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Project Objectives:

• Develop advanced variance reduction techniques, based on the Variational Variance Reduc-

tion (VVR) methodology, for improving the efficiency of global reactor calculations, and

incorporate these results into the production Monte Carlo code (MCNP5).

• Implement this new version of MCNP5 on a Linux cluster at the University of Michigan, in

order to process these histories faster than presently possible on a typical workstation.

• Test this methodology for realistic problems.
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Background:

The estimation of k-eigenvalues and eigenfunctions for practical reactor and other nuclear

configurations is an essential computational problem in nuclear engineering. Present-day com-

puter codes for simulating k-eigenvalue problems are either purely deterministic or purely stochas-

tic (Monte Carlo). Deterministic methods employ a discretization of all the independent variables

in the Boltzmann equation: space, direction of flight, and energy. This discretization replaces the

continuous Boltzmann equation by a (typically) large linear algebraic system of equations, which

is then solved. This approach introduces truncation errors in each of the independent variables and

is limited by the shape and size of the grids used for each independent variable. Alternatively,

the stochastic or Monte Carlo method (i) uses pseudo-random number sequences to simulate the

random histories of individual neutrons, and (ii) averages the results over many histories.

Of the two approaches, Monte Carlo is often considered to be more accurate because it

requires no angular or energy discretization, and in principle it can handle arbitrary geometries.

However, Monte Carlo solutions have statistical errors that decrease slowly with the number of

histories, i.e. with the computing time. Also, if nonanalog Monte Carlo methods are used, which is

often the case, then significant user time can be required to develop – through a potentially lengthy

trial-and-error process – adequate biasing parameters. Thus, while Monte Carlo solutions can be

more accurate, they are often much more expensive for the user to set up and run.

The goal of this project has been to (i) combine concepts from deterministic and stochastic

methods to obtain an improved hybrid strategy for obtaining Monte Carlo estimates of k-eigenvalues

and their corresponding eigenfunctions, and (ii) implement these methods in MCNP5. This work

complements previous recent work in which deterministic and Monte Carlo methods have been

merged to enhance the solution of Monte Carlo source-detector problems [1,2].

In all the hybrid methods that we have investigated for both fixed-source and eigenvalue

problems, we have preserved the unbiased nature of Monte Carlo simulations. The deterministic

elements of our work are designed to (i) increase the efficiency (and reduce the variance) of the

Monte Carlo simulations; and (ii) retain the principle that, as the number of particle histories tends

to infinity, the Monte Carlo estimate should become exact. For this project, the goal of our work is

to develop and implement a new hybrid method that will perform difficult k-eigenvalue calculations

more accurately and efficiently, and with less user input.

Summary of Work Done for This Project:

In work done prior to this project, we explored the use of a variational functional to esti-

mate the criticality k of a fissile system [3,4]. The variational functional is more accurate than the

conventional functional used in Monte Carlo k-calculations, but it depends on accurate estimates

of both the forward and adjoint eigenfunctions. (The less-accurate conventional functional depends
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only on an accurate estimate of the forward eigenfunction.) In this preliminary work, we showed

that one can estimate the adjoint eigenfunction either by an initial deterministic calculation or by

Monte Carlo, and we estimated the forward eigenfunction by Monte Carlo. We then discovered that

the Monte Carlo estimation of forward and adjoint eigenfunctions is enhanced by a new correcton

procedure in which Monte Carlo is used not to directly estimate the eigenfunction, but rather to

estimate the multiplicative correction to an inexpensive deterministic estimate of the eigenfunction

[5,6,7]. (For example, this deterministic estimate could be obtained from a diffusion calculation.)

Because (i) the variational functional is more accurate than the conventional functional and

(ii) the correcton procedure yielded more accurate estimates of the flux for fixed-source problems,

we reasoned that for both reasons, this procedure should yield more accurate estimates of the eigen-

function and eigenvalue for eigenvalue problems. The down side is that (i) the variational functional

for k requires estimations of both the forward and adjoint eigenfunctions (current methods for es-

timating eigenvalues use a simpler but less accurate functional that only requires an estimate of

the forward eigenfunction) and (ii) evaluating the variational functional requires more computer

algebra, and hence more time and expense. In our early work, the plusses greatly outweighed the

minuses, giving a significantly more efficient hybrid method.

Based on this experience, we originally proposed for this project to numerically estimate

k-eigenvalues by (i) using the more accurate variational functional [3,4], and (ii) determining the

forward and adjoint eigenfunctions using the more accurate correcton procedure.

During the first year of the project, we developed and tested the originally-proposed correc-

ton procedure for estimating a forward (or adjoint) eigenfunction [5,6,7]. This approach was quite

successful for reactor shielding problems, and for such applications was written up and published

in Nuclear Science and Engineering [7]. Unfortunately, we discovered that the correcton method

does not overcome a deficiency that plagues all known Monte Carlo k-eigenvalue simulations: the

unreliable estimate of the eigenfunction for “difficult” optically thick problems. This deficiency

manifests itself in slightly different ways for two different types of problems:

• For optically thick fissile systems (such as a commercial nuclear reactor core), it is difficult

for neutrons on one side of the system to communicate with distant parts of the system. For

this reason, an unphysical “tilting” or “undersampling” of the Monte Carlo estimate of the

eigenfunction occurs, except when an extraordinarily large number of Monte Carlo particles

per generation is used. The manifestation of this effect is that instead of acquiring a classic

symmetric “cosine” shape, the eigenfunction tilts and slowly – from one generation to the

next – wobbles in random and asymmetric ways around the basic cosine shape. When viewed

over a sequence of many generations, this wobbling is suggestive of a flag blowing in the

wind.

• For optically thick systems containing numerous small but weakly-coupled fissile regions

(such as spent nuclear fuel storage containers), it is difficult for neutrons in one fissile region

to communicate with the other fissile regions. In this case, Monte Carlo estimates of the
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eigenfunction tend to have the correct shapes within each fissile region, but the amplitude

of the eigenfunction estimates – which depends very sensitively on the few neutrons that

propagate between fissile regions – is incorrect. These relative amplitudes change slowly and

randomly from one fission generation to the next. As the fissile systems become increasingly

isolated, the problem for estimating the k-eigenfunction becomes more difficult – the problem

becomes increasingly ill-posed. (In contrast, the single thick fissile regions discussed in the

first bullet above do not become ill-posed as the system becomes thick.)

The only known remedy for these deficiencies – using a sufficient number of Monte Carlo

particles per generation – is impractical, due to the potentially huge number of Monte Carlo particles

required.

During much of the first and second years of the project, we struggled to overcome these

difficulties, along with the inherent disadvantage that the variational approach requires separate

eigenfunction simulations for the forward and adjoint eigenfunctions.

Late in the second year of the project we devised a new Functional Monte Carlo (FMC)

method that showed significant promise to overcome these difficulties. The FMC method differs

significantly from the standard and the proposed correcton/variational Monte Carlo methods, in

which Monte Carlo estimates of the eigenfunction are obtained and are introduced into functionals

to determine the eigenvalue k. In particular, the FMC method does not directly require accurate

Monte Carlo estimates of the eigenfunction. Instead, the FMC method requires accurate estimates

of local nonlinear functionals, which are much less sensitive to statistical errors than estimates of

the eigenfunction itself.

A basic sketch of the FMC method for monoenergetic planar-geometry problems is de-

scribed as follows.

1. One begins with the continuous eigenvalue problem, stated in terms of the Boltzmann equa-

tion for the eigenfunction ψ(x, µ) and the eigenvalue k. The equations that define the FMC

method are derived directly from the Boltzmann equation, with no error.

2. One introduces a spatial grid defined by points xj+1/2 (for 1-D geometry). This grid is used

to calculate space-angle moments of the solution, but these various moments will have no

truncation errors.

3. One defines functions fj+1/2(x) and gj+1/2(x) which are local to xj+1/2, i.e. which are

nonzero only on the interval xj−1/2 < x < xj+3/2.

4. One operates on the Boltzmann equation by the operator:

Ln
j+1/2 =

∫ xj+3/2

xj−3/2

∫ 1

−1
µnfj+1/2(x)(·)dµdx
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for n = 0 and 1 and suitable choices of fj+1/2(x), to obtain an exact system of equations for

the space-angle moments of ψ:

φn
j+1/2 =

∫ xj+3/2

xj−3/2

∫ 1

−1
µnfj+1/2(x)ψ(x, µ)dµdx .

5. The odd-n moments φ1
j+1/2 are eliminated in terms of the even-n moments φ0

j+1/2 and

φ2
j+1/2.

6. One multiplies and divides various terms in the resulting equations by

Φj+1/2 =
∫ xj+3/2

xj−3/2

∫ 1

−1
gj+1/2(x)ψ(x, µ)dµdx (1)

to obtain a discrete system of equations for Φj+1/2 and k, containing nonlinear functionals of

the following form:

Fn
j+1/2 =

∫ xj+3/2

xj−3/2

∫ 1
−1 µ

nfj+1/2(x)ψ(x, µ)dµdx∫ xj+3/2

xj−3/2

∫ 1
−1 gj+1/2(x)ψ(x, µ)dµdx

. (2)

7. The above process of constructing equations for Φj+1/2 and k introduces no errors. Therefore,

if the functionals Fn
j+1/2 are known exactly, then the resulting algebraic system of equations

determine Φj+1/2 and k exactly.

8. In the FMC method, (i) Monte Carlo is used to estimate functionals of the form defined by

Eq. (1), and then (ii) the resulting discrete system of equations is solved for Φj+1/2 and k.

Because the functionals contain statistical errors and the equations for Φj+1/2 contain no

truncation errors, the resulting estimates of Φj+1/2 contain only statistical errors. As the

statistical errors in the functionals become small, the subsequent statistical errors in Φj+1/2

will also become small.

Thus, as stated above, the FMC method does not require that accurate estimates of the eigen-

function ψ(x, µ) be obtained. Instead, the method requires that accurate estimates of functionals of

the form defined in Eq. (2) be obtained. This is a much easier task because these functionals, being

nonlinear and local and containing only low-order angular moments of ψ, are much less sensitive to

statistical fluctuations than direct estimates of the eigenfunction ψ.

The remaining question is: are the discrete equations for Φj+1/2 [see Eq. (1)] and k suffi-

ciently insensitive to statistical errors in the functionals Fj+1/2? In other words, do small statistical

errors in the functionals Fj+1/2 lead to sufficiently small statistical errors in Φj+1/2 and k? If the

answer is yes, and if Monte Carlo estimates of Fj+1/2 indeed have small statistical errors, then the

final statistical errors in the estimate of the eigenfunction and k will be small – potentially much

smaller than standard Monte Carlo estimates.
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During the third year of the project, we implemented and tested the FMC method for planar

geometry one-group and multigroup problems. The extension of the FMC method to 3-D geometries

and general energy-dependent problems is relatively straightforward, but there was little time left in

the project and it seemed logical to begin by testing the method in 1-D. Our numerical experiments

have shown the following:

1. For optically thick fissile systems, such as commercial reactor cores, the FMC method yields

estimates of the eigenfunction and k that are much more accurate than the estimates obtained

by standard Monte Carlo. For the problems that we have run, we see increases of the Figure

of Merit for estimates of k of between one and three orders of magnitude.

2. For optically thick systems containing isolated fissile regions, such as nuclear waste storage

tanks, the FMC method yields accurate estimates of the eigenvalue, but not necessarily the

eigenfunction. The reason for the relatively inaccurate estimate of the eigenfunction is that

for problems of this type, the eigenfunction can be extremely sensitive to very small changes

in the system, and hence the problems can be poorly-posed for the eigenfunction.

To explain this last assertion, if two identical fissile spheres are separated and surrounded by

an infinite absorbing region, the k-eigenfunction for this infinite system will be symmetric

about the plane that symmetrically separates the two spheres. If the distance between the

two spheres is large, so that it is rare for neutrons in one sphere to propagate to the other,

then a very small change in the value of νΣf in one sphere will have (i) a major change in the

eigenfunction (which will no longer be symmetric but become significantly peaked around the

more fissile sphere), but (ii) only a small change on the eigenvalue k. Therefore, problems of

this nature will have eigenfunctions that can be very sensitive to small changes in the physical

data, but eigenvalues that will be much less sensitive.

In the FMC method, the small statistical fluctuations in the functionals can be viewed as

corresponding to small statistical fluctuations in the underlying problem data. These small

fluctuations in the functionals can yield large changes in the estimates of the eigenfunction,

but only small changes in the estimate of k.

This reasoning indicates that any numerical method to estimate k for these kinds of systems

will at best be able to confidently estimate an accurate k. The problems are inherently ill-

posed for the eigenfunction. Any approximation in the calculation could lead to a major

error in the estimate of the eigenfunction. (Fortunately, for these problems, estimates of the

eigenvalue are usually much more useful than estimates of the eigenfunction.)

3. A well-known difficulty in standard Monte Carlo estimates of k is that the estimated variance

in k can be significantly smaller than the true variance. This can cause the user to erroneously

believe that the calculation yields significantly more accurate estimates than it actually does.

This underestimation of the variance is caused by strong correlations between the estimates
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of the fission source in successive fission generations. In our simulations of k using the FMC

method, these strong correlations in the fission source are much smaller, so it seems likely

that the FMC estimates of the variance are much closer to the true variance than the standard

estimates. However, we have not been able to investigate this fully.

The current status of this work is described below. (Some of this work was done after the

official conclusion of the project in September, 2007.)

• The FMC method generalizes to multigroup problems without significant difficulty. We have

extended our theory and code to these problems and have performed numerous numerical

simulations. The basic advantages of the FMC method observed for one energy group extend

with little variation to multiple energy groups.

• We have not yet been able to extend the method to 1-D continuous-energy problems, or to

energy-dependent problems with anisotropic scattering. The inclusion of continuous energy

and anisotropic scattering yields extra terms in the discrete equations that are not as straight-

forward to treat as in the case of isotropic scattering, and it is not clear how to optimally treat

them. This should not be a major hurdle, but it will require time to overcome.

• We also have not been able to extend our work to multi-D. Doing this should not be concep-

tually difficult, but will require time.

• We were not able to implement the FMC method in MCNP-5. Unfortunately, this aspect of

our original proposal remains unfulfilled.

• We presented our 1-D monoenergetic results at the winter 2007 ANS conference [8]. The

organizers of this conference were sufficiently impressed with these results that they invited

us to expand the abstract to a journal article and submit it to Nuclear Science and Engineering

(NS&E), where it was quickly reviewed, and after minor revisions, accepted for publication.

It is scheduled to be published in June, 2008 [9]. The ANS abstract and NS&E preprint are

copied in appendices to this report.

• The FMC method described above yields very accurate estimates of the eigenfunction for

optically thick systems. In this sense, the FMC method is global; it inherently yields accurate

estimates of the flux everywhere in the system. With very little effort, the FMC method

can be adapted to fixed source problems, where it could be used (for example) to generate

global solutions for deep penetration shielding calculations. For these problems, some special

techniques would have to be used to ensure that a sufficient number of Monte Carlo particles

exist in the “deep” regions of the system so that accurate estimates of the functional are

obtained in these regions. However, this is not a difficult task.

• Currently, we are seeking funding to continue this work, either for eigenvalue or fixed-source

problems. We continue to believe that the concept of the FMC method has significant promise.
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Budget Data:

Note: The “actual spending” reflects the money actually spent on the project in the corre-

sponding periods.

Approved Spending Plan Actual Spending
Phase/Budget Period DOE Cost Total DOE Cost Total

Amount Share Amount Share
From To

Year 1 10/04 9/05 97,585 - 97,585 93,968 - 93,968
Year 2 10/05 9/06 99,974 - 99,974 154,327 - 154,327
Year 3 10/06 9/07 102,424 - 102,424 50,772 - 50,772

Totals: 299,983 - 299,983 299,067 - 299,067
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Appendix:

In the following appendix, we include two publications that detail some of the accomplish-

ments of the project. The first publication is a recent 3-page American Nuclear Society conference

abstract:

• “New ‘Monte Carlo Functional’ Methods for Estimating k-Eigenvalues and Eigenfunctions,”

Trans. Am. Nucl. Soc. 97, 469 (2007).

The second is a to-be-published 20-page article in Nuclear Science and Engineering:

• E.W. Larsen and J. Yang, “A Functional Monte Carlo Method for k-Eigenvalue Problems,”

Nucl. Sci. Eng. 159, 1 (2008). (Scheduled to be published in June, 2008.)

9



New “Monte Carlo Functional” Methods for Estimating k-Eigenvalues and Eigenfunctions

Edward W. Larsen, Jinan Yang

Department of Nuclear Engineering & Radiological Sciences, University of Michigan, Ann Arbor, MI, 48109
edlarsen@umich.edu, jinan@umich.edu

INTRODUCTION

Monte Carlo methods for estimating k-eigenvalues and
eigenfunctions can be problematic for optically thick fis-
sile systems. In such problems, Monte Carlo estimates
of the eigenfunctions often exhibit an unphysical “tilting,”
caused by (i) a large dominance ratio, and (ii) the arbitrary
amplitude of the eigenfunction and the inability of neu-
trons in one part of the system to “see” the amplitude of
the solution in distant parts. In this abstract, we propose
several new Monte Carlo methods that show a strong po-
tential for remedying this difficulty. These methods solve
the “high-order” Boltzmann equation by combining it with
“low-order” equations obtained by taking space-angle mo-
ments of the high-order equation. The low-order equations
contain nonlinear functionals of the solution of the high-
order equation; these functionals make the high-order and
low-order equations consistent. The procedure used here is
based on the Quasidiffusion (QD) method for SN problems
[1]-[3], but the QD method differs because it uses only an-
gular moments of the transport equation.

DESCRIPTION OF THE METHODS

We consider for simplicity a planar-geometry, one-
group k-eigenvalue problem with vacuum boundaries:

μ
∂ψ

∂x
(x, μ) + Σt(x)ψ(x, μ) −

Σs(x)

2

∫ 1

−1

ψ(x, μ′) dμ′

=
νΣf (x)

2k

∫ 1

−1

ψ(x, μ′) dμ′ , 0 < x < X , (1a)

ψ(0, μ) = 0 , 0 < μ ≤ 1 , (1b)

ψ(X,μ) = 0 , −1 ≤ μ < 0 . (1c)

To begin, we follow the QD procedure and operate on
Eq. (1) by

∫ 1

−1
μn(·) dμ for n = 1 and 2. Defining φn(x) =∫ 1

−1
μnψ(x, μ) dμ, we get:

dφ1

dx
(x) +

(
Σa(x) −

νΣf (x)

k

)
φ0(x) = 0 , (2a)

dφ2

dx
(x) + Σt(x)φ1(x) = 0 . (2b)

Solving Eq. (2b) for φ1(x) and introducing the result into
Eq. (2a), we obtain:

−
d

dx

1

Σt(x)

dφ2

dx
(x) +

(
Σa(x) −

νΣf (x)

k

)
φ0(x)

= 0 , 0 < x < X . (3)

Also, operating on Eq. (1b) by
∫ 1

0
2μ(·) dμ, we get:

0 =

∫ 1

0

2μψ(0, μ) dμ = φ1(0)+

∫ 1

−1

|μ|ψ(0, μ) dμ . (4)

Using Eq. (2b) to eliminate φ1(0), we obtain:

0 = −
1

Σt(0)

dφ2

dx
(0) +

∫ 1

−1

|μ|ψ(0, μ) dμ . (5)

A similar equation holds at x = X , which we will not write
here. Eqs. (3) and (5) are exactly satisfied by the solution
ψ of Eqs. (1).

Now we depart from the QD approach and take cer-
tain spatial moments of Eq. (3). To simplify the algebra,
we assume that the system is homogeneous and impose
a uniform grid on the system with J cells, each of width
h = X/J . (However, this analysis can easily be extended
to inhomogeneous media and nonuniform grids.) We de-
fine xj+1/2 = jh for 0 ≤ j ≤ J to be the grid points;
xj±1/2 are the edges of the jth cell. For 0 ≤ j ≤ J we
define the “tent” functions:

f1/2 =

{
1

h(x3/2 − x) , 0 < x < x3/2

0 , otherwise ,
(6a)

fJ+1/2 =

{
1

h(x − xJ−1/2) , xJ−1/2 < x < X

0 , otherwise ,
(6b)

and for 1 ≤ j ≤ J − 1,

fj+1/2 =

⎧⎪⎨
⎪⎩

1

h (x− xj−1/2) , xj−1/2 < x < xj+1/2

1

h (xj+3/2 − x) , xj+1/2 < x < xj+3/2

0 , otherwise .

(6c)

0 = x1/2 x3/2 x j−1/2 x j+1/2 x j+ 3/2 xJ −1/2 xJ +1/2 = X

x

fJ +1/2 (x)

f j+1/2 (x)

f1/2 (x)
1.0

Figure 1: The Tent Functions

Now for 1 ≤ j ≤ J − 1, we multiply Eq. (3) by
fj+1/2(x) and integrate over xj−1/2 < x < xj+3/2. Care-
fully integrating by parts to unfold the derivatives of φ2(x),
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we obtain:

−
1

Σth

[
φ2(xj+3/2) − 2φ2(xj+1/2) + φ2(xj−1/2)

]
+

(
Σa −

νΣf

k

) ∫ xj+3/2

xj−1/2

fj+1/2(x)φ0(x) dx = 0 . (7a)

Also, we multiply Eq. (3) by f1/2(x) and integrate
over 0 < x < x1/2. Carefully integrating by parts to unfold
the derivatives of φ2 and using Eq. (2b), we obtain:

−φ1(x1/2) −
1

Σth

[
φ2(x3/2) − φ2(x1/2)

]
+

(
Σa −

νΣf

k

) ∫ x3/2

x1/2

f1/2(x)φ0(x) dx = 0 . (7b)

A similar equation holds at x = X . Eqs. (7) are exactly
satisfied by the solution ψ of Eqs. (1).

Now we define functions gj+1/2(x) for 0 ≤ j ≤ J
which are “local” about x = xj+1/2. In this paper, we
consider two such sets of functions:

gj+1/2(x) = δ(x− xj+1/2) , (8a)

and

gj+1/2(x) =

{
1

h , |x− xj+1/2| <
h
2

0 , otherwise .
(8b)

(Other definitions of gj+1/2 are possible, including for ex-
ample gj+1/2 = fj+1/2.)

Defining:

Φj+1/2 =

∫ X

0

gj+1/2(x)φ0(x) dx (9)

and the nonlinear functionals:

Ej+1/2 =
φ2(xj+1/2)∫ X

0
gj+1/2(x)φ0(x) dx

, (10a)

Fj+1/2 =
1

h

∫ X

0
fj+1/2(x)φ0(x) dx∫ X

0
gj+1/2(x)φ0(x) dx

, (10b)

B1/2 =

∫ 1

−1
2|μ|ψ(0, μ) dμ∫ X

0
gj+1/2(x)φ0(x) dx

, (10c)

we may rewrite Eqs. (7) as:

−
1

Σth

(
Ej+3/2Φj+3/2 − 2Ej+1/2φj+1/2 + Ej−1/2φj−1/2

)
+

(
Σa −

νΣf

k

)
hFj+1/2Φj+1/2 = 0 , 1 ≤ j ≤ J − 1 ,

(11a)

B1/2Φ1/2 −
1

Σth

(
E3/2Φ3/2 − E1/2Φ1/2

)
+

(
Σa −

νΣf

k

)
hF1/2Φ1/2 = 0 , (11b)

with an equation similar to (11b) holding for j = J .
In this work, we use Eqs. (10) and (11) in the following

way:

1. We run a standard Monte Carlo simulation of Eqs. (1),
processing a suitable number of inactive cycles (gen-
erations) until the fission source is ”converged,” and
then processing a suitable number of active cycles.
For each active cycle, we estimate k, and we obtain
the standard Monte Carlo estimate of k by averaging
the k for each cycle over all active cycles.

2. During each cycle, we also process the histories of the
Monte Carlo particles to obtain estimates of the inte-
grals used in Eqs. (10). At the end of each cycle, we
calculate the functionals in Eqs. (10) using the esti-
mated values of the integrals, and then we introduce
these functionals into Eqs. (11) and solve the result-
ing system of discrete diffusion-like equations for k
and Φj+1/2. We average these estimates of k over all
active cycles to obtain a new, and hopefully improved,
estimate of the eigenvalue (and eigenfunction). The
rationale behind this hope is that the functionals in
Eqs. (10) are relatively insensitive to the amplitude of
the Monte Carlo solution, and hence they should be
more accurate than the direct Monte Carlo estimates
of ψ. Thus, the solution of Eqs. (11) should be less
sensitive to statistical error than the standard Monte
Carlo estimates of ψ and k. This is the same ratio-
nale underlying the QD method. We call these meth-
ods “Monte Carlo Functional” (MCF) methods. We
have tested two such methods, one with gj+1/2 de-
fined by Eq. (8a), the other with gj+1/2 defined by Eq.
(8b). For obvious reasons, we call the first method the
“MCF Edge” method, and the second the “MCF Av-
erage” method.

3. We also considered an approximate method, in which
rather than using Eq. (10b) to define Fj+1/2, we sim-
ply set Fj+1/2 = 1. [In the system interior, this is
the value given by Eq. (10b) when φ0(x) is a linear
function of x.] Because Eqs. (11) reduce to low-order
equations of the form of the QD equations, we call this
the MCQD method.

4. In this work, the Monte Carlo particle histories are not
affected by the low-order calculations of Eqs. (10) and
(11). The standard Monte Carlo method for simulat-
ing particle histories is followed, but the results are
processed as described above to obtain the new esti-
mates of k and Φj+1/2. A future method could use the
results for Φj+1/2 to improve the actual Monte Carlo
process for particle histories.

5. We emphasize that for the MCF methods, there is no
truncation error; if the functionals in Eqs. (10) are
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known exactly, then Eqs. (11) will yield the exact val-
ues of k and Φj+1/2. Thus, although Eqs. (11) appear
to be discretized, in fact there is no truncation error.
(However, the MCQD method, which approximates
Fj+1/2, does have a truncation error.)

NUMERICAL RESULTS

To test the methods described above, we considered a
homogeneous slab with X = 200 cm, Σγ = 0.084 cm−1,
Σf = 0.060 cm−1, Σs = 0.856 cm−1, and ν = 2.4. We
ran this (diffusive) problem with 50 inactive cycles and 200
active cycles, using 50,000 histories/cycle. The MCQD and
MCF methods used a grid of h = 1.0 cm = 1.0 mfp. The
estimated values of k, with their estimated standard devia-
tions, are given in Table 1 for the four Monte Carlo methods
described above, and also for very finely-gridded diffusion
and SN calculations.

Method Est. k Est. St. Dev.
Diffusion 0.999435 na

SN 0.999434 na
Analog MC 0.999009 0.000390

MCQD 0.999435 0.0000001
MCF Edge 0.999435 0.00000013

MCF Average 0.999435 0.00000011

Table 1: Estimated k and Standard Deviation

Also, the estimates of the eigenfunction for the SN and
Monte Carlo solutions are shown in Figure 2. [Note: the
four Monte Carlo estimates of Φ are averaged over the 200
active cycles.]

0.0E+00

1.0E-02

2.0E-02

3.0E-02

4.0E-02

5.0E-02

6.0E-02

0 50 100 150 200

m fp

Sn

Analog MC

MCQD

MCF Edge

MCF Average

Figure 2: Estimates of the k-Eigenfunction

We see that the standard Monte Carlo estimate of φ is
significantly in error, and the error in the standard Monte
Carlo estimate of k is much larger than the corresponding
error in k for the MCQD and MCF methods. (The trun-
cation error in the MCQD method is not apparent for this
problem.) Also, the standard Monte Carlo estimate of k has

a much larger estimated standard deviation than the new es-
timates of k.

We comment that the MCQD and MCF estimates of
the eigenfunction for each cycle appear to the eye to be
almost as accurate as the average (over 100 active cycles)
shown in Figure 2, while the standard Monte Carlo estimate
of the eigenfunction for each cycles is much “noisier” than
the plot shown in Figure 2.

These preliminary calculations show that using Monte
Carlo simulations to estimate nonlinear functionals of the
eigenfunction – which can be much more stable and ac-
curate than estimates of the eigenfunction itself – can in-
directly yield much more accurate estimates of the eigen-
function and eigenvalue.

CONCLUSIONS

We have presented new hybrid (MCQD and MCF)
Monte Carlo methods for k eigenvalue/eigenfunction prob-
lems. The new methods differ from conventional Monte
Carlo methods by the use of estimates of nonlinear func-
tionals of the flux to indirectly obtain estimates of the
eigenfunction and eigenvalue. (The MCQD method de-
scribed here has truncation errors, but the two MCF meth-
ods do not.) For the problems tested, the nonlinear func-
tionals are much more accurate than the direct Monte Carlo
estimates of the eigenfunction; for this reason, the MCQD
and MCF estimates of the eigenfunction and eigenvalue
have much smaller variance than in standard Monte Carlo.
In future work, we plan to extend the MCF method to real-
istic multi-D problems with anisotropic scattering and en-
ergy dependence.
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Abstract – In Monte Carlo simulations of k-eigenvalue problems for optically thick fissile systems with a
high dominance ratio, the eigenfunction is often poorly estimated because of the undersampling of the
fission source. Although undersampling can be addressed by sufficiently increasing the number of parti-
cles per cycle, this can be impractical in difficult problems. Here, we present a new functional Monte
Carlo (FMC) method that minimizes this difficulty for many problems and yields a more accurate estimate
of the k-eigenvalue. In the FMC method, standard Monte Carlo techniques do not directly estimate the
eigenfunction; instead, they directly estimate certain nonlinear functionals that depend only weakly on the
eigenfunction. The functionals are then used to more accurately estimate the k-eigenfunction and the
eigenvalue. Like standard Monte Carlo methods, the FMC method has only statistical errors that limit to
zero as the number of particles per cycle and the number of cycles become large. We provide numerical
results that illustrate the advantages and limitations of the new method.

I. INTRODUCTION

Monte Carlo simulations of k-eigenvalue problems
for optically thick fissile systems with high dominance
ratios are often problematic because of a limited ability
to accurately estimate the eigenfunction. This phenom-
enon has been called undersampling of the fission source.
Undersampling can be addressed by sufficiently increas-
ing the number of particles per cycle, but for difficult
problems this can be prohibitively costly. A consequence
of undersampling is that the fission source “wobbles” or
“tilts” and fails to converge, even after many cycles. The
problems associated with undersampling have been
known for many years and have been examined in sev-
eral recent publications.1– 6

In this article we propose a new functional Monte
Carlo ~FMC!method for k-eigenvalue problems that helps
to minimize the undesirable effects of undersampling.
The FMC method does not employ standard Monte Carlo
particle transport techniques to directly estimate the ei-
genfunction and the eigenvalue. Instead, the FMC method
uses these techniques to directly estimate certain non-
linear functionals, which depend weakly on the eigen-

function. After these functionals are estimated, they are
used to calculate the k-eigenfunction and the eigenvalue.
Because the functionals depend weakly on the eigenfunc-
tion, the resulting estimates of the k-eigenfunction and
the eigenvalue are generally more accurate and have less
statistical noise than estimates obtained using conven-
tional Monte Carlo methods. This is not the case in prob-
lems with loosely coupled fissile regions, where the FMC
eigenfunction estimates have greater cycle-to-cycle sta-
tistical variation than in standard Monte Carlo. None-
theless, even in these problems, the FMC estimate of the
eigenvalue is experimentally seen to be more accurate.

The FMC method is related to the deterministic quasi-
diffusion ~QD! method,7–9 sometimes called the variable
Eddington factor method.10 This iterative technique for
eigenvalue ~and fixed-source! problems does not em-
ploy high-order transport sweeps to directly estimate the
eigenfunction but rather to directly estimate Eddington
factors, which depend weakly on the eigenfunction. The
Eddington factors are then used in a low-order quasi-
diffusion eigenvalue problem to determine new esti-
mates of the eigenvalue and the eigenfunction. These
estimates are used to construct an updated fission source,
which enables a new QD iteration to begin. Because
the Eddington factors generally depend weakly on the*E-mail: edlarsen@umich.edu
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eigenfunction, the QD iteration process usually con-
verges rapidly.

The QD method is a deterministic approach for solv-
ing particle transport problems, and its converged esti-
mates of the scalar flux have spatial and angular truncation
errors. The QD method can be implemented with Monte
Carlo–estimated Eddington factors11 ; the resulting sca-
lar flux estimates have spatial truncation errors and
statistical errors, due to the Monte Carlo–estimated Ed-
dington factors.

Like the QD method, the FMC method employs a high-
order particle transport process to estimate nonlinear func-
tionals, which are then used in a low-order equation to
estimate the eigenfunction and the eigenvalue. ~One FMC
functional is closely related to the QD Eddington factor.!
Another similarity is that the QD and FMC eigenfunc-
tions are estimated on a preassigned spatial grid.

The FMC method differs from the QD method in the
following ways: ~a! the FMC method uses Monte Carlo
~rather than a deterministic method! to perform the high-
order calculations used to estimate the functionals, ~b! the
FMC method is noniterative, and ~c! the FMC method
yields Monte Carlo estimates of the eigenfunction and the
eigenvalue that have no spatial truncation errors. The only
errors in the FMC estimates of the k-eigenfunction and
the eigenvalue are due to the statistical errors in the Monte
Carlo estimates of the functionals. In this sense, the FMC
method is a pure Monte Carlo method—although the use
of a spatial grid could tempt one to think otherwise.

In numerical testing, we have found that the FMC
method significantly reduces the tilting that is often seen
in simulations of systems containing one large fissile
region, or in systems with tightly coupled fissile regions
~e.g., nuclear reactor cores!. For these problems, FMC
estimates of the k-eigenfunctions and the eigenvalues
are significantly more accurate than those obtained using
standard Monte Carlo methods. Problems involving
weakly coupled fissile regions ~e.g., storage tanks for
spent fuel rods! are inherently more difficult because the
eigenfunctions for these problems can be highly sensi-
tive to small perturbations. For such problems, the FMC
estimates of the eigenfunction have larger variations from
one cycle to the next than standard Monte Carlo esti-
mates. Nonetheless, our numerical simulations indicate
that the FMC estimate of the eigenvalue is more accurate
than standard Monte Carlo estimates.

The remaining sections of this paper are organized
as follows. In Sec. II we present the mathematical theory
of the FMC method in the context of a monoenergetic
planar geometry k-eigenvalue problem. ~We have imple-
mented the FMC method for planar geometry multi-
group problems, and the FMC method can be extended
to three-dimensions; however, these generalizations will
not be discussed here.! In Sec. III we compare the FMC
and standard Monte Carlo numerical simulations of
k-eigenfunctions and the eigenvalues for three difficult
problems. We conclude with a discussion in Sec. IV.

II. THE FUNCTIONAL MONTE
CARLO METHOD

In this paper we consider a standard, planar geom-
etry, monoenergetic k-eigenvalue problem with vacuum
boundaries:

m
]c

]x
~x,m!� St ~x!c~x,m!

��
�1

1

Ss~x,m,m' !c~x,m' ! dm'

�
nSf ~x!

2k
�

�1

1

c~x,m' ! dm' , 0 � x � X , ~1a!

c~0,m! � 0 , 0 � m� 1 , ~1b!

and

c~X,m! � 0 , �1 � m � 0 , ~1c!

where

Ss~x,m,m' ! � (
n�0

` 2n � 1

2
Ssn~x!Pn~m!Pn~m

' ! . ~2!

Equations ~1! are the high-order transport equations for
c~x,m! and k. The low-order FMC equations are derived
by the following procedure:

Step 1. We construct specified angular moments of
Eqs. ~1!. Specifically, we take the zeroth and first angu-
lar moments of Eq. ~1a!, and we multiply Eqs. ~1b! and
~1c! by m and integrate over the incident directions. No
approximations are made in performing these opera-
tions, and the exact solution of Eqs. ~1! satisfies the an-
gularly integrated equations. ~This step duplicates the
first step of deriving the low-order QD equations.!

Step 2. Next, we define a spatial grid of J cells, we
define J � 1 “tent” functions on this grid, and using the
tent functions, we construct certain spatial moments of
the angularly integrated equations obtained in step 1.
Again, no approximations are made in performing these
operations, and the exact solution of Eqs. ~1! satisfies
these spatially and angularly integrated equations. ~This
step is not part of the QD method.!

Step 3. With no approximation, we manipulate the
spatially and angularly integrated equations from step 2
to obtain a discrete system of low-order FMC equations,
containing ~a! nonlinear functionals of the exact solution
and ~b! spatial moments of the scalar flux around each of
the J �1 grid points. ~This step is patterned after the QD
method.! Once again, no approximations are made in
performing these operations. If the nonlinear functionals
are known exactly, the discrete system yields exactly ~a!
the spatial moments of the scalar flux around each of the
J � 1 grid points and ~b! the k-eigenvalue.
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After deriving the low-order FMC equations, the
Monte Carlo simulation of Eqs. ~1! can begin. In the
simulations generated for this paper, we used a very
simple approach. Namely, we wrote a test code to imple-
ment the standard Monte Carlo simulation of the eigen-
value problem defined in Eqs. ~1!. In this standard
implementation, the user specifies the number of Monte
Carlo particles per generation; the simulation begins with
a crude ~flat! estimate of the fission source; inactive cy-
cles ~generations! are performed to converge the fission
source; and then active cycles ~generations! are per-
formed to estimate the eigenfunction and k. All these
operations are performed using conventional Monte Carlo
procedures. The results of this process are the standard
Monte Carlo results reported in Sec. III of this paper.

However, while performing these standard Monte
Carlo operations, the information from the Monte Carlo
particle histories is used to generate estimates of the sca-
lar flux f ~the eigenfunction! and of the nonlinear func-
tionals in the low-order FMC equations. More specifically,
for each active generation, we calculate new estimates of
the FMC functionals, using the new data generated from
the Monte Carlo histories processed during that genera-
tion. At the end of each generation, after all the fission
Monte Carlo particles have been processed, the FMC
functionals are calculated and the discrete low-order FMC
equations are solved. This yields the FMC estimates of
the k-eigenfunction and the k-eigenvalue for that gener-
ation. This process is repeated for each active genera-
tion. After a specified number of active generations, the
mean value and standard deviation of the ~standard Monte
Carlo and FMC! generation-wise eigenvalues are calcu-
lated in the usual way.

In the simulations performed for this paper, the re-
sults of the FMC calculations do not affect the Monte
Carlo simulation of Eqs. ~1!. The FMC calculations are
performed using additional information extracted from
the conventional Monte Carlo particle histories, but none
of this new information impacts the Monte Carlo simu-
lation of Eqs. ~1!. A more sophisticated approach might,
for example, use the ~generally more accurate! estimate
of the fission source from the low-order FMC calcula-
tions to generate the fission source for the next genera-
tion. However, we did not do this in the numerical
simulations reported here. The purpose of this paper is to
describe the FMC method and show that even with a
tilted or otherwise poorly represented Monte Carlo fis-
sion source, it can be much more accurate than standard
Monte Carlo.

Because the FMC functionals are only weakly de-
pendent on the angular flux c, the Monte Carlo esti-
mates of these functionals are less noisy than those of f,
and the FMC estimates of the eigenvalue and the eigen-
function generally have a smaller variance than the stan-
dard estimates. Also, because the standard Monte Carlo
and FMC methods have only statistical errors, in the

limit of an infinite number of Monte Carlo particles per
generation and an infinite number of generations, both
methods will yield the exact eigenvalue and eigenfunction.

We now begin the derivation of the low-order FMC
equations. Following step 1 described above, we take
specified angular moments of Eqs. ~1! and operate on
Eq. ~1a! by *�1

1 mn~{! dm for n � 0 and 1. Defining

fn~x! � �
�1

1

mnc~x,m! dm , ~3a!

Sa~x! � St ~x!� Ss0~x! , ~3b!

and

Str ~x! � St ~x!� Ss1~x! , ~3c!

we obtain

df1

dx
~x!� Sa~x!f0~x! �

nSf ~x!

k
f0~x! ~4a!

and

df2

dx
~x!� Str ~x!f1~x! � 0 . ~4b!

Also, operating on Eq. ~1b! by *0
1 2m~{! dm and on

Eq. ~1c! by *�1
0 2m~{! dm, we obtain

0 � f1~0!��
�1

1

6m6c~0,m! dm ~5a!

and

0 � f1~X !��
�1

1

6m6c~X,m! dm . ~5b!

Solving Eq. ~4b! for f1~x! ,

f1~x! � �
1

Str ~x!

df2

dx
~x! , ~6!

and using this to eliminate f1 from Eqs. ~4a! and ~5!, we
obtain

�
d

dx

1

Str ~x!

df2

dx
~x!� Sa~x!f0~x!

�
nSf ~x!

k
f0~x! , ~7a!

1

Str ~0!

df2

dx
~0! ��

�1

1

6m6c~0,m! dm , ~7b!
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and

1

Str ~X !

df2

dx
~X ! � ��

�1

1

6m6c~X,m! dm . ~7c!

Equations ~7! are exactly satisfied by the solution of Eqs. ~1!. This completes step 1 of the derivation of the FMC
equations.

Next, we perform step 2 described above. We prescribe a spatial grid, consisting of J � 1 points xj�102 satisfying
0 � x102 � x302 � {{{ � xj�102 � xj�102 � {{{ � xJ�102 � xJ�102 � X. The j ’th spatial cell consists of the interval
xj�102 � x � xj�102; the width of this cell is hj � xj�102 � xj�102. On each j ’th spatial cell, the cross sections are
assumed to be constant and are written as Str ~x!� Str, j , Sa~x!� Sa, j , and nSf ~x!� nSf, j .

For 0 � j � J, we define the following tent functions fj�102~x!, which are depicted in Fig. 1. For j � 0,

f102~x! � �
1

h1

~x302 � x! , 0 � x102 � x � x302

0 , otherwise ,

~8a!

for 1 � j � J � 1,

fj�102~x! �





 1

hj

~x � xj�102 ! , xj�102 � x � xj�102

1

hj�1

~xj�302 � x! , xj�102 � x � xj�302

0 , otherwise ,

~8b!

and for j � J,

fJ�102~x! � �
1

hJ

~x � xJ�102 ! , xJ�102 � x � xJ�102 � X

0 , otherwise .

~8c!

Fig. 1. Spatial grid and tent functions.
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Next, we multiply Eq. ~7a! by fj�102~x! and integrate
over 0 � x � X. For j � 0 we obtain

��
x102

x302

f102~x!� d

dx

1

Str ~x!

df2

dx
~x!� dx

��
x102

x302

f102~x!Sa~x!f0~x! dx

�
1

k
�

x102

x302

f102~x!nSf ~x!f0~x! dx .

Integrating the first term by parts and using Eq. ~7b!, we
obtain

�
x102

x302

f102~x!� d

dx

1

Str ~x!

df2

dx
~x!� dx

� f102~x!
1

Str,1

df2

dx
~x!�

x102

x302

��
x102

x302 df102

dx
~x!

1

Str,1

df2

dx
~x! dx

� �
1

Str,1

df2

dx
~0!�

1

Str,1 h1

�
x102

x302 df2

dx
~x! dx

� ��
�1

1

6m6c~x102,m! dm

�
1

Str,1 h1

@f2~x302 !� f2~x102 !# .

Thus, the preceding equation can be written:

�
�1

1

6m6c~x102,m! dm�
1

Str,1 h1

@f2~x302 !� f2~x102 !#

� �
x102

x302

f102~x!Sa,1f0~x! dx

�
1

k
�

x102

x302

f102~x!nSf,1f0~x! dx . ~9a!

For 1 � j � J � 1 we obtain

��
xj�102

xj�302

fj�102~x!� d

dx

1

Str ~x!

df2

dx
~x!� dx

��
xj�102

xj�302

fj�102~x!Sa~x!f0~x! dx

�
1

k
�

xj�102

xj�302

fj�102~x!nSf ~x!f0~x! dx .

Integrating the first term by parts, we obtain

�
xj�102

xj�302

fj�102~x!� d

dx

1

Str ~x!

df2

dx
~x!� dx

� ��
xj�102

xj�302 dfj�102

dx
~x!

1

Str ~x!

df2

dx
~x! dx

� ��
xj�102

xj�102 1

hjStr, j

df2

dx
~x! dx

��
xj�102

xj�302 1

hj�1Str, j�1

df2

dx
~x! dx

�
1

Str, j�1 hj�1

@f2~xj�302 !� f2~xj�102 !#

�
1

Str, j hj

@f2~xj�102 !� f2~xj�102 !# .

Thus, the preceding equation can be written

�
1

Str, j�1 hj�1

@f2~xj�302 !� f2~xj�102 !#

�
1

Str, j hj

@f2~xj�102 !� f2~xj�102 !#

� �
xj�102

xj�302

fj�102~x!Sa~x!f0~x! dx

�
1

k
�

xj�102

xj�302

fj�102~x!nSf ~x!f0~x! dx . ~9b!

For j � J we follow similar steps as for j � 0 and obtain

�
�1

1

6m6c~xJ�102,m! dm

�
1

Str, J hJ

@f2~xJ�102 !� f2~xJ�102 !#

� �
xJ�102

xJ�102

fJ�102~x!Sa, Jf0~x! dx

�
1

k
�

xJ�102

xJ�102

fJ�102~x!nSf, Jf0~x! dx . ~9c!

Equations ~9! are a system of J � 1 discrete equa-
tions, which are exactly satisfied by the solution c~x,m!
and k of Eqs. ~1!. This completes step 2 of the derivation
of the FMC equations.

Next, we perform step 3 described above. For each
0 � j � J, we introduce new functions gj�102~x! that are
nonzero only where fj�102~x! are nonzero. These func-
tions are not uniquely defined; there is considerable
flexibility in choosing them. In this paper we use two
definitions of gj�102~x!. First, we use a delta-function
definition:
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gj�102~x! � d~x � xj�102 ! , 0 � j � J . ~10!

We also use a histogram definition. With xj � ~xj�102 �
xj�102 !02 � midpoint of the j ’th spatial cell, we define
for j � 0,

g102~x! � �
2

h1

, x102 � x � x1 ,

0 , otherwise ,

~11a!

for 1 � j � J � 1,

gj�102~x! � �
2

hj � hj�1

, xj � x � xj�1 ,

0 , otherwise ,

~11b!

and for j � J,

gJ�102~x! � �
2

hJ

, xJ � x � xJ�102 ,

0 , otherwise .

~11c!

Other definitions of gj�102 are possible; for example,
gj�102 � fj�102. However, these will not be considered in
this paper.

For 0 � j � J, we define

Fj�102 � �
xj�102

xj�302

gj�102~x!f0~x! dx , ~12!

where f0~x! is the scalar flux, x�102 � x102 � 0, and
xJ�302 � xJ�102 � X. The quantities Fj�102 will be the
flux unknowns in the low-order FMC equations. If
Eq. ~10! is used to define gj�102~x!, then for 0 � j � J,

Fj�102 � f0~xj�102 !

� pointwise ~cell-edge! scalar flux at xj�102 .

If Eqs. ~11! are used to define gj�102~x!, then for 1 � j �
J � 1,

Fj�102 �
2

hj � hj�1

�
xj

xj�1

f0~x! dx

� scalar flux averaged between the
midpoints of the j ’th and ~ j � 1!st cells .

In the remainder of this paper we refer to the Fj�102
obtained using gj�102 defined by Eq. ~10! as the edge
unknowns, and to the Fj�102 obtained using gj�102 de-
fined by Eq. ~11! as the average unknowns.

To proceed, we multiply and divide each of the terms
in Eqs. ~9! by a suitable Fj�102 to obtain the following
equivalent system of J � 1 equations:

� ��1

1

6m6c~x102,m! dm

F102

�
1

Str,1 h1

f2~x102 !

F102

�

�
x102

x302

f102~x!Sa,1f0~x! dx

F102
�F102

� � 1

Str,1 h1

f2~x302 !

F302
�F302 �

1

k
� �x102

x302

f102~x!nSf,1f0~x! dx

F102
�F102 , ~13a!

�� 1

Str, $ j�1% hj�1

�
1

Str, j hj
	 f2~xj�102 !

Fj�102

�

�
xj�102

xj�302

fj�102~x!Sa~x!f0~x! dx

Fj�102
�Fj�102

� � 1

Str, j hj

f2~xj�102 !

Fj�102
�Fj�102 � � 1

Str, j�1 hj�1

f2~xj�302 !

Fj�302
�Fj�302

�
1

k
� �xj�102

xj�302

fj�102~x!nSf ~x!f0~x! dx

Fj�102
�Fj�102 , 1 � j � J � 1 , ~13b!

and

� ��1

1

6m6c~xJ�102,m! dm

FJ�102

�
1

Str, J hJ

f2~xJ�102 !

FJ�102

�

�
xJ�102

xJ�102

fJ�102~x!Sa, Jf0~x! dx

FJ�102
�FJ�102

� � 1

Str, J hJ

f2~xJ�102 !

FJ�102
�FJ�102 �

1

k
� �xJ�102

xJ�102

fJ�102~x!nSf, Jf0~x! dx

FJ�102
�FJ�102 . ~13c!

X-6 92-07 6020 03005008 2:48 pm Page: 6

6 LARSEN and YANG

NUCLEAR SCIENCE AND ENGINEERING VOL. 159 JUNE 2008



Equivalently, if we define the following nonlinear
functionals of c:

B102 �

�
�1

1

6m6c~x102,m! dm

�
x102

x302�
�1

1

g102~x!c~x,m! dmdx

, ~14a!

BJ�102 �

�
�1

1

6m6c~xJ�102,m! dm

�
xJ�102

xJ�102�
�1

1

gJ�102~x!c~x,m! dmdx

, ~14b!

Ej�102 �

�
�1

1

m2c~xj�102,m! dm

�
xj�102

xj�302�
�1

1

gj�102~x!c~x,m! dmdx

, ~14c!

Aj�102 �

�
xj�102

xj�302

fj�102~x!Sa~x!f0~x! dx

�
xj�102

xj�302

gj�102~x!f0~x! dx

, ~14d!

and

Fj�102 �

�
xj�102

xj�302

fj�102~x!nSf ~x!f0~x! dx

�
xj�102

xj�302

gj�102~x!f0~x! dx

, ~14e!

then Eqs. ~13! can be written more compactly as

�B102 �
1

Str,1 h1

E102 � A102�F102

� � 1

Str,1 h1

E302�F302

�
1

k
@F102 #F102 , ~15a!

�� 1

Str, j hj

�
1

Str, j�1 hj�1
	Ej�102 � Aj�102�Fj�102

� � 1

Str, j hj

Ej�102�Fj�102

� � 1

Str, j�1 hj�1

Ej�302�Fj�302

�
1

k
@Fj�102 #F102 , 1 � j � J � 1 , ~15b!

and

�BJ�102 �
1

Str, J hJ

EJ�102 � AJ�102�FJ�102

� � 1

Str, J hJ

EJ�102�FJ�102

�
1

k
@FJ�102 #FJ�102 . ~15c!

Equations ~14! and ~15! are exactly satisfied by solution
c~x,m! and k of Eqs. ~1!. However, the following is also
true: If the functionals in Eqs. ~14! are evaluated using
the exact eigenfunction c~x,m! and Eqs. ~15! are then
solved for Fj�102 and k, then the resulting Fj�102 and k
are exact, i.e., k is the exact eigenvalue, and Fj�102 are
the exact appropriate space-angle moments of c. @We
remark that the QD method has boundary and Eddington
factor functionals that are closely related to the B and E
functionals in Eqs. ~14!.#

To summarize the FMC procedure used in this pa-
per, Eqs. ~1! are simulated using the standard Monte
Carlo method of processing fission particles from one
cycle to the next. The standard Monte Carlo k-eigen-
value is estimated for each cycle, and the final ~standard
Monte Carlo! estimate of k is obtained by averaging k
over all active cycles. During this process, additional
information is processed and stored beyond what is needed
to perform the standard simulation. Specifically, Monte
Carlo estimates of each of the integrals in the numerators
and denominators of Eqs. ~14! are obtained. At the end
of each active cycle, the functionals in Eqs. ~14! are
calculated, and Eqs. ~15! are solved to obtain the FMC
cycle-wise estimates of Fj�102 and k. After the active
cycles are completed, the FMC eigenvalues are averaged
over the active cycles to obtain the final FMC estimate
of k. In the simulations for this paper, results from the
low-order FMC calculations do not modify the high-
order Monte Carlo simulations of Eqs. ~1!.

The FMC method is based on two assumptions:

1. The functionals in Eqs. ~14! depend weakly on c
and can be evaluated with Monte Carlo more accurately
than direct Monte Carlo estimates of f0 and k.

2. If Eqs. ~15! are solved with small errors in the
functionals, the resulting errors in Fj�102 and k will be
small.

To argue the first point, we note that the functionals
in Eqs. ~14! are all local, e.g., Ej�102 depends on esti-
mates of c only in the j ’th and ~ j � 1!th spatial cells.
Also, these functionals depend only on low-order spatial
and angular moments of c, and because of their nonlin-
ear character, they are weakly dependent on the ampli-
tude of c. Therefore, if a Monte Carlo estimate of c has
a poor estimate of the amplitude but a reasonably good

X-6 92-07 7020 03005008 2:48 pm Page: 7

FUNCTIONAL MONTE CARLO FOR k-EIGENVALUE 7

NUCLEAR SCIENCE AND ENGINEERING VOL. 159 JUNE 2008



estimate of the spatial and angular shape of c, then the
functionals in Eqs. ~14! should be evaluated accurately.

To argue the second point, if we use the crude esti-
mate of c,

c~x,m! �
f0, j�102

2
, xj�102 � x � xj�102 ~16!

in Eqs. ~14!, we obtain

B102 � BJ�102 �
1

2
, ~17a!

Ej�102 �
1

3
, ~17b!

Aj�102 �





 1

2
Sa,1 h1 , j � 0

1

2
~Sa, j hj � Sa, j�1 hj�1! , 1 � j � J � 1

1

2
Sa, J hJ , j � J ,

~17c!

and

Fj�102 �





 1

2
nSf,1 h1 , j � 0

1

2
~nSf, j hj � nSf, j�1 hj�1! , 1 � j � J � 1

1

2
nSf, J hJ , j � J .

~17d!

When these functional values—all of which are indepen-
dent of f0, j�102—are introduced into Eqs. ~15!, we ob-
tain the standard cell-edge diffusion discretization of the
diffusion approximation to Eqs. ~1!.

Thus, the discrete system of Eqs. ~15! is closely re-
lated to the classic diffusion approximation to Eqs. ~1!.
If the underlying physical transport problem has eigen-
functions and the eigenvalues that are weakly sensitive
to small perturbations in the fuel or moderator, then small
statistical errors in the FMC functionals should produce
comparably small statistical errors in the FMC estimates
of the eigenfunction and the eigenvalue.

However, there are physical problems in which the
eigenfunction is highly sensitive to small perturbations
in the fuel or moderator. For example, an infinite peri-
odic system consisting of identical widely separated fis-
sile regions will have a spatially periodic eigenfunction.
If in one of the fissile regions nSf is increased slightly,

then ~a! the eigenfunction will change markedly, acquir-
ing a large peak at the location of the special fissile re-
gion, but ~b! the eigenvalue will change only slightly.
For such problems, the low-order FMC equations should
be sensitive to small ~statistical! errors in the nonlinear
functionals, resulting in FMC eigenfunction estimates
that have large estimated standard deviations. However,
the FMC eigenvalue estimates should have much smaller
estimated standard deviations.

Because Monte Carlo estimates of the integrals in
the denominators of Eqs. ~14! are noiser for the edge
definitions of gj�102 @Eq. ~10!# than for the average def-
initions @Eqs. ~11!# , the FMC edge estimates of the non-
linear functionals should be noisier than the average
estimates. In our numerical simulations, we show that
indeed this is the case, and that this yields noisier edge
FMC eigenfunctions than average FMC eigenfunctions.
Nonetheless, somewhat surprisingly, we observe the edge
and average estimates of the eigenvalues to be of com-
parable quality.

Next, we test the FMC method as described above
on three problems for which the standard Monte Carlo
method is problematic. These problems have been cho-
sen to highlight the strengths and the weaknesses of the
FMC method.

III. NUMERICAL RESULTS

First, we consider a relatively straightforward prob-
lem of a large homogeneous fissile region surrounded by
a thin reflector. The physical data is given in Table I. For
all three problems discussed in this paper, x has units of
centimeters, S has units of cm�1 , in column 5 of the data
tables n � 1, 2,3, and Ss,n � 0 for n � 4. In problem 1,
the exact eigenfunction has a basic cosine shape in the
central fissile region. Our fine-mesh SN solution of this
problem, which used the S32 Gauss-Legendre quadrature
set with h � 0.01, produced k � 0.999384. Our Monte
Carlo simulations of this problem used 50 000 histories
per cycle with a uniform grid h � 1.0.

We began all our Monte Carlo simulations with a
flat fission source. In Fig. 2, we display the problem 1 SN

eigenfunction and averaged estimates of the eigenfunc-
tion from ~a! standard Monte Carlo, ~b! FMC using the

TABLE I

Data for Problem 1

Region Location St Ss,0 Ss,n nSf

1 0 � x � 5 1.0 0.856 0.1 0
2 5 � x � 205 1.0 0.856 0.1 0.144
3 205 � x � 210 1.0 0.856 0.1 0
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edge unknowns ~FMC edg!, and ~c! FMC using the av-
eraged unknowns ~FMC avg!. As indicated in Fig. 2,
these plots are obtained by averaging the Monte Carlo
estimates of the eigenfunction over cycles 201 to 300,
301 to 400, and 401 to 500.

Figure 2 shows that the SN and FMC estimates of the
eigenfunction are virtually coincident and are much more
accurate than the Monte Carlo estimates. The Monte Carlo
eigenfunction appears to be trying to converge to the
correct cosine shape but somewhat erratically. Based on

Fig. 2. Averaged problem 1 eigenfunction estimates during cycles 201 to 500.
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these results, we decided to take the first 500 cycles to be
inactive and to process 500 more active cycles.

Figure 3 displays information concerning eigenfunc-
tion estimates at the 500’th cycle, just prior to the begin-
ning of the active cycles. Figure 3 shows that, as expected,
the Monte Carlo estimates of the nonlinear functionals E
and A are much more accurate than the direct Monte
Carlo estimate of the eigenfunction, and the average FMC
functionals are less noisy than the edge functionals. Also,
the Monte Carlo eigenfunction estimate is noisier than
the FMC edge eigenfunction estimate, which in turn is
noisier than the FMC average eigenfunction estimate.
~These observations are valid for all fission cycles, both
inactive and active.!

Figure 4 shows similar data as in Fig. 2, but now
for 300 of the 500 active cycles. Again, the SN and
FMC estimates of the eigenfunction are virtually coinci-
dent and much more accurate than the Monte Carlo
estimates. Also, the Monte Carlo eigenfunction esti-
mate, which during the inactive cycles appeared to be
converging toward the correct cosine shape, now slowly
wobbles away from it. This wobbling is caused by un-
dersampling of the fission source and can be sup-
pressed by increasing the number of Monte Carlo
particles per cycle.

Figure 5 shows the Monte Carlo estimates of the
eigenfunction, averaged over the 500 active cycles ~501
to 1000!, and the estimated standard deviations in the
Monte Carlo, FMC edge, and FMC average scalar fluxes
over the active cycles. Figure 5 shows that even though
it is averaged over a large number of active cycles, the
Monte Carlo estimate of the eigenfunction is inaccurate
and tilted. Because of the correlations in the fission source
between one cycle and the next, the estimated standard
deviations in the Monte Carlo eigenfunction shown in
the bottom half of Fig. 5 are known to be unreliably low
estimates of the true standard deviation. The extent to
which these correlations affect the FMC estimates is not
known. Nonetheless, the estimated standard deviations
in the FMC eigenfunctions are smaller than those of the
Monte Carlo eigenfunction, and the FMC eigenfunction
estimates are clearly much more accurate.

We note from Fig. 3 that for individual cycles, the
Monte Carlo and FMC estimates of the eigenfunction all
contain high-frequency spatial errors, and from Figs. 2,
4, and 5 that by averaging these eigenfunction estimates
over 100 or more cycles, the high-frequency errors are
greatly suppressed. However, the Monte Carlo eigen-
function estimates contain much larger low-frequency
errors than the FMC eigenfunction estimates, and these
are not greatly suppressed by averaging over active
cycles.

In Table II we display the estimates of the problem 1
eigenvalue during each of the ten 100-cycle spans ~both
active and inactive! that we ran. Table II shows that the
FMC estimates of k are several orders of magnitude more
accurate than the Monte Carlo estimates; this is due to

~a! the insensitivity of the nonlinear functionals to sta-
tistical errors in the flux estimates, ~b! the insensitivity
of the low-order FMC equations to small errors in the
functionals, and ~c! the relative geometric simplicity of
the problem. An unexpected result is that even though
the FMC-edge eigenfunction estimate is noisier than the
FMC-average eigenfunction estimates, the two eigen-
value estimates are of comparable quality. This result
holds consistently for all our simulations, and at the
present time, we cannot offer an explanation. For more
complex problems, we will show that the FMC edge and
average estimates of the eigenvalue again are of compa-
rable quality and remain more accurate than the standard
Monte Carlo estimates, but not by the wide margin seen
in this problem.

Next we consider two related problems, each hav-
ing two slightly different fissile regions separated and
surrounded by an absorbing moderator. The purpose of
these problems is to examine the Monte Carlo and FMC
methods when fissile regions begin to decouple. In prob-
lem 2, the two fissile regions are ~a! separated by a
7-cm moderator and ~b! surrounded by equivalent 5.0-cm
moderators. The data for this problem is given in
Table III. As in problem 1, column 5 holds for n � 1, 2,
and 3, with Ss,n � 0 for n � 4. The entire system is
27 cm thick. The S32 solution, obtained with h � 0.01,
yielded k � 0.992429. Because of the slight ~0.43%!
asymmetry in nSf , the SN eigenfunction is asymmetric
about the midpoint of the system; the peak of the eigen-
function in the right slightly more fissile region is nearly
double that in the left fissile region. Our Monte Carlo
simulations used 100 000 histories per cycle with a uni-
form grid h � 0.1.

In our simulation of this problem, the Monte Carlo
estimate of the fission source seemed to converge near
cycle 300. In Fig. 6, we show plots obtained by averag-
ing the Monte Carlo and FMC estimates of the eigen-
function over cycles 201 to 300, 301 to 400, and 401 to
500. As in problem 1, the SN and FMC eigenfunction
estimates are virtually coincident. The Monte Carlo ei-
genfunction seems almost converged during cycles 301
to 400, but then it begins to drift away during cycles 401
to 500. ~This drifting away from the converged solution
also happened in problem 1.!

In Fig. 7 we show problem 2 eigenfunction plots for
cycles 500, 501, and 502. As in problem 1, the correla-
tions that exist between cycles cause the Monte Carlo
estimate of the eigenfunction to change only slowly from
one cycle to the next. Because the system is sensitive to
perturbations in the cross sections ~a 0.43% change in
nSf in one region causes a factor of 2 change in the
eigenfunction!, the FMC estimates of the eigenfunction
show considerable variation from cycle to cycle. In
Table IV, we present the estimates of the problem 2 eigen-
value during each of the ten 100-cycle spans that we ran.
Table IV shows that estimated standard deviations in
the FMC estimates of k are about a factor of 6 smaller
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Fig. 3. Problem 1 eigenfunction and functional estimates for cycle 500.
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than the Monte Carlo estimates. The errors in the FMC
estimates of k ~obtained by comparing to the SN estimate!
are smaller than the Monte Carlo estimates by a similar
margin. This happens even though the FMC eigenfunc-

tion estimates have greater cycle-to-cycle variation than
the Monte Carlo estimates. ~But, Fig. 6 shows that the
FMC eigenfunctions averaged over 100 cycles are more
accurate than the Monte Carlo eigenfunctions.!

Fig. 4. Averaged problem 1 eigenfunction estimates during cycles 601 to 900.
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Problem 3 is similar to but more difficult than prob-
lem 2. The two fissile regions are now separated by a
wider 10-cm absorbing moderator, and now a smaller
~0.073%! increase in nSf in the right fissile region yields
an eigenfunction with a factor of 2 difference in the peaks
at the two fissile regions. The data for this problem are
given in Table V. Again, column 5 holds for n �1, 2, and
3; with Ss,n � 0 for n � 4. The entire system is 30 cm
thick. The S32 solution, obtained with h � 0.01, yielded
k � 0.987828. Our Monte Carlo simulations of this prob-
lem used 100,000 histories per cycle with a uniform grid
h � 0.1.

In Fig. 8 we show plots obtained by averaging the
Monte Carlo and FMC estimates of the eigenfunction
over cycles 201 to 300, 301 to 400, and 401 to 500. For
this problem the two FMC eigenfunction plots are very

similar to each other but are not as close to the SN eigen-
function as they were in problem 2. However, the errors
in the FMC eigenfunctions ~compared to the SN eigen-
function! are much smaller than the errors in the Monte
Carlo eigenfunctions.

In Fig. 9, we show eigenfunction plots for cycles
500, 501, and 502. As in problem 2, the Monte Carlo
eigenfunction estimate changes slowly from one cycle to
the next, while now the FMC eigenfunction estimates
vary more from cycle to cycle than in problem 2. This
happens because the system is more sensitive to pertur-
bations in the cross sections than in problem 2 ~now only
a 0.073% change in nSf in one fissile region causes a
factor of 2 change in the eigenfunction!.

In Table VI we present the estimates of the prob-
lem 3 eigenvalue during each of the ten 100-cycle spans

Fig. 5. Problem 1 estimated mean eigenfunction and standard deviation over the 500 active cycles.
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that we ran. As in problem 2, the FMC estimated stan-
dard deviations in k are about a factor of 7 smaller than
the Monte Carlo estimates. ~The accuracy of the FMC
and Monte Carlo estimates of k is not so clear; this is
discussed below.! As in problem 2, this happens even
though the FMC eigenfunction estimates vary more from
one cycle to the next than the Monte Carlo estimates.
~But again, Fig. 8 shows that the FMC eigenfunctions
averaged over 100 cycles are more accurate.!

Problems 2 and 3 show that for systems with fissile
regions that are becoming weakly coupled, FMC esti-

mates of the eigenfunction can vary significantly from
one cycle to the next, and this variation increases as the
fissile regions increasingly decouple. This happens be-
cause ~a! the eigenfunction in such physical systems be-
comes increasingly sensitive to small perturbations in
the cross sections and ~b! the number of Monte Carlo
particles per cycle must be increased to avoid undersam-
pling of the fission source. However, the eigenvalues in
such systems are much less sensitive than the eigenfunc-
tions, and indeed our FMC k-eigenvalue estimates for
these problems are significantly more accurate than both
the FMC eigenfunction estimates and the Monte Carlo
eigenvalue estimates. We note that a factor of 6 differ-
ence in the FMC and Monte Carlo statistical errors in k
~roughly seen in problems 2 and 3! translates into a fac-
tor of 62 � 36 computation time. That is, the Monte
Carlo code would have to run about 36 times as many
particles or cycles to obtain an accuracy comparable to
the FMC results.

A close scrutiny of the above SN and FMC results
shows that there are small differences in their predicted
values of k. Most notably, in problem 3 the fine-mesh S32
value of k is 0.9878, while the FMC-edge and FMC-
average estimates are centered around 0.9880. These dis-
crepancies are due to ~a! small space-angle truncation
errors in the SN solution and ~b! small systematic errors
in the FMC solution caused by the fact that the function-
als are evaluated using the Monte Carlo estimate of the
flux, which has a systematically incorrect spatial shape
~see Fig. 9!. These various errors exist in all our SN and
FMC simulations, but they are most apparent in prob-
lem 3, which is the most difficult of the problems con-
sidered in this paper.

For eigenvalue problems with large absorbing re-
gions, it may happen that very few or no Monte Carlo
particles score in one or more spatial cells that are dis-
tant from a fission source. If no particles score, it is not
possible to evaluate the functionals in Eqs. ~14!, since
one would have to divide zero by zero. When this hap-
pens, or when the number of Monte Carlo particles that
score in a cell is sufficiently small, we adopted the pro-
cedure of using the “diffusion” values of the functionals
@given in Eqs. ~17!# in the affected cells. Of course this is
not desirable, but since it is done only in regions where
c� 0, it has only a small impact on the eigenvalue and
the eigenfunction estimates.

IV. DISCUSSION

The Monte Carlo simulation of k-eigenvalue prob-
lems for optically thick fissile systems is made difficult
by the statistical errors in the Monte Carlo process and
the large dominance ratio of the system. When the fis-
sion source is undersampled, these effects yield esti-
mates of the eigenfunction that wobble and fail to

TABLE II

Estimates of k and its Standard Deviation for Problem 1

Cycles
Standard

Monte Carlo
FMC
Edge

FMC
Average

1 to 100 0.997821 0.999385 0.999385
~0.008017! ~0.000002! ~0.000002!

101 to 200 0.999265 0.999385 0.999385
~0.005756! ~0.000002! ~0.000002!

201 to 300 0.998511 0.999385 0.999385
~0.006041! ~0.000002! ~0.000002!

301 to 400 0.998215 0.999385 0.999385
~0.005052! ~0.000002! ~0.000002!

201 to 500 0.999962 0.999385 0.999385
~0.004966! ~0.000002! ~0.000002!

501 to 600 0.999078 0.999385 0.999385
~0.005315! ~0.000002! ~0.000002!

601 to 700 0.999140 0.999384 0.999385
~0.005958! ~0.000002! ~0.000002!

701 to 800 0.999896 0.999385 0.999385
~0.006086! ~0.000002! ~0.000002!

801 to 900 0.999573 0.999385 0.999385
~0.006517! ~0.000002! ~0.000002!

901 to 1000 0.998926 0.999385 0.999385
~0.005389! ~0.000002! ~0.000002!

TABLE III

Data for Problem 2

Region Location St Ss,0 Ss,n nSf

1 0 � x � 5 1.0 0.856 0.1 0.0
2 5 � x � 10 1.0 0.856 0.1 0.082
3 10 � x � 17 1.0 0.856 0.1 0.0
4 17 � x � 22 1.0 0.856 0.1 0.08235
5 22 � x � 27 1.0 0.856 0.1 0.0
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converge, no matter how many inactive fission genera-
tions are performed. If the number of Monte Carlo par-
ticles per cycle is increased, the statistical errors decrease
and the tilting can be controlled. However, for difficult

problems, sufficiently increasing the number of particles
per cycle can be impractical.

In this paper we have outlined for a simple ~planar
geometry, monoenergetic! k-eigenvalue problem a new

Fig. 6. Averaged problem 2 eigenfunction estimates during cycles 201 to 500.
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functional Monte Carlo method that employs Monte Carlo
only to estimate certain nonlinear functionals of the
eigenfunction; these functionals are then used in a finite
discrete system of low-order FMC equations to estimate

the eigenfunction and the eigenvalue. Because ~a! the
functionals are not sensitive to statistical errors in the
eigenfunction estimates and ~b! the low-order FMC equa-
tions are generally not sensitive to small statistical errors

Fig. 7. Problem 2 eigenfunction estimates for cycles 500, 501, and 502.
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in the functionals, the resulting FMC estimates of the
eigenfunction and the eigenvalue are generally more ac-
curate than standard Monte Carlo estimates.

In effect, the FMC method converts—with no
approximation—the k-eigenvalue problem for the con-
tinuous transport problem @Eqs. ~1!# into a low-order
matrix eigenvalue problem @Eqs. ~15!# in which the co-
efficients of the matrix ~a! depend insensitively on the
continuous eigenfunction and ~b! are estimated by stan-
dard Monte Carlo methods. If the solution of the contin-
uous k-eigenvalue problem is not sensitive to small
perturbations in the cross sections in the system, the

solution of the low-order matrix equation should gener-
ally have statistical errors comparable to the small sta-
tistical errors in the matrix coefficients.

However, problems with weakly coupled fissile re-
gions are inherently less stable, in the sense that small
perturbations in the cross sections for these systems can
yield large changes in the eigenfunction ~but, fortu-
nately, not the eigenvalue!. The FMC method for such
problems reflects these facts and yields eigenfunction
estimates that vary significantly more from one cycle to
the next than the eigenvalue estimates. In these situa-
tions, our simulations show that in spite of the relatively
large cycle-to-cycle variations in the FMC eigenfunction
estimates ~compared to the cycle-to-cycle variations in
the Monte Carlo eigenfunction estimates!, the FMC eigen-
value estimates averaged over active cycles are signifi-
cantly more accurate than the corresponding Monte Carlo
eigenvalue estimates. It is possible that this is caused by
a significantly smaller correlation in the FMC eigenfunc-
tion estimates from one cycle to the next compared to
standard Monte Carlo. ~This point is discussed again
below.!

Also, although the FMC-average eigenfunction esti-
mates are less noisy than the FMC-edge eigenfunction
estimates, the FMC-average and FMC-edge eigenvalue

TABLE IV

Estimates of k and its Standard Deviation for Problem 2

Cycles
Standard

Monte Carlo
FMC
Edge

FMC
Average

1 to 100 0.986738 0.992334 0.992191
~0.049847! ~0.001936! ~0.002040!

101 to 200 0.992978 0.992366 0.992467
~0.004174! ~0.000542! ~0.000586!

201 to 300 0.992588 0.992477 0.992550
~0.004241! ~0.000592! ~0.000549!

301 to 400 0.992205 0.992456 0.992467
~0.003109! ~0.000547! ~0.000584!

401 to 500 0.993131 0.992482 0.992428
~0.004485! ~0.000572! ~0.000497!

501 to 600 0.992552 0.992537 0.992466
~0.003852! ~0.000565! ~0.000555!

601 to 700 0.992804 0.992357 0.992549
~0.003746! ~0.000584! ~0.000566!

701 to 800 0.992950 0.992549 0.992427
~0.004151! ~0.000562! ~0.000562!

801 to 900 0.992437 0.992488 0.992365
~0.003892! ~0.000531! ~0.000562!

901 to 1000 0.993166 0.992471 0.992508
~0.004379! ~0.000535! ~0.000521!

TABLE V

Data for Problem 3

Region Location St Ss,0 Ss,n nSf

1 0 � x � 5 1.0 0.856 0.1 0
2 5 � x � 10 1.0 0.856 0.1 0.082
3 10 � x � 20 1.0 0.856 0.1 0
4 20 � x � 25 1.0 0.856 0.1 0.08206
5 25 � x � 30 1.0 0.856 0.1 0

TABLE VI

Estimates of k and Its Standard Deviation for Problem 3

Cycles
Standard

Monte Carlo
FMC
Edge

FMC
Average

1 to 100 0.982034 0.987777 0.987896
~0.055026! ~0.002013! ~0.001993!

101 to 200 0.988434 0.988028 0.987987
~0.004639! ~0.000639! ~0.000563!

201 to 300 0.988080 0.987964 0.988009
~0.004442! ~0.000616! ~0.000524!

301 to 400 0.987184 0.987955 0.987911
~0.003715! ~0.000651! ~0.000494!

401 to 500 0.988301 0.987989 0.987983
~0.004660! ~0.000586! ~0.000611!

501 to 600 0.987823 0.988020 0.987982
~0.003937! ~0.000620! ~0.000565!

601 to 700 0.987924 0.987917 0.987987
~0.003958! ~0.000627! ~0.000548!

701 to 800 0.988492 0.988047 0.988053
~0.004396! ~0.000588! ~0.000576!

801 to 900 0.987652 0.988105 0.988035
~0.004115! ~0.000536! ~0.000587!

901 to 1000 0.987753 0.987958 0.988137
~0.004481! ~0.000549! ~0.000572!
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estimates are of comparable high quality. At present, this
good feature of the FMC method is not understood.

In this initial presentation of the FMC method, we
have chosen the physical problem and the numerical pro-

cedures to be very simple. Thus, the physical problem
discussed here is one-dimensional rather than three-
dimensional, and monoenergetic rather than multigroup
or continuous in energy. Also, the low-order FMC

Fig. 8. Averaged problem 3 eigenfunction estimates during cycles 201 to 500.
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Fig. 9. Problem 3 eigenfunction estimates for cycles 500, 501, and 502.

X-6 92-07 19020 03005008 2:48 pm Page: 19

FUNCTIONAL MONTE CARLO FOR k-EIGENVALUE 19

NUCLEAR SCIENCE AND ENGINEERING VOL. 159 JUNE 2008



simulations presented here were obtained as a post-
processing that did not influence the high-order Monte
Carlo simulations of Eqs. ~1!.

However, we have recently implemented the FMC
method for one-dimensional multigroup problems, and
we are confident that the method can be extended to
three-dimensions. Also, in a more sophisticated FMC
approach, it would be logical to use the FMC estimate of
the eigenfunction to help construct the fission source for
the next generation. Other issues, such as the efficiency
of the FMC method as a function of the size of the spa-
tial grid should also be examined. In addition, the esti-
mated standard deviation in k for conventional Monte
Carlo simulations is often much smaller than the true
standard deviation, because of the correlations that exist
in the fission source from cycle to cycle. The FMC method
also certainly has cycle-to-cycle correlations in its eigen-
function and the eigenvalue estimates, and these appear
to be smaller than in standard Monte Carlo. However,
the magnitude of these FMC correlations and their effect
is not presently known.

Finally, the FMC method is not restricted to eigen-
value problems; it can also be applied to fixed source
problems in which global estimates of the flux are de-
sired. If Monte Carlo estimates of the appropriate non-
linear functionals are generally more accurate than
estimates of the flux itself, then this approach could be
advantageous. However, the examination of all these ideas
must be considered in future work.
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