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Abstract

We first provide a detailed motivation for using probability theory as a
mathematical context in which to analyze engineering and scientific systems
that possess uncertainties. We then present introductory notes on the func-
tion analytic approach to probabilistic analysis, emphasizing the connections
to various classical deterministic mathematical analysis elements. Lastly, we
describe how to use the approach as a means to augment deterministic analy-
sis methods in a particular Hilbert space context, and thus enable a rigorous
framework for commingling deterministic and probabilistic analysis tools in an
application setting.
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Summary

Probability theory is a mature mathematical discipline, which has a long history as a
toolset for analyzing systems possessing uncertainty. One enduring drawback to full
acceptance in some areas of science and engineering is that most popular probabilistic
approaches utilize specialized probabilistic descriptors, such as so-called probability
density functions (PDFs), or cumulative probability functions (CDFs) that infer more
information into an analysis than is justified by the available observed data. In these
approaches, unbalanced probabilistic inferences can actually obscure vital informa-
tion present in the accompanying process models. Moreover, for historical reasons,
these same traditional probabilistic methods often employ obscure definitions, and
analytical tools so as to render them less appealing to general process analysts.

We are proposing to overcome these, and other, roadblocks to acceptance by
returning to a relatively old idea first described by Kolmogorov and Weiner in the
early part of the 20th century. Namely, that probabilistic systems can be described
in an equivalent, alternative manner to specialized probability descriptors by using a
functional approach.

Since, functional analysis provides the foundation for developing approximate so-
lutions in many applications in science and engineering, it is not surprising that
this same function analytic approach, applied in a probabilistic setting, provides a
more satisfying path towards the development of a rigorous framework for augment-
ing traditional approximation-based deterministic analysis methods to accommodate
uncertainty quantification (UQ).

The key is to recognize that the so-called random mappings, that is, random vari-
ables (RVs) and random fields (RFs), are, in fact, not random but rather deterministic
mappings where at least a portion of the domain consists of sets in a probability sam-
ple space. The randomness enters the picture via the probability associated with the
occurrance of a given domain set.

The path one follows is first to establish the building blocks for the case of RVs.
Then one migrates from RVs to RFs by building on them to develop a product space-
style set expansion, similar to what one uses to increase the domain in a deterministic
setting when migrating from an ODE to a PDE, and to build a new measure space
in this expanded domain.

The key distingishing feature between the two is that in the deterministic migra-
tion, one has to deal only with one measure in each of the constituent subdomains,
specifically Lebesgue measure. In the UQ-enabled setting one has to generalize to
product measures where a wide class of general probability measures are a constituent.
Naturally, this fact complicates the story somewhat.

In this document, we provide a narrative in which we do these things using,
primarily, a particular application setting: the classical Hilbert space, L2. In the
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course of this narrative, we demonstrate our ideas through simple examples, where, in
the RF case, decompose our function mappings into products, just as one encounters
in classical separation of variables solutions of PDEs, and discuss the relationships
that exist in the UQ setting that tie the two decomposed function spaces together.
Where appropriate, we provide a discussion on how one might seek to achieve results
on more general function space settings.
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1 Introduction

The bases of science and engineering can be thought of as evidence-driven discov-
ery processes tasked with advancing the state of knowledge. One important goal of
these efforts is to develop models that approximate reality, and that are, at best,
tailored to the current state of knowledge. As scientific discovery evolves, along with
knowledge and technology, the level of detail that a model can capture increases.
However, regardless of the detail present in a given model, the presence of uncer-
tainty is ubiquitous in physical scenarios of interest. Regardless of this fact, there has
historically been persistent disagreement among scientists and engineers regarding
the very concept. We give our perspective here.

1.1 General Thoughts on Uncertainty

Uncertainty can be thought of as having two broad classifications. First, there is
inherent uncertainty; that is, uncertainty that cannot be reduced by gathering more
information, at least at the scale at which available observations have been made.
The reference to scale is intentional: The origins of this class of uncertainty typically
entail phenomena that occur at scales that are smaller than either the model or the
observations that are being effected in a given study. We mention in passing that this
scale-limitation effect is known in quantum mechanics as the Heisenberg Uncertainty
Principal.

Sub-scale information can be thought as being packaged for use at the analysis
scale; this packaging thus consists of a scale-bridging step, either explicitly or implic-
itly, and typically results in a truncated view of the sub-scale information. This class
of uncertainty is often termed irreducible, aleatoric, and variability, to name a few of
the more common labels.

Second, there is reducible uncertainty, or ignorance. This class finds its origins in
lack of information, and, typically, is associated with limitations in models or available
experimental data.

There is a subtle point here in that any models that are present in a given analysis,
including those tasked with modeling uncertainty, are idealizations of the phenomena
they address. These approximations always involve some level of ignorance; thus, it
is imperative for the analyst to understand and to explore the effects of ignorance
of each model a given analysis incorporates to determine the combined effects of
the approximations, and to address efficient ways to gather information necessary to
reduce these effects, when possible.

9



1.1.1 An Example: Coin Tossing

Let’s try to illustrate the above points with the classic example of coin tossing.

Coin tossing, while very often taken for granted as the prototypical “random
event,” is, at least conceptually, a deterministic procedure. That is, in theory, if one
were able to make every observation necessary with sufficient detail to assess all of the
factors affecting the tossing event, then, with modeling capabilities that are appro-
priate for the mechanics involved, one could make a prediction on the outcome. Yet
even for this seemingly simple event, assessing these factors is surprisingly compli-
cated. These include the physical properties of the coin itself, the externally applied
forces, its environment while airborne, and the conditions that it will encounter upon
striking the landing surface.

Given the breadth of information required, perhaps it’s not surprising that this
single, simple affair has been ordained as the arbiter for many mainstream affairs,
including those in the political arena. Nonetheless, it has continued to this day to be
a focus of contemporary research [10, 26, 9].

The inherent variability in the above factors have been used to justify departing
totally from a physics-based model of the event. Most often, the coin-tossing outcomes
are represented by a discrete random variable with two possible values. A toss of a
so-called fair coin is presumed to have a 50% chance of resulting in a head or a tail,
a consistent cumulative probability function is assigned to the random variable, and
this function is utilized in subsequent analyses. Doing the above means that the
underlying physics are replaced entirely with an uncertainty-based model; no cause
and effect understanding is presumed or utilized. For the case of the coin, this is a
decision based on practicality; making such a decision for other physical scenarios is
assuredly non-trivial.

While we acknowledge that the above description appeals to a frequentist inter-
pretation of probability, this interpretation is, in general, transcended by probability
theory. For more on this, the underlying philosophical characteristics of coin tossing,
and to uncertainty modeling in general, we refer the reader to [25].

1.1.2 Probabilistic Approach to Uncertainty Analysis

Implicitly in the above discussion, we have demonstrated the prime motivation for
addressing uncertainty: It is always present; and, even if it’s presence can be safely
neglected for a given application, it is often necessary to perform a coarse, uncertainty-
enabled analysis to establish this.

For those cases where uncertainty cannot neglected, the analyst must go through
steps to account for it properly for the application at hand. This includes character-
izing it, developing an appropriate mathematical context, and producing models for
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it within this context.

1.1.3 A Brief History of Probability

Based on its long history, and strong association, albeit relatively recent, with tradi-
tional mathematics disciplines, probability theory is a strong candidate for providing
such a context. Here we provide some background on this history and association.

The formal birth of probability theory can be traced to two French mathemati-
cians, Blaise Pascal and Pierre de Fermat, in the mid-17th century as a means to
analyze games of chance. The popularity of these games at that time, instigated keen
interest in probability theory, and applications were almost exclusively composed of
them.

It was in the early 19th century when Pierre de Laplace, in his book Théorie
Analytique des Probabilités, extended the application base to many scientific and
practical problems. It was during the 19th century, that many important applications,
including the theory of errors, actuarial mathematics, and statistical mechanics, were
broached using probability theory.

In the early 20th century, largely due to the development of Lebesgue integra-
tion, probability theory began a path towards ever-stronger association with rigorous
mathematical disciplines. This burgeoning nexus was made explicit by the Russian
mathematician, A. N. Kolmogorov, who, in a 1933 monograph in Russian, for the
first time posited an axiomatic approach to probability theory. This monograph was
translated into English in 1950 as Foundations of Probability Theory [28]. In his book,
Kolmogorov took the first sophisticated steps towards aligning probability theory with
what is the general discipline known as measure theory.

But, as was the case from the early days, the driving forces behind the develop-
ment of probability theory were applications. The development of theoretical and
experimental physics and chemistry, involving atomic and other sub-microscopic en-
tities, was symbiotic with the theoretical development of probabilistic methods.

It was for such an application that N. Wiener developed his theory of polynomial
chaos expansions [52] as a means to filter inputs to systems containing Brownian
motion paths [14]. This was perhaps the first foray into applications of functional
analysis in probability.

The state of the art in probability, bolstered by its strong association with math-
ematics disciplines such as functional analysis, numerical analysis, and topology, has
continued to evolve over the the past 50 years. This evolution has kept probability
relevant in the face of ever-changing application analysis requirements.
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1.2 Functional Analytic Approach to Probability:
An Overview

We now place our attention on one analysis path in particular; we do so through the
use of a simple case, which we expand on in some detail later.

In the field of probability, there are two primary means of analysis. The first of
these is the more traditional approach, in which one is concerned with properties of
certain probabilistic entities, such as cumulative distribution functions, probability
density functions, or a statistical moment, and their behavior under transformation
or limit operations.

There is, however, an alternative approach, which we will refer to as function ana-
lytic probability. The basis of this approach is the recognition that probabilistically-
defined random functions, such as random variables (RVs) and random fields (RFs),
are well-defined functional mappings with, at a minimum, a subset of their domain
of definition being a sample space, Ω, of elementary events. This concept implicitly
assumes many things. For example, the sample space is assumed to be understood in
the context of a probability space, which is composed of the measure triple (Ω,S,P).
This measure triple, and thus the corresponding probability space, consists of a sigma
algebra, S, of subsets of Ω called events, and a probability measure, P , which itself is
just a measure constrained to P (Ω) = 1. Each of these entities has a well-established
and precise mathematical structure and property set associated with it [16, 44, 12].

Using the above structure, it is easy to observe that a random function is, in fact,
not random at all, and that whatever uncertainty that appears in the range space of
these mappings originates in the uncertainty for events in S. These are completely
specified in the probability space by P . This fact, combined with the long history of
function approximation in traditional engineering analyses, means that casting these
random functions similarly makes perfect sense as a context for the examination of
same classes of application in the presence of uncertainty.

Within this mathematical setting, there are many analysis alternatives that de-
pend on the complexity of the mathematical structure warranted by the physical
problem: algebraic, semi-group, topological, etc. In this document, we describe one
of these alternatives, Hilbert space, and pay particular attention to using it in ap-
plications relevant to models one encounters in a variety of engineering disciplines.
Since, our main thrust will be to enrich the mathematical structure typically associ-
ated with deterministic approaches by augmenting the problem domains with suitable
probabilistic subdomains, we will generalize the deterministic mathematical elements,
such as measures, norms, and inner products where appropriate, using product space
techniques. The establishment of analysis fundamentals, such as the augmented mea-
sure triple and the properties of the various classes of generalized mappings, will
readily accommodate the use of well-established functional analysis methods in our
uncertainty-enabled context.
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The motivation for this approach is that these new building blocks, which leverage
analysis techniques developed throughout the rich history of deterministic functional
analysis, will be useful as the basis for selecting problem schema suitable for address-
ing such diverse applications as prediction via partial differential equations (PDEs),
optimization under uncertainty (OUU), and model calibration and validation, includ-
ing experiment design and regularization.

In closing, we note that under identical assumptions, the probabilistic solutions
that result from either of the two main analytical paths are identical. They offer
competing approaches to package information for subsequent analysis; the specific
approach taken should be dictated by the particulars associated with a given ap-
plication class. Finally, a consequence is that the above mappings are also subject
to the same approximation criteria as one might encounter, say, in a deterministic
finite element analysis, only in this case we have generalized the distance metrics to
allow for the use of probability measures in associated norms defining the approxima-
tions. Naturally, the deterministic solutions are fully recovered when the probabilistic
subdomains are eliminated from the analysis specifications.
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2 Mathematical Framework

Probability theory has evolved greatly from the aforementioned axiomatic formulation
statement of Kolmogorov. This evolution has had the effect of aligning it rigorously
with sub-elements of traditional classical mathematical analysis, including set theory,
topology, measure theory and integration, and functional analysis.

Our goal is to cite the necessary connections and to exploit them to construct,
ultimately, our random process approximations in a Hilbert Space context, and to
use these approximations in our analyses as a means to expand upon deterministic
results to accommodate uncertainty. To achieve this, we will rely upon the concepts
of norm (distance) and inner product (geometry), both of which require integration.
First, we assemble a collection of mathematical building blocks.

2.1 Measure Spaces and Probability

A probability space is a measure space, which is completely specified by a measure
triple (Ω,S, P ) [12]. Here Ω is the non-empty universal set of elementary events, or
sample space; S is a σ-algebra of subsets of Ω; and, P is a measure with P (Ω) = 1.
This last constraint is what distinguishes a probability measure versus more general
measures. One will often see a probability space referred to as a probability triple.

Let us describe what these terms mean in greater detail.

The sample space, Ω, can be any abstractly defined set. The fact that it is the
universal set means that complements of subsets of Ω are assumed to be taken relative
to it.

Members of the σ-algebra in a probability space, S, which are referred to as events,
are simply the P -measurable sets. By definition S is a collection of subsets of the
sample space that contains Ω and its complement, the empty set, ∅, and is closed
under countable unions and intersections of sets in the collection. We explicitly state
here that countable can include countably infinite should Ω be an uncountable set.
Events are more generally referred to as measurable sets, and, as the name implies,
the restriction of subsets of the domain of a measure is always necessary to ensure
the consistency necessary for measures, probability or otherwise, to make sense.

Finally, we note that the process of creation of a measure means specifying all of
the elements of its triple; it is quite a detailed and complicated affair to do this. For
example, Lebesgue measure, m, on the real line, R1, which is the typical measure
space for deterministic problems on R1, is developed via an extremely complicated
process despite being based on a simple distance metric for any open or closed interval.
Specifically, for any such interval I ∈ R1,

m(I) = b− a, where b > a. (1)
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Thus the phrase Lebesgue measure really refers to the measure space, (R1,L,m),
implicitly. Here L is the σ-algebra of Lebesgue measurable sets; we will have more to
say on this later. Naturally, when we restrict Lebesgue measure to any unit interval,
or to any finite interval with m̂ = ( 1

(b−a)
)m replacing m, in the measure triple, and

adjusting its corresponding σ-algebra appropriately, the result is uniform probability
measure. We refer the interested reader to [42] for additional information on this
topic.

One last subtle issue relating to measure spaces is that of completion of the mea-
sure space. We mentioned previously that the process of developing the Lebesgue
measure was complicated. One of these complicating factors is that we have to enrich
the smallest σ-algebra achieved through countable unions and intersections of open
intervals in R1 to arrive at L.

For this case, the smallest σ-algebra, denoted by B, is the so-called Borel σ-
algebra generated by the open intervals in R1. Elements of B are called the Borel
sets on the real line, and this measure triple, also derived from interval length, is
called Borel measure. Generally, Borel sets are an important mathematical entity;
they are defined for any topology, not just those on R1, as the smallest σ-algebra
containing that topology. Such a close relationship between Borel σ-algebras and
measure spaces enables us to connect the concepts of measurability and continuity
for functional mappings on these spaces. We mention, however, that even with this
connection, we still have to take care to restrict our underlying topological spaces
to be locally compact, σ-compact Hausdorff spaces, and our measures to be sigma-
finite Borel measures. Fortunately, we can always guarantee this for Euclidian spaces
composed entirely of copies of R1; we direct the interested reader to [44] for additional
information on this.

Regardless, for our case on the real line, we evolve from B to L, that is, from Borel
to Lebesgue measure through a process known as completion of measures [44]. This
process entails enlarging B to include all subsets, say Ni, of Borel sets of measure zero,
m(B) = 0, that cannot be achieved through countable unions and intersections of sets
in B. Sets of measure zero play an important role in measure theory, so understanding
this seemingly subtle point is important as well.

With all of the basic definitions, we are now in a position to state the Axioms of
Probability explicitly:

• The probability of an event is a non-negative real number:

P (E) ≥ 0 ∀E ∈ Ω. (2)

• The probability for the entire sample space is 1:

P (Ω) = 1. (3)
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• We require that P be countably additive. That is, given a countable collection
of a mutually disjoint set of events, that is Ai ∈ S, i = 1, . . . ,∞ such that
Ai

⋂
Aj = ∅ for all i 6= j, then:

P (
∞⋃
i=1

Ai) =
∞∑
i=1

P (Ai) (4)

2.2 Random Variables

The cornerstone of the function analytic probability approach is the fact that map-
pings exist from a sample space to an analytical range space that is amenable to
conventional analysis in a manner that is consistent with deterministic methods. Ran-
dom variables (RVs) and random processes or fields (RFs) will be the mechanism for
accomplishing this. Since we will assume these mappings take range values in the
real line, R1, we will refer to them as real RVs. Naturally, RVs can be generalized to
the complex plane, vectors, and processes with the same foundational elements.

Consider a real RV,X. It is by definition a measurable mapping from a probability
space to a measure space on R1, which can be thought of as a function on a sample
space Ω

X : Ω −→ R1 (5)

or as a set function on the corresponding set of events S

X : S −→ B (6)

where B is an appropriate σ-algebra that is part of the measure triple (R1,B, µ). By
definition, a function is measurable if the inverse mappings of sets in B are sets in S.
So both of the perspectives on the mapping definition guarantee that X is constrained
so that both of the measure spaces that it connects are well-defined, and, depending
on the range measure space, X we say that it is Borel or Lebesgue measurable.

Since our mappings result in an explicit connection between the domain and range
σ-algebras, we can guarantee that P (X−1(B))(∈ S), B ∈ B is well-defined. Thus, we
can now state that µ is also measure, and we explicitly define it using P via X by
µ(B) = P (X−1(B) for any set B ∈ B.

Our µ above is known as the distribution of X, and is denoted by distX . Sev-
eral commonly encountered probabilistic entities derive from the distribution. These
including the cumulative distribution function (CDF),

FX(x) = µ{(− inf, x]}, (7)

and the probability density function (PDF), when it exists,

pX(x) =
dFX

dx

∣∣∣∣
x

. (8)

16



This concept of a PDF in Eq 8 is quite general. We can represent the measure
on R1, µ = distX of random variable X defined above using the Radon-Nikodym
Theorem [16]. Namely, the Lebesgue decomposition of µ is

µ(A) =

∫
A

f(x)dλ+ µs(A), A ∈ B, (9)

where µs is a discrete measure; when µs = 0, the measure µ is said to be absolutely
continuous. The function f(x) is defined to be the Radon-Nikodym derivative of µ
with respect to λ, and is often referred to as the probability density of the absolutely
continuous part random variable X with respect to the measure λ. A common, and
important, situation occurs when λ is Borel or Lebesgue measure on R1, was the case
for Eq 8; we note, however, that λ could have been any σ-finite measure on a given
measure space.

There is a final noteworthy characteristic of mappings on measure spaces: Gener-
ally, any two can differ from one another on a domain set of measure zero, and thus
be equal on any set of P -measure > 0. This property is referred to as equality almost
everywhere relative to the measure P . Two RVs X and Y that have this relationship,
which we denote them X = Y a.e.P , are members of an equivalence class of RVs that
also share the same relationship. This means that families of RVs can be partitioned
into groups of equivalence classes; in each class any two members are equal almost
everywhere P . It is important to be aware of this property when attempting to op-
erate on measure spaces that are subspaces of others, as the equivalence classes tend
not to be identical since these subspaces do not share all the same sets of measure
zero.

2.3 Expectation

With the preliminaries now established, the stage is set for us to define expectation,
which we do in terms of the Lebesgue integral. We do this for two reasons: To ensure
closure of the various function spaces, in particular Banach and Hilbert spaces, a
necessary evil in any function analytic setting; we note that this is not the case for
the Riemann definition of integration. Secondly, Lebesgue integration provides a
uniform integral regardless of whether or not a given RV is discrete or continuous,
that is whether or not the RV takes range values that are countable in R1. Of course
we can only define this for measurable functions. When the integrands are RVs and
the measures probability measures, the Lebesgue integral defines expectation. We
note here alternate definitions of the integral obtained by extending continuous linear
functionals defined on the range of these functions [8, 37]. This definition is well-
adapted to integrals of vector-valued functions and we will used it when we introduce
stochastic processes.

We outline the classical approach to defining the integral. We begin with a defi-
nition for non-negative simple functions; then extend the definition to include more
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general non-negative measurable functions; and, finally, extend it a final time to allow
any real-valued measurable function in the integrand.

Simple functions are those functions that can only take a finite number of values
in their range space. Consider the so-called indicator, or characteristic, function is
defined as follows

IA(x) =

{
1 , x ∈ A
0 , Otherwise

. (10)

Whenever A is measurable, it is easy to see that IA can be shown to be a measurable
mapping.

We can now define simple functions in terms of indicator functions. If α1, . . . , αn

are the distinct values in the range of s, and Ai = {x : s(x) = αi}, then

s(x) =
n∑

i=1

αiIAi
(x) (11)

where IAi
(x) is as defined in Eq (10). Note that it is always possible to construct

monotonically increasing simple functions that converge to any positive measurable
function.

Now, let s be a simple function and C ∈ S, then the integral of s is defined by∫
C

sdP =
n∑

i=1

αiP (Ai ∩ C). (12)

For X a positive measurable set function with domain Ω, and C ∈ S, the integral
is defined as ∫

C

XdP = sup

∫
C

sdP (13)

with the supremum being taken over all simple functions, s, such that 0 ≤ s ≤ X. We
note that the operation of taking a supremum can also be shown to be measurable.

For general measurable X, one first decomposes X into its positive and negative
parts, X+ = max{X, 0} and X− = max{−X, 0}, so that X = X+ −X− and defines
the integral as ∫

C

XdP =

∫
C

X+dP −
∫

C

X−dP. (14)

So, as we mentioned, the expectation of a RV is defined in terms of the Lebesgue
integral on the probability measure, P . Specifically,

E[X] =

∫
Ω

XdP, (15)

Eq (15) and, more generally, for measurable functions, g, of X by

E[g(X)] =

∫
Ω

g(X)dP. (16)
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We’ve mentioned two advantages of Lebesgue integration over Riemann integra-
tion; these result from the behavior of the former under limit operations. We note that
under the more restrictive Riemann integration criteria, the two integrals coincide.

Another artifact of Lebesgue integration is the so-called Change of Variables Theo-
rem, which is motivated by the desire to cast the integration problem onto R1 rather
than the more abstract underlying probability space. We state the result for the
simplest form here; the interested reader can find the more general result in [4].

Theorem 1 (Change of Variable). Given a RV X and a measurable mapping g from
R1 to R1, then ∫

Ω

g(X)dP =

∫ ∞

−∞
g(t)dµ, (17)

where µ = distX is the distribution of X. That is, the integration has been shifted
from the probability space to the corresponding induced measure space on real line.

The theorem states that random variables can be integrated as “usual” functions
on the real line. There is no technical reason why the range measure space must be
defined on R1, however.

Another noteworthy entity identified with µ = distX is the characteristic func-
tional of the random variable X, defined as

µ̂(t) = E
[
eiXt

]
=

∫ ∞

−∞
eixtdµ(x) . (18)

One can readily observe that the characteristic functional is the Fourier transform of a
positive function. It therefore has a number of very useful properties among which: (1)
it uniquely determines the distribution function of X and (2) pointwise convergence
follows from weak convergence of the corresponding distributions of approximations
to X.

2.4 Spaces of Functions

In functional analysis, we consider each function to be one element in a set of func-
tions. Sets of functions are often defined by function properties. For example, we
define the integrable functions on a given measure space, L1, to be the set of func-
tions for which the integral of each member function is finite, and the set of square
integrable functions on a measure space, L2 to be the collection of those functions
whose square is integrable. These spaces need not be defined through integration;
for example, we could consider those functions that are continuous on the R1, and
designate them by C0, or those functions with continuous first derivatives, C1, etc.
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Often, all of the members of a set of functions will have properties that can be
exploited to infer various other desirable properties. For example, a Banach space is
linear function space that is a complete, normed space.

An important subclass of Banach space is one for which we can define an inner
product. These spaces are called Hilbert spaces, and they’re important in analysis
since, although they are infinite dimensional, they extend several of the concepts of
Euclidian geometry in an intuitive way. The space L2 cited above is an example of a
Hilbert space. We will have more on this space later. We should note here that an
inner product space can be defined without the requirement for completeness, and
thus need not be a Banach space. This is the structure of the so-called pre-Hilbert
space which when completed with respect to the norm induced by the inner product,
becomes a Hilbert space and hence a Banach space.

In Section 2.2, we described the concept of almost everywhere (a.e.) P equality
for RVs. Of course this concept also holds true for general measurable functions
defined on a measure space. This means that function spaces can be thought of as
spaces comprised of subgroups of member functions where each subgroup contains
functions that differ only on a set of measure zero relative to the measure on the
domain. In fact, equality a.e. µ, µ a measure on the range space, is known as an
equivalence relation, and each of the subgroups of functions described above represent
an equivalence class. Measure and integration of any member of a given equivalence
class yields an identical result, so this fine point is often not discussed in functional
analysis. However, one must be aware that work with subspaces of function spaces
will often be complicated by the fact that the corresponding equivalence classes aren’t
identical due to discrepancies in the collections of sets of measure zero.

There are other forms of equivalence, such as equivalence in distribution, or mean
square, etc, where the distance measures, and the function topologies they induce, are
clearly defined. One should always be aware of the fact that, in general, uniqueness
properties of these functions applies to the equivalence classes, and not to individual
member functions themselves.

The relationship between RVs and measurable functions is the prime motive for
exploring a function analytic approach to probability. We give a specific example of
this in the following section.

2.5 Putting Things Together, Part One:
Scalar Polynomial Chaos Expansions In L2(Ω)

As we mentioned in Section 1.1.3 above, the polynomial chaos expansion (PCE)
method was first conceived by N. Wiener as a means to integrate differential equation-
type operators where differential Brownian motion, which at the time was viewed as
chaotic, was an external forcing influence. While the random process he described
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is quite general, for this early exposition we will take a simpler route, and note that
the transition to the more general case, first progressing to vectors containing RVs as
components, then to more general random processes, is possible. We will address the
particulars of this progression later in this text.

Now, consider two real-valued, scalar, measurable RVs, X and Y , each with finite
variance. Assume that there exists a functional transformation, T , between X and
Y ; that is, that X = T (Y ) is well-defined.

Since we’ve constrained X to have finite variance by assumption, it is well known
that it is a member of the class of square-integrable functions on its domain, the
sample space; thus X ∈ L2(Ω). It is also known that members of L2 constitute a
Hilbert space [44] of functions. Specifically, L2 is a space of functions that comprise
a complete normed inner-product space. As one might expect, there are a number
of mathematical properties that this membership entails. Most important to our
purposes is that we know that it is possible to construct a generalized Fourier ex-
pansion [29] in L2(Ω) to approximate X, and that this can be done to arbitrary
accuracy [50].

For the case of PCEs, and for reasons that we’ll discuss shortly, we choose to
construct this generalized Fourier expansion in terms of a set of orthogonal polyno-
mials in a standard normal RV, ξ, such that Y = ξ; we denote these polynomials
as Γi(ξ). The mathematical machinery that we’ve described above ensures that we
can construct approximations, T (n), such that the norm of the difference

∥∥T − T (n)
∥∥,

consistent with L2 approximation for the target RV, can be made arbitrarily small.

The Γi are referred to as Hermite polynomials, and their properties can be found
in any of a number of references documenting orthogonal polynomials such as [1]. In
one dimension, the following formula yields the one-dimensional polynomials

Γi(ξ) =

[i/2]∑
j=0

(−1)j i!

(i− 2j)!j!2j
ξi−2j (19)

where the expression [r] evaluates to the largest integer less than or equal to r and
0! = 1. For example, the first four of these are

Γ0(ξ) = 1

Γ1(ξ) = ξ (20)

Γ2(ξ) = ξ2 − 1

Γ3(ξ) = ξ3 − 3ξ.

Many of these so-called complete orthogonal polynomial systems derive from par-
ticular ordinary differential equations defined on Hilbert spaces [55] known as Sturm-
Liouville systems. These systems induce an associated inner product weighting func-
tion that defines their orthogonality properties. For the Hermite polynomials this
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weighting function is, to within a constant, identical to the probability density func-
tion of a standard normal RV. This explains our choice of polynomial system in
the preceding paragraphs. Now, with these specifics in hand, we can exploit the
orthogonality and other properties of the inner product to build our PCE-based ap-
proximations:

X(n) = T (n)(ξ) =
n∑

i=0

giΓi(ξ), (21)

where the generalized Fourier coefficients,

gi =
E[XΓi(ξ)]

Γ2
i (ξ)

. (22)

Perhaps not surprisingly, there are a number of other known probability density
functions that also can be identified, simply by inspection, as weighting functions for
inner products from different Sturm-Liouville systems. For example, an exponentially-
distributed RV defined on the interval [0,∞), is affiliated with the Laguerre polyno-
mials. Note that none of the underlying theory, nor the operations necessary for
constructing a generalized Fourier expansion, rely on a particular RV/orthogonal
polynomial pairing. Thus, theoretically, it is possible that PCEs can be generalized
to any appropriate pairing. These generalizations, often termed Askey Expansions in
the literature [3], are the subject of active research [53, 54].

Less obvious is the recent use of non-orthogonal, but still complete, RV/function
pairings as the expansion bases for a given analysis [56]. Researchers are actively
pursuing such approaches to achieve explicit segregation in analysis domains; these
are typically obviated by the need to confine analyses to stable solution regimes. Here
again, we emphasize the flexibility of the function analytic approach as an attractive
feature for accommodating specific classes of application.

2.6 A Simple One-Dimensional Example

In the previous section, we outlined a Hilbert space formulation to building approxi-
mations for RVs. Specifically, we offered Eq (21) as an approximation in L2 for a RV
X. The issue at hand is to demonstrate how to compute the gi given by Eq (22).

Here, we present a simple, one-dimensional example to illustrate how one might
use the method to achieve an approximate result in a problem setting. Consider a
cantilevered beam, 1 m in length, width equal to 1 cm and height equal to 2 cm, and
composed of 6061-T6 aluminum . Let the beam be loaded by a 100 N transverse point
load at its free end. The formula for the deflection at the free end of the beam is given
by PL3/(3EI). We assume that the Young’s modulus, E, is a Gaussian-distributed
random variable of mean equal to 69 GPa and standard deviation equal to 6.9 GPa.
We also assumed that the applied load is a Gaussian distributed with mean 100 N
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and standard deviation 5 N, and that the length of the beam itself is Gaussian with
mean 1m and standard deviation 1cm.

One-dimensional fourth order PC expansions for P , L and E obtained by using
the Rosenblatt transformation, specifically,

E = P−1
E Φ(ξ1), L = P−1

L Φ(ξ2), P = P−1
P Φ(ξ3). (23)

This results in a 3-dimensional fourth order PC expansion for the deflection δ Here,
PE, PL and PP are the distributions of E, L and P , respectively, and are given each
by an independent truncated Gaussian distribution [23].

Each of the chaos coefficients is evaluated using equation (22) where the expected
value in the numerator has been approximated by a quadrature formula based on
Monte Carlo sampling. ThusNq = 1000 realizations of the variables ξi, (i = 1, 2, 3) are
sampled from a Gaussian distribution, for each one of them, the polynomials, Γi(ξ) are
evaluated, so are realizations of the variables E, L, and P , using equation (23). With
these sets of realizations, the integrals in the numerator of equation (22) are evaluated
for each of E, P , and L. Once the polynomial chaos expansions for these random
variables have been constructed, realizations of these variables can be obtained from
the resulting representation in order to construct a smooth approximation of the
density function. These realizations are computationally inexpensive as they do not
involve the solution of any physics problem, but rather sampling from a response
surface.

The figures below show the results from a Monte Carlo analysis (1000 samples) and
a histogram sampled from a PCE expansion representation of the solution. In order to
provide a consistent comparison, the histogram generated by sampling from the chaos
expansion has been constrained to have the same number of bins as the histogram
obtained from a Monte Carlo analysis of the problem. A two-sample Kolmogorov-
Smirnov goodness-of-fit two-sided hypothesis test at α = 1% significance level was
carried out for these two histograms. The conclusion is that the null hypothesis,
to the effect that both PC and MC samples are drawn from the same distribution,
should not be rejected at the 1% significance level.

Figure 1. Results from Monte Carlo Analysis
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Figure 2. Results from a One-Dimensional Polynomial
Chaos Representation.

2.7 More on the Hilbert Space Approach for RVs

We wrap up our introduction of the functional analytic approach to probability using
our simple PCE description with a brief discussion of some relevant issues. Some of
these are resolved; some, like the Askey Expansions discussed above, are the subject
of current research.

First, implicit in the above discussion, is the assumption that we can justify the
necessary changes of variables. For example, for PCEs, we assume that the transfor-
mation from a standard normal RV to an arbitrarily distributed RV exists; among
other things, this connection allows us to evaluate the numerator of Eq 22. Our ra-
tionale for presuming that this is possible is based upon the following theorem, which
is due to Paul Lévy [42, 7, 43]:

Theorem 2. Let U be a uniform RV over [0, 1], and let F : R1 → [0, 1] be any
cumulative distribution function (CDF). Define Ψ as

Ψ(u) = inf
x∈R1

{x : F (x) ≥ u} ∀u ∈ (0, 1).

Then Z = Ψ(U) is a RV whose CDF is F .

Again, specific to the case for PCEs one uses the uniformly distributed RV as the
intermediary between the original and standard normal RVs.

Second is the issue of computational feasibility. A large number of underlying
random variables, which is labeled as the stochastic dimension, can require one to
compute a large number of Fourier coefficients to achieve a given approximation
accuracy. In fact, the growth can become factorial in nature.

Finally, taking a function analytic approach in Hilbert Space has many beneficial
features that deserve mention; there are also some caveats, to be aware of. We briefly
describe several of these here.
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• With each n, the expansion T (n) has a probability distribution that is implicitly
defined. For PCEs, samples from this distribution, or realizations, are almost
trivial to generate since they are known functional transformations of a standard
normal RV.

• While the convergence of a given expansion is guaranteed in the appropriate
space, one should be aware that transformations among absolutely continuous
random variables, say, are only guaranteed to make sense in distribution [5].
This property, means that it is possible for more than one random variable
to be defined by a given distribution. Thus, special care must be taken when
reducing information, such as statistical moments from an expansion result,
to ensure that information that is only indirectly related to a distribution is
utilized appropriately.

• The use of generalized Fourier expansions, and PCEs specifically, in Hilbert
Spaces can accommodate extension to random fields, as Wiener demonstrated
many years ago. However, there are constraints that must be satisfied. For
our case, we are considering the function spaces to be separable Hilbert spaces,
and, further, we assume that the function spaces satisfy the Minlos-Sazonov [49]
conditions that are the criteria for guaranteeing the existence of the continuum
measure that our finite-dimensional approximations are presumed to converge
to.

• Since it is possible to generate large number of transformations, T (n), and to use
them to construct tests against experimentally-derived statistical constraints,
it is possible to use the approach as a tool for addressing epistemic uncertainty.
Successful applications of this have been performed for random variables, vec-
tors, and fields [41, 18].

• Finally, a consequence approach is that the mappings are subject to the same
approximation criteria as one might encounter, say, in a deterministic finite
element analysis, only in this case the distance metrics will have to be general-
ized to allow for the use of probability measures in associated norms defining
the approximations. Using this approach, the deterministic solutions are fully
recovered when the probabilistic subdomains are eliminated from the analysis
specifications.

2.8 Measures on Product Spaces

We have stated previously that the key idea is that the uncertainty sources are as-
sumed to be fully constrained to the probabilistic subdomains, and that the associated
mappings themselves are deterministic. This suggests that our approach will be to
define random fields as (constrained) mappings on domains that are extensions of
deterministic domains to those that allow a mechanism for including probabilistic
characteristics. We provide the details to this approach here.
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2.8.1 Direct Products of Sets and σ-Algebras

Let S and T be sets. The collection of all ordered pairs of the form (s, t), where s ∈ S
and t ∈ T , is the Cartesian product S × T . For sets A ⊂ S and B ⊂ T the set A×B
is a subset of S × T called a generalized rectangle with sides A and B.

If S and T are σ-algebras of subsets of S and T , respectively, then a measurable
rectangle is a set of the form A×B, where A ∈ S and B ∈ T .

An elementary set is defined by Q = C1 ∪ · · · ∪ Cn, where each of the Ci are
measurable rectangles and Ci ∩ Cj = ∅ for all i 6= j.

Finally, we define S × T to be smallest σ-algebra of subsets of S × T containing
every measurable rectangle. It is also the smallest σ-algebra containing the class of
all elementary sets.

2.8.2 Product Measure

Consider two measure triples, (S,S, µ) and (T, T , θ). We define the product measure
triple to be (S × T,S × T , µ × θ), where µ × θ, the product measure, is defined on
the σ-algebra, S × T , that we described in the previous section.

When the constituent σ-algebras are both of the Borel category, then the product
measure can be given as

µ× θ(A×B) = µ(A)θ(B) (24)

where S and T are the Borel σ-algebras, A ∈ S, and B ∈ T .

Product measures can require σ-algebras that are larger than the collections of
sets that are assembled simply by taking combinations of sets from their constituent
σ-algebras. More precisely, even if both (S,S, µ) and (T, T , θ) are complete measure
spaces, it is not the case that (S × T,S × T , µ × θ) will be complete. This is an
artifact of the process necessary for completion of measures that was discussed in
Section 2.1, and entails expanding S×T to include all subsets of sets of measure zero
in S × T that can be constructed through the product of sets of measure zero in the
constituents. Since the sets included in the larger σ-algebra, which we will denote as
M , differ from Borel sets only by a subset of measure zero, they can be replaced, for
the purpose of the measure, by a bracketing Borel set; this latter set is guaranteed
to be measurable relative to the constituent measures. To take care of this process
automatically, we have to generalize our definition of product measure, Eq (24), for
complete product spaces to be

µ× θ(Q) =

∫
S

dθ

∫
T

IQ(s, t)dµ =

∫
T

dµ

∫
S

IQ(s, t)dθ (25)

where Q ∈ (S × T )∗ and IQ(s, t) is the indicator function defined in Eq (10).
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Our construction, with the constraints that have been assumed on the constituent
measure spaces, results in a product measure space that is σ-finite.

2.8.3 Definition of Measurability

Now we consider function mappings on product spaces.

Scalar, real-valued functions with domain S × T are termed measurable if inverse
mappings of Borel, or where applicable, Lebesgue, sets are elements of S × T , or
(S × T )∗, respectively.

2.8.4 Integration on Product Space

Our primary motive for our function analytic approach to probability is to expand
the domains of our deterministic functions to product space mappings with one sub-
domain a probabilistic sample space, to expand the notion of measure to product
measure, and to define integration for these functions relative to product measure.
Finally, we will use these building blocks as means to define norms and inner products
for these new functions.

We state the following important theorem without proof:

Theorem 3 (Fubini). Let (S,S, µ) and (T, T , θ) be σ-finite measure spaces, and let
f be an (S × T )-measurable real-valued function on S × T . If either:

(a) f ≥ 0, or

(b) ∫
s

dµ

(∫
T

|f |dθ
)
<∞ (26)

then ∫
S×T

fd(µ× θ) =

∫
s

dµ

(∫
T

fdθ

)
=

∫
T

dθ

(∫
S

fdµ

)
. (27)

When the product space has been completed, which means, in our notation, that
f is assumed to be (S × T )∗-measurable, then we understand the inner integrals
in Eq (27) to only be defined almost everywhere relative to the outer integration
measure. That is,

∫
T
fdθ is understood to be defined a.e.-µ, and similarly for

∫
S
fdµ.
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2.9 Random Fields

With this in mind, we define scalar, real-valued random fields (RFs) to be measurable
functions with one of the subdomains assumed to be a probability space in the sense
defined above. Specifically,

α : D × Ω → R1 (28)

where, for the sake of discussion, we assume D to be a deterministic subdomain, and
Ω to be a probabilistic sample space. Finally, we assume that α is measurable with
respect to the measure triple associated with the domain, (D × Ω,D × S, µ× P )

A common statistical entity of interest is the correlation function defined as

R(d1, d2) = E[α(d1, ω)α(d2, ω)] (29)

where measurability of α ensures that the entity on the right hand side of the equation
is well-defined.

This construction of random fields does not take into consideration the particu-
lar structure of the functional space in which each realization of the process claims
membership, be it the space of square-integrable functions of a Sobolev space, for
instance. An example of the significance of these functional space constraints on the
efficiency of canonical approximation is well documented [30, 13]. This product mea-
sure definition forms the building block for our functional analysis construction and
will be further refined, below, to account for additional more specific character of the
functions being described by the random process.

As was the case for single constituent mappings, the product space mappings that
we have just described can themselves be thought of as existing in the framework of
a collection. For example, it is possible to consider the collection of all such (real-
valued) mappings, say, F , that map our product space domain into the real line. The
next section details an analysis of random functions as elements of these function
spaces.
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3 Analysis of Random Processes

As we can see from the previous section, RFs can be thought of as generalizations
either to deterministic functions, or to RVs. Fortunately, a function analytic approach
provides a consistent framework in which to handle this generalization.

In many problems in science and engineering, realizations of RFs, αωj
(d) =

α(d, ωj), ωj ∈ Ω, are constrained to membership in a well-structured functional space.
Fortunately, the restriction of a probability measure from the space of all functions to
specific functional spaces can also be readily carried out, and the machinery discussed
above for constructing measures on product spaces remains valid.

Also, as with RVs, the construction of measures for RFs is quite complicated; it
is further complicated by the fact that the so-called indexing set, D in Eq (28), is
often an uncountable set. One common approach is to construct this measure from
finite-dimensional measures of RVs achieved by considering finite collections of RVs,
{αdi

(ω) = α(di, ω), di ∈ D, i = 1, · · · , n}, that one can compute or observe from the
RF.

In this section, we build on our development in Section 2 by taking advantage of
the structure on the range space of these random variables. A number of references
already exist to guide us in this endeavor [17, 36, 21, 40].

Before we begin the analysis, we will provide a succinct description of duality, a
concept of fundamental importance and that is particularly useful in our approach to
functional analytic representations. Most physical quantities appear in pairs. From
the point of view of one item in this pair, the second item, its dual pair, is a quantity
that can help it achieve its value. Thus strain is the dual of stress (achieving energy),
velocity is the dual of force (achieving power), price is the dual of a commodity
(achieving value). We can thus talk about a certain space of objects and its dual. The
importance of the duality concept in functional analysis relies chiefly in the possibility
of relating properties of representations in one space to those in its dual. The algebraic
dual of a linear vector space is defined as the set of all linear functionals defined on
the space. We will be mostly interested in the topological dual of a given linear vector
space. This is the set of all continuous linear functionals defined on the original space.
Given the continuity of these functionals, a topology is naturally induced in the dual
space, and the concept of neighborhoods and proximity thus follows naturally. In
addition to the topology induced in the dual space itself, these continuous linear
functionals induce a topology in the original space where neighborhoods are defined
in terms of their images under the duality pairing. This is the so-called weak topology
in the original space and is weaker, hence the name, than the original topology. We
note that the dual of a normed space is a Banach space, and that the dual of a Hilbert
space is itself a Hilbert which may be identified with the original space.

A most significant concept in the functional analytic description of probability
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theory, is the ability to further abstract the concept of integration. Specifically, the
Lebesgue integral has been generalized to vector-valued functions along two distinct
paths [11]. The weak integral of a random variable with values in a topological vector
space B can be defined as the regular integral of the numerical function 〈f,X〉, for f in
the dual space of B, and where 〈, 〉 denotes duality pairing. Alternatively, the strong
integral, is defined as a natural extension of the Lebesgue integral with convergence
interpreted as being with respect to the norm in B.

The characteristic functional and the covariance operator of a stochastic process
turn out to be key for a functional analysis approach to RFs. We construct each
using the topological dual of the space in which the RF assumes its values; we will
refer to this as their phase space. The properties of the characteristic functional and
the covariance operator will therefore reflect the functional analytic structure of their
phase space. While the covariance operator provides a more standard machinery for
analysis in function space, the characteristic functional enables the definition of a
probability measure on spaces with a milder structure, and in the case of a Hilbert
space, it provides the means for characterizing the measures on subspaces obtained
through orthogonal projections. In what follows, we will describe the evolution of the
probabilistic structure of a RF as the functional structure of its phase space changes;
we will start by assuming that it is a metric space, and end with the assumption that
it is a Hilbert space.

3.1 Generalizing the Concept of Random Variable

In Section 2.1, we described the Borel σ-algebra on the real line in terms of its
topological origins, and at that time also mentioned that this could be generalized to
incorporate other topological spaces. We discuss this here.

Consider the probability space (Ω,S, P ) and the measurable space (H,H), where
by measurable space, we mean a set/σ-algebra pairing absent a measure. We will call
an (S,H)-measurable mapping from Ω into H an H-valued random variable. Also, we
denote a realization of the random variable X at any ω ∈ Ω, by X(ω). In Section 2.2,
we defined the distribution of a real-valued RV; we generalize this now for the case
of an H-valued RV. The (S,H)-measurability of this generalized random variable
guarantees that the probability of X belonging to a subset A ∈ H is is well-defined.
This is given as

distX ≡ P (X ∈ A) = P (X−1(A)) A ∈ H, (30)

where X−1(A) is in S. The probability measure, η = distX , defined on (H,H),
yields a well-defined measure space; specifically a probability triple, (H,H, η), which
is induced by the random variables X on the space of its values.

Significantly, the inverse mapping of all A ∈ A is generally only a subset of S,
which we denote by SX , and is called the σ-algebra induced in Ω by the random
variable X. This property also means that the topology of open sets associated with

30



SX is weaker than that of S.

If we then consider collections of random variables, {Xi}, each with values in
the measurable space (Gi,Gi), they each induce a σ-algebra SXi

in Ω with a similar
property. Taking the union of all of these induced σ-algebras yields a σ-algebra that is
induced by that family. Note that this σ-algebra is still only a subset of S. Properties
of such families are, in fact, precisely what we will exploit in our development.

We will denote by M(H) the space of all probability measures or distributions
on H. It can be shown that M(H) can be metrized as a separable metric space if
and only if H is a separable metric space [36]. A weak topology is usually defined on
M(H), which is of some significance in statistical inference problems as it is required
for investigating the proximity between two elements of M(H).

Clearly, the structure of the space H, be it a topological vector space, a metric
space, a Banach space, or a Hilbert space, etc, will have significant ramifications on
the properties of the mappings X and the associated measure ηx. We will next explore
how the properties of this measure evolve as the functional analysis structure of H is
gradually enriched. The exposition is meant to be accurate but brief and is far from
exhaustive. The interested reader is referred to the references.

3.1.1 Measure on Metric Spaces

As above, let H be a metric space and H the Borel σ-algebra on H induced by its
metric. Then any measure on H is regular in the sense that the measure of any Borel
subset of H can be approached as the limit from below and above using, respectively,
a sequence of closed and open sets.

Let C(H) denote the space of all bounded real-valued continuous functions on H.
Under the supremum norm, C(H) becomes a Banach space [44]. It can be shown
that if H is compact then any positive linear functional on C(H) can be identified,
uniquely, with the expectation operator relative to some probability measure on H
[36]. If H is not compact, the expectation operator is merely relative to a finitely
additive regular measure.

By endowing H with a separable metric group structure, the space of measures
becomes a topological semigroup under the binary operation of convolution. Thus on
a metric space, the concepts of topological completeness and separability are signifi-
cant. It is should be noted here that a semi-group is a set over which an associative
closed operation has been defined. A group is a semi-group in which an identity ele-
ment exists and where each element has an inverse defined with respect to the group
operation [24].
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3.1.2 Measure on Topological Groups

A locally compact abelian group is an abelian group which is given the structure
of a locally compact topological space compatible with the group operation [38].
That is, the group operation is continuous. Locally compact groups have a natural
measure that is invariant under under group operation, the so-called Haar measure,
thus paving the way for defining the integral on members of the group. A space is said
to be second countable if its topology has a countable base. Every locally compact
group that is second countable is separable, metrizable as a topological group and
complete [38]. Moreover, these groups have a metric that is invariant under the group
operation (i.e. translation invariant).

By endowing H further with the structure of a locally compact second countable
abelian group, it becomes topologically complete and the space M(H) becomes a
topological semigroup. With this structure, Fourier analysis on the set of measures
is possible and infinitely divisible distributions can be introduced [24, 22]. Any such
distribution can be represented as the composition of a Gaussian and a Poisson dis-
tributions.

Letting the character group associated with H be denoted by G, and the value
of the character g at h ∈ H by 〈h, g〉, the characteristic function, µ̂(g) for each
µ ∈M(H) can be defined as

µ̂(g) =

∫
H

〈h, g〉dµ(h) , (31)

for all continuous g ∈ G. The notation 〈h, g〉 refers to duality pairing, which can be
written as

〈h, g〉 = eil(h,g) (32)

for some continuous mapping l: H × G 7→ R. It can be shown that a function φ
defined on G is the characteristic function of a measure µ ∈ M(H) if and only if
1) it is equal to 1 at the zero element of H, 2) it is continuous, and 3) it is positive
definite. Clearly these properties of the characteristic function carry over as additional
structure is bestowed on the spaceH. Moreover, with this topological group structure,
Gaussian measure can be defined on H.

A generalization of characteristic functionals, defined for one-dimension in Eq
(18), was introduced on n-dimensional Euclidian space [6] and was subsequently
furhter generalized to other functional spaces, namely Hilbert and Banach spaces,
and topological groups [46, 39, 47].
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3.1.3 Measure in Weakly Complete Topological Linear Space

Until now, the characterization of H-valued random variables has been accomplished
in terms of the topological structure of the space H. This has led us to expressions
of the corresponding characteristic functional, through which we then obtained a
characterization of the measure of a stochastic process.

By adding a linear space structure, the characteristic functional introduced pre-
viously is still a valuable tool, defined in an analogous manner, with the character
group replaced by the topological dual. With this topological linear structure, how-
ever, additional analysis becomes possible. To explore this new structure, we let H
be a topological linear space with the weak topology determined by the linear func-
tionals. Assume that the space H is weakly complete, and denote its dual by H ′.
The element mx ∈ H obtained as the weak integral with respect to the measure ηx

of X ∈ H, is called the expectation of the random variable X.

Canonical Expansions: Generalized Karhunen-Loève Expansion Next con-
sider a zero-mean random variable X and the H-valued random variable X〈f,X〉
where f ∈ H ′ and an overbar denotes complex conjugation. The expectation of this
random variable,

SXf ≡ E
{
X〈f,X〉

}
=

∫
Ω

X(ω)〈f,X(ω)〉dP (ω) (33)

defines an operator SXf of random variable X, from a subspace of H ′ into H. This
is the covariance of random variable X. Similarly, the cross-covariance operator of
two random variables, X ∈ H1 and Y ∈ H2 is defined as the mapping from H ′

2 into
H1 given by

SXY (f) ≡ E
{
X〈f, Y 〉

}
=

∫
Ω

X(ω)〈f, Y (ω)〉dP (ω) . (34)

The covariance operator is symmetric and positive definite and we will use it to define
a scalar product.

While this definition is quite distinct from the usual definition of a covariance
of a random variable, it reduces to the standard definition for the well-known cases.
For instance, if X is an element in Rn, then the element f of its dual space can
be represented as the transpose of an Rn vector. The quantity SXf then becomes
the matrix-vector product of the n × n covariance matrix of vector X with f . As
another example, considering X = X(t) with realizations in some linear vector space
H, the action of an element f of its dual space on X can be represented as 〈f,X〉 =∑

k fkX(tk). The quantity SXf can then be written as SXf =
∑

k fkE
{
X(t)X(tk)

}
.

Let SX , a linear operator from H ′ to H, denote the covariance operator of H-
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valued random variable which can be shown to be continuous in the weak topology
of the space H. Denoting by N0 the null space of SX , the factor space H ′/N0 defines
equivalence classes on H ′. In the sequel, while working in H ′/N0, reference will be
made to H ′ for notational convenience. Next, we define on H ′ ×H ′ the functional,

(f, g) = 〈f, SXg〉 . (35)

This functional defines a scalar product which turns H ′ into a Hilbert space, which
we denote by HX , associated with random variable X. All functionals f ∈ H ′ are
continuous and hence the expression V = 〈f,X〉 determines an isometric mapping
from HX on a Hilbert space HV , with scalar product given by

(U, V )HV
= E

{
UV̄

}
. (36)

It can readily be shown that if V = 〈f,X〉 and W = 〈g,X〉 for f, g ∈ HX , then

(V,W )HV
= (f, g)HX

, (37)

where the subscript each inner product specifies the corresponding Hilbert space.
Note in particular that for V = 〈f,X〉,

‖V ‖HV
= ‖f‖HX

. (38)

Suppose for now that the spaceHX is separable, and let fν denote any orthonormal
basis in HX . Then any element f ∈ HX can be represented as

f =
∞∑

ν=1

(f, fν)HX
fν , (39)

so that as n→∞,

‖f −
n∑

ν=1

(f, fν)HX
fν‖2

HX
= E

{
〈f,X〉 −

n∑
ν=1

(f, fν)HX
〈fν , X〉

}2

→ 0 , (40)

where we have used the inner product to infer the norm in HX , namely that

‖f‖HX
= (f, f)HX

= 〈f, SXf〉 . (41)

We note that (f, fν)HX
= 〈f, SXfν〉, and denote Xν = SXfν where Xν ∈ H. Then

letting Vν = 〈fν , X〉, results in
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〈f,X〉 =
∞∑

ν=1

Vν〈f,Xν〉, ∀f ∈ HX . (42)

This results in the following expression for X,

X =
∞∑

ν=1

VνXν , (43)

which is mean-square convergent to X in the weak topology of the space H. It also
follows from equation (37) that,

E{VνVµ} = δνµ , (44)

where δνµ denotes the kronecker delta function. Noting that (fν , fµ) = 〈fν , SXfµ〉 =
〈fν , Xµ〉, we deduce a biorthogonality relation between {fν} and {Xν} . Clearly, both
the orthogonal random variables {Vν} and the corresponding coordinate functions Xν

are dependent on the choice of the orthonormal basis set {fν}.

It should be emphasized that the treatment in this section, is equally valid for
Hilbert space-valued random variables. This is particularly useful in situations where
the dual of the Hilbert space is not identified with the space itself, such as when
dealing with Sobolev spaces. In this context, we note that the above treatment
sets on firmer ground previous treatments of generalized Karhunen-Loève expansions
[27, 48, 30, 20, 19] where the added structure in the Sobolev space was addressed
either through regularization [27, 48, 30] or through an orthogonal expansion in the
Sobolev space itself [20, 19]. The present treatment to this problem is more versatile,
as it applies to any complete topological vector space, highlighting the role played by
its dual.

3.1.4 Measure in Separable Hilbert Spaces

With the Hilbert space structure on the space H, the characteristic functional is
written as,

η̂(g) =

∫
H

ei〈h,g〉dη(h) . (45)

where the bracket denotes the inner product, or more generally, duality pairing in H.

The Hilbert space structure brings additional tools to bear on the analysis of H-
valued random variables. We are mainly interested in the canonical representation of
these variables.

Nuclear Spaces But before we delve into defining a probability measure on a
Hilbert space, let us introduce a particular space of functions, of significance in
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stochastic analysis, the so-called nuclear space [17]. To set the stage for their defini-
tion, we start by defining a countably Hilbert space as a complete linear topological
space in which the topology is given by a countable set of compatible norms that are
derived from an associated set of scalar product. Thus if Φ denotes a linear space, and
(φ, φ)k, k ∈ K a system of associated scalar products, then ‖φ‖k =

√
(φ, φ)k denotes

a corresponding system of norms. Next we introduce in Φ the topology taking as
the complete neighborhood basis of the origin the sets associated with the inequality
‖φ‖n ≤ ε. If we then let Φk denote the completion of Φ with respect to ‖φ‖k, it follows
that Φ =

⋂∞
n=1 Φn. This last condition could also be used as the defining criterion

for countably Hilbert spaces. It is worth noting that the compatibility requirement
on the norms associated with a countable Hilbert space implies an ordering in these
norms, so that if m ≤ n then ‖φ‖m ≤ ‖φ‖n. We also note in passing that if Φ′

n

denotes the dual of Φn, then the dual of Φ is given as Φ′ =
⋃∞

n=1 Φ′
n.

We introduce one last ingredient before defining a nuclear space, namely the con-
cept of a nuclear operator. Specifically, an operator T from a Hilbert space Φn into
a Hilbert space Φm is said to be nuclear if it can be represented in the form,

Tφ =
∞∑

k=1

λk(φ, φk)ψk , (46)

where {φk} and {ψk} are orthonormal systems in Φn and Φm, respectively, λk > 0
and

∑∞
k=1 λk converges. We note that this last requirement ensures that every nuclear

operator is also of Hilbert-Schmidt type. We now define a nuclear space as a countable
Hilbert space Φ for which the canonical embedding, T n

m, of Φn into Φm is nuclear.

We note that similar definitions can be made for nuclear normed spaces and nu-
clear linear topological vector spaces.

A motivation for the significance of nuclear operators and countable Hilbert spaces
in the analysis of stochastic processes can be attributed to the Kolmogorov consistency
requirements. Interpreting these constraints in the context of an infinite-dimensional
measure can be more readily carried out in terms of projections on subspaces. This
association of nuclear operators with Kolmogorov consistency is best highlighted by
the Minlos-Sazanov theorem [49]. A second motivation is associated with the ob-
servation that both the covariance operator and the characteristic functional of a
stochastic process are nuclear operators.

Canonical Expansions: Karhunen-Loève Expansion The construction of the
canonical expansion in the previous section did not require a Hilbert space structure
on H. It merely used the Hilbert space structure induced on H ′ by the scalar product
(35). If the space H is indeed a Hilbert space such that E{‖X‖2} < ∞, ∀X ∈ H,
then by Riesz theorem it could be identified with its own dual and consequently, the
orthogonal basis in Eq (39) becomes a basis in HX .
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It should be noted, however, that the identification of H with its own dual, while
convenient for some problems, is not natural for many problems of great interest in
engineering applications involving PDEs. These problems involve Sobolev spaces, the
duals of which are constructed as distributions [35].

A particular set of basis functions is of singular interest when H is a Hilbert
space. In this case, the covariance operator, SX , is nuclear, self-adjoint, positive, and
completely continuous, and therefore has a finite or countable set of eigenvalues, {λn}
and corresponding orthonormal eigenfunction, {φn}, such that,

SXφn = λnφn, (φn, φm) = δnm . (47)

An expansion in terms of the eigenfunctions of its covariance operator can thus be
affected. This expansion is convergent almost surely and in mean-square. This is the
standard Karhunen-Loève expansion for H-valued random variables.

It should be noted in this case, that the space HX becomes a reproducing kernel
Hilbert space (RKHS) [2, 34, 31, 32, 33, 45] associated with the vector-valued random
variable X. Also in this case, the canonical expansion is bi-orthogonal, with both the
set of random variables Vν and coordinate functions Xν orthogonal in their respective
spaces.

3.1.5 Transition from Series of Random Elements to Stochastic Process:
Consistent Measures

A particularly fine point in the theory of stochastic processes addresses the com-
patibility of finite-dimensional measures of these processes. Specifically, under what
conditions is a collection of finite-dimensional distributions compatible with a distri-
bution on the whole, possibly infinite-dimensional, space. These conditions can be
written down in terms of the characteristic functional, which is conveniently expressed
for random variables with values in Hilbert spaces. In a Hilbert space, the covariance
operator can be redefined as

(SX,X) =

∫
(y,X)2 dη(y) . (48)

This covariance operator is nuclear and hermitian and can be used to construct the
so-called S-topology [36].

Then conditions for the compatibility of a characteristic function in Hilbert space
H can be stated as,

• The necessary and sufficient conditions for a function φ(y), y ∈ H to be the
characteristic function of a probability measure η, it should be equal to 1 at
the origin; it should be positive definite, and it should be continuous in the
S-topology.
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If in addition,
∫
‖x‖2dη <∞, then the conditions become,

• The necessary and sufficient conditions for a function φ(y), y ∈ H to be the
characteristic function of a probability measure η, it should be equal to 1 at
the origin; it should be positive definite; it should be continuous in norm; and∑∞

n=1

∫ +∞
−∞ x2dFn(x) < ∞ where Fn is the measure on the real line defined in

Eq (7) with characteristic function φn(t) = φ(ten) and {ei} a fixed orthonormal
basis in H.

One of the few compatibility results in terms of the finite-dimensional distribution
functions is available on the space C[0, 1] and can be stated as follows:

• Let {ξt : 0 ≤ t ≤ 1} be a stochastic process and P t1,··· ,tk the probability distribu-
tion in Rk of the vector (ξt1 , · · · , ξtk). If there are constants α, δ,K > 0 such that
E |ξt1 − ξt2|

α =
∫ ∫

R2 |u − v|αdP t1,t2(u, v) ≤ K|t1 − t2|1+δ, for all t1, t2 ∈ [0, 1],
then there exists a unique measure η on C such that P t1,··· ,tk = ηt1,··· ,tk for all k
and all t1, · · · , tk ∈ [0, 1].
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4 Putting Things Together, Part Two:

Multi-Dimensional Polynomial Chaos Expansions

In L2(Ω)

The canonical expansions developed in the previous section provide a discretization of
random process in terms of a denumerable set of random variables, {Vν}, orthogonal
with respect to the infinite-dimensional measure on the space (H,H). The phase space
character of the random process is inherited by the deterministic coordinate functions
in the canonical expansion. As a corollary to the Kolmogorov consistency requirement
on multi-dimensional distribution functions, this orthogonality can be construed to
be in terms of the two-dimensional joint distribution between two random variables
Vν and Vµ. This consistency requirement also ensures that the finite-dimensional ran-
dom variable {Vν}N

ν=1 can be legitimately characterized by their N -dimensional joint
distribution function. We note at this point that, although orthogonal, these random
variables are generally neither identically distributed nor statistically independent.
Hence their joint measure cannot be characterized by the product of their respective
one-dimensional marginal distributions. In addition to canonical representations of
stochastic processes, random variables can appear in a given problem through the di-
rect characterization of a physical phenomenon or model parameter. The collection of
these variables, say n of them, can then be regarded as a vector-valued random vari-
able with phase space in n-dimensional Euclidean space or, if they are independent,
then they can be represented as n separate real-valued random variables.

Considering then n jointly-distributed random variables, or equivalently, a random
variable, V , with values in Rn, we will next be concerned with canonical represen-
tations of functions, f(V ), of these random variables. We encounter this situation
in two broad classes of problems. First, the mapping in question may be explicitly
provided by the physical constraints in the problem, such as conservation laws or
geometrical constraints. Typically in this case, the random variable X provides a
probabilistic representation of model parameters. Alternatively, in many other cases
of interest, Y = f(X) defines an equivalence between random variable X and ran-
dom variable Y , usually in the sense that their respective probability distributions
are identified.

The first step in developing a canonical representation for f(X) consists in con-
structing a basis set in a suitable functional space. We first assume that the distribu-
tion function of random variable X is continuous with respect to Lebesgue measure,
and using the Radon-Nikodym theorem, we can define the probability density function
of random variable X as follows,

PX(dx) = pX(x) dx. (49)

Let pX1(x1), . . . , pXn(xn) be the marginal probability density functions of order 1 given
by
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pXk
(xk) =

∫
Rn−1

pX(x1) . . . , xk−1, xk, xk+1, . . . , xn) dx1 . . . dxk−1dxk+1 . . . dxn . (50)

First we define H, as

H = L2
PX

(Rn,R) , (51)

where L2
PX

is the space of real-valued functions on Rn that are square-integrable with
respect to the measure PX . We then introduce the real Hilbert space associated with
marginal distribution pXk

(xk) dxk,

Hk = L2
PXk

(R,R) (52)

equipped with the inner product

〈r, s〉Hk
=

∫
R
r(q) s(q) pXk

(q) dq = E {r(Xk) s(Xk)} . (53)

Letting
{
ψk

` , ` ∈ N
}

denote a Hilbertian basis of the real Hilbert space Hk, it can be
shown [51] that,

Lemma 1. For all x = (x1, . . . , xn) belonging to the support of pX(x), Hilbertian
basis {φα, α ∈ Nm} of real Hilbert space H is given by

φα(x) =

(
pX1(x1)× . . .× pXn(xn)

pX(x)

)1/2

ψ1
α1

(x1)× . . .× ψn
αn

(xn) , (54)

where {ψk
αk

(xk)}αk
is a Hilbertian basis of real Hilbert space Hk and α = (α1, . . . , αm),

pX(x) is the joint probability density function of random variable X and pXm is the
marginal density of the real random variable Xm.

We note that in case the components of random variable X are statistically inde-
pendent, the basis functions with respect to the joint probability measure is obtained
as the tensor product of the basis functions for all the one-dimensional marginal
density functions.

Next we turn our attention back to the task of representing Y = f(X) under
condition that Y ∈ H. A representation of the solution is sought with respect to the
Chaos basis in the form,

Y =
∑

α∈Nn

Yα φα(X) (55)

with the Rn-valued coefficient Yα which can be estimated using an identical procedure
to that constructed in section 2.5.
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5 Statistical Inference

A most interesting application of the theory of stochastic processes, and one of great
relevance in statistical model validation, is the treatment of the n-sample distribution
function, F ∗

n(x), as a stochastic process. A very useful theoretical result ensues [21].

Given n independent observations, ξ1, · · · , ξn on a statistical population with dis-
tribution function F (x) , the Glivenko-Cantelli theorem asserts that

lim
n→∞

sup
x

[F ∗
n(x)− F (x)] = 0 (56)

where F ∗
n(x) denotes the n-sample distribution. The asymptotic distribution of

supx [F ∗
n(x)− F (x)] can be obtained by considering the following stochastic process

ηn(x) =
√
n (F ∗

n(x)− F (x)) , −∞ < x <∞ . (57)

It can then be shown, using results from measures on Hilbert spaces (namely the
space D[0, 1]) that the finite dimensional distributions of the process ηn(x) converge
weakly to the finite dimensional distributions of a zero-mean Gaussian process, η(x)
with covariance function E(η(x)η(y)) = F (x)(1− F (y)) for −∞ < x ≤ y <∞.
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6 Concluding Remarks

Functional analysis provides the foundation for developing approximate solutions in
many applications in science and engineering.

Thus, it is not surprising that this same function analytic approach, applied in a
probabilistic setting, provides one path to developing a similar rigorous framework for
augmenting traditional deterministic analysis methods to accommodate uncertainty
quantification (UQ).

The main idea is to recognize that the so-called random mappings, that is, ran-
dom variables (RVs) and random fields (RFs), are, in fact, not random but rather
deterministic mappings where at least a part of the domain consists of sets in a prob-
ability sample space. The randomness itself lies in the probabilility associated with
the occurrance of a given domain set.

One uses this to build the necessary analytical components via direct ties to ex-
isting deterministic analysis, measure theoretical, and function analysis tools. For
example, one defines expectation in terms of Lebesgue integration, a probability den-
sity function using Radon-Nikodym, etc.

The path one follows is first to establish the building blocks for the case of RVs.
Then one migrates from RVs to RFs by building on them to develop a product space-
style set expansion, similar to what one uses to increase the domain in a deterministic
setting when migrating from an ODE to a PDE, and to build a new measure space
in this expanded domain.

One key difference between the two is that in the deterministic case, one has to deal
only with one measure, specifically Lebesgue measure. In the UQ-enabled setting one
has to deal with product measures where a wide class of general probability measures
are a constituent. Naturally, this fact imposes constraints.

In this document, we have provided a narrative in which we do these things using,
primarily, a particular application setting: the classical Hilbert space, L2. In the
course of this narrative, we demonstrate our ideas through simple examples, where, in
the RF case, decompose our function mappings into products, just as one encounters
in classical separation of variables solutions of PDEs, and discuss the relationships
that exist in the UQ setting that tie the two decomposed function spaces together.

Where appropriate, we provide a discussion on how one might seek to achieve
results on more general function space settings.

42



References

[1] M. Abramowitz and I. A. Stegun, editors. Handbook of Mathematical Functions.
9th Printing, Dover Publications, Inc., New York, 1970.

[2] N. Aronszajn. Theory of reproducing kernels. Transactions of the American
Mathematical Society, 68(3):337–403, May 1950.

[3] Richard Askey and James Wilson. Some Basic Hypergeometric Orthogonal Poly-
nomials That Generalize Jacobi Polynomials, volume 54. Memoirs of the Amer-
ican Mathematical Society, Providence, RI, March 1985.

[4] Patrick Billingsley. Probability and Measure. J. Wiley and Sons, New York, 1995.

[5] Patrick Billingsley. Convergence of Probability Measures. J. Wiley and Sons,
New York, second edition, 1999.

[6] S. Bochner. Stochastic processes. Annals of Mathematics, 48:1014, 1947.

[7] G. E. P. Box and M. E. Muller. A note on the generation of random normal
deviates. Annals. Math. Stat., 29:610–611, 1958.

[8] P.J. Daniell. A general form of integral. Annals of Mathematics, 19:27994, 1918.

[9] Persi Diaconis, Susan Holmes, and Richard Montgomery. Dynamical bias in the
coin toss. SIAM Review, 49(2):211–235, 2007.

[10] Persi Diaconis and Charles Stein. Some tauberian theorems related to coin
tossing. The Annals of Probability, 6(3):483–490, June 1978.

[11] J. Diestel and J.J. Uhl. Vector Measures. American Mathematical Society, 1977.

[12] J. L. Doob. Measure Theory. Springer-Verlag, 1994.

[13] A. Doostan, R. Ghanem, and J. Red-Horse. Stochastic model reduction for
chaos representations. Computer Methods in Applied Mechanics and Engineering,
196:3951–3966, 2007.

[14] A. Einstein. On the movement of small particles suspended in a stationary liquid
demanded by the molecular kinetic theory of heat. Annalen der Physik, 17, 1905.
(Reprinted in Einstein, 1956).

[15] A. Einstein. Investigations on the Theory of Brownian Movement. Dover Publi-
cations, 1956.

[16] Avner Friedman. Foundations of Modern Analysis. Dover Publications, Inc.,
New York, NY, 1982.

[17] I.M. Gel’fand and N. Ya. Vilenkin. Generalized Functions, Vol 4: Applications
of Harmonic Analysis. Academic Press, 1964.

43



[18] R. Ghanem and A. Doostan. On the construction and analysis of stochastic
models: characterization and propagation of the errors associated wit h limited
data. J. Comp. Phys., 217(1):63–81, 2006.

[19] R. Ghanem and J. Red-Horse. Optimal representations of stochastic processes.
In 9th ASCE EMD-SEI-GI-AD Joint Specialty Conference on Probabilistic Me-
chanics and Structural Reliability, Albuquerque, NM, July 2004.

[20] R. Ghanem and J. Red-Horse. Orthogonal representations of stochastic processes
and their propagation in mechanics. In 43rd IEEE Conference on Decision and
Control, Bahamas, December 2004.

[21] I. Gikhman and A. Skorohod. The Theory of Stochastic Processes I. Springer-
Verlag, Berlin, 1974.

[22] U. Grenander. Probabilities on Algebraic Structures. John Wiley, New York,
1963.

[23] R.L. Hall. Inverse moments for a class of truncated normal distributions.
Sankhya, Series B, 41:66–76, 1979.

[24] E. Hille and R.S. Phillips. Functional analysis and semi-groups. American Math-
ematical Society colloquium Publication, 31, 1957.

[25] E.T. Jaynes. Probability Theory. Cambridge, 2003.

[26] J. B. Keller. The probability of heads. American Mathematical Monthly, 93:191–
197, March 1986.

[27] M. Kirby. Minimal dynamical systems from pdes using sobolev eigenfunctions.
Physica D, 57:466–475, 1992.

[28] A. N. Kolmogorov. Foundations of the Theory of Probability. Chelsea Publishing
Co, New York, NY, 2nd english edition edition, 1956.

[29] A. N. Kolmogorov and S. V. Fomin. Elements of the Theory of Functions and
Functional Analysis. Dover Publications, Mineola, NY, 1957.

[30] A. Levy and J. Rubinstein. Some properties of smoothed principal component
analysis for functional data. Journal of The Optical Society of America, 16(1):28–
35, 1999.

[31] Reuven Meidan. A generalized karhunen-loève expansion. Advances in Applied
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