

Table 6.1: Summary of systematic errors.

6.1 Tracking Inefficiency

In Section 5.2, we made a correction to the acceptance in the signal mode due to

different tracking inefficiencies in data and Monte Carlo. This section describes how

we arrive at the correction factor.
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In KTeV’s Vus analysis [35], a data-MC tracking inefficiency difference was mea-

sured using KL → π+π−π0 decays in 1997 data. Since our measurement uses 1999

data, we repeat the tracking studies using 1999 KL → π+π−π0 events. The 1999

sample may have a different inefficiency than the 1997 sample because the two years

took data with different beam intensities, and tracking inefficiency varies with beam

intensity. Further, two different beam intensities were used in the nominal 1999 data,

so we perform the study separately on each of the so-called “medium” and “high”

intensity samples.

KL → π+π−π0 events are used in the study because it is possible to reconstruct

this decay even if some of the tracking information is missing. The data sample is

from random accepts in trigger 4 (trigger 4 requires four clusters and has no tracking

requirement), and a large MC sample of KL → π+π−π0 events is generated for

comparison with these data events. The two charged pions should leave two tracks

in the detector, but detector inefficiencies or failures of the tracking algorithm can

result in single- or double-track loss. We denote the single-track inefficiency η1 and

the two-track inefficiency η0.

To measure the single-track inefficiency, η1, the π0 → γγ decay is reconstructed

and two hadronic clusters (corresponding to the π+ and π−) are required in the

calorimeter. The shape χ2 variable described in Section 3.7.1 is used to distinguish

hadronic clusters from photons. One of the hadronic clusters must match a fully-

reconstructed track. There are then two possible kinematic solutions for the missing

track. The position of the second hadronic cluster discriminates between these two

solutions. The single-track inefficiency is measured in data and in Monte Carlo, and

is multiplied by 2 since either one of our two tracks could be lost. As shown in

Table 6.2, the MC does not fully model the inefficiency observed in data, so we need

a correction equal to the difference between the data and MC inefficiencies. (As



105

described in Section 5.2, this correction will lower the acceptance, since it increases

the MC tracking inefficiency to match the data inefficiency.)

Since correlated hit losses within a drift chamber can result in no reconstructed

tracks, a separate study analyzes this two-track loss, η0. Again, we start with a re-

constructed π0 → γγ and two hadronic clusters in the calorimeter. We look for events

where no tracks were fully reconstructed, but where there are two track segments in

either the upstream pair of drift chambers or the downstream pair. Finding two track

segments in one pair of drift chambers indicates that the tracks were not reconstructed

because they were both lost in the other pair of drift chambers. The two-track loss is

measured in both data and MC, and is recorded in Table 6.2. The data-MC difference

in this inefficiency is added to the difference from the single-track inefficiency, and

this is the total correction to the acceptance due to tracking inefficiency.

Tracking Inefficiency Tracking Inefficiency
Medium Intensity High Intensity

Data
2η1 3.48% 4.90%
η0 0.19% 0.21%
Total 3.67% 5.11%
Monte Carlo
2η1 2.97% 4.31%
η0 0.05% 0.09%
Total 3.02% 4.40%
Correction 0.65% 0.72%

MC no accidentals
2η1 0.41% 0.41%
η0 0.00% 0.00%
Total 0.41% 0.41%

Table 6.2: Tracking inefficiencies in KL → π+π−π0 data and Monte Carlo, for both
medium and high intensity. The correction applied to the acceptance is the difference
between the total data inefficiency and the total MC inefficiency. The bottom sec-
tion of the table gives the inefficiencies for MC events in which no accidentals were
included.
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The remaining concern regarding the tracking inefficiency is to justify that these

studies done with KL → π+π−π0 events are also valid for the electron tracks that

occur in the Dalitz mode. We suspect that most of the track loss in 1999 is due to

accidentals (which increase with beam intensity). We verify this by rerunning the

MC portion of the tracking studies without accidentals; these results are shown in

the bottom section of Table 6.2. The tracking inefficiencies in MC with no accidentals

are much smaller and, as expected, are not intensity-dependent. We conclude that a

large fraction of the inefficiency (85% to 90%) comes from accidentals. Systematics

associated with accidentals are discussed further in Section 6.4. Since the effect of

accidentals cannot distinguish between tracks from electrons and those from charged

pions, the tracking loss due to accidentals should be the same for electrons and pions.

Therefore, we are justified in applying the results of the KL → π+π−π0 track-loss

study to the electron tracks in our analysis.

Table 6.2 shows the inefficiencies in data and Monte Carlo in the two intensity

samples. The (relative) statistical errors associated with the inefficiencies are at the

few percent level. Since the medium and high intensity samples are roughly equal in

size, the overall tracking correction is approximately the average of the corrections

in the two samples (0.68%). To be conservative, this entire correction is taken as a

systematic uncertainty.

6.2 Radiative Corrections

As discussed in Section 4.9.2, the simulation of the Dalitz decay includes radiative

corrections up to second order in αEM . This corresponds to the interference between

one-loop diagrams and the tree-level diagram (virtual corrections) as well as the

radiation of a real photon (real corrections). To determine our sensitivity to radiative
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corrections, we generate signal mode Monte Carlo with no radiative corrections to

compare to the nominal MC sample. The acceptance increases by (5.74 ± 0.28)%

when radiative corrections are not included.

The QED calculations that are in the MC are well-understood theoretically, and we

have evidence given in the sections below that the simulation of radiative corrections

models the data well. Therefore, we assume the radiative corrections included in

the MC to be correct to second order, and take a systematic uncertainty due to the

higher-order corrections that are not included in the simulation. We can estimate

the effect of these higher order corrections, such as two-loop corrections and one-

loop corrections to the diagrams with real radiated photons. “Turning on” radiative

corrections (that is, going from a simulation based on the tree-level diagram only

to a simulation which includes the radiative corrections at second order in αEM )

results in a decrease in acceptance of 5.43%. We assume that adding the next order

corrections to the simulation would cause a change in acceptance equal to 5.43% of

the 5.43%; this would be a change of 0.29% in the acceptance (and correspondingly,

in the measurement of B(π0 → e+e−γ)/B(π0 → γγ)). Therefore, we take a 0.29%

systematic uncertainty on our result due to the modelling of radiative corrections.

6.2.1 The Reconstructed e+e−γ Mass

We now demonstrate that the simulation’s radiative corrections model the data well.

By comparing the data to the nominal MC and to the MC without radiative correc-

tions, we identify several distributions that are sensitive to the modelling of radiative

corrections. In each distribution, the nominal MC is consistent with the data, while

the MC without radiative corrections disagrees significantly with the data. The first

such distribution is the reconstructed e+e−γ mass, shown in Fig. 6.1. The data
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to Monte Carlo overlays show that, without radiative corrections, the MC does not

match the low side of the mass distribution.
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Figure 6.1: The left plots show the data to nominal Monte Carlo overlay and ratio
for the reconstructed e+e−γ mass. The right plots are the overlay and ratio for the
reconstructed e+e−γ mass in data and Monte Carlo with no radiative corrections. All
selection criteria have been applied except for the requirement on the reconstructed
e+e−γ mass. The dots are data; the solid histogram is MC.

The width of the e+e−γ mass peak as well as the χ2 of the two data to MC

overlays help to quantify how poorly the MC without radiative corrections models

the data (and thereby give evidence that the simulation models radiative corrections



109

well.) Table 6.3 gives the width of the e+e−γ mass distribution (from a gaussian

fit) in data and in MC with and without radiative corrections. The width agrees at

the 0.2 sigma level between data and nominal MC; there is a 7.5 sigma difference in

the width between data and MC with no radiative corrections. Note that the width

of the distribution in data gives an e+e−γ mass resolution of 1.5 MeV/c2. The χ2

per degree of freedom for the data to MC overlays is 41.6/40 for nominal MC and

380.0/40 for the MC with no radiative corrections.

Sample Width of Error Number of χ2/dof of
reconstructed sigma different the overlay
e+e−γ mass from data with data
(GeV/c2)

Data 0.0015088 6.2 × 10−6 - -
Nominal MC 0.0015074 3.3 × 10−6 -0.2 41.6/40

MC no rad. corr. 0.0014582 2.6 × 10−6 -7.5 380.0/40

Table 6.3: The width (and error on the width) of the gaussian fit to the reconstructed
e+e−γ mass distribution in data, nominal Monte Carlo, and Monte Carlo with no
radiative corrections. The third column gives the data-MC difference in width in
terms of the number of sigma, for both nominal MC and MC with no radiative
corrections. The χ2 per degree of freedom of the data to MC overlay is also given.

6.2.2 The Reconstructed e+e− Mass

Distributions that are related to the track separation are also sensitive to radiative

corrections; this includes the cell separation, the tracks’ opening angle, and the e+e−

mass. This is crucial because, while the e+e−γ mass distribution is sensitive to both

real and virtual corrections, it is more sensitive to the real corrections. Table 6.4

shows that the real and virtual corrections cause the acceptance to change differently,

so we need to make sure we are modelling both parts of the radiative corrections

correctly.
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Sample Fraction of Change in Acceptance
Generated Events Relative to No

Radiative Corrections
Nominal MC - -5.43%

real corrections 16.18% -11.76%
virtual corrections 83.82% -3.28%

Table 6.4: The percent change in acceptance resulting from “turning on” radiative
corrections (that is, going from MC with no radiative corrections to the nominal MC).
The nominal MC sample is broken into subsamples based on whether an event was
affected by the real or virtual corrections; 16.18% of generated events have a real
radiated photon (that is, they are π0 → e+e−γγ events) and the remaining 83.82%
have virtual corrections. The percent change in acceptance is given for each of these
subsamples.

Since we expect the e+e− mass distribution to be sensitive to the virtual correc-

tions, we generate a MC sample in which only the virtual corrections are turned off,

and compare the e+e− mass distribution in data and MC. Figure 6.2 confirms that

while nominal MC models the e+e− mass distribution well, the MC with no virtual

corrections does not match the data, especially at low e+e− mass. Because the nomi-

nal cell separation requirement eliminates most events at low e+e− mass (below ∼ 10

MeV/c2), where the effect of virtual corrections is most prominent, we have included

events with a cell separation of one or greater for these plots. The results of our cell

separation cross check (see Section 7.1) indicate that B(π0 → e+e−γ)/B(π0 → γγ) is

stable for cell separations below the requirement of three cells, down to and including

a cell separation of one.

6.2.3 The Distribution of the Number of Software Clusters

Just as the e+e− mass distribution is sensitive mainly to virtual corrections, the dis-

tribution of the number of software clusters (see Section 3.4.2) is sensitive to radiative

corrections only through the real corrections. The real radiative corrections result in
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Figure 6.2: The left plots show the data to nominal Monte Carlo overlay and ra-
tio for the reconstructed e+e− mass. The right plots are the overlay and ratio for
the reconstructed e+e− mass in data and Monte Carlo with no virtual corrections.
All selection criteria have been applied except the requirement on the reconstructed
e+e− mass and the cell separation requirement; the sample includes events with cell
separation of one and greater (the nominal requirement is cell separation greater than
three). The dots are data; the solid histogram is MC.
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an extra photon compared to the tree-level Dalitz decay. This photon can sometimes

register in the calorimeter as a software cluster, so we expect the distribution of the

number of software clusters to be sensitive to the simulation of the real radiative

corrections. Figure 6.3 confirms this. Although the agreement is not perfect between

data and nominal MC, the agreement is much worse if radiative corrections are not

included.

10

10 2

10 3

10 4

10 5

0 5 10 15

0.5
0.6
0.7
0.8
0.9
1

1.1
1.2
1.3
1.4
1.5

0 5 10 15

10

10 2

10 3

10 4

10 5

0 5 10 15

0.5
0.6
0.7
0.8
0.9
1

1.1
1.2
1.3
1.4
1.5

0 5 10 15

Figure 6.3: Data to Monte Carlo overlays of the number of software clusters in Dalitz
mode. The left plots are nominal MC and the right plots are MC with no radiative
corrections. The top plots are the overlays and the bottom plots are the data to MC
ratios. The dots are data and the solid histogram is MC.
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With this evidence that both real and virtual corrections are well-simulated, taking

a systematic uncertainty of 0.29% based on the projected effect of the higher-order

radiative corrections (that are not included in the MC) on B(π0 → e+e−γ)/B(π0 →

γγ) is justified.

6.3 Detector Material

As mentioned in Section 4.3, the simulation models electromagnetic interactions in

the detector material, such as bremsstrahlung. Most particle losses in the reconstruc-

tion associated with bremsstrahlung result from interactions upstream of the analysis

magnet; the material upstream of the analysis magnet is approximately 0.73% of

a radiation length (while the total material through DC4 is 1.18% of a radiation

length) [38].

Turning off the simulation of bremsstrahlung in the Dalitz mode Monte Carlo

increases the acceptance by (4.66 ± 0.27)%. As might be expected, turning off the

simulation of bremsstrahlung in the normalization mode has a negligible effect –

the acceptance decreases by (0.038 ± 0.039)%. Based on previous studies [38], the

Monte Carlo models the detector material at the 5-10% level, so, from the change in

acceptance in the signal mode, we assign a conservative systematic error of 0.47% for

this.

Turning off the simulation of bremsstrahlung in the Dalitz mode MC also allows

us to see how well the effect is being modelled by looking at the distribution of the

brem-γ distance (described in Section 3.7.2). Because both bremsstrahlung and ra-

diative corrections affect the shape of this distribution, it is instructive to compare

the distribution for various combinations of turning on/off these two effects. Fig-

ure 6.4 shows the data to MC overlays for data and nominal MC, for data and MC
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with no bremsstrahlung, for data and MC with no radiative corrections, and for data

and MC with no bremsstrahlung and no radiative corrections. It is clear that both

bremsstrahlung and radiative corrections need to be included in the simulation for

this distribution to match the data.
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Figure 6.4: Data to MC overlays of the distribution of the brem-γ distance at the
calorimeter. The data are compared to nominal MC, to MC with no bremsstrahlung,
to MC with no radiative corrections, and to MC with no bremsstrahlung and no
radiative corrections. The dots are data and the solid histogram is MC. All selection
criteria have been applied except for the requirement on the brem-γ distance; this
requirement is that the brem-γ distance be greater than 1 cm, and is indicated by
the arrow on each plot.
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6.4 Accidentals

To study the effect of accidentals, we generate MC with no accidental overlays. The

change in acceptance is large in both modes; the acceptance increases by (37.11 ±

0.31)% in the Dalitz mode and by (31.68 ± 0.04)% in the 3π0 mode. Because we are

taking the ratio, most of the change in acceptance cancels. The change in the ratio

of branching ratios due to these changes in acceptance is 1.3168
1.3711 − 1 = −0.0396; that

is, B(π0 → e+e−γ)/B(π0 → γγ) decreases by 3.96% if accidentals are not included

in the simulation.

We can attribute this change in the ratio of branching ratios to two effects: the

presence of tracks in the signal mode (and not in the normalization mode) and the

presence of one more photon in the normalization mode than in the signal mode. We

will consider each of these effects to determine our sensitivity to the modelling of

accidentals.

6.4.1 Study Using the SOD Distribution

We can use the drift chamber sum-of-distances (SOD) distributions for the tracks (see

Section 3.4.1 and Section 4.5) to measure our sensitivity to changes in the acceptance

due to accidentals. Figure 6.5 shows overlays of the SOD distribution between data

and nominal MC and between data and MC with no accidentals. The overlay between

data and MC without accidentals shows extremely poor agreement. The agreement

between data and nominal MC is much better, although it is not perfect.

However, since low SODs come almost entirely from accidentals, we can use the

fraction of events in the SOD distribution below -0.2 mm as a measure of how well the

accidentals are modelled. This “low-SOD fraction” is well-modelled in nominal MC

– it is within about 2.5 sigma of the fraction in data. The fraction of low SOD events
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Figure 6.5: Data to Monte Carlo overlays of drift chamber sum-of-distance (SOD)
distributions for one of the x tracks in DC1. The top plot is nominal MC and the
bottom plot is MC without accidentals. The dots are data and the solid histogram
is MC. Deviation between SOD and cell spacing is shown, so zero deviation means
SOD=6.35mm, and negative deviations are low SODs.
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Sample Fraction of events Error Number of
whose SOD is lower sigma different

than nominal by from data
0.2 mm or more

Data 0.1174 0.0013 -
Nominal MC 0.1138 0.0006 2.5
MC no accid. 0.0280 0.0003 68.5

MC: 97% nominal
3% no accidentals 0.1103 0.0006 5.0

Table 6.5: The fraction of events (and the error) whose SOD is more than 0.2 mm
lower than the nominal value (6.35 mm). The last column gives the difference in this
low-sod fraction between data and Monte Carlo for nominal MC, for MC with no
accidentals, and for a combination of the two Monte Carlos.

in the MC sample with no accidentals differs from the fraction in data by about 68.5

sigma (see Table 6.5).

Since the fraction of low-SOD events is very sensitive to accidentals, we can use it

to test the modelling of accidental activity in the following way. We create a mixture

of MC with and without accidentals by combining a fraction, f , of MC with no

accidentals and (1 − f) of nominal MC. We determine at what level we can detect

the presence of the MC with no accidentals by monitoring the change in the low-SOD

fraction as we vary f . Approximately 3% MC with no accidentals (combined with

97% nominal MC) is needed for the fraction of low-SOD events in the Monte Carlo

mixture to be significantly different (∼ 5 sigma) from that in data. This means that,

from the presence of tracks (and therefore SOD distributions) in the signal mode, we

can determine that data and MC are consistent at the 3.96%× 0.03 = 0.1188% level.

6.4.2 Study Using Software Clusters

Because we also have one more photon in the normalization mode than in the signal

mode, our sensitivity to accidentals in the neutral parts of the two decays does not
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entirely cancel in the ratio. The effect of accidentals in neutral mode decays is most

obvious in the distribution of the number of software clusters (see Section 3.4.2). The

extra energy in the calorimeter from accidental activity is often below the hardware

cluster threshold, but is grouped into software clusters during analysis. To study the

effect of accidentals on the number of software clusters, we look at the distribution

in the 3π0 mode. Figure 6.6 shows overlays of the distributions of the number of

software clusters between data and nominal MC and between data and MC with

no accidentals. Without accidentals, the simulated events almost never have extra

software clusters.

Sample Fraction of events Error Number of
with zero sigma different

software clusters from data
Data 0.90250 0.00016 -

Nominal MC 0.90309 0.0008 3.3
MC no accid. 0.981045 0.0003 486.3

MC: 99% nominal
1% no accidentals 0.1103 0.0006 8.9

Table 6.6: The fraction of events with no software clusters (and the uncertainty on
this fraction). The last column gives the difference in this fraction between data and
Monte Carlo for nominal MC, for MC with no accidentals, and for a combination of
the two Monte Carlos.

Because of this, we use the fraction of events with zero software clusters as a

measure of the sensitivity to accidentals. Table 6.6 shows the fraction of events with

no software clusters in data, in nominal Monte Carlo, in MC with no accidentals, and

in a sample that is a mixture of nominal MC and MC without accidentals. Between

nominal MC and data, the fractions are different by about 3.3 sigma; between MC

with no accidentals and data, the difference is 486.3 sigma. Using 99% nominal MC

with 1% MC with no accidentals gives a significant mismatch with data in terms of

the fraction of events with no software clusters (∼ 8.9 sigma).
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Figure 6.6: Data to Monte Carlo overlays of the distribution of the number of software
clusters. The dots are data and the solid histogram is MC. The top plot is the nominal
MC and the bottom plot is the MC without accidentals.
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Therefore, from the neutral decay products, we are sensitive to changes in the

ratio of branching ratios (due to accidentals) greater than 3.96% × 0.01 = 0.0396%.

Combining this systematic error with the systematic error from our sensitivity to

accidentals because of the tracks in the signal mode (0.1188%) gives a total systematic

uncertainty due to accidentals of 0.125%.

6.5 Relative Trigger Inefficiency

In Section 5.2, we made a correction to the acceptance in the signal mode due to

different relative trigger inefficiencies in data and Monte Carlo. This section describes

how we arrive at the correction factor.

Since the signal and normalization modes come from two different triggers, we need

to measure how well we know the relative trigger efficiency in data and in MC. The

3π0s come from trigger 6 and the Dalitz events come from trigger 14. To determine

the level of trigger inefficiency in data, we use random accepts from trigger 6 and

analyze them with the Dalitz mode reconstruction. The fraction of the events that

reconstruct as Dalitz decays but are not tagged as being in trigger 14 is the rate of

trigger 14 inefficiency relative to trigger 6.

We find 207 random accepts that pass all Dalitz selection criteria, and all 207 are

in trigger 14. To increase statistics for this study, we loosen the selection requirements

by removing the cell separation cut. We find 716 events that pass all cuts except the

cell separation cut, and 1 of these is not in trigger 14. This is an inefficiency of

1/716 = 0.0014 in the data.

It is unlikely that the MC has a relative trigger inefficiency since we expect this

type of inefficiency to come from electronic glitches or hardware failures that are not

simulated. We can perform a check to make sure this assumption is valid. We use
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Levels 1 and 2 of trigger 6 to generate Dalitz mode events; since the Level 3 software

trigger is not applied, it is possible for Dalitz events to pass the trigger. (Essentially,

this procedure replicates the Dalitz events that can be found in the trigger 6 random

accepts in data.) As in data, we analyze this sample for Dalitz decays. We confirm

that there is no measurable relative trigger inefficiency between trigger 6 and trigger

14 in MC.

Therefore, the relative trigger inefficiency found in data represents a data-MC dif-

ference, and it is applied as a correction to the Dalitz acceptance. To be conservative,

the entire correction of 0.14% is taken as a systematic uncertainty.

6.6 3π0 Trigger Inefficiency

In addition to the relative inefficiency between trigger 6 and trigger 14, we need to

measure the absolute inefficiency of trigger 6, the 3π0 trigger. The measurement of

B(π0 → e+e−γ)/B(π0 → γγ) is sensitive to any trigger 6 efficiency difference in data

versus Monte Carlo. By design, there is no trigger 6 inefficiency in the Monte Carlo;

therefore, we need only measure the trigger 6 inefficiency in data. To do this, we use

data events from trigger 5 (found on QKNL tapes 1 through 36). Trigger 5 essentially

only requires some energy in the calorimeter and has no Level 3 requirements, so all

of these events are random accepts. The events are sent through the 3π0 analysis.

For all those events which are reconstructed as 3π0s, we check whether they are in

trigger 6, using the the in-time slice of the Level 1 mask latch (KTeVana variable

L1MASK LAT). We use the latch because it contains all trigger 6 events before the

prescale is applied; we need to check whether the event was in trigger 6 before the

hardware prescale was applied since the prescale eliminates some of the events that

are originally tagged as being in trigger 6.



122

The fraction of events which pass all 3π0 cuts but are not in trigger 6 is the rate

of trigger 6 inefficiency. We find 402,193 trigger 5 events which reconstruct as 3π0s.

Of these, 402,176 are also in trigger 6. This gives an inefficiency of 0.0042%, with a

statistical uncertainty of 0.0010%.

Because the statistical uncertainty on the measured inefficiency is relatively large

compared to the inefficiency itself, we use the prescription described in [27] to translate

this measurement of the inefficiency into a systematic uncertainty. The prescription

is as follows. Let s be the inefficiency and let σs be the statistical uncertainty on the

inefficiency. We convert s±σs into a systematic uncertainty, ∆s, such that the range

[−∆s, +∆s] includes 68.3% of the area of a Gaussian with mean s and width σs:

1

σs
√

2π

∫ +∆s

−∆s

dx exp

[
−(x − s)2

2σ2
s

]
= 0.683. (6.1)

Following this procedure gives a systematic uncertainty of 0.0047% at the one-

sigma level. This is reported in the systematics table, Table 6.1, as < 0.01%. No

correction is made to the acceptance based on this negligible inefficiency.

6.7 3π0 Trigger Prescale

The ratio B(π0 → e+e−γ)/B(π0 → γγ) is directly sensitive to any deviations in the

trigger 6 prescale from the nominal value. (There is no trigger 14 prescale.) Trigger

6, the 3π0 trigger, has a hardware prescale of 2 and a software prescale of 5/2 (giving

a total trigger-level prescale of 5). Recall that a hardware prescale of 2 means that

every other event that comes through trigger 6 is thrown out. Because there are

so many trigger 6 events (largely 3π0 decays), we can eliminate some of them via a

prescale and still have plenty of statistics. The software prescale is not vulnerable to
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inefficiencies; however, the hardware prescale is. We use two approaches to determine

the hardware prescale’s deviation from the nominal value of 2.

6.7.1 Study Using Trigger 5 Random Accepts

First, we use trigger 5 events that reconstruct as 3π0s, as for the trigger 6 inefficiency

study described in Secton 6.6. We compare the number of these events that are in

trigger 6 according to the latch (L1MASK LAT – see Section 6.6), which is filled before

the hardware prescale is applied, with the number that are in trigger 6 according to the

trigger mask (KTeVana variable MSKTRG), which is filled after the prescale has been

applied. The ratio of the latter to the former should be 0.5 (for the nominal prescale of

2). We find 201,285 events in the trigger mask after the prescale, and 402,176 events

in the Level 1 mask latch (before the prescale), for a ratio of 0.50049± 0.00079. This

corresponds to a 0.098%±0.158% difference from the nominal value of 0.5. Following

the procedure described in Section 6.6, we convert this inefficiency into a systematic

uncertainty of 0.19%.

6.7.2 Study Using Scaler Data

However, since the uncertainty on this measurement of the inefficiency is large com-

pared to the inefficiency we find, we turn to another technique, which has larger

statistics, to measure the prescale. We can use the scaler data that was recorded

during the experiment to look at all events that came through trigger 6 before and

after the prescale. The relevant variables in the scaler code are BTM 06 for before

the prescale (BTM stands for beam trigger monitor) and RAW L1 B06 for after the

prescale [39].

We include only those runs which are used in the nominal analysis, and we measure



124

0

5

10

15

20

25

-30 -20 -10 0 10 20 30

Figure 6.7: The sigma distribution for the ratio of trigger 6 events after the hardware
prescale to trigger 6 events before the hardware prescale for each run used in the
nominal analysis, relative to the average ratio over all these runs.
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both the overall ratio of L1 RAW 06 (after ps) to BTM 06 (before ps) and error, as

well as this ratio and error for each run. Using the errors on each run, we can find

the number of sigma away from average for each run’s ratio. This sigma distribution

is shown in Fig. 6.7. The overall ratio is 0.500044 ± 3.1099 × 10−6. The sigma

distribution shows a significant number of outliers, most of which are from runs in

which the measured prescale is greater than the nominal prescale of 1/2. This most

likely indicates an intermittent defect in the prescale electronics.

Because some of the outliers are as far out as 30 sigma, we take an error on the

ratio equal to 30 sigma (that is, 30 × 3.1099 × 10−6), or 9.3297 × 10−5. This is

a 0.01866% uncertainty on the measured prescale of 0.500044. Since the measured

prescale deviates from 1/2 by 0.0088%, we have a very small uncertainty on the

prescale of approximately 0.0088% ± 0.0187%. Using the prescription in Section 6.6,

this deviation corresponds to a one-sigma uncertainty on the prescale of 0.0208%. If

the uncertainty had been statistically different from zero (that is, if the measured

prescale deviation from 1/2 had been statistically significant), we would have taken

the uncertainty as an inefficiency in the prescale, and corrected for it in the acceptance.

However, since it is not significant, we only include it as a systematic uncertainty.

6.8 Form Factor

As discussed in Section 1.3.1, the amplitude for the π0 → e+e−γ decay contains a

form factor, f(x), at the π0γγ vertex (where x = (me+e−/mπ)2). We use the linear

approximation, f(x) ≈ (1 + ax), where a is the π0 slope parameter. The 2006 PDG

value for a is 0.032 ± 0.004 [4], and this value is used in the simulation of the Dalitz

decay (see Section 4.9.2).

To determine our sensitivity to the form factor, we generate MC with a = 0.000
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(eight sigma below the nominal value) and with a = 0.064 (eight sigma above the

nominal value). The change in acceptance is very small in both cases. Decreasing

the value of a by eight sigma results in a decrease in the acceptance of (0.388 ±

0.274)%, which corresponds to a 0.518% uncertainty according to the prescription

given in Section 6.6. Increasing the value of a by eight sigma results in an increase

in the acceptance of (0.155 ± 0.274)%, which corresponds to a 0.318% uncertainty

(again using the prescription found in Section 6.6). Taking the larger of these two

uncertainties and dividing by 8 gives a one-sigma level systematic uncertainty due to

the form factor of 0.06%.

6.9 Photon Inefficiency

In Section 3.7.1, we describe the shape χ2 requirement, which is used to determine if

a cluster corresponds to a photon by seeing how closely the cluster’s transverse energy

profile matches that expected for a photon. Although the requirement is loose (shape

χ2 < 100), there is a small chance that a real photon will not pass this requirement.

In the Vus analysis [35], the effect of the photon cluster shape requirement (shape

χ2) was studied by removing this cut in the B
(
KL → π0π0π0) /B

(
KL → π±e∓ν

)

analysis. Removing the cut results in a change of 0.05% in the ratio, which is

taken as a systematic uncertainty in that analysis. This measurement of B(π0 →

e+e−γ)/B(π0 → γγ) uses KL → 3π0
D and KL → 3π0, so there is only a one-photon

difference between the signal (5 γs) and normalization (6 γs) modes (as opposed

to the six-photon difference in the study from the Vus analysis.) Thus, the photon

inefficiency is 1/6 of the one found in the Vus analysis, or, ∼0.01%.
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6.10 Background

The main source of background in the KL → 3π0
D decay is KL → 3π0 → 6γ, with one

photon converting to an e+e− pair at the vacuum window. To study this, 3π0 Monte

Carlo events are generated in trigger 14 as described in Section 4.10 and reconstructed

with the Dalitz analysis. Figure 6.8 shows the distribution of reconstructed vertex

z position for the conversion events, zoomed in to the region around the vacuum

window at z = 159 meters.

For the background study, we generate 50 times as many 3π0 events as for the

nominal 3π0 analysis. If these generated events had gone through the nominal 3π0

analysis, we would expect to reconstruct 50 times as many 3π0 decays as we did in the

nominal analysis (that is, 50 × 12, 668, 419). Recall that in data, we find 3, 529, 065

3π0 events, but this is after a total prescale of 50 has been applied; so, in data, there

are really 50 × 3, 529, 065 3π0 events.

In the Monte Carlo background sample, we find that seven conversion events re-

main after the Dalitz reconstruction is done and the selection criteria criteria are im-

posed. From this, we can estimate the number of conversion events (call this number

x) that fake the Dalitz decay in the data sample we are using for this measurement:

7

50 × 12, 668, 419
=

x

50 × 3, 529, 065
, (6.2)

and,

x = 1.95. (6.3)

The 1.95 conversion events that fake the Dalitz decay in the signal mode data

sample of 63, 693 events constitute a 3 × 10−5 = 0.003% background. This level of

background is negligible, and instead of performing a background subtraction, we
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Figure 6.8: The reconstructed vertex z position of events with a photon conversion,
focusing on the region near the vacuum window (at z = 159 m). The plots on the left
show the reconstructed vertex position based on the neutral clusters in the calorimeter
(the photons from two of the π0s). The plots on the right are the reconstructed vertex
z position based on the vertex of the two tracks. The top plot on each side is before
cuts, the middle plot is after all cuts except the cell separation requirement, and the
bottom plot is after all cuts. In the top-right and middle-right plots, the spike at
the vacuum window is visible, indicating that the tracks are from photon conversions
there. Note that the vertex z requirement in the analysis applies to the z reconstructed
from the neutral clusters. Also note that seven events remain after all cuts, although
none of them are near the vacuum window, and so do not appear in the bottom two
plots.
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take this as a systematic error.

6.11 Cut Variations

Systematics associated with the selection criteria are studied by varying each selec-

tion requirement and monitoring the effect on B(π0 → e+e−γ)/B(π0 → γγ). For

variables on which a requirement exists in both modes, a large fraction of any data-

Monte Carlo disagreement should cancel in the ratio, and we find this to be the case

when cuts are varied. For variables that only exist in the Dalitz mode, no such can-

cellation will occur, so systematic errors can arise from any disagreement between

data and Monte Carlo. The requirements unique to the signal mode, such as vertex

z position, cell separation requirement, and the e+e− mass requirement, are varied

and no significant changes are observed in B(π0 → e+e−γ)/B(π0 → γγ). Based on

the small variations we do observe, we estimate that our sensitivity to changes in the

acceptance due to the selection criteria is no greater than 0.1%.

To confirm that we are relatively insensitive to cut variations, there are several

variables to which we should pay particular attention. Since we rely on the MC to

measure the acceptance in each mode, we need to make sure the distribution of the

vertex z position is well-modelled in each mode. We would also like to investigate

how well the MC simulates the cell separation distribution in the Dalitz mode, since

we know the tracking efficiency varies with cell separation. Additionally, we check

that varying the e+e− mass cut does not affect the result. We discuss each of these

topics below.
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Figure 6.9: The reconstructed kaon z-vertex for both modes, after all selection re-
quirements except the z requirement. The top plots are the data to MC overlays,
where the dots are data and the solid histogram is Monte Carlo. The bottom plots
are the data to MC ratios.
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6.11.1 Varying the Vertex z Requirement

Plotting data to Monte Carlo overlays for each variable shows that the simulation

models the physics very well. Figure 6.9 shows the data to MC overlays and ratios

for the reconstructed vertex z positions in both Dalitz and 3π0 modes. There is no

significant slope in the ratio of data to Monte Carlo z positions in either mode. The

slope is (−0.60±0.63)×10−3 per meter in the Dalitz mode and (−0.52±0.64)×10−4

per meter in the 3π0 mode. This indicates that the acceptance in each mode is well-

modelled.

6.11.2 Varying the Cell Separation Requirement

Figure 6.10 shows the cell separation distribution for the tracks in the Dalitz mode.

The top left plot shows the distribution after all cuts except the cell separation cut;

the right plot shows the distribution after making the additional requirement that

the cell separation be greater than 3 (cells). It is reassuring that in the neighborhood

of the cut, the data and MC agree. We explore this agreement further in Section 7.1.

6.11.3 Varying the e+e− Mass Requirement

Another important consideration is what happens if we vary the e+e− mass cut; the

nominal cut is at 15 MeV/c2, and we test cuts at 0, 10, 12, and 20 MeV/c2. For each of

these cut variations, the resulting B(π0 → e+e−γ)/B(π0 → γγ) differs from nominal

by approximately 1 sigma (based on statistics). We conclude that the systematic

uncertainty associated with the e+e− mass cut is not significant; any uncertainty is

subsumed in the 0.1% overall uncertainty we have assigned for cut variations.
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Figure 6.10: Data to MC overlays and ratios of the reconstructed cell separation of
the tracks in the Dalitz mode. The dots are data and the solid histogram is MC. The
left pair of plots is after all selection requirements except the cell separation cut, and
the right pair is after all selection requirements.
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6.12 e+e− Mass Scale

The requirement that the e+e− mass is greater than 15 MeV/c2 is a possible source

of systematic uncertainty. The e+e− mass requirement is sensitive to how well we

reconstruct the e+e− mass; any scale shift in the reconstruction will lead to an uncer-

tainty on the location of the cut, and in turn, to an uncertainty on the measurement.

If there is a data-MC scale shift in the reconstructed e+e− mass, the cut that is

nominally at 15 MeV/c2 will not be in the same location in data and MC.

We first determine what level of such a data-MC scale shift would be detectable;

we scale the e+e− mass in data by various factors and monitor the data to MC overlay

to see what size shift results in significant disagreement in the distribution. The level

of e+e− mass shift detectable in this manner is a 0.5% shift, and this corresponds

to losing an extra 41 events in data. Therefore, the uncertainty associated with the

e+e− mass cut is 41/63, 693 = .06%.

6.13 Monte Carlo Statistics

The statistical uncertainty on the ratio of acceptances, which is 0.20%, is taken as the

error due to MC statistics. The size of the signal mode Monte Carlo sample limits

this uncertainty. However, the MC statistical uncertainty of 0.20% is significantly

lower than the statistical uncertainty (from data) of 0.40%.

6.14 Other Systematics Checks

To simulate the slight discrepancy between the observed size of the drift chambers

and the survey measurements, a DC expansion factor is used in the Monte Carlo.

The default expansion factor is 1.00023 for all DC planes, and this expansion is im-
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plemented both during event generation and during reconstruction of MC events. To

estimate our sensitivity to this aspect of the simulation, we use two tests. First, we

change the simulation so that there is no expansion at generation, but the reconstruc-

tion uses the default expansion factor. Second, we change to no expansion in both the

generation and the reconstruction. In the former test, the acceptance change is less

than one sigma from the nominal acceptance. In the latter, the acceptance change

is about 1.5 sigma. Therefore, our sensitivity to the simulation of the drift chamber

expansion is negligible.



CHAPTER 7

CROSS CHECKS

To cross-check our measurement of B(π0 → e+e−γ)/B(π0 → γγ), we investigate

how the result depends on several factors including cell separation, e+e− mass, beam

intensity, and data-taking run. We also check the result for consistency within subsets

of the nominal sample, such as for inbends versus outbends (see Section 7.5) and for

the two polarities of the analysis magnet.

7.1 Cell Separation Dependence

Because we expected, a priori, that tracks with a small opening angle are not well-

simulated in the Monte Carlo, we require the tracks to be more than 3 cells apart

in the first two drift chambers (see Section 3.7.2). We now verify that the ratio of

branching ratios does not change significantly in the vicinity of this cut. The number

of reconstructed Dalitz events for each value of cell separation in both data and MC

is used to compute the ratio of branching ratios for each value of cell separation. For

each computation, we use the overall number of reconstructed 3π0 events in data and

MC, as well as the overall number of generated events in both modes.

Figure 7.1 shows the ratio of branching ratios as a function of cell separation, fo-

cussing on the result for low values of cell separation. Each point uses an independent

sample of reconstructed Dalitz events in data and in MC, with the first six points

corresponding to events with a minimum cell separation equal to the bin number (0

through 5), and the last point corresponding to events with a minimum cell separation

of 6 or greater (that is, all of the events not contained in the first six points). The

line is the weighted average, and the χ2 is 2.03 per 6 degrees of freedom, which corre-

sponds to a 91.7% probability. The plot indicates that B(π0 → e+e−γ)/B(π0 → γγ)

135
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Figure 7.1: The ratio of branching ratios versus cell separation. The Dalitz events
(both data and reconstructed MC events) that contribute to the answer in each of the
first six bins are the events which have a minimum cell separation equal to the bin
number. For example, the events in the cell separation = 0 bin all have a minimum
cell separation of exactly 0. The last (seventh) point includes the rest of the events,
that is, events which have a minimum cell separation greater than or equal to six.
The error bars represent the independent statistical uncertainty in each bin. The
solid horizontal line is the weighted average, and the dashed horizontal lines indicate
the statistical uncertainty on the weighted average.
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is stable as a function of cell separation.
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Figure 7.2: The ratio of branching ratios for the nominal sample on the right and for
the sample of Dalitz events with low cell separations (less than or equal to 3 cells)
on the left. The events in the low cell separation sample pass all other selection
requirements. The error bars on the points indicate the uncertainty from the data
and MC statistics on the Dalitz events in each (independent) sample. The solid line
is the weighted average of the two points, and the dashed lines are the uncertainty
on the weighted average.

The stability of B(π0 → e+e−γ)/B(π0 → γγ) can also be seen by comparing the

nominal result to the result using the sample of events that are rejected only by the
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cell separation requirement. Even with the requirement that the e+e− mass is greater

than 15 MeV/c2, the sample below the cell separation cut is slightly larger than the

nominal sample.

Recall that the cell separation requirement effectively imposes an e+e− mass cutoff

around 10 MeV/c2, as shown in Fig. 3.12. However, the reverse is not true; although

the e+e− mass requirement preferentially eliminates events with low cell separations,

it does not result in a cell separation cutoff. There can be events with high e+e− mass

but low cell separation. The cell separation cut is applied in both the x and y views of

the drift chambers; that means, by definition, the cut rejects some fraction of events

with large e+e− masses if the decay occurs very nearly vertically or horizontally (such

that the two tracks are fully contained in either the x or y plane.)

Figure 7.2 shows B(π0 → e+e−γ)/B(π0 → γγ) in these two independent samples

of events – those events that fail only the cell separation requirement and those events

that pass the requirement (the nominal sample). The error bars are based on the

independent statistical uncertainty for each sample. The results for the two samples

are in very good agreement; the χ2 is 0.06 per 1 degree of freedom (corresponding to

an 80.2% probability).

7.2 e+e− Mass Dependence

We have seen that the e+e− mass distribution is very sensitive to radiative corrections,

especially at the low end. The requirement that the e+e− mass be greater than 15

MeV/c2 is imposed to avoid the low-mass region in part because of this sensitivity

(in addition to the fact that the acceptance for events with low e+e− masses is very

small). We have also noted that the requirement that the cell separation be greater

than 3 cells effectively cuts off the e+e− mass distribution at ∼ 10 MeV/c2; we can
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use the events with e+e− masses between 10 and 15 MeV/c2 as a cross check of our

result. However, we first need to correct the result in each e+e− mass range to the

result over the full kinematic range of the e+e− mass. We explain this procedure in

detail for the nominal result in Section 8.1; for this cross check, we only quote the

results.
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Figure 7.3: The result for events with e+e− mass between 10 and 15 MeV/c2 that
pass all other selection criteria, and the result for events in the nominal sample
(me+e− > 15 MeV/c2). The error bars correspond to the independent statistical
uncertainties in the two samples. The solid line is the weighted average and the
dashed lines are the uncertainty on the weighted average.
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Figure 7.3 shows B(π0 → e+e−γ)/B(π0 → γγ) (corrected to the full e+e− mass

range) for the two independent samples of events – those events with an e+e− mass

between 10 and 15 MeV/c2 that pass all other cuts and those events with an e+e−

mass above 15 MeV/c2 (the nominal sample). The plot indicates agreement between

the two samples, although the low e+e− mass sample has low statistics. The line

indicates the weighted average, and the χ2 is 0.73 per 1 degree of freedom, which is

a 39.4% probability.

7.3 Intensity Dependence

As mentioned in Section 6.1, during 1999, E832 took data at several different beam

intensities for systematic studies. Two intensities, “medium” and “high,” were used

during nominal data-taking in addition to special low intensity runs, which are con-

sidered separately from the nominal data sample. The intensity is measured by the

secondary emission monitor (SEM) in units of protons per spill. (Recall from Sec-

tion 2.2 that each spill is approximately 40 seconds.) Although there were target

SEM values for low, medium, and high intensity running, it is impossible to keep the

intensity at a precise SEM value. Resolution effects, as well as turning the beam on

and off, cause fluctuations in the intensity and deviations from the target SEM. For

this reason, a run intended to be a medium intensity run contains some spills at low

or high intensity. Table 7.1 gives the SEM ranges that correspond to the intensity

samples for this analysis.

During data-taking, certain run ranges were used for medium intensity running,

and others were used for high intensity running. While most events in a medium

intensity run come from medium intensity spills, imperfections in controlling the beam

intensity result in some low and high intensity spills during a medium intensity run.
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Intensity Sample SEM Range (×1012)
(Protons per Spill)

Low 0.0 − 3.0
Medium 3.0 − 5.5

High > 5.5

Table 7.1: The range of protons per spill corresponding to each of the three intensity
ranges.

This is why, for this cross check, we create the intensity samples on an event-by-event

(equivalent to spill-by-spill) basis rather than by grouping a particular set of runs

together. Note that in the nominal analysis, some events fall into the low intensity

range, even though none of the runs in the nominal analysis are low intensity runs;

the number of such events is small and they are not used as part of this cross check

(these events are, of course, included in the nominal result).

The low intensity data events from both modes are from two special low intensity

runs that are not part of the nominal analysis (runs 14090 and 14092), which were

crunched from the QKE tapes (QKE001-QKE018). The low intensity MC events

were generated using accidental events corresponding to only these two run numbers.

During data-taking, a series of special low intensity runs were intended to be used

for systematics studies; unfortunately, problems with either trigger 6 or trigger 14 in

several of these runs result in only two low intensity runs that are usable for cross

checks for this analysis. Thus, the low intensity statistics are very poor, but we

include them in the cross-check nonetheless.

Table 7.2 shows the number of reconstructed events in data and MC, the number

of events generated in Monte Carlo, and the acceptance within each of the intensity

ranges in each mode. In the Dalitz mode, the acceptance has already been corrected

for the tracking inefficiency and the relative trigger inefficiency as was done for the

nominal analysis in Section 5.2. The tracking inefficiency is applied separately to
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the medium and high intensity samples based on the results of the tracking study

described in Section 6.1; the medium intensity correction to the Dalitz acceptance is

0.9935 and the high intensity correction is 0.9928. No tracking correction is applied

to the low intensity sample. The correction due to the trigger inefficiency is 0.9986

(determined in Section 6.5) for all three samples.

Mode Data Events MC Events MC Gen Acceptance Error
(×10−2) (×10−2)

3π0 low 33573 17366740 337616428 5.1439 0.0012
Dalitz low 608 186174 114468848 0.16241 0.00038

3π0 medium 1612742 5772398 135643086 4.2556 0.0017
Dalitz medium 29573 121603 92003024 0.13113 0.00038

3π0 high 1867849 6723682 193654697 3.4720 0.0013
Dalitz high 33147 140478 131331080 0.10605 0.00028

Table 7.2: Number of events in data and Monte Carlo, and acceptances (with er-
rors) for both modes, in the special low intensity runs and in the medium and high
intensity ranges of the nominal set of runs. In the Dalitz mode, the acceptance has
been corrected for the tracking inefficiency and for the relative trigger inefficiency, as
described in the text.

Using the number of events and acceptance in each intensity range, the ratio of

branching ratios, B(π0 → e+e−γ)/B(π0 → γγ), is calculated independently in each

intensity sample. The results are given in Table 7.3, and are shown in Fig. 7.4. The

χ2 for the weighted average in Fig. 7.4 is 7.4 per 2 degrees of freedom, corresponding

to a probability of 2.4%.

Accidental activity increases with intensity. Looking at the MC with no accidental

overlays allows us to see how much of a correction we would need if we did not simulate

accidentals; the result for the ratio of branching ratios would be roughly 5% too low

(see Fig. 7.5). Additionally, if accidentals are not simulated, there should be an

intensity dependence in the result. We can see this by looking at the result using MC

with no accidentals within each intensity sample. Because of the low statistics in the
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Figure 7.4: The dots are the ratio of branching ratios in each intensity sample. Note
that the medium and high intensity samples are subsets of the nominal sample, while
the low intensity sample is from a special set of runs described in the text. The
solid line is the weighted average and the dashed lines indicate the uncertainty on the
weighted average.
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Sample B(π0 → e+e−γ)/ Stat. Error
B(π0 → γγ) (Data and MC)

(×10−2) (×10−2)

Low Intensity 0.3824 0.0157
Medium Intensity 0.3967 0.0026
High Intensity 0.3873 0.0024

Nominal 0.3920 0.0017

Table 7.3: The ratio of branching ratios in each intensity range as well as the error
from both data and MC statistics. The nominal result is included for comparison.

special low-intensity runs, we only use the medium and high intensity samples in the

nominal analysis for this part of the cross check. We compute the acceptances and

B(π0 → e+e−γ)/B(π0 → γγ) in the medium and high intensity samples using MC

with no accidental overlays, and compare to the results using nominal MC. Figure 7.5

shows the nominal result in the two intensity samples along with the weighted average

(with uncertainties), as well as the results using no accidentals in the two intensity

samples along with the weighted average.

We expect the accidentals to bring the results in the two intensity samples into

better agreement with each other. Although it is not perfect, the results for the two

intensity samples are in much better agreement when the MC with accidentals is

used. The χ2 for the results with nominal MC is 7.1 per 1 degree of freedom, which

corresponds to a probability of 0.8%, while the χ2 for the results using MC with no

accidentals is 12.9 per 1 degree of freedom, which corresponds to a probability of

0.03%.

In order to further investigate any possible intensity dependence of the result, we

next break up the 1999 runs into a series of run ranges according to average intensity

during each run. For instance, runs 13670 through 13752 all had an average intensity

within the medium intensity range (3.0 × 1012 to 5.5 × 1012 protons per spill); this
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Figure 7.5: The dots are the result in the two intensity samples using nominal MC;
the boxes are MC with no accidentals. The solid lines are the weighted averages of
the result in the medium and high intensity samples for nominal MC and for MC with
no accidentals. The dashed lines indicate the uncertainties on the weighted averages.
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Figure 7.6: The points are the ratio of branching ratios in each of the eight subsamples
described in the text. The run range and the average intensity is given for each
subsample. The boxes indicate the results in the high intensity subsamples, while
the dots indicate the results in the medium intensity subsamples. The error bars are
the independent statistical uncertainties on each point. The solid line is the weighted
average and the dashed lines indicate the uncertainty on the weighted average.
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Runs Protons per Spill Intensity
(×1012)

13670-13752 4.6 medium
13753-13762 6.8 high
13763-13844 4.7 medium
13845-13920 6.4 high
13921-14104 4.0 medium
14105-14301 6.4 high
14302-14455 6.6 high
14456-14523 4.0 medium

Table 7.4: A list of the run ranges and the average intensities of each of the eight
subsamples used in the final intensity dependence cross check described in the text.

run range is our first subsample. Table 7.4 lists the run ranges and average intensities

for the eight subsamples.

We compute B(π0 → e+e−γ)/B(π0 → γγ) in each of the eight subsamples.

Figure 7.6 shows the results, with the boxes for the high intensity subsamples and

the dots for the medium intensity subsamples. The χ2 for the result in these eight

subsamples is 14.92 per 7 degrees of freedom, which corresponds to a probability of

3.7%. Recall from Fig. 7.4 that, overall, the high intensity result is less than the

medium intensity result. Figure 7.6 shows that some of the high intensity data gives

a result above the weighted average and some of the medium intensity data gives

a result below the weighted average. This makes it unlikely that our result has an

intensity dependence.

We perform one final indepedent cross-check which provides further evidence

that there is no intensity dependence. Using random accepts from trigger 5 in

the 1999 data, we look at B
(
KL → π±e∓ν

)
/B

(
KL → 3π0), which we abbreviate

B (Ke3) /B
(
KL → 3π0), in each of the eight run-ranges in Table 7.4. The results

are plotted in Fig. 7.7.

KTeV published a measurement of B
(
KL → 3π0) /B (Ke3) (the inverse of the
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Figure 7.7: The points are the ratio of branching ratios of KL → π±e∓ν (denoted
Ke3) to KL → 3π0 in each of the eight subsamples described in the text. The small
numbers at the bottom of the plot are average intensity (×1012) in each subsample.
The boxes indicate the results in the high intensity subsamples, while the dots indicate
the results in the medium intensity subsamples. The error bars are the independent
statistical uncertainties on each point. The solid line is the weighted average and
the dashed lines indicate the uncertainty on the weighted average. The small arrows
outside the plot show the expected separation if the Ke3/3π0 high versus medium has
the same (∼2.4%) discrepancy as the Dalitz to 3π0 ratio of branching ratios. Figure
courtesy of R. Kessler.
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ratio plotted in Fig. 7.7) using trigger 5 random accepts from the 1997 dataset.

This published result is B
(
KL → 3π0) /B (Ke3) = 0.4782 ± 0.0014 (stat) [38]. The

measurement using the 1999 data of B
(
KL → 3π0) /B (Ke3) = 0.4798±0.0010 (stat)

is within one sigma (statistical) of the earlier published result.

This study of the intensity dependence of B (Ke3) /B
(
KL → 3π0) is a much

higher statistics study than the intensity cross-check using our signal mode, and

we observe no evidence of intensity dependence in the result. It should be noted

that the cross check with Ke3 and 3π0 decays uses events from the same trigger

(trigger 5); therefore, this cross check provides evidence that any detector-related in-

tensity dependence is well-simulated in the Monte Carlo. It does not necessarily rule

out intensity-dependent trigger issues; however, the systematics studies described

in Section 6.5 indicate that potential trigger problems are small (corresponding to

an uncertainty of ∼ 0.14%). Additionally, we imposed the same trigger and veto

requirements in the signal and normalization modes to the exent possible (see Sec-

tion 3.2), so that most trigger problems would cancel in the ratio of branching ratios,

B(π0 → e+e−γ)/B(π0 → γγ).

7.4 Run Dependence

Another cross check involves comparing B(π0 → e+e−γ)/B(π0 → γγ) in each data-

taking run to the overall result.

Recall that, before imposing any selection requirements, we check the data sample

integrity (see Section 3.3) by looking at the ratio of the number of 3π0 events to the

number of Dalitz events in each DAQ plane in each run, and comparing that ratio to

the ratio over all runs. We use the statistical uncertainty within each run to determine,

for each individual ratio, the number of sigma away from the overall average ratio.
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Figure 7.8: The ratio of branching ratios versus run, for medium intensity runs, which
are defined as runs 13670 through 14104. (Note that this does not exactly correspond
to the medium intensity sample, since events for the medium intensity sample are
selected on a spill-by-spill basis.) Only runs which have a non-zero number of events
are included. The error bars on the points are based on the independent statistical
uncertainty in each run. The line is the weighted average across all medium intensity
runs.
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Figure 7.9: The ratio of branching ratios versus run, for high intensity runs, which are
defined as runs 14105 through 14523. (Note that this does not exactly correspond to
the high intensity sample, since events for the high intensity sample are selected on a
spill-by-spill basis.) Only runs which have a non-zero number of events are included.
The error bars on the points are based on the independent statistical uncertainty in
each run. The line is the weighted average across all of the high intensity runs.
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We then look at this sigma distribution to confirm that there are no outliers.

A similar check is performed after the analysis for events passing all selection

requirements. For each run that has a non-zero number of events, we compute B(π0 →

e+e−γ)/B(π0 → γγ) and its uncertainty based on the number of events reconstructed

in data and in MC in both decay modes. The aim is to compare the run-by-run result

with the result across all runs.

Recall from Section 7.3 that two beam intensities were used during data-taking.

To focus on a possible run-dependence of the result in this study, it is appropriate to

perform this cross check separately for the medium intensity runs and for the high

intensity runs. As mentioned, not all of the events in a particular run are at the

target intensity for that run, but the majority of events are. Although we broke the

1999 run range into eight intensity samples in Section 7.3, here it is sufficient to use

two samples. Roughly, runs 13670-14104 were taken at medium intensity, while runs

14105-14523 were taken at high intensity. For this cross check, we will use these run

ranges to break the nominal sample into two subsamples.

Figure 7.8 shows B(π0 → e+e−γ)/B(π0 → γγ) for each run in the medium

intensity run range along with the weighted average. The χ2 is 123.4 for 114 degrees

of freedom, which corresponds to a probability of 25.9%. Figure 7.9 is the same plot for

the high intensity run range; the χ2 is 120.2 for 94 degrees of freedom, corresponding

to a probability of 3.6%.

7.5 Inbends versus Outbends

We can separate the signal mode event sample into “inbends” and “outbends,” based

on whether the tracks bend toward or away from each other at the analysis magnet.

Figure 7.10 shows the track configurations corresponding to inbends and outbends.
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Figure 7.10: The track configuration corresponding to (a) an inbend event and (b)
an outbend event.

Figure 7.11 shows the result, B(π0 → e+e−γ)/B(π0 → γγ), separately for inbends

and for outbends, along with the weighted average for the two samples. Note that

the weighted average is just the nominal result for B(π0 → e+e−γ)/B(π0 → γγ), as

expected. The χ2 is 2.20 per 1 degree of freedom, corresponding to a probability of

13.8%.

7.6 Magnet Polarity

We can separate the signal mode event sample into subsamples taken with each of the

two polarities of the analysis magnet. As mentioned in Section 2.4.1, the magnetic

field was reversed periodically during data-taking to reduce systematic biases related

to the field orientation. Although the magnet should not affect the 3π0 events, we can

also separate the normalization sample into events collected during each of the two

magnet polarities. The calculation of B(π0 → e+e−γ)/B(π0 → γγ) will therefore be

independent in the two magnet polarity samples.
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Figure 7.11: The ratio of branching ratios in the two subsamples of the nominal
sample corresponding to which way the tracks bend at the magnet, denoted inbends
and outbends. The uncertainties on the two points are based on the reconstructed
Dalitz event statistics in data and MC. The solid line is the weighted average and the
dashed lines indicate the uncertainty on the weighted average.
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Figure 7.12 shows the result separately for the two analysis magnet polarities,

along with the weighted average for the two samples. The weighted average is just

the nominal result for B(π0 → e+e−γ)/B(π0 → γγ), as expected. The χ2 is 1.64 per

1 degree of freedom, corresponding to a probability of 20.1%.
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Figure 7.12: The ratio of branching ratios in the two subsamples of the nominal
sample corresponding to the two analysis magnet polarities. The uncertainties on the
two points are based on the reconstructed event statistics in data and MC for both
decay modes. The solid line is the weighted average and the dashed lines indicate the
uncertainty on the weighted average.



CHAPTER 8

CONCLUSION

In this dissertation, we have presented a measurement of the Dalitz decay branching

ratio for e+e− masses greater than 15 MeV/c2. In order to compare to previous

measurements and to use the result as the normalization mode in branching ratio

measurements of rare pion and kaon decays, we need to correct the result to the full

kinematic range of the e+e− pair.

8.1 Final Result

In Section 5.3, we calculated our result with the e+e− mass cut at 15 MeV/c2 to be

B(π0 → e+e−γ,me+e− > 15MeV/c2)/B(π0 → γγ) = 0.3920× 10−2. We correct our

measurement to the full e+e− mass range by relying on the Mikaelian and Smith [12]

calculation of the e+e− mass spectrum as implemented in the KTeV MC to predict

the number of events generated below our 15 MeV/c2 e+e− mass cutoff.

Since there are 226, 985, 152 events generated above the e+e− mass cutoff, and

669, 320, 768 events generated over the entire mass range, our measurement accounts

for 226, 985, 152/669, 320, 768 = 0.339128 of the Dalitz decays. To correct to the full

e+e− mass range, we need to divide our measurement by this fraction.

Correcting to the full e+e− mass range results in B(π0 → e+e−γ)/B(π0 →

γγ) = 1.1559%. With a statistical uncertainty of 0.40% and a systematic uncertainty

of 0.93% (for a total relative uncertainty of 1.01%), we have a final result of

B(π0 → e+e−γ)/B(π0 → γγ) = (1.1559 ± 0.0046 ± 0.0107)%. (8.1)

156
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8.2 Comparison to Previous Measurements and to Theory

A summary of the previous measurements, the prediction from theory, and this new

result of B(π0 → e+e−γ)/B(π0 → γγ) is given in Table 8.1. Figure 8.1 shows these

previous measurements and the theoretical prediction along with this new result from

KTeV. The uncertainty on this new measurement is less than half the PDG uncer-

Year Author B(π0→e+e−γ)
B(π0→γγ) (%) Uncertainty Reference

1960 Budagov 1.17 ± 0.15 [21]
1961 Samios 1.166 ± 0.047 [20]

Theory
1972 Mikaelian & Smith 1.196 ± 0.012 [12]
1981 Schardt 1.25 ± 0.04 [19]
2007 KTeV 1.1559 ± 0.0117 -

Table 8.1: A summary of the previous measurements and theoretical prediction for
the π0 Dalitz decay branching ratio.

tainty [4] and a factor of 3 better than any single previous measurement. Combining

the three previous measurements of B(π0 → e+e−γ)/B(π0 → γγ) with this new

result gives a new world average of (1.1635 ± 0.0109)%.

In Table 8.1 and in Fig. 8.1, we have estimated a 1% uncertainty on the theoretical

prediction based on comments in [12]. With this level of uncertainty, our result agrees

with the theory at the 2.4 sigma level.

8.3 Effect of New Result on Other Measurements

Part of the motivation for measuring B(π0 → e+e−γ)/B(π0 → γγ) stems from its

use as a normalization mode in many rare decays of pions and kaons, some of which

are listed in Section 1.1; that list is reproduced here:
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Figure 8.1: A comparison of previous measurements, theoretical predictions, and this
KTeV measurement of B(π0 → e+e−γ)/B(π0 → γγ).
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• π0 → e+e−

• KL → e+e−γ

• KL → e+e−e+e−

• KL → π+π−π0e+e−

• KL → π0e+e−γ

• KL → π0π0γ

The uncertainty on the π0 Dalitz branching fraction is taken as an external system-

atic uncertainty in the measurement of each of these decay modes. Note that the

KL → e+e−e+e− decay is normalized to KL → π0π0
Dπ

0
D, and therefore has to take

twice the uncertainty on the π0 Dalitz branching fraction as part of its systematic

uncertainty [40]. To illustrate the effect of this new measurement of the π0 → e+e−γ

branching fraction (and its significantly smaller uncertainty), we correct recent KTeV

results for two of the above decay modes: π0 → e+e− and KL → e+e−γ.

8.3.1 Correcting the KTeV measurement of B
(
π0 → e+e−

)

The KTeV collaboration recently published a new result for B
(
π0 → e+e−

)
with

π0 → e+e−γ as the normalization mode [41]. Using the 2006 PDG average for

the branching ratio of π0 → e+e−γ, they calculate an absolute branching ratio of

B
(
π0 → e+e−, xD > 0.95

)
= (6.44 ± 0.25 ± 0.22)×10−8 (with xD = (me+e−/mπ)2),

where the first uncertainty is from statistics and the second is from systematics, in-

cluding a 2.7% external uncertainty from B(π0 → e+e−γ). Correcting this result

using our measurement of B(π0 → e+e−γ) yields a slightly lower central value and a

smaller systematic uncertainty: B
(
π0 → e+e−, xD > 0.95

)
= (6.14 ± 0.24 ± 0.15) ×

10−8. Figure 8.2 compares the result for B
(
π0 → e+e−

)
using the 2006 PDG aver-

age of B(π0 → e+e−γ) with the result for B
(
π0 → e+e−

)
using this measurement

of B(π0 → e+e−γ).
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Figure 8.2: The recent KTeV result for B
(
π0 → e+e−

)
, using the 2006 PDG average

for the normalization decay mode (π0 → e+e−γ) branching ratio (left) and corrected
using this new result for the π0 → e+e−γ branching ratio (right).
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8.3.2 Correcting the KTeV measurement of B (KL → e+e−γ)

The KTeV collaboration recently published a new result for B
(
KL → e+e−γ

)
[42],

where the normalization mode is KL → π0π0π0
D. The relative external systematic

uncertainty from the normalization mode is 2.83%, most of which comes from the un-

certainty on B(π0 → e+e−γ). The KTeV measurement uses the 2006 PDG result for

B(π0 → e+e−γ), and finds B
(
KL → e+e−γ

)
= (9.128 ± 0.032 ± 0.070 ± 0.252) ×

10−6, where the first uncertainty is from statistics, the second is from systemat-

ics, and the third is the external uncertainty from the normalization. Correct-

ing this result using our measurement of B(π0 → e+e−γ) yields a slightly lower

central value and a smaller external systematic uncertainty: B
(
KL → e+e−γ

)
=

(8.701 ± 0.030 ± 0.067 ± 0.108) × 10−6. Figure 8.3 compares the KTeV result for

B
(
KL → e+e−γ

)
using the 2006 PDG average of B(π0 → e+e−γ) with the result

for B
(
KL → e+e−γ

)
using this measurement of B(π0 → e+e−γ).
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Figure 8.3: The recent KTeV result for B
(
KL → e+e−γ

)
, using the 2006 PDG aver-

age for B(π0 → e+e−γ) in the normalization decay mode branching ratio (left) and
corrected using this new result for the π0 → e+e−γ branching ratio (right).
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