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Abstract

We establish an existence and uniqueness theorem for the transport equation sub-
ject to an inequality affine constraint, viewed as a constrained optimization problem.
Then we derive a Space-Time Integrated Least Squares (STILS) scheme for its numer-
ical approximation. Furthermore, we discuss some L2-projection strategies and with
numerical examples we show that there are not relevant for that problem.
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A Variational Solution to the
Transport Equation Subject to an
Affine Constraint

1 Introduction

1.1 Context

In numerous problems, e.g., low MACH number flows [10] or reacting flows in porous
media [3], the density p, for a given velocity u, obeys the transport equation subject to an
equality affine constraint:

ap = [f—div(pu)
{ r0 = ap+b et

where f, a and b are regular functions; e.g., in the context of low MACH number flows,
f=0,a=RT and b = —py.

Since the constraint of (TCE) is in general not an invariant of the PDE, the very no-
tion of solution to the problem is ambiguous. In the context of ODEs, similar problems
have been treated as differential-algebraic equations [9]. In fact, frequently, the constraint
in (TCE) arises from asymptotic developments, i.e., higher order terms have been dropped
and one could just as well consider an inequality constraint. In addition, numerically, the
constraint enforcement is necessarily approximate. Therefore, we rather consider

ap = f—div(pu)
{——el < ap+b<e (T6)

where f, a, b, €] and €; are given regular functions, the latter two being non negative.

1.2 Motivation

Let us show with a one sided inequality: 0 < p+ b and a simple 1-dimensional example
with a divergence free velocity u that an L? projection strategy is not equivalent to solving
the associated variational inequality.



1.2.1 Method of Characteristics with Projection

A method of characteristics, in an L? setting for the Transport Equation involves solv-
ing ox ’;X"} = u(x(#,Xp),t) with the notation x(0,Xy) = Xp, then computing the jacobian
J(Xo,t) = | det 3%| (which can be seen as representing volume dilatation due to the change

of variables (x,#) — (Xp,?)). A weak solution of the Transport equation then reads ([11]
appendix C6):

(out) > pUs(0,40),0) = (K0, 0)+ [ /(565,508 ) xJCh0,),  (ws)

and the L2-projected solution on the constraint subset is:

Ppr(x,2) = (p(x,t)+b(t))+—b(t) (wsTp)
where z+ denotes the positive part of z.

Example 1.1. Consider the case f : ¢+ 1> —t,b:t+— —0.8¢ and po = 1/12. Then, o "f” =
0, and thus (wsT) becomes:

1 2
(X0,1) = Pt X0),1) = (5 +5 —5) X 1y

and the corresponding py; is deduced from (wsTp). These particular solutions p and pp are
depicted in Figure 1, left and center frames.

1.2.2 Variational Inequality Approach

Now if we consider the variational inequality associated with the constraint 0 < p+ b, with
u = 0, we have (see [6] p. 76 remark 3.9):

{ dpw = b+ (f=b)" = sgnt(piv+b(1)) (f =)
piv(0) = po

where sgn* (z) is one if z is positive and zero otherwise.

Example 1.2. With the same hypothesis as in Example 1.1, the solutions pj, is computed
using this modified right-hand side, and is shown in Figure 1, right frame.

Clearly, the above examples show that projection and variational inequality approaches
can lead to different solutions. The solution to the variational inequality can be considered
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Figure 1. Solutions of Example 1.1: without constraint (left),
L2-projected (center), and variational inequality (right).

as a global time projection method useful in the context of multi-time stepping and parallel
computing. It is not reduced to a simple L? projection at final time. The Least Square
formulation for the Transport equation as been demonstrated to be an efficient method for
irregular velocity [1], therefore it is promising to extend it to the Transport Equation subject
to a constraint.

1.3 Outline

Considering (TC) under acceptable conditions, we prove it is a well-posed constrained op-
timization problem in the context of least square formulations of the Transport equation.
The solution obtained is shown to be the same as the one yielded by the variational inequal-
ity. We then consider a mixed formulation and establish that it leads to the same solution,
from which we finally derive a simple space-time finite element method, STILS, to approx-
imate this solution. Note that, in [4], a similar approach is used for a 1D conservation law
with unilateral constraint treated with a projection-penalization strategy in the context of
entropy formulations.

2 Functional Setting

Defining Q by Q = [0,¢/] x Q, where Q is a domain of R, and Q_ as the part of the bound-
ary of Q where (u|n) < 0, and denoting n as the outward normal vector on the boundary

9



of O, (TC) becomes:

op+divipy) = f inQ
—g <ap+b < € inQ (TCbc)
p = pe indQ_

and we will henceforth assume a € L=(Q), (b,€1,€2) € L>(Q)3. The problem is formalized
accordingly:

Defi nition 2.1. For u € *([0,#/], (H'(Q) NL=(£2))?) such that divu € L'([0,¢,],L=(R)),
define the unbounded operator D- =9, - +div(u-) over L?(Q) (identified with L?([0,#,],L?(R))
and the BANACH space V' (u,0) = {¢ € L*(Q) : Do € L*(Q)} equipped with the graph
norm

ol = [ (Do arc+ [ g?aras.

The subspace Vo(u,Q) = {@ € V (1,0) : Ppg_ = 0}, where the trace ®ja0_ is to be under-
stood in a weak sense, is equipped with the seminorm

0|1, divee = (fQ(ﬁJcp)z dtdx)%.

In all which follows, the hypothesis of Definition 2.1 regarding the regularity of u
and divu will be assumed to hold. It is in particular proved in [5] that |- |} giv, is a norm
equivalent to the graph norm on ¥y (u, Q). By extending the boundary condition p, in p. on
O, and by defining ¢ = p — p,, (TCbc) becomes:

De = f inQ
{—EISg(C) < g inQ (TCh)

where g is the affine operator L2(Q) — L?(Q) defined by ¢ — a@+ b + ape.

3 The Constrained Optimization Point of View

The set K = {g € L%(Q), —e1 < g(g) < &2} is convex by definition of g, and its indicator
function (equal to 0 on K, 4o elsewhere) is convex lower semicontinuous, ¢f. Lemma
2.8.2 in [6]. Define

J: Vo, Q) — [0,+e]
0 — 3Do— Sl +Ik(9)

which is convex, lower semicontinuous and 0-coercive. We thus have (¢f. Proposition 1.2
in [8]):

10



Lemma 3.1. There exists a unique ¢ = Argming ., 0)/(9). In addition, c € K.

Now, the domain of J is K N ¥y(u,Q) and, denoting by dJ(g) its subdifferential at
any g € KN Vo(u,Q), c = Argmingey, (., 0)/ () is characterized by

0ed(c) = -—-D'(Dc—f)€dk(c) (1)
= (VoeKnVy(u,Q)) (@*(@c“ﬂl(w-c»u(g) >0 (2)

which in other words means that ¢ is a fixed point: ¢ = I1x(c+ D* f — D*Dc), where I
is the L? projector onto K.

Remark 3.2. According to [5], D is bijective, and thus we have:
(Vo € KNVo(,0))) (D(e—D~'N|D(9—c)) 2 2 0

whence ¢ =TTP(D~! f), where IT{ denotes the projector from Vp(u, Q) onto K for (D D), 2(q)-

Remark 3.3. In the case where K is the convex cone of nonnegative functions, let ¢ €
Vo(u, Q) be the solution of D¢ = f+ —sgn*(¢)f~, then T € K and satisfies:

(VoeK) (f-Delo—7T)2q) <0.
From [5] we know that
(V0 e K) Iy e KnWy(u,0)) Dy=8,
and we deduce that
(Vy € KNVo(1,Q))  {f — DT|DY) 2(g) < 0.

Since (f — De|De), . (0) = 0, we conclude that 7 is the solution of the constrained opti-
mization problem Mingey,(.,0)/(9)-

4 Mixed Formulation

Since g is affine, it has an associated linear operator G allowing a mixed formulation
of (TCh) as follows: with A = {X € L}(Q), A > 0}, find (c,A1,A2) € Vo(u, Q) x L*{(Q)?
such that

{ (Vo € (1, 0)) (90|é5’qz)1),2{g) + 7L((;'(‘P)|9H)LZEQ) —(G(9) fizgl_z(g) = (f1D9)L(g)
2 Gle)lg1 =Mz g) < (&1=blg1—M)izg)
Wana) €4 { ~{6(e)la2 Mgy < (e2=Bla2 =My
(TCmf)
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Lemma 4.1. Assuming b € Vy(u, Q) and a € W= (Q) are such that
(o €]0,+]) a<a ae.,

then the following inf — sup inequality holds:

(38> 0) sup (G(9)W)12(g) = B-

mn
VELX(O) Wl 2(0)=1 @e¥y(1,0),l0]1 givi=]

Proof. Given any such v, |yl 2(g) = 1, define Z = KerGN Vp(u,Q) and Z+ to be the
orthogonal of Z for (D-|D-)12(g). Set @€ Z* such that D*DG(9) = v, then we get
{G(9)W)2(0) = |G(9)1] giv,,- Since D* and G~ are bounded we have

Wl < 2] < |DGO)]| 20 = 1 *]| % |G@)], giva
|(p|],divu = ||G_I|| X|G((p)ll,divu

1 < IG((P)ll,divu
”G_[ “”‘D*” - |(P|l,d'wn

Theorem 4.2. (TCmf) has a unique solution (c,A1,A2) € Vo(u,Q) x L*(Q)% Moreover,
this solution has the same c as the one given in Lemma 3.1.

thus

and the inf — sup inequality arises by rescaling. (I

Proof. Using the inf — sup condition established in Lemma 4.1, the equivalence of the vari-
ational inequality with the mixed formulation for a one-sided constraint inequality is proved
in [7]. It is straightforward to extend this result to the double-sided variational inequal-
ity (2). O

Remark 4.3. The constrained optimization approach for solving (TC) can readily be ex-
tended to the case of convex regular g functions. Unfortunately, the mixed formulation
could not be applied in this case.

5 Numerical Approximation

We briefly explain here how a numerical approximation of the solution we propose can
be readily derived. See, e.g., [2] for the practical implementation of the efficient STILS
scheme. Assume 7 is a conforming tetrahedral (for positivity) mesh of O and define the
following finite-dimensional spaces:

Vo,(, @) = {vi € C°(0) : (VK € T) vk € P1(K)} N Vo (u, Q) An
=AN VD;,(”:Q):
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where P, (K) denotes the space of first-degree polynomials over K. We then have the fol-
lowing property:

Proposition 5.1. Assuming b € Vy(u,Q) and a € W= (Q) are such that
(Fa€]0,+o<[) a<a ae.,

then the following inf — sup inequality holds:

$>0 inf sip  (Glon)Whg) > B-
( ) Wi €Vo, (1 Q) Wl 200y =1 @b, (1,0),l@nl1 aiva=1 e

Proof. |- |1 divu is 2 norm and since there exists c ( Ta_f,i?) such that
1
||y

and therefore the LAX-MILGRAM Lemma shows that, given any y;, € Vp,(u,2)\{0},
(tvn € Vo,(u, Q) (Ywi € Vo,(u, Q) (D(avi)| D(awn))L2(g) = {awnlWh)12i9) (D)

thus with y, = (DG)* DGyvy, we have 'WhILZ(Q) < et |valt dive and, taking vy as the test
function in (4),

|Whll,diw: < C( ) |G(Wh)‘l,divu (3)

|Vh|%,divu 2
“"“'-(—1—)“ < |avh|l,divu < (aV},|Wh>L2(Q)
2

|0 wlee

which establishes the discrete inf — sup condition. O

6 Conclusion

Let us end this note by taking advantage of Remark 3.3 in the case where K denotes the con-
vex cone of non negative functions for proving that a time slabbing (see [2]) L2 projection
strategy is not a good strategy. Let p € K be a solution of

{:a,.p+arp 2—x inQ=(0,1)x(0,1)
c(0,1) 1/12 in(0,1)

nn

(TCDIV)

with the notation f: (x,t) — (x> —x). We know from [5], that D* is bijective. Thus, for
h € L2(Q) given, it is equivalent to find ¢ € Vy(u, Q) satisfying:

(Vo € o(1,0))  (Dc| DP)12(g) = (h D)2 ()

13



and to find ¢ € Vy(u, Q) satisfying:

(Vo e LZ(Q)) (De|@)r2(g) = (AP0 -

From Remark 3.3 we deduce that the solution to the constrained optimization problem is
to find ¢ € Vp(u, Q) satisfying:

(Yo € Vo(1, 9))(De|DG) 2(g) = (fT — 50" ()7 1D0) (- )

The following iterative procedure can be applied for computing ¢, solution of (5).

Algorithm 6.1.

L ne0c" 1,

2. compute &, solution of
(V(P € VO(”? Q)) (Q)E|@¢)L2(g} = <f|‘ - Sgn+ (E’?)f—|®(p>]‘2(g)s

3. nen+1; "« Ng(é);

4. if ||¢" — c"~1|| < e stop; else go to 2.

Indeed, this algorithm converges very quickly (after few iterations).

A STILS time slabbing L? projection strategy consists of splitting the domain Q =
Ui=t,..,7[0,1] X [ti—1,#]. Problem (TCDIV) is solved successively in each slab [0,1] x
[ti—1,t)] with a least squares formulation and then p; is projected onto K. On the next slab,
Ik (p;) is taken as a boundary condition. In Figure 2 a two-slab L? projection strategy is
depicted, and is compared with the solution obtained with Algorithm 6.1. Clearly, a partial
L2 projection strategy does not provide the solution of the variational inequality.

14
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Figure 2. First L?-projected slab solution (left), second L2-
projected slab solution (center), and STILS solution obtained with

Algorithm 6.1 (right).
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