Calculation of C5 Stresses and Deflections in C5 Due to Thermal and Pressure Loading

High Energy Physics Division

About Argonne National Laboratory

Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under contract DE-AC02-06CH11357. The Laboratory's main facility is outside Chicago, at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne, see www.anl.gov.

Availability of This Report

This report is available, at no cost, at http://www.osti.gov/bridge. It is also available on paper to the U.S. Department of Energy and its contractors, for a processing fee, from:
U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62

Oak Ridge, TN 37831-0062
phone (865) 576-8401
fax (865) 576-5728
reports@adonis.osti.gov

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees or officers, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of document authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, Argonne National Laboratory, or UChicago Argonne, LLC.

Calculation of C5 Stresses and Deflections

 in C5 Due to Thermal and Pressure Loadingby
V. Guarino
High Energy Physics Division, Argonne National Laboratory
January 2008

Calculation of C5 Stresses and Deflections Due to Applied Pressure and Temperature Difference

Sections:

1.0 Calculation of the Lens Temperature Distributions
2.0 Calculation of the Lens Stresses and Deflections Due to Temp. Differences
3.0 Calculation of the Lens Stresses and Deflections Due to 1atm. Pressure
4.0 Calculation of Combined Lens Stresses and Deflections Due to Temperature and Pressure
5.0 Comparison with FEA model and Conclusions

References:
Roark's Formulas for Stress and Strain -- Table 24
Advanced Mechanics of Materials -- Chapter 4
Fundamentals of Heat Transfer, DeWitt

1.0 Calculation of Lens Temperature Differences

Schematic showing the Diameter and Temp Locations in Thermal Model For Surface T1 of C4

As an initial attempt to understand the parameters influencing the thermal equilibrium of the camera/lens assembly a simple finite difference model has been created. This model examines the heat flux through the lenses and the region of N2 flow. The following assumptions have been made:

1. All lenses are modeled as simple disks.
2. Each disk is subdivided into eight concentric rings and split in half.
3. That heat can flow radially through contact with the outer cylinder. That contact between the lens and outer cylinder is through two o-rings that is t 4 for C 4 and t 5 for C 5 thick.
4. The heat flow into each segment is calculated and the individual temperatures then solved for.
5. It is assumed that there is conduction between each lens and the outer cylinder; that there is radiation heat transfer between the CCD and the T4 surface of C5; that there is free and forced convection between the N2 gas flow and the T3 surface of C5 and the T2 surface of C4; that there is free convection between the atmospheric air and the T1 surface of C4. Also considered is radiation between the T2 surface of C4 and the T3 surface of C5 as well as radiation between the outer radial surface of C4 and C5 and the support structure.

The inputs into the system are:

1. N2 flow rate
2. N2 inlet temperature taken as the atmospheric temperature.
3. Ta, the atmospheric temperature.
4. Ts, the temperature of the outer cylinder.
5. T5, the temperature of the CCD surface.

The outputs of the calculation are:

1. The temperature distribution of the lense surfaces, $\mathrm{T} 1, \mathrm{~T} 2, \mathrm{~T} 3, \mathrm{~T} 4$ (see schematic above)
2. The average temperature of the N 2 . Tn is the average of the inlet and outlet temps and is used in the calculations. The defined inlet temperature and Tn are then used to calculate the outlet temp, To

Victor Guarino	Calculation of Stresses and Deflections in	Page: 3 of 44
Argonne National Laboratory	C5 Due to Thermal and Pressure Loading	Date:12/18/2006

1.1 Define Inputs

1.1.1 Geometric Inputs

$\mathrm{D} 1:=604 \mathrm{~mm}$	Diameter of C4 Lense
$\mathrm{D} 2:=542 \mathrm{~mm}$	Diameter of C5 Lense
$\mathrm{D} 3:=508 \mathrm{~mm}$	Diameter of CCD
$\mathrm{t} 1:=49.83 \mathrm{~mm}$	Thickness of C4 Lense
$\mathrm{t} 2:=55.1 \mathrm{~mm}$	Thickness of C5 Lense
$\mathrm{t} 3:=20 \mathrm{~mm}$	Thickness of CCD
$\mathrm{t} 4:=9.5 \mathrm{~mm}$	Thickness of intertace between C4 and outer cylinder
$\mathrm{t} 5:=9.5 \mathrm{~mm}$	Thickness of interface between C5 and Cylinder
$\mathrm{L} 1:=144.77 \mathrm{~mm}$	Distance between C4-C5
$\mathrm{L} 2:=30 \mathrm{~mm}$	Distance between C5-CCD

1.1.2 Temperature Inputs

Ta := $25 \mathrm{~K}+273 \mathrm{~K}$

Ts $:=25 \mathrm{~K}+273 \mathrm{~K}$

T5 := 173K

Ti := 25K + 273K

1.1.3 Properties of Air

$\mathrm{kJ}:=1000 \mathrm{~J}$
$\mu \mathrm{a}:=184.6 \times 10^{-7} \frac{\mathrm{~kg}}{\mathrm{~s} \cdot \mathrm{~m}} \quad$ Viscosity of air
сра $:=1.007 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}} \quad$ Specific Heat at constant pressure
$\mathrm{ka}:=0.0263 \frac{\mathrm{~W}}{\mathrm{~m} \cdot \mathrm{~K}} \quad$ Thermal Conductivity
va := $15.87 \times 10^{-6} \frac{\mathrm{~m}^{2}}{\mathrm{~s}} \quad$ Kinematic viscosity

Victor Guarino	Calculation of Stresses and Deflections in	Page: 4 of 44
Argonne National Laboratory	C5 Due to Thermal and Pressure Loading	Date:12/18/2006

1.1.4 Properties of N2

$$
\begin{array}{ll}
\mu \mathrm{N} 2:=178.2 \times 10^{-7} \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}} & \text { Viscosity of N2 } \\
\mathrm{cpN} 2:=1.041 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}} & \text { Specific Heat at constant pressure } \\
\mathrm{kN} 2:=25.9 \times 10^{-3} \frac{\mathrm{~W}}{\mathrm{~m} \cdot \mathrm{~K}} & \text { Thermal Conductivity } \\
v \mathrm{~N} 2:=15.86 \times 10^{-6} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}} & \text { Kinematic viscosity } \\
\mathrm{v}:=3.0 \frac{\mathrm{ft}^{3}}{\mathrm{~min}} & \text { Volume Flow Rate of } \mathrm{N} 2 \\
\rho \mathrm{~N} 2:=1.1233 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} & \text { Density of N2 at } 27 \mathrm{C} \\
\mathrm{mN} 2:=\rho \mathrm{N} 2 \cdot \mathrm{v} & \mathrm{mN} 2=0.002 \frac{\mathrm{~kg}}{\mathrm{~s}} \\
\mathrm{~V}:=\frac{\mathrm{v}}{\mathrm{~m}} \quad &
\end{array}
$$

1.1.5 Thermal Properties of Lense and CCD

$$
\begin{array}{ll}
\mathrm{k} 1:=0.13 \frac{\mathrm{~W}}{\mathrm{~m} \cdot \mathrm{~K}} & \text { Thermal conductivity of Silicone ring at outer perimeter of C4 } \\
\mathrm{k} 2:=0.13 \frac{\mathrm{~W}}{\mathrm{~m} \cdot \mathrm{~K}} & \text { Thermal conductivity of Silicone ring at outer perimeter of C5 } \\
\mathrm{k} 3:=1.05 \frac{\mathrm{~W}}{\mathrm{~m} \cdot \mathrm{~K}} & \text { Thermal conductivity of glass in C4 } \\
\mathrm{k} 4:=1.05 \frac{\mathrm{~W}}{\mathrm{~m} \cdot \mathrm{~K}} & \text { Thermal Conductivity of Glass in C5 } \\
\varepsilon 1:=0.85 & \text { Emissivity of C5 surface } \\
\varepsilon 2:=0.85 & \text { Emissivity of CCD surface } \\
\sigma:=5.669 \times 10^{-8} \frac{\mathrm{~W}}{\mathrm{~m}^{2} \cdot \mathrm{~K}^{4}} & \text { Stefan Boltzman Constant } \\
\frac{\mathrm{D} 2}{\mathrm{~L} 2}=18.067 &
\end{array}
$$

F12 := 0.28
Radiation Shape Factor based on the ratio of the C5 diameter to the separation distance

1.2.0 Calculation of Convection Coefficients

1.2.1 Calculation of free convection coefficient, h1, on C4

This calculation is based on an assumed temperature for the outer surface of $C 4$. After the final calculation of the temperature distribution, go back and check if this assumption was correct.
$\operatorname{Pr}:=\frac{\mu \mathrm{a} \cdot \mathrm{cpa}}{\mathrm{ka}} \quad \operatorname{Pr}=0.707 \quad$ Prandlt Number
$\mathrm{T} 1:=15 \mathrm{~K}+273 \mathrm{~K} \quad$ Assumed temperature of outer surface of C 4
$\mathrm{T} 1=288.000 \mathrm{~K}$
$\beta:=\frac{1}{\mathrm{~T} 1} \quad \beta=0.00347 \frac{1}{\mathrm{~K}} \quad \begin{aligned} & \text { Volumetric Coefficient of thermal expansion for an ideal } \\ & \text { gas }\end{aligned}$
g: $:=9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \quad$ Gravity acceleration
$\mathrm{L}:=\sqrt{\frac{\mathrm{D} 1^{2}}{2}} \quad \mathrm{~L}=0.43 \mathrm{~m} \quad$ Effective Length
$\mathrm{Gr}:=\left|\frac{\mathrm{g} \cdot \beta \cdot \mathrm{L}^{3} \cdot(\mathrm{~T} 1-\mathrm{Ta})}{2}\right| \quad \mathrm{Gr}=105363087.505 \quad$ Grashof Number
$\mathrm{h} 1:=\frac{\mathrm{ka}}{\mathrm{L}} \cdot 0.678 \cdot\left(\frac{\operatorname{Pr}^{2}}{0.952+\mathrm{Pr}}\right)^{\frac{1}{4}} \cdot \mathrm{Gr}^{\frac{1}{4}}$
$\mathrm{h} 1=3.134 \frac{\mathrm{~W}}{\mathrm{~m}^{2} \cdot \mathrm{~K}}$
Free Convection Coefficient
1.2.2 Calculation of forced convection coeficient between C4-C5 ---- h2
$\mathrm{Pr}:=\frac{\mu \mathrm{N} 2 \cdot \mathrm{cpN} 2}{\mathrm{kN} 2} \quad \operatorname{Pr}=0.716 \quad$ Prandlt Number
$\mathrm{L}:=\sqrt{\frac{\mathrm{D} 1^{2}}{2}} \quad \mathrm{~L}=0.43 \mathrm{~m} \quad$ Effective Length
$\mathrm{Re}:=\frac{\mathrm{V} \cdot \mathrm{L}}{\mathrm{vN} 2} \quad \mathrm{Re}=459.622 \quad$ Reynolds Number
$h 2 a:=\frac{\mathrm{kN} 2}{\mathrm{~L}} \cdot 0.664 \cdot \operatorname{Pr}^{\frac{1}{3}} \cdot \mathrm{Re}^{\frac{1}{2}}$
$\mathrm{h} 2 \mathrm{a}=0.772 \frac{\mathrm{~W}}{\mathrm{~m}^{2} \cdot \mathrm{~K}}$
Convection Coefficient on surface of C5 at N2 interface
$\mathrm{Pr}:=\frac{\mu \mathrm{a} \cdot \mathrm{cpN} 2}{\mathrm{kN} 2}$
$\operatorname{Pr}=0.742$
Prandlt Number
$\mathrm{T} 2:=10 \mathrm{~K}+273 \mathrm{~K}$
Assumed temperature of inner surface of C4
$\mathrm{T} 2=283.000 \mathrm{~K}$
$\beta:=\frac{1}{\mathrm{~T} 2}$
$\beta=0.00353 \frac{1}{\mathrm{~K}}$
Volumetric Coefficient of thermal expansion for an ideal gas
$\mathrm{g}:=9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
Gravity acceleration
$\mathrm{LN}:=\sqrt{\frac{\mathrm{D} 1^{2}}{2}}$
$\mathrm{L}=0.43 \mathrm{~m}$
Effective Length
$\mathrm{Gr}:=\left|\frac{\mathrm{g} \cdot \beta \cdot \mathrm{L}^{3} \cdot(\mathrm{~T} 2-\mathrm{Ti})}{2}\right|$
$\mathrm{Gr}=160836939.230$
Grashof Number
$\mathrm{h} 2 \mathrm{~b}:=\frac{\mathrm{ka}}{\mathrm{L}} \cdot 0.678 \cdot\left(\frac{\operatorname{Pr}^{2}}{0.952+\operatorname{Pr}}\right)^{\frac{1}{4}} \cdot \mathrm{Gr}^{\frac{1}{4}}$
$\begin{array}{lr}\mathrm{h} 2 \mathrm{~b}=3.550 \frac{\mathrm{~W}}{\mathrm{~m}^{2} \cdot \mathrm{~K}} & \text { Free Convection Coefficient } \\ \mathrm{h} 2:=\mathrm{h} 2 \mathrm{a}+\mathrm{h} 2 \mathrm{~b} & \mathrm{~h} 2=4.322 \frac{\mathrm{~W}}{\mathrm{~m}^{2} \cdot \mathrm{~K}}\end{array} \quad$ Total Convection Coefficient
1.2.3 Calculation of forced convection coeficient between C4-C5 ---- h3

$$
\begin{array}{lll}
\mathrm{Pr} & :=\frac{\mu \mathrm{N} 2 \cdot \mathrm{cpN} 2}{\mathrm{kN} 2} & \operatorname{Pr}=0.716
\end{array} \quad \text { Prandlt Number }
$$

Victor Guarino	Calculation of Stresses and Deflections in	Page: 7 of 44
Argonne National Laboratory	C5 Due to Thermal and Pressure Loading	Date:12/18/2006

$\mathrm{Re}:=\frac{\mathrm{V} \cdot \mathrm{~L}}{\mathrm{vN} 2}$	$\mathrm{Re}=412.442$	Reynolds Number
$h 3 a:=\frac{\mathrm{kN} 2}{\mathrm{~L}} \cdot 0.664 \cdot \operatorname{Pr}^{\frac{1}{3}} \cdot \operatorname{Re}^{\frac{1}{2}}$		
$\mathrm{h} 3 \mathrm{a}=0.815 \frac{\mathrm{~W}}{\mathrm{~m}^{2} \cdot \mathrm{~K}}$	Convection Coefficient on surface of C5 at N2 interface	
$\underset{\mathrm{mr}}{\mathrm{MN}}:=\frac{\mu \mathrm{a} \cdot \mathrm{cpN} 2}{\mathrm{kN} 2}$	$\operatorname{Pr}=0.742$	Prandlt Number
T3 $:=-20 \mathrm{~K}+273 \mathrm{~K}$	Assumed temperature of outer surface of C5	
$\mathrm{T} 3=253.000 \mathrm{~K}$		
$\beta:=\frac{1}{\mathrm{~T} 3}$	$\beta=0.00395 \frac{1}{\mathrm{~K}}$	Volumetric Coefficient of thermal expansion for an ideal gas
$\mathrm{g}:=9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$	Gravity acceleration	
$\mathrm{LW}:=\sqrt{\frac{\mathrm{D} 2^{2}}{2}}$	$\mathrm{L}=0.38 \mathrm{~m}$	Effective Length
$\mathrm{Gr}:=\left\|\frac{\mathrm{g} \cdot \beta \cdot \mathrm{L}^{3} \cdot(\mathrm{~T} 3-\mathrm{Ti})}{2}\right\|$	$\mathrm{Gr}=389995874.179$	Grashof Number
$\mathrm{h} 3 \mathrm{~b}:=\frac{\mathrm{ka}}{\mathrm{~L}} \cdot 0.678 \cdot\left(\frac{\operatorname{Pr}^{2}}{0.952+\operatorname{Pr}}\right)^{\frac{1}{4}} .$	$\cdot \mathrm{Gr}^{\frac{1}{4}}$	
$\mathrm{h} 3 \mathrm{~b}=4.937 \frac{\mathrm{~W}}{\mathrm{~m}^{2} \cdot \mathrm{~K}}$		Free Convection Coefficient
$\mathrm{h} 3:=\mathrm{h} 3 \mathrm{a}+\mathrm{h} 3 \mathrm{~b}$	$\mathrm{h} 3=5.752 \frac{\mathrm{~W}}{\mathrm{~m}^{2} \cdot \mathrm{~K}}$	Total Convection Coefficient

1.3.0 Calculation of Finite Difference Geometry

Define Diameters of Sections
D1c4 := .1•D1
$\mathrm{D} 1 \mathrm{c} 4=60.400 \mathrm{~mm}$
Diameter of inner section
D2c4 := 0.3•D1
D2c4 = 181.200 mm

Victor Guarino	Calculation of Stresses and Deflections in	Page: 8 of 44
Argonne National Laboratory	C5 Due to Thermal and Pressure Loading	Date:12/18/2006

$\mathrm{D} 3 \mathrm{c} 4:=0.5 \mathrm{D} 1$	$\mathrm{D} 3 \mathrm{c} 4=302.000 \mathrm{~mm}$
$\mathrm{D} 4 \mathrm{c} 4:=0.60 \cdot \mathrm{D} 1$	$\mathrm{D} 4 \mathrm{c} 4=362.400 \mathrm{~mm}$
$\mathrm{D} 5 \mathrm{c} 4:=0.70 \cdot \mathrm{D} 1$	$\mathrm{D} 5 \mathrm{c} 4=422.800 \mathrm{~mm}$
$\mathrm{D} 6 \mathrm{c} 4:=0.80 \cdot \mathrm{D} 1$	$\mathrm{D} 6 \mathrm{c} 4=483.200 \mathrm{~mm}$
$\mathrm{D} 7 \mathrm{c} 4:=0.90 \cdot \mathrm{D} 1$	D7c4 $=543.600 \mathrm{~mm}$
D8c4 $:=1.0 \cdot \mathrm{D} 1$	D8c4 $=604.000 \mathrm{~mm}$
D1c5 $:=0.1 \mathrm{D} 2$	D1c5 $=54.200 \mathrm{~mm}$
D2c5 $:=0.3 \cdot \mathrm{D} 2$	D2c5 $=162.600 \mathrm{~mm}$
D3c5 $:=0.5 \cdot \mathrm{D} 2$	D3c5 $=271.000 \mathrm{~mm}$
D4c5 $:=0.60 \cdot \mathrm{D} 2$	D4c5 $=325.200 \mathrm{~mm}$
D5c5 $:=0.70 \cdot \mathrm{D} 2$	D5c5 $=0.379 \mathrm{~m}$
D6c5 $:=0.8 \mathrm{D} 2$	D6c5 $=0.434 \mathrm{~m}$
D7c5 $:=0.90 \cdot \mathrm{D} 2$	D7c5 $=0.488 \mathrm{~m}$
D8c5 $:=1.0 \cdot \mathrm{D} 2$	D8c5 $=0.542 \mathrm{~m}$

Calculate Areas of Conduction

A1c4 $:=\pi \cdot \frac{\mathrm{D} 1 \mathrm{c} 4^{2}}{4}$
A1c4 $=0.003 \mathrm{~m}^{2} \quad$ Surface area of Section 1 normal to the axis
A2c4 $:=\pi \cdot \frac{\left[\frac{(\mathrm{D} 2 \mathrm{c} 4+\mathrm{D} 3 \mathrm{c} 4)}{2}\right]^{2}-\mathrm{D} 1 \mathrm{c} 4^{2}}{4}$
АЗс4 $:=\pi \frac{\left[\frac{(\mathrm{D} 4 \mathrm{c} 4+\mathrm{D} 3 \mathrm{c} 4)}{2}\right]^{2}-\left[\frac{(\mathrm{D} 3 \mathrm{c} 4+\mathrm{D} 2 \mathrm{c} 4)}{2}\right]^{2}}{4}$
$\mathrm{A} 2 \mathrm{c} 4=0.043 \mathrm{~m}^{2}$
АЗс $4=0.041 \mathrm{~m}^{2}$
$\mathrm{A} 4 \mathrm{c} 4:=\pi \cdot \frac{\left[\frac{(\mathrm{D} 5 \mathrm{c} 4+\mathrm{D} 4 \mathrm{c} 4)}{2}\right]^{2}-\left[\frac{(\mathrm{D} 4 \mathrm{c} 4+\mathrm{D} 3 \mathrm{c} 4)}{2}\right]^{2}}{4}$
$\mathrm{A} 4 \mathrm{c} 4=0.034 \mathrm{~m}^{2}$
$\mathrm{A} 5 \mathrm{c} 4:=\pi \cdot \frac{\left[\frac{(\mathrm{D} 6 \mathrm{c} 4+\mathrm{D} 5 \mathrm{c} 4)}{2}\right]^{2}-\left[\frac{(\mathrm{D} 5 \mathrm{c} 4+\mathrm{D} 4 \mathrm{c} 4)}{2}\right]^{2}}{4}$
$\mathrm{A} 5 \mathrm{c} 4=0.040 \mathrm{~m}^{2}$

Victor Guarino	Calculation of Stresses and Deflections in	Page: 9 of 44
Argonne National Laboratory	C5 Due to Thermal and Pressure Loading	Date:12/18/2006

$$
\begin{array}{ll}
\mathrm{A} 6 \mathrm{c} 4:=\pi \cdot \frac{\left[\frac{(\mathrm{D} 7 \mathrm{c} 4+\mathrm{D} 6 \mathrm{c} 4)}{2}\right]^{2}-\left[\frac{(\mathrm{D} 6 \mathrm{c} 4+\mathrm{D} 5 \mathrm{c} 4)}{2}\right]^{2}}{4} & \mathrm{~A} 6 \mathrm{c} 4=0.046 \mathrm{~m}^{2} \\
\mathrm{~A} 7 \mathrm{c} 4:=\pi \cdot \frac{\left[\frac{(\mathrm{D} 8 \mathrm{c} 4+\mathrm{D} 7 \mathrm{c} 4)}{2}\right]^{2}-\left[\frac{(\mathrm{D} 7 \mathrm{c} 4+\mathrm{D} 6 \mathrm{c} 4)}{2}\right]^{2}}{4} & \mathrm{~A} 7 \mathrm{c} 4=0.052 \mathrm{~m}^{2} \\
\mathrm{~A} 4 \mathrm{c} 4:=\pi \cdot \frac{\mathrm{D} 8 \mathrm{c} 4^{2}-\left[\frac{(\mathrm{D} 8 \mathrm{c} 4+\mathrm{D} 7 \mathrm{c} 4)}{2}\right]^{2}}{2} & \text { A8c4 }=0.028 \mathrm{~m}^{2}
\end{array}
$$

$$
\mathrm{A} 1 \mathrm{c} 5:=\pi \cdot \frac{\mathrm{D} 1 \mathrm{c} 5^{2}}{4} \quad \mathrm{~A} 1 \mathrm{c} 5=0.002 \mathrm{~m}^{2} \quad \text { Surface area of Section } 1 \text { normal to the axis }
$$

$$
\mathrm{A} 2 \mathrm{c} 5:=\pi \cdot \frac{\left[\frac{(\mathrm{D} 2 \mathrm{c} 5+\mathrm{D} 3 \mathrm{c} 5)}{2}\right]^{2}-\mathrm{D} 1 \mathrm{c} 5^{2}}{4}
$$

$$
\mathrm{A} 3 \mathrm{c} 5:=\pi \cdot \frac{\left[\frac{(\mathrm{D} 4 \mathrm{c} 5+\mathrm{D} 3 \mathrm{c} 5)}{2}\right]^{2}-\left[\frac{(\mathrm{D} 3 \mathrm{c} 5+\mathrm{D} 2 \mathrm{c} 5)}{2}\right]^{2}}{4} \quad \mathrm{~A} 3 \mathrm{c} 4=0.041 \mathrm{~m}^{2}
$$

$$
\mathrm{A} 4 \mathrm{c} 5:=\pi \cdot \frac{\left[\frac{(\mathrm{D} 5 \mathrm{c} 5+\mathrm{D} 4 \mathrm{c} 5)}{2}\right]^{2}-\left[\frac{(\mathrm{D} 4 \mathrm{c} 5+\mathrm{D} 3 \mathrm{c} 5)}{2}\right]^{2}}{4} \quad \mathrm{~A} 4 \mathrm{c} 4=0.034 \mathrm{~m}^{2}
$$

$$
\mathrm{A} 5 \mathrm{c} 5:=\pi \cdot \frac{\left[\frac{(\mathrm{D} 6 \mathrm{c} 5+\mathrm{D} 5 \mathrm{c} 5)}{2}\right]^{2}-\left[\frac{(\mathrm{D} 5 \mathrm{c} 5+\mathrm{D} 4 \mathrm{c} 5)}{2}\right]^{2}}{4} \quad \mathrm{~A} 5 \mathrm{c} 4=0.040 \mathrm{~m}^{2}
$$

$$
\mathrm{A} 6 \mathrm{c} 5:=\pi \cdot \frac{\left[\frac{(\mathrm{D} 7 \mathrm{c} 5+\mathrm{D} 6 \mathrm{c} 5)}{2}\right]^{2}-\left[\frac{(\mathrm{D} 6 \mathrm{c} 5+\mathrm{D} 5 \mathrm{c} 5)}{2}\right]^{2}}{4} \quad \mathrm{~A} 6 \mathrm{c} 4=0.046 \mathrm{~m}^{2}
$$

$$
\mathrm{A} 7 \mathrm{c} 5:=\pi \cdot \frac{\left[\frac{(\mathrm{D} 8 \mathrm{c} 5+\mathrm{D} 7 \mathrm{c} 5)}{2}\right]^{2}-\left[\frac{(\mathrm{D} 7 \mathrm{c} 5+\mathrm{D} 6 \mathrm{c} 5)}{2}\right]^{2}}{4} \quad \mathrm{~A} 7 \mathrm{c} 4=0.052 \mathrm{~m}^{2}
$$

Victor Guarino		
Argonne National Laboratory	Calculation of Stresses and Deflections in C5 Due to Thermal and Pressure Loading	Page: 10 of 44 Date:12/18/2006

$\mathrm{A} 8 \mathrm{c} 5:=\pi \cdot \frac{\mathrm{D} 8 \mathrm{c} 5^{2}-\left[\frac{(\mathrm{D} 8 \mathrm{c} 5+\mathrm{D} 7 \mathrm{c} 5)}{2}\right]^{2}}{4} \quad \mathrm{~A} 8 \mathrm{c} 4=0.028 \mathrm{~m}^{2}$

Calculation of Areas in Contact between Rings

$$
\text { As8c4 }:=\frac{\pi \cdot \mathrm{D} 8 \mathrm{c} 4 \cdot \mathrm{t} 4}{2} \quad \text { As8c4 }=0.009 \mathrm{~m}^{2}
$$

Area of outer perimeter surface of C4 in contact with outer cylinder through two o-rings

$$
\text { As1c5 }:=\frac{\pi \mathrm{D} 1 \mathrm{c} 5 \cdot \mathrm{t} 2}{2} \quad \text { As1c5 }=0.005 \mathrm{~m}^{2}
$$

$$
\begin{aligned}
& \text { As1c4 }:=\frac{\pi \cdot \mathrm{D} 1 \mathrm{c} 4 \cdot \mathrm{t} 1}{2} \quad \text { As1c4 }=0.005 \mathrm{~m}^{2} \quad \text { Area of outer perimeter between layers } \\
& \text { As2c4 }:=\frac{\pi \cdot \frac{(\mathrm{D} 3 \mathrm{c} 4+\mathrm{D} 2 \mathrm{c} 4)}{2} \cdot \mathrm{t} 1}{2} \quad \text { As2c } 4=0.019 \mathrm{~m}^{2} \\
& \text { As3c4 }:=\frac{\pi \cdot \frac{(\mathrm{D} 4 \mathrm{c} 4+\mathrm{D} 3 \mathrm{c} 4)}{2} \cdot \mathrm{t} 1}{2} \quad \text { As3c4 }=0.026 \mathrm{~m}^{2} \\
& \operatorname{As} 4 \mathrm{c} 4:=\frac{\pi \cdot \frac{(\mathrm{D} 5 \mathrm{c} 4+\mathrm{D} 4 \mathrm{c} 4)}{2} \cdot \mathrm{t} 1}{2} \quad \text { As } 4 \mathrm{c} 4=0.031 \mathrm{~m}^{2} \\
& \operatorname{As5c4}:=\frac{\pi \cdot \frac{(\mathrm{D} 6 \mathrm{c} 4+\mathrm{D} 5 \mathrm{c} 4)}{2} \cdot \mathrm{t} 1}{2} \quad \text { As5c4 }=0.035 \mathrm{~m}^{2} \\
& \text { As6c4 }:=\frac{\pi \cdot \frac{(\mathrm{D} 7 \mathrm{c} 4+\mathrm{D} 6 \mathrm{c} 4)}{2} \cdot \mathrm{t} 1}{2} \quad \text { As6c } 4=0.040 \mathrm{~m}^{2} \\
& \text { As7c4 }:=\frac{\pi \cdot \frac{(\mathrm{D} 8 \mathrm{c} 4+\mathrm{D} 7 \mathrm{c} 4)}{2} \cdot \mathrm{t} 1}{2} \quad \text { As7c4 }=0.045 \mathrm{~m}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { As2c5 }:=\frac{\pi \cdot \frac{(\mathrm{D} 3 \mathrm{c} 5+\mathrm{D} 2 \mathrm{c} 5)}{2} \cdot \mathrm{t} 2}{2} \quad \text { As2c5 }=0.019 \mathrm{~m}^{2} \\
& \text { As3c5 }:=\frac{\pi \cdot \frac{(\mathrm{D} 4 \mathrm{c} 5+\mathrm{D} 3 \mathrm{c} 5)}{2} \cdot \mathrm{t} 2}{2} \quad \text { As3c } 5=0.026 \mathrm{~m}^{2}
\end{aligned}
$$

$$
\operatorname{As} 4 \mathrm{c} 5:=\frac{\pi \cdot \frac{(\mathrm{D} 5 \mathrm{c} 5+\mathrm{D} 4 \mathrm{c} 5)}{2} \cdot \mathrm{t} 2}{2} \quad \text { As } 4 \mathrm{c} 5=0.030 \mathrm{~m}^{2}
$$

$$
\mathrm{As} 5 \mathrm{c} 5:=\frac{\pi \cdot \frac{(\mathrm{D} 6 \mathrm{c} 5+\mathrm{D} 5 \mathrm{c} 5)}{2} \cdot \mathrm{t} 2}{2} \quad \mathrm{As} 5 \mathrm{c} 5=0.035 \mathrm{~m}^{2}
$$

$$
\mathrm{As} 6 \mathrm{c} 5:=\frac{\pi \cdot \frac{(\mathrm{D} 7 \mathrm{c} 5+\mathrm{D} 6 \mathrm{c} 5)}{2} \cdot \mathrm{t} 2}{2} \quad \mathrm{As} 6 \mathrm{c} 5=0.040 \mathrm{~m}^{2}
$$

$$
\text { As7c5 }:=\frac{\pi \cdot \frac{(\mathrm{D} 8 \mathrm{c} 5+\mathrm{D} 7 \mathrm{c} 5)}{2} \cdot \mathrm{t} 2}{2} \quad \mathrm{As} 7 \mathrm{c} 5=0.045 \mathrm{~m}^{2}
$$

$$
\text { As8c5 }:=\frac{\pi \cdot \text { D8c5 } 55}{2} \quad \text { As8c5 }=0.008 \mathrm{~m}^{2}
$$

Area of outer perimeter surface of C5 in contact wtih outer cylinder through two O-rings

1.4.0 Calculation of Temperatures and Thermal Equilibrium

Define initial guesses for Temperatures.
$\mathrm{T} 1 \mathrm{~m}_{0}:=285 \mathrm{~K}$
$\mathrm{T} 1_{1}:=285 \mathrm{~K}$
$\mathrm{T1}_{2}:=285 \mathrm{~K}$
$\mathrm{T1}_{3}:=285 \mathrm{~K}$
$\mathrm{T1}_{4}:=285 \mathrm{~K}$
$\mathrm{T} 1_{5}:=285 \mathrm{~K}$
$\mathrm{T}_{6}:=285 \mathrm{~K}$
$\mathrm{T} 1_{7}:=285 \mathrm{~K}$
$\operatorname{Tnn}_{2}:=280 \mathrm{~K}$
$\mathrm{T} 2_{1}:=280 \mathrm{~K}$
$\mathrm{T2}_{2}:=280 \mathrm{~K}$
$\mathrm{T2}_{3}:=280 \mathrm{~K}$
$\mathrm{T2}_{4}:=280 \mathrm{~K}$
$T 2_{5}:=280 \mathrm{~K}$
$T 2_{6}:=280 K$
$\mathrm{T} 2_{7}:=280 \mathrm{~K}$
$\mathrm{TM}_{\mathrm{Mn}}^{\mathrm{T}}:=245 \mathrm{~K}$
T3 $1:=245 \mathrm{~K}$
$\mathrm{T3}_{2}:=245 \mathrm{~K}$
$\mathrm{T3}_{3}:=245 \mathrm{~K}$
$\mathrm{T3}_{4}:=245 \mathrm{~K}$
$\mathrm{T3}_{5}:=245 \mathrm{~K}$
$\mathrm{T3}_{6}:=245 \mathrm{~K}$
$\mathrm{T3}_{7}:=245 \mathrm{~K}$

$\mathrm{T}_{0}:=240 \mathrm{~K}$	$\mathrm{~T} 4_{1}:=240 \mathrm{~K}$	$\mathrm{~T}_{2}:=240 \mathrm{~K}$	$\mathrm{~T} 4_{3}:=240 \mathrm{~K}$
$\mathrm{~T} 4_{4}:=240 \mathrm{~K}$	$\mathrm{~T} 4_{5}:=240 \mathrm{~K}$	$\mathrm{~T} 4_{6}:=240 \mathrm{~K}$	$\mathrm{~T} 4_{7}:=240 \mathrm{~K}$
$\mathrm{Tn}:=260 \mathrm{~K}$			

Given
Thermal Equilibrium on surface \#1 of C4
$\mathrm{h} 1 \cdot \mathrm{~A} 1 \mathrm{c} 4 \cdot\left(\mathrm{Ta}-\mathrm{T} 1_{0}\right)-\frac{\mathrm{k} 3 \cdot \mathrm{~A} 1 \mathrm{c} 4}{\mathrm{t} 1} \cdot\left(\mathrm{~T} 1_{0}-\mathrm{T} 2_{0}\right)-\frac{\mathrm{k} 3 \cdot \mathrm{As} 1 \mathrm{c} 4}{\left(\frac{\mathrm{D} 2 \mathrm{c} 4}{2}\right)} \cdot\left(\mathrm{T} 1_{0}-\mathrm{T} 1_{1}\right)=0.0$
$\mathrm{h} 1 \cdot \mathrm{~A} 2 \mathrm{c} 4 \cdot\left(\mathrm{Ta}-\mathrm{T} 1_{1}\right)-\frac{\mathrm{k} 3 \cdot \mathrm{~A} 2 \mathrm{c} 4}{\mathrm{t} 1} \cdot\left(\mathrm{~T} 1_{1}-\mathrm{T} 2_{1}\right)-\frac{\mathrm{k} 3 \cdot \mathrm{As} 2 \mathrm{c} 4}{\left(\frac{\mathrm{D} 3 \mathrm{c} 4-\mathrm{D} 2 \mathrm{c} 4}{2}\right)} \cdot\left(\mathrm{T} 1_{1}-\mathrm{T} 1_{2}\right)+\frac{\mathrm{k} 3 \cdot \mathrm{As} 1 \mathrm{c} 4}{\left(\frac{\mathrm{D} 2 \mathrm{c} 4}{2}\right)} \cdot\left(\mathrm{T} 1_{0}-\mathrm{T} 1_{1}\right)=0.0$
$h 1 \cdot A 3 c 4 \cdot\left(T a-T 1_{2}\right)-\frac{\mathrm{k} 3 \cdot \mathrm{~A} 3 \mathrm{c} 4}{\mathrm{t} 1} \cdot\left(\mathrm{~T} 1_{2}-\mathrm{T} 2_{2}\right)-\frac{\mathrm{k} 3 \cdot \mathrm{As} 3 \mathrm{c} 4}{\left(\frac{\mathrm{D} 4 \mathrm{c} 4-\mathrm{D} 3 \mathrm{c} 4}{2}\right)} \cdot\left(\mathrm{T} 1_{2}-\mathrm{T} 1_{3}\right)+\frac{\mathrm{k} 3 \cdot \mathrm{As} 2 \mathrm{c} 4}{\left(\frac{\mathrm{D} 3 \mathrm{c} 4-\mathrm{D} 2 \mathrm{c} 4}{2}\right)} \cdot\left(\mathrm{T} 1_{1}-\mathrm{T} 1_{2}\right)=0.0$
$h 1 \cdot A 4 c 4 \cdot\left(T a-T 1_{3}\right)-\frac{\mathrm{k} 3 \cdot \mathrm{~A} 4 \mathrm{c} 4}{\mathrm{t} 1} \cdot\left(\mathrm{~T} 1_{3}-\mathrm{T} 2_{3}\right)-\frac{\mathrm{k} 3 \cdot \mathrm{As} 4 \mathrm{c} 4}{\left(\frac{\mathrm{D} 5 \mathrm{c} 4-\mathrm{D} 4 \mathrm{c} 4}{2}\right)} \cdot\left(\mathrm{T} 1_{3}-\mathrm{T} 1_{4}\right)+\frac{\mathrm{k} 3 \cdot \mathrm{As} 3 \mathrm{c} 4}{\left(\frac{\mathrm{D} 4 \mathrm{c} 4-\mathrm{D} 3 \mathrm{c} 4}{2}\right)} \cdot\left(\mathrm{T} 1_{2}-\mathrm{T} 1_{3}\right)=0.0$
$\mathrm{h} 1 \cdot \mathrm{~A} 5 \mathrm{c} 4 \cdot\left(\mathrm{Ta}-\mathrm{T}_{4}\right)-\frac{\mathrm{k} 3 \cdot \mathrm{~A} 5 \mathrm{c} 4}{\mathrm{t} 1} \cdot\left(\mathrm{~T}_{4}-\mathrm{T} 2_{4}\right)-\frac{\mathrm{k} 3 \cdot \mathrm{As} 5 \mathrm{c} 4}{\left(\frac{\mathrm{D} 6 \mathrm{c} 4-\mathrm{D} 5 \mathrm{c} 4}{2}\right)} \cdot\left(\mathrm{T} 1_{4}-\mathrm{T} 1_{5}\right)+\frac{\mathrm{k} 3 \cdot \mathrm{As} 4 \mathrm{c} 4}{\left(\frac{\mathrm{D} 5 \mathrm{c} 4-\mathrm{D} 4 \mathrm{c} 4}{2}\right)} \cdot\left(\mathrm{T} 1_{3}-\mathrm{T} 1_{4}\right)=0.0$
$h 1 \cdot A 6 c 4 \cdot\left(\mathrm{Ta}-\mathrm{T} 1_{5}\right)-\frac{\mathrm{k} 3 \cdot \mathrm{~A} 6 \mathrm{c} 4}{\mathrm{t} 1} \cdot\left(\mathrm{~T} 1_{5}-\mathrm{T} 2_{5}\right)-\frac{\mathrm{k} 3 \cdot \mathrm{As} 6 \mathrm{c} 4}{\left(\frac{\mathrm{D} 7 \mathrm{c} 4-\mathrm{D} 6 \mathrm{c} 4}{2}\right)} \cdot\left(\mathrm{T} 1_{5}-\mathrm{T} 1_{6}\right)+\frac{\mathrm{k} 3 \cdot \mathrm{As} 5 \mathrm{c} 4}{\left(\frac{\mathrm{D} 6 \mathrm{c} 4-\mathrm{D} 5 \mathrm{c} 4}{2}\right)} \cdot\left(\mathrm{T} 1_{4}-\mathrm{T} 1_{5}\right)=0.0$
$h 1 \cdot A 7 c 4 \cdot\left(T a-T 1_{6}\right)-\frac{\mathrm{k} 3 \cdot \mathrm{~A} 7 \mathrm{c} 4}{\mathrm{t} 1} \cdot\left(\mathrm{~T} 1_{6}-\mathrm{T} 2_{6}\right)-\frac{\mathrm{k} 3 \cdot \mathrm{As} 7 \mathrm{c} 4}{\left(\frac{\mathrm{D} 8 \mathrm{c} 4-\mathrm{D} 7 \mathrm{c} 4}{2}\right)} \cdot\left(\mathrm{T} 1_{6}-\mathrm{T} 1_{7}\right)+\frac{\mathrm{k} 3 \cdot \mathrm{As} 6 \mathrm{c} 4}{\left(\frac{\mathrm{D} 7 \mathrm{c} 4-\mathrm{D} 6 \mathrm{c} 4}{2}\right)} \cdot\left(\mathrm{T} 1_{5}-\mathrm{T} 1_{6}\right)=0.0$

$$
\mathrm{h} 1 \cdot \mathrm{~A} 8 \mathrm{c} 4 \cdot\left(\mathrm{Ta}-\mathrm{T} 1_{7}\right)-\frac{\mathrm{k} 3 \cdot \mathrm{~A} 8 \mathrm{c} 4}{\mathrm{t} 1} \cdot\left(\mathrm{~T}_{7}-\mathrm{T}_{7}\right) \cdots \quad=0.0
$$

$+\frac{\mathrm{k} 3 \cdot \mathrm{As} 7 \mathrm{c} 4}{\left(\frac{\mathrm{D} 8 \mathrm{c} 4-\mathrm{D} 7 \mathrm{c} 4}{2}\right)} \cdot\left(\mathrm{T} 1_{6}-\mathrm{T} 1_{7}\right)-\frac{\mathrm{k} 1 \cdot \mathrm{As} 8 \mathrm{c} 4}{\mathrm{t} 4} \cdot\left(\mathrm{~T} 1_{7}-\mathrm{Ts}\right)-\varepsilon 1 \cdot \frac{\pi \cdot \mathrm{D} 8 \mathrm{c} 4 \cdot \mathrm{t} 1}{2} \cdot \sigma \cdot\left[\left(\mathrm{~T} 1_{7}\right)^{4}-(\mathrm{Ts})^{4}\right]$

Thermal Equilibrium of Surface \#2 of C4

$$
\frac{\mathrm{k} 3 \cdot \mathrm{~A} 4 \mathrm{c} 4}{\mathrm{t} 1} \cdot\left(\mathrm{T1}_{3}-\mathrm{T2}_{3}\right)-\mathrm{h} 2 \cdot \mathrm{~A} 4 \mathrm{c} 4 \cdot\left(\mathrm{~T}_{3}-\mathrm{Tn}\right)+\frac{\mathrm{k} 3 \cdot \mathrm{As} 3 \mathrm{c} 4}{\left(\frac{\mathrm{D} 4 \mathrm{c} 4-\mathrm{D} 3 \mathrm{c} 4}{2}\right)} \cdot\left(\mathrm{T2}_{2}-\mathrm{T} 2_{3}\right) \ldots=0.0
$$

$$
+\frac{-\mathrm{k} 3 \cdot \mathrm{As} 4 \mathrm{c} 4}{\left(\frac{\mathrm{D} 5 \mathrm{c} 4-\mathrm{D} 4 \mathrm{c} 4}{\gamma}\right)} \cdot\left(\mathrm{T2}_{3}-\mathrm{T}_{4}\right)-\varepsilon 1 \cdot \mathrm{~A} 4 \mathrm{c} 4 \cdot \sigma \cdot\left[\left(\mathrm{~T}_{3}\right)^{4}-\left(\mathrm{T}_{3}\right)^{4}\right]
$$

$$
\frac{\mathrm{k} 3 \cdot \mathrm{~A} 5 \mathrm{c} 4}{\mathrm{t} 1} \cdot\left(\mathrm{T1}_{4}-\mathrm{T2}_{4}\right)-\mathrm{h} 2 \cdot \mathrm{~A} 5 \mathrm{c} 4 \cdot\left(\mathrm{~T} 2_{4}-\mathrm{Tn}\right)+\frac{\mathrm{k} 3 \cdot \mathrm{As} 4 \mathrm{c} 4}{\left(\frac{\mathrm{D} 5 \mathrm{c} 4-\mathrm{D} 4 \mathrm{c} 4}{2}\right)} \cdot\left(\mathrm{T2}_{3}-\mathrm{T2}{ }_{4}\right) \ldots=0.0
$$

$$
+\frac{-\mathrm{k} 3 \cdot \mathrm{As5c} 4}{\left(\frac{\mathrm{D} 6 \mathrm{c} 4-\mathrm{D} 5 \mathrm{c} 4}{2}\right)} \cdot\left(\mathrm{T}_{4}-\mathrm{T2}_{5}\right)-\varepsilon 1 \cdot \mathrm{~A} 5 \mathrm{c} 4 \cdot \sigma \cdot\left[\left(\mathrm{~T}_{4}\right)^{4}-\left(\mathrm{T3}_{4}\right)^{4}\right]
$$

$$
\frac{\mathrm{k} 3 \cdot \mathrm{~A} 6 \mathrm{c} 4}{\mathrm{t} 1} \cdot\left(\mathrm{T1}_{5}-\mathrm{T2}_{5}\right)-\mathrm{h} 2 \cdot \mathrm{~A} 6 \mathrm{c} 4 \cdot\left(\mathrm{~T}_{5}-\mathrm{Tn}\right)+\frac{\mathrm{k} 3 \cdot \mathrm{As} 5 \mathrm{c} 4}{\left(\frac{\mathrm{D} 6 \mathrm{c} 4-\mathrm{D} 5 \mathrm{c} 4}{2}\right)} \cdot\left(\mathrm{T}_{4}-\mathrm{T} 2_{5}\right) \ldots=0.0
$$

$$
+\frac{-\mathrm{k} 3 \cdot \mathrm{As} 6 \mathrm{c} 4}{\left(\frac{\mathrm{D} 7 \mathrm{c} 4-\mathrm{D} 6 \mathrm{c} 4}{2}\right)} \cdot\left(\mathrm{T2}_{5}-\mathrm{T2}_{6}\right)-\varepsilon 1 \cdot \mathrm{~A} 6 \mathrm{c} 4 \cdot \sigma \cdot\left[\left(\mathrm{~T}_{5}\right)^{4}-\left(\mathrm{T3}_{5}\right)^{4}\right]
$$

$$
\begin{aligned}
& \frac{\mathrm{k} 3 \cdot \mathrm{A1c4}}{\mathrm{t} 1}\left(\mathrm{T1}_{0}-\mathrm{T} 2{ }_{0}\right)-\mathrm{h} 2 \cdot \mathrm{~A} 1 \mathrm{c} 4 \cdot\left(\mathrm{~T} 2_{0}-\mathrm{Tn}\right)-\frac{\mathrm{k} 3 \cdot \mathrm{As} 1 \mathrm{c} 4}{\left(\frac{\mathrm{D} 2 \mathrm{c} 4}{2}\right)} \cdot\left(\mathrm{T}_{2}-\mathrm{T} \mathrm{~T}_{1}\right)-\varepsilon 1 \cdot \mathrm{~A} 1 \mathrm{c} 4 \cdot \sigma \cdot\left[\left(\mathrm{~T}_{0}\right)^{4}-\left(\mathrm{T3}{ }_{0}\right)^{4}\right]=0.0 \\
& \frac{\mathrm{k} 3 \cdot \mathrm{~A} 2 \mathrm{c} 4}{\mathrm{t} 1} \cdot\left(\mathrm{~T} 1_{1}-\mathrm{T} 2{ }_{1}\right)-\mathrm{h} 2 \cdot \mathrm{~A} 2 \mathrm{c} 4 \cdot\left(\mathrm{~T} 2_{1}-\mathrm{Tn}\right)+\frac{\mathrm{k} 3 \cdot \mathrm{As} 1 \mathrm{c} 4}{\left(\frac{\mathrm{D} 2 \mathrm{c} 4}{2}\right)} \cdot\left(\mathrm{T2}_{0}-\mathrm{T} 2{ }_{1}\right) \ldots=0.0 \\
& +\frac{-\mathrm{k} 3 \cdot \mathrm{As} 2 \mathrm{c} 4}{\left(\frac{\mathrm{D} 3 \mathrm{c} 4-\mathrm{D} 2 \mathrm{c} 4}{2}\right)} \cdot\left(\mathrm{T}_{2}-\mathrm{T2} 2_{2}\right)-\varepsilon 1 \cdot \mathrm{~A} 2 \mathrm{c} 4 \cdot \sigma \cdot\left[\left(\mathrm{~T}_{1}\right)^{4}-\left(\mathrm{T}_{1}\right)^{4}\right] \\
& \frac{\mathrm{k} 3 \cdot \mathrm{~A} 3 \mathrm{c} 4}{\mathrm{t} 1} \cdot\left(\mathrm{T1}_{2}-\mathrm{T}_{2}\right)-\mathrm{h} 2 \cdot \mathrm{~A} 3 \mathrm{c} 4 \cdot\left(\mathrm{~T} 2_{2}-\mathrm{Tn}\right)+\frac{\mathrm{k} 3 \cdot \mathrm{As} 2 \mathrm{c} 4}{\left(\frac{\mathrm{D} 3 \mathrm{c} 4-\mathrm{D} 2 \mathrm{c} 4}{2}\right)} \cdot\left(\mathrm{T}_{2}-\mathrm{T} 2_{2}\right) \ldots=0.0 \\
& +\frac{-\mathrm{k} 3 \cdot \mathrm{As} 3 \mathrm{c} 4}{\left(\frac{\mathrm{D} 4 \mathrm{c} 4-\mathrm{D} 3 \mathrm{c} 4}{2}\right)} \cdot\left(\mathrm{T2}_{2}-\mathrm{T2}_{3}\right)-\varepsilon 1 \cdot \mathrm{~A} 3 \mathrm{c} 4 \cdot \sigma \cdot\left[\left(\mathrm{~T}_{2}\right)^{4}-\left(\mathrm{T3}_{2}\right)^{4}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\mathrm{k} 3 \cdot \mathrm{~A} 7 \mathrm{c} 4}{\mathrm{t} 1} \cdot\left(\mathrm{~T}_{6}-\mathrm{T} 2_{6}\right)-\mathrm{h} 2 \cdot \mathrm{~A} 7 \mathrm{c} 4 \cdot\left(\mathrm{~T} 2_{6}-\mathrm{Tn}\right)+\frac{\mathrm{k} 3 \cdot \mathrm{As} 6 \mathrm{c} 4}{\left(\frac{\mathrm{D} 7 \mathrm{c} 4-\mathrm{D} 6 \mathrm{c} 4}{2}\right)} \cdot\left(\mathrm{T}_{5}-\mathrm{T} 2_{6}\right) \ldots=0.0 \\
& +\frac{-\mathrm{k} 3 \cdot \mathrm{As} 7 \mathrm{c} 4}{\left(\frac{\mathrm{D} 8 \mathrm{c} 4-\mathrm{D} 7 \mathrm{c} 4}{2}\right)} \cdot\left(\mathrm{T}_{6}-\mathrm{T} 2_{7}\right)-\varepsilon 1 \cdot \mathrm{~A} 7 \mathrm{c} 4 \cdot \sigma \cdot\left[\left(\mathrm{~T}_{6}\right)^{4}-\left(\mathrm{T} 3_{6}\right)^{4}\right]
\end{aligned}
$$

$$
\frac{\mathrm{k} 3 \mathrm{~A} 8 \mathrm{c} 4}{\mathrm{t} 1} \cdot\left(\mathrm{~T}_{7}-\mathrm{T} 2_{7}\right)-\mathrm{h} 2 \cdot \mathrm{~A} 8 \mathrm{c} 4 \cdot\left(\mathrm{~T} 2_{7}-\mathrm{Tn}\right)+\frac{\mathrm{k} 3 \cdot \mathrm{As} 7 \mathrm{c} 4}{\left(\frac{\mathrm{D} 8 \mathrm{c} 4-\mathrm{D} 7 \mathrm{c} 4}{2}\right)} \cdot\left(\mathrm{T} 2_{6}-\mathrm{T} 2_{7}\right) \cdots \quad=0.0
$$

$$
+\frac{-\mathrm{k} 1 \cdot \mathrm{As} 8 \mathrm{c} 4}{\mathrm{t} 4} \cdot\left(\mathrm{~T} 2_{7}-\mathrm{Ts}\right)-\varepsilon 1 \cdot \mathrm{~A} 8 \mathrm{c} 4 \cdot \sigma \cdot\left[\left(\mathrm{~T}_{7}\right)^{4}-\left(\mathrm{T}_{7}\right)^{4}\right]-\varepsilon 1 \cdot \frac{\pi \cdot \mathrm{D} 8 \mathrm{c} 4 \cdot \mathrm{t} 1}{2} \cdot \sigma \cdot\left[\left(\mathrm{~T}_{7}\right)^{4}-(\mathrm{Ts})^{4}\right]
$$

Thermal Equilibrium of N2 Region

Thermal Equilibrium of Surface \#3 of C5

$$
\begin{aligned}
& \mathrm{h} 3 \cdot \mathrm{~A} 1 \mathrm{c} 5 \cdot\left(\mathrm{Tn}-\mathrm{T} 3_{0}\right)-\frac{\mathrm{k} 4 \cdot \mathrm{~A} 1 \mathrm{c} 5}{\mathrm{t} 2} \cdot\left(\mathrm{T3}_{0}-\mathrm{T} 4_{0}\right)-\frac{\mathrm{k} 4 \cdot \mathrm{As} 1 \mathrm{c} 5}{\left(\frac{\mathrm{D} 2 \mathrm{c} 5}{2}\right)} \cdot\left(\mathrm{T3}_{0}-\mathrm{T} 3_{1}\right)+\varepsilon 1 \cdot \mathrm{~A} 1 \mathrm{c} 5 \cdot \sigma \cdot\left[\left(\mathrm{~T}_{0}\right)^{4}-\left(\mathrm{T} 3_{0}\right)^{4}\right]=0.0 \\
& \mathrm{~h} 3 \cdot \mathrm{~A} 2 \mathrm{c} 5 \cdot\left(\mathrm{Tn}-\mathrm{T} 3_{1}\right)-\frac{\mathrm{k} 4 \cdot \mathrm{~A} 2 \mathrm{c} 5}{\mathrm{t} 2} \cdot\left(\mathrm{~T} 3_{1}-\mathrm{T} 4{ }_{1}\right)-\frac{\mathrm{k} 4 \cdot \mathrm{As} 2 \mathrm{c} 5}{\left(\frac{\mathrm{D} 3 \mathrm{c} 5-\mathrm{D} 2 \mathrm{c} 5}{2}\right)} \cdot\left(\mathrm{T} 3_{1}-\mathrm{T} 3_{2}\right) \ldots=0.0 \\
& +\frac{\mathrm{k} 4 \cdot \mathrm{As} 1 \mathrm{c} 5}{\left(\frac{\mathrm{D} 2 \mathrm{c} 5}{2}\right)} \cdot\left(\mathrm{T}_{0}-\mathrm{T} 3_{1}\right)+\varepsilon 1 \cdot \mathrm{~A} 2 \mathrm{c} 5 \cdot \sigma \cdot\left[\left(\mathrm{~T} 2{ }_{1}\right)^{4}-\left(\mathrm{T} 3_{1}\right)^{4}\right] \\
& \mathrm{h} 3 \cdot \mathrm{~A} 3 \mathrm{c} 5 \cdot\left(\mathrm{Tn}-\mathrm{T} 3_{2}\right)-\frac{\mathrm{k} 4 \cdot \mathrm{~A} 3 \mathrm{c} 5}{\mathrm{t} 2} \cdot\left(\mathrm{~T}_{2}-\mathrm{T} 4{ }_{2}\right)-\frac{\mathrm{k} 4 \cdot \mathrm{As} 3 \mathrm{c} 5}{\left(\frac{\mathrm{D} 4 \mathrm{c} 5-\mathrm{D} 3 \mathrm{c} 5}{2}\right)} \cdot\left(\mathrm{T}_{2}-\mathrm{T} 3_{3}\right) \ldots=0.0 \\
& +\frac{\mathrm{k} 4 \cdot \mathrm{As} 2 \mathrm{c} 5}{\left(\frac{\mathrm{D} 3 \mathrm{c} 5-\mathrm{D} 2 \mathrm{c} 5}{2}\right)} \cdot\left(\mathrm{T}_{1}-\mathrm{T} 3_{2}\right)+\varepsilon 1 \cdot \mathrm{~A} 3 \mathrm{c} 5 \cdot \sigma \cdot\left[\left(\mathrm{~T}_{2}\right)^{4}-\left(\mathrm{T}_{2}\right)^{4}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{h} 2 \cdot \mathrm{~A} 1 \mathrm{c} 4 \cdot\left(\mathrm{~T}_{0}-\mathrm{Tn}\right)+\mathrm{h} 2 \cdot \mathrm{~A} 2 \mathrm{c} 4 \cdot\left(\mathrm{~T} 2_{1}-\mathrm{Tn}\right)+\mathrm{h} 2 \cdot \mathrm{~A} 3 \mathrm{c} 4 \cdot\left(\mathrm{~T} 2_{2}-\mathrm{Tn}\right) \ldots \quad=0.0 \\
& +\mathrm{h} 2 \cdot \mathrm{~A} 4 \mathrm{c} 4 \cdot\left(\mathrm{~T}_{3}-\mathrm{Tn}\right)+\mathrm{h} 2 \cdot \mathrm{~A} 5 \mathrm{c} 4 \cdot\left(\mathrm{~T}_{4}-\mathrm{Tn}\right) \ldots \\
& +\mathrm{h} 2 \cdot \mathrm{~A} 6 \mathrm{c} 4 \cdot\left(\mathrm{~T}_{5}-\mathrm{Tn}\right)+\mathrm{h} 2 \cdot \mathrm{~A} 7 \mathrm{c} 4 \cdot\left(\mathrm{~T}_{6}-\mathrm{Tn}\right)+\mathrm{h} 2 \cdot \mathrm{~A} 8 \mathrm{c} 4 \cdot\left(\mathrm{~T} 2_{7}-\mathrm{Tn}\right) \ldots \\
& +\mathrm{h} 3 \cdot \mathrm{~A} 1 \mathrm{c} 5 \cdot\left(\mathrm{~T}_{0}-\mathrm{Tn}\right)+\mathrm{h} 3 \cdot \mathrm{~A} 2 \mathrm{c} 5 \cdot\left(\mathrm{~T} 3{ }_{1}-\mathrm{Tn}\right) . . \\
& +\mathrm{h} 3 \cdot \mathrm{~A} 3 \mathrm{c} 5 \cdot\left(\mathrm{T3}_{2}-\mathrm{Tn}\right)+\mathrm{h} 3 \cdot \mathrm{~A} 4 \mathrm{c} 5 \cdot\left(\mathrm{T3}_{3}-\mathrm{Tn}\right)+\mathrm{h} 3 \cdot \mathrm{~A} 5 \mathrm{c} 5 \cdot\left(\mathrm{T3} 3_{4}-\mathrm{Tn}\right)+\mathrm{h} 3 \cdot \mathrm{~A} 6 \mathrm{c} 5 \cdot\left(\mathrm{~T} 3_{5}-\mathrm{Tn}\right) \ldots \\
& +\mathrm{h} 3 \cdot \mathrm{~A} 7 \mathrm{c} 5 \cdot\left(\mathrm{~T}_{6}-\mathrm{Tn}\right)+\mathrm{h} 3 \cdot \mathrm{~A} 8 \mathrm{c} 5 \cdot\left(\mathrm{T3}_{7}-\mathrm{Tn}\right)+\mathrm{mN} 2 \cdot \mathrm{cpN} 2 \cdot 2 \cdot(\mathrm{Ti}-\mathrm{Tn})
\end{aligned}
$$

$$
\mathrm{h} 3 \cdot \mathrm{~A} 7 \mathrm{c} 5 \cdot\left(\mathrm{Tn}-\mathrm{T} 3_{6}\right)-\frac{\mathrm{k} 4 \cdot \mathrm{~A} 7 \mathrm{c} 5}{\mathrm{t} 2} \cdot\left(\mathrm{~T} 3_{6}-\mathrm{T} 4_{6}\right)-\frac{\mathrm{k} 4 \cdot \mathrm{As} 7 \mathrm{c} 5}{\left(\frac{\mathrm{D} 8 \mathrm{c} 5-\mathrm{D} 7 \mathrm{c} 5}{2}\right)} \cdot\left(\mathrm{T} 3_{6}-\mathrm{T} 3_{7}\right) \ldots=0.0
$$

$$
+\frac{\mathrm{k} 4 \cdot \mathrm{As} 6 \mathrm{c} 5}{\left(\frac{\mathrm{D} 7 \mathrm{c} 5-\mathrm{D} 6 \mathrm{c} 5}{2}\right)} \cdot\left(\mathrm{T}_{5}-\mathrm{T} 3_{6}\right)+\varepsilon 1 \cdot \mathrm{~A} 7 \mathrm{c} 5 \cdot \sigma \cdot\left[\left(\mathrm{~T}_{6}\right)^{4}-\left(\mathrm{T} 3_{6}\right)^{4}\right]
$$

$$
\mathrm{h} 3 \cdot \mathrm{~A} 8 \mathrm{c} 5 \cdot\left(\mathrm{Tn}-\mathrm{T} 3_{7}\right)-\frac{\mathrm{k} 4 \cdot \mathrm{~A} 8 \mathrm{c} 5}{\mathrm{t} 2} \cdot\left(\mathrm{T3}_{7}-\mathrm{T} 4_{7}\right)+\frac{\mathrm{k} 4 \cdot \mathrm{As} 7 \mathrm{c} 5}{\left(\frac{\mathrm{D} 8 \mathrm{c} 5-\mathrm{D} 7 \mathrm{c} 5}{2}\right)} \cdot\left(\mathrm{T}_{6}-\mathrm{T} 3_{7}\right) \ldots \quad=0.0
$$

$$
+\frac{-\mathrm{k} 2 \cdot \mathrm{As} 8 \mathrm{c} 5}{\mathrm{t} 5} \cdot\left(\mathrm{T3}_{7}-\mathrm{Ts}\right)+\varepsilon 1 \cdot \mathrm{~A} 8 \mathrm{c} 5 \cdot \sigma \cdot\left[\left(\mathrm{~T}_{7}\right)^{4}-\left(\mathrm{T3}_{7}\right)^{4}\right]-\varepsilon 1 \cdot \frac{\pi \cdot \mathrm{D} 8 \mathrm{c} 5 \cdot \mathrm{t} 2}{2} \cdot \sigma \cdot\left[\left(\mathrm{~T}_{7}\right)^{4}-(\mathrm{Ts})^{4}\right]
$$

Thermal Equilibrium of Surface \#4 of C5

$$
\frac{\mathrm{k} 4 \cdot \mathrm{~A} 1 \mathrm{c} 5}{\mathrm{t} 2} \cdot\left(\mathrm{~T} 3_{0}-\mathrm{T} 4_{0}\right)-\varepsilon 1 \cdot \mathrm{~A} 1 \mathrm{c} 5 \cdot \sigma \cdot\left[\left(\mathrm{~T} 4_{0}\right)^{4}-\mathrm{T} 5^{4}\right]-\frac{\mathrm{k} 4 \cdot \mathrm{As} 1 \mathrm{c} 5}{\left(\frac{\mathrm{D} 2 \mathrm{c} 5}{2}\right)} \cdot\left(\mathrm{T}_{0}-\mathrm{T} 4_{1}\right)=0.0
$$

$$
\begin{aligned}
& \mathrm{h} 3 \cdot \mathrm{~A} 4 \mathrm{c} 5 \cdot\left(\mathrm{Tn}-\mathrm{T} 3_{3}\right)-\frac{\mathrm{k} 4 \cdot \mathrm{~A} 4 \mathrm{c} 5}{\mathrm{t} 2} \cdot\left(\mathrm{~T}_{3}-\mathrm{T} 43\right)-\frac{\mathrm{k} 4 \cdot \mathrm{As} 4 \mathrm{c} 5}{\left(\frac{\mathrm{D} 5 \mathrm{c} 5-\mathrm{D} 4 \mathrm{c} 5}{2}\right)} \cdot\left(\mathrm{T3}_{3}-\mathrm{T} 3_{4}\right) \ldots=0.0 \\
& +\frac{\mathrm{k} 4 \cdot \mathrm{As} 3 \mathrm{c} 5}{\left(\frac{\mathrm{D} 4 \mathrm{c} 5-\mathrm{D} 3 \mathrm{c} 5}{2}\right)} \cdot\left(\mathrm{T}_{2}-\mathrm{T} 3_{3}\right)+\varepsilon 1 \cdot \mathrm{~A} 4 \mathrm{c} 5 \cdot \sigma \cdot\left[\left(\mathrm{~T}_{3}\right)^{4}-\left(\mathrm{T} 3_{3}\right)^{4}\right] \\
& \mathrm{h} 3 \cdot \mathrm{~A} 5 \mathrm{c} 5 \cdot\left(\mathrm{Tn}-\mathrm{T}_{4}\right)-\frac{\mathrm{k} 4 \cdot \mathrm{~A} 5 \mathrm{c} 5}{\mathrm{t} 2} \cdot\left(\mathrm{T3}_{4}-\mathrm{T} 4_{4}\right)-\frac{\mathrm{k} 4 \cdot \mathrm{As} 5 \mathrm{c} 5}{\left(\frac{\mathrm{D} 6 \mathrm{c} 5-\mathrm{D} 5 \mathrm{c} 5}{2}\right)} \cdot\left(\mathrm{T3}_{4}-\mathrm{T} 3_{5}\right) \ldots=0.0 \\
& +\frac{\mathrm{k} 4 \cdot \mathrm{As} 4 \mathrm{c} 5}{\left(\frac{\mathrm{D} 5 \mathrm{c} 5-\mathrm{D} 4 \mathrm{c} 5}{2}\right)} \cdot\left(\mathrm{T3}_{3}-\mathrm{T3}_{4}\right)+\varepsilon 1 \cdot \mathrm{~A} 5 \mathrm{c} 5 \cdot \sigma \cdot\left[\left(\mathrm{~T}_{4}\right)^{4}-\left(\mathrm{T}_{4}\right)^{4}\right] \\
& \mathrm{h} 3 \cdot \mathrm{~A} 6 \mathrm{c} 5 \cdot\left(\mathrm{Tn}-\mathrm{T} 3_{5}\right)-\frac{\mathrm{k} 4 \cdot \mathrm{~A} 6 \mathrm{c} 5}{\mathrm{t} 2} \cdot\left(\mathrm{~T} 3_{5}-\mathrm{T} 4_{5}\right)-\frac{\mathrm{k} 4 \cdot \mathrm{As6c5}}{\left(\frac{\mathrm{D} 7 \mathrm{c} 5-\mathrm{D} 6 \mathrm{c} 5}{2}\right)} \cdot\left(\mathrm{T} 3_{5}-\mathrm{T} 3_{6}\right) \ldots=0.0 \\
& +\frac{\mathrm{k} 4 \cdot \mathrm{As} 5 \mathrm{c} 5}{\left(\frac{\mathrm{D} 6 \mathrm{c} 5-\mathrm{D} 5 \mathrm{c} 5}{2}\right)} \cdot\left(\mathrm{T3}_{4}-\mathrm{T3}_{5}\right)+\varepsilon 1 \cdot \mathrm{~A} 6 \mathrm{c} 5 \cdot \sigma \cdot\left[\left(\mathrm{~T}_{5}\right)^{4}-\left(\mathrm{T} 3_{5}\right)^{4}\right]
\end{aligned}
$$

Victor Guarino	Calculation of Stresses and Deflections in	Page: 16 of 44
Argonne National Laboratory	C5 Due to Thermal and Pressure Loading	Date:12/18/2006

$$
\begin{aligned}
& \frac{\mathrm{k} 4 \cdot \mathrm{~A} 2 \mathrm{c} 5}{\mathrm{t} 2} \cdot\left(\mathrm{~T} 3_{1}-\mathrm{T} 4{ }_{1}\right)-\varepsilon 1 \cdot \mathrm{~A} 2 \mathrm{c} 5 \cdot \sigma \cdot\left[\left(\mathrm{~T} 4{ }_{1}\right)^{4}-\mathrm{T} 5^{4}\right]+\frac{\mathrm{k} 4 \cdot \mathrm{As} 1 \mathrm{c} 5}{\left(\frac{\mathrm{D} 2 \mathrm{c} 5}{2}\right)} \cdot\left(\mathrm{T} 4_{0}-\mathrm{T} 4{ }_{1}\right)-\frac{\mathrm{k} 4 \cdot \mathrm{As} 2 \mathrm{c} 5}{\left(\frac{\mathrm{D} 3 \mathrm{c} 5-\mathrm{D} 2 \mathrm{c} 5}{2}\right)} \cdot\left(\mathrm{T} 4{ }_{1}-\mathrm{T} 4{ }_{2}\right)=0.0 \\
& \frac{\mathrm{k} 4 \cdot \mathrm{~A} 3 \mathrm{c} 5}{\mathrm{t} 2} \cdot\left(\mathrm{~T}_{2}-\mathrm{T} 4_{2}\right)-\varepsilon 1 \cdot \mathrm{~A} 3 \mathrm{c} 5 \cdot \sigma \cdot\left[\left(\mathrm{~T} 4_{2}\right)^{4}-\mathrm{T} 5^{4}\right]+\frac{\mathrm{k} 4 \cdot \mathrm{As} 2 \mathrm{c} 5}{\left(\frac{\mathrm{D} 3 \mathrm{c} 5-\mathrm{D} 2 \mathrm{c} 5}{2}\right)} \cdot\left(\mathrm{T} 44_{1}-\mathrm{T} 4_{2}\right)-\frac{\mathrm{k} 4 \cdot \mathrm{As} 3 \mathrm{c} 5}{\left(\frac{\mathrm{D} 4 \mathrm{c} 5-\mathrm{D} 3 \mathrm{c} 5}{2}\right)} \cdot\left(\mathrm{T} 4_{2}-\mathrm{T} 4_{3}\right)=0 . \\
& \frac{\mathrm{k} 4 \cdot \mathrm{~A} 4 \mathrm{c} 5}{\mathrm{t} 2} \cdot\left(\mathrm{~T} 3_{3}-\mathrm{T} 4_{3}\right)-\varepsilon 1 \cdot \mathrm{~A} 4 \mathrm{c} 5 \cdot \sigma \cdot\left[\left(\mathrm{~T} 4_{3}\right)^{4}-\mathrm{T} 5^{4}\right]+\frac{\mathrm{k} 4 \cdot \mathrm{As} 3 \mathrm{c} 5}{\left(\frac{\mathrm{D} 4 \mathrm{c} 5-\mathrm{D} 3 \mathrm{c} 5}{2}\right)} \cdot\left(\mathrm{T} 4_{2}-\mathrm{T} 4_{3}\right)-\frac{\mathrm{k} 4 \cdot \mathrm{As} 4 \mathrm{c} 5}{\left(\frac{\mathrm{D} 5 \mathrm{c} 5-\mathrm{D} 4 \mathrm{c} 5)}{2}\right)} \cdot\left(\mathrm{T} 4_{3}-\mathrm{T} 4{ }_{4}\right)=0 . \\
& \frac{\mathrm{k} 4 \cdot \mathrm{~A} 5 \mathrm{c} 5}{\mathrm{t} 2} \cdot\left(\mathrm{~T}_{4}-\mathrm{T}_{4}\right)-\varepsilon 1 \cdot \mathrm{~A} 5 \mathrm{c} 5 \cdot \sigma \cdot\left[\left(\mathrm{~T}_{4}\right)^{4}-\mathrm{T} 5^{4}\right]+\frac{\mathrm{k} 4 \cdot \mathrm{As} 4 \mathrm{c} 5}{\left(\frac{\mathrm{D} 5 \mathrm{c} 5-\mathrm{D} 4 \mathrm{c} 5}{2}\right)} \cdot\left(\mathrm{T} 4_{3}-\mathrm{T} 4_{4}\right)-\frac{\mathrm{k} 4 \cdot \mathrm{As} 5 \mathrm{c} 5}{\left(\frac{\mathrm{D} 6 \mathrm{c} 5-\mathrm{D} 5 \mathrm{c} 5}{2}\right)} \cdot\left(\mathrm{T} 4_{4}-\mathrm{T} 4_{5}\right)=0 . \\
& \frac{\mathrm{k} 4 \cdot \mathrm{~A} 6 \mathrm{c} 5}{\mathrm{t} 2} \cdot\left(\mathrm{~T}_{5}-\mathrm{T} 4_{5}\right)-\varepsilon 1 \cdot \mathrm{~A} 6 \mathrm{c} 5 \cdot \sigma \cdot\left[\left(\mathrm{~T} 4_{5}\right)^{4}-\mathrm{T} 5^{4}\right]+\frac{\mathrm{k} 4 \cdot \mathrm{As} 5 \mathrm{c} 5}{\left(\frac{\mathrm{D} 6 \mathrm{c} 5-\mathrm{D} 5 \mathrm{c} 5}{2}\right)} \cdot\left(\mathrm{T} 4_{4}-\mathrm{T} 4_{5}\right)-\frac{\mathrm{k} 4 \cdot \mathrm{As} 6 \mathrm{c} 5}{\left(\frac{\mathrm{D} 7 \mathrm{c} 5-\mathrm{D} 6 \mathrm{c} 5}{2}\right)} \cdot\left(\mathrm{T} 4_{5}-\mathrm{T} 4_{6}\right)=0 . \\
& \frac{\mathrm{k} 4 \cdot \mathrm{~A} 7 \mathrm{c} 5}{\mathrm{t} 2} \cdot\left(\mathrm{~T} 3_{6}-\mathrm{T} 4_{6}\right)-\varepsilon 1 \cdot \mathrm{~A} 7 \mathrm{c} 5 \cdot \sigma \cdot\left[\left(\mathrm{~T} 4_{6}\right)^{4}-\mathrm{T} 5^{4}\right]+\frac{\mathrm{k} 4 \cdot \mathrm{As} 6 \mathrm{c} 5}{\left(\frac{\mathrm{D} 7 \mathrm{c} 5-\mathrm{D} 6 \mathrm{c} 5}{2}\right)} \cdot\left(\mathrm{T} 4_{5}-\mathrm{T} 4_{6}\right)-\frac{\mathrm{k} 4 \cdot \mathrm{As} 7 \mathrm{c} 5}{\left(\frac{\mathrm{D} 8 \mathrm{c} 5-\mathrm{D} 7 \mathrm{c} 5}{2}\right)} \cdot\left(\mathrm{T} 4_{6}-\mathrm{T} 4_{7}\right)=0 . \\
& \frac{\mathrm{k} 4 \cdot \mathrm{~A} 8 \mathrm{c} 5}{\mathrm{t} 2} \cdot\left(\mathrm{~T}_{7}-\mathrm{T}_{7}\right)-\varepsilon 1 \cdot \mathrm{~A} 8 \mathrm{c} 5 \cdot \sigma \cdot\left[\left(\mathrm{~T}_{7}\right)^{4}-\mathrm{T} 5^{4}\right] \ldots \quad=0.0 \\
& +\frac{\mathrm{k} 4 \cdot \mathrm{As} 7 \mathrm{c} 5}{\left(\frac{\mathrm{D} 8 \mathrm{c} 5-\mathrm{D} 7 \mathrm{c} 5}{2}\right)} \cdot\left(\mathrm{T}_{6}-\mathrm{T} 4_{7}\right)-\frac{\mathrm{k} 2 \cdot \mathrm{As} 8 \mathrm{c} 5}{\mathrm{t} 5} \cdot\left(\mathrm{~T}_{7}-\mathrm{Ts}\right)-\varepsilon 1 \cdot \frac{\pi \cdot \mathrm{D} 8 \mathrm{c} 5 \cdot \mathrm{t} 2}{2} \cdot \sigma \cdot\left[\left(\mathrm{~T} 4_{7}\right)^{4}-(\mathrm{Ts})^{4}\right]
\end{aligned}
$$

$\left(\begin{array}{l}\text { T1a } \\ \text { T2a } \\ \text { T3a } \\ \text { T4a } \\ \text { Tna }\end{array}\right):=$ Find(T1, T2, T3, T4, Tn $)$

	(287.715)			(286.026)			(271.756)			(262.465)		
	287.890			286.205			272.050			262.787		
	288.420			286.749			272.973			263.806		
T1a $=$	288.848		$\mathrm{T} 2 \mathrm{a}=$	287.193		ТЗа $=$	273.763	K	T4a	264.686	K	Tna $=290.817 \mathrm{~K}$
	289.409			287.781			274.847			265.909		
	290.135			288.554			276.329			267.619		
	291.060			289.565			278.343			270.037		
	(292.211)			(290.886)			(281.034)			(273.518)		
T1 :=	T1a		T2 :=	T2a		T3 :=	T3a		$\mathrm{T} 4:=\mathrm{T}$	4a	n :	

$\mathrm{To}:=2 \cdot \mathrm{Tn}-\mathrm{Ti}$
$\mathrm{Ti}=298.000 \mathrm{~K}$
ТЗа - Т4a $=\left(\begin{array}{l}9.291 \\ 9.262 \\ 9.167 \\ 9.076 \\ 8.937 \\ 8.710 \\ 8.306\end{array}\right) \mathrm{K}$

Given Inlet Temp.

Outlet Temp of N2

$\mathrm{Ti}-\mathrm{To}=14.367 \mathrm{~K} \quad \frac{\mathrm{Ti}}{\mathrm{To}}=1.051$

1.5.0 Calculation of Heat Flux

Calculation of Heat Flux into C5

Calculation of heat flux to C 5 from radiation
$\varepsilon 1 \cdot \mathrm{~A} 1 \mathrm{c} 5 \cdot \sigma \cdot\left[\left(\mathrm{~T}_{0}\right)^{4}-\mathrm{T} 5^{4}\right]+\varepsilon 1 \cdot \mathrm{~A} 2 \mathrm{c} \cdot 5 \cdot \sigma \cdot\left[\left(\mathrm{~T} 4_{1}\right)^{4}-\mathrm{T} 5^{4}\right]+\varepsilon 1 \cdot \mathrm{~A} 3 \mathrm{c} 5 \cdot \sigma \cdot\left[\left(\mathrm{~T} 4_{2}\right)^{4}-\mathrm{T} 5^{4}\right] \ldots=46.357 \mathrm{~W}$
$+\varepsilon 1 \cdot \mathrm{~A} 4 \mathrm{c} 5 \cdot \sigma \cdot\left[\left(\mathrm{~T}_{3}\right)^{4}-\mathrm{T5}^{4}\right]+\varepsilon 1 \cdot \mathrm{~A} 5 \mathrm{c} 5 \cdot \sigma \cdot\left[\left(\mathrm{~T}_{4}\right)^{4}-\mathrm{T} 5^{4}\right]+\varepsilon 1 \cdot \mathrm{~A} 6 \mathrm{c} 5 \cdot \sigma \cdot\left[\left(\mathrm{~T} 4_{5}\right)^{4}-\mathrm{T} 5^{4}\right] \ldots$
$+\varepsilon 1 \cdot \mathrm{~A} 7 \mathrm{c} 5 \cdot \sigma \cdot\left[\left(\mathrm{~T}_{6}\right)^{4}-\mathrm{T} 5^{4}\right]+\varepsilon 1 \cdot \mathrm{~A} 8 \mathrm{c} 5 \cdot \sigma \cdot\left[\left(\mathrm{~T}_{7}\right)^{4}-\mathrm{T} 5^{4}\right]$

Heat Flux from convection on surface T3 into C5
$\mathrm{h} 3 \cdot \mathrm{~A} 1 \mathrm{c} 5 \cdot\left(\mathrm{~T}_{0}-\mathrm{Tn}\right)+\mathrm{h} 3 \cdot \mathrm{~A} 2 \mathrm{c} 5 \cdot\left(\mathrm{T3}_{1}-\mathrm{Tn}\right) \ldots \quad=-20.368 \mathrm{~W}$
$+\mathrm{h} 3 \cdot \mathrm{~A} 3 \mathrm{c} 5 \cdot\left(\mathrm{~T}_{2}-\mathrm{Tn}\right)+\mathrm{h} 3 \cdot \mathrm{~A} 4 \mathrm{c} 5 \cdot\left(\mathrm{~T}_{3}-\mathrm{Tn}\right)+\mathrm{h} 3 \cdot \mathrm{~A} 5 \mathrm{c} 5 \cdot\left(\mathrm{~T} 3_{4}-\mathrm{Tn}\right)+\mathrm{h} 3 \cdot \mathrm{~A} 6 \mathrm{c} 5 \cdot\left(\mathrm{~T} 3_{5}-\mathrm{Tn}\right) \ldots$
$+\mathrm{h} 3 \cdot \mathrm{~A} 7 \mathrm{c} 5 \cdot\left(\mathrm{~T}_{6}-\mathrm{Tn}\right)+\mathrm{h} 3 \cdot \mathrm{~A} 8 \mathrm{c} 5 \cdot\left(\mathrm{T3}_{7}-\mathrm{Tn}\right)$

Heat Flux by Conductivity through outer perimeter of C5
$\frac{\mathrm{k} 2 \cdot \mathrm{As} 8 \mathrm{c} 5 \cdot\left(\mathrm{~T} 3_{7}-\mathrm{Ts}\right)}{\mathrm{t} 5}+\frac{\mathrm{k} 2 \cdot \mathrm{As} 8 \mathrm{c} 5 \cdot\left(\mathrm{~T}_{7}-\mathrm{Ts}\right)}{\mathrm{t} 5}=-4.587 \mathrm{~W}$

Calculation of Heat Flux from Radiation from T2 Surface of C4 to T3 Surface of C5
$\varepsilon 1 \cdot \mathrm{~A} 1 \mathrm{c} 5 \cdot \sigma \cdot\left[\left(\mathrm{~T}_{0}\right)^{4}-\left(\mathrm{T}_{0}\right)^{4}\right]+\varepsilon 1 \cdot \mathrm{~A} 2 \mathrm{c} 5 \cdot \sigma \cdot\left[\left(\mathrm{~T}_{1}\right)^{4}-\left(\mathrm{T}_{1}\right)^{4}\right]+\varepsilon 1 \cdot \mathrm{~A} 3 \mathrm{c} 5 \cdot \sigma \cdot\left[\left(\mathrm{~T}_{2}\right)^{4}-\left(\mathrm{T}_{2}\right)^{4}\right] \ldots=12.501 \mathrm{~W}$
$+\varepsilon 1 \cdot \mathrm{~A} 4 \mathrm{c} 5 \cdot \sigma \cdot\left[\left(\mathrm{~T}_{3}\right)^{4}-\left(\mathrm{T}_{3}\right)^{4}\right] \ldots$
$+\varepsilon 1 \cdot \mathrm{~A} 5 \mathrm{c} 5 \cdot \sigma \cdot\left[\left(\mathrm{~T}_{4}\right)^{4}-\left(\mathrm{T}_{4}\right)^{4}\right]+\varepsilon 1 \cdot \mathrm{~A} 6 \mathrm{c} 5 \cdot \sigma \cdot\left[\left(\mathrm{~T}_{5}\right)^{4}-\left(\mathrm{T}_{5}\right)^{4}\right] \ldots$
$+\varepsilon 1 \cdot \mathrm{~A} 7 \mathrm{c} 5 \cdot \sigma \cdot\left[\left(\mathrm{~T}_{6}\right)^{4}-\left(\mathrm{T}_{6}\right)^{4}\right]+\varepsilon 1 \cdot \mathrm{~A} 8 \mathrm{c} 5 \cdot \sigma \cdot\left[\left(\mathrm{~T}_{7}\right)^{4}-\left(\mathrm{T}_{7}\right)^{4}\right]$

Calculation of Radiation Heat Flux at the Outer Radius of C5
$\varepsilon 1 \cdot \frac{\pi \cdot \mathrm{D} 8 \mathrm{c} 5 \cdot \mathrm{t} 2}{2} \cdot \sigma \cdot\left[\left(\mathrm{~T}_{7}\right)^{4}-(\mathrm{Ts})^{4}\right]+\varepsilon 1 \cdot \frac{\pi \cdot \mathrm{D} 8 \mathrm{c} 5 \cdot \mathrm{t} 2}{2} \cdot \sigma \cdot\left[\left(\mathrm{~T}_{7}\right)^{4}-(\mathrm{Ts})^{4}\right]=-8.901 \mathrm{~W}$

Calculation of Heat Flux into N2 Region

Heat flux from C4
$\mathrm{h} 2 \cdot \mathrm{~A} 1 \mathrm{c} 4 \cdot\left(\mathrm{~T}_{2}-\mathrm{Tn}\right)+\mathrm{h} 2 \cdot \mathrm{~A} 2 \mathrm{c} 4 \cdot\left(\mathrm{~T} 2_{1}-\mathrm{Tn}\right)+\mathrm{h} 2 \cdot \mathrm{~A} 3 \mathrm{c} 4 \cdot\left(\mathrm{~T} 2_{2}-\mathrm{Tn}\right) \ldots=-3.418 \mathrm{~W}$
$+\mathrm{h} 2 \cdot \mathrm{~A} 4 \mathrm{c} 4 \cdot\left(\mathrm{~T}_{3}-\mathrm{Tn}\right)+\mathrm{h} 2 \cdot \mathrm{~A} 5 \mathrm{c} 4 \cdot\left(\mathrm{~T}_{4}-\mathrm{Tn}\right) \ldots$
$+\mathrm{h} 2 \cdot \mathrm{~A} 6 \mathrm{c} 4 \cdot\left(\mathrm{~T}_{5}-\mathrm{Tn}\right)+\mathrm{h} 2 \cdot \mathrm{~A} 7 \mathrm{c} 4 \cdot\left(\mathrm{~T}_{6}-\mathrm{Tn}\right)+\mathrm{h} 2 \cdot \mathrm{~A} 8 \mathrm{c} 4 \cdot\left(\mathrm{~T} 2_{7}-\mathrm{Tn}\right)$

Heat Flux from C5
$\mathrm{h} 3 \cdot \mathrm{~A} 1 \mathrm{c} 5 \cdot\left(\mathrm{~T}_{0}-\mathrm{Tn}\right)+\mathrm{h} 3 \cdot \mathrm{~A} 2 \mathrm{c} 5 \cdot\left(\mathrm{~T}_{1}-\mathrm{Tn}\right) \ldots \quad=-20.368 \mathrm{~W}$
$+\mathrm{h} 3 \cdot \mathrm{~A} 3 \mathrm{c} 5 \cdot\left(\mathrm{T3} 2_{2}-\mathrm{Tn}\right)+\mathrm{h} 3 \cdot \mathrm{~A} 4 \mathrm{c} 5 \cdot\left(\mathrm{T3}_{3}-\mathrm{Tn}\right)+\mathrm{h} 3 \cdot \mathrm{~A} 5 \mathrm{c} 5 \cdot\left(\mathrm{T3} 3_{4}-\mathrm{Tn}\right)+\mathrm{h} 3 \cdot \mathrm{~A} 6 \mathrm{c} 5 \cdot\left(\mathrm{~T} 3_{5}-\mathrm{Tn}\right) \ldots$
$+\mathrm{h} 3 \cdot \mathrm{~A} 7 \mathrm{c} 5 \cdot\left(\mathrm{T3}{ }_{6}-\mathrm{Tn}\right)+\mathrm{h} 3 \cdot \mathrm{~A} 8 \mathrm{c} 5 \cdot\left(\mathrm{T3}_{7}-\mathrm{Tn}\right)$

Heat Absorption of N2
$\mathrm{mN} 2 \cdot \mathrm{cpN} 2 \cdot 2 \cdot(\mathrm{Ti}-\mathrm{Tn})=23.786 \mathrm{~W}$

Victor Guarino	Calculation of Stresses and Deflections in	Page: 19 of 44
Argonne National Laboratory	C5 Due to Thermal and Pressure Loading	Date:12/18/2006

2.0 Calculation of C5 Stresses and Deflections Due to Temperature Differences

Solid circular plate

Uniform temperature differential between the bottom and top surface from r_{0} to a

Plate dimensions:

$$
\begin{array}{ll}
\text { thickness: } & t \equiv 55.1 \mathrm{~mm} \\
\text { radius: } & a \equiv 271 \cdot \mathrm{~mm}
\end{array}
$$

Temperature differential (${ }^{\circ} \mathrm{F}$)
$\Delta \mathrm{T} \equiv-9.18 \quad$ Based on Calculations in previous section

Temperature coefficient
of expansion $\left({ }^{\circ} \mathrm{F}^{-1}\right)$:
$\gamma \equiv .305 \cdot 10^{-6} \cdot \frac{\text { in }}{\text { in }}$

Modulus of elasticity:
$\mathrm{E} \equiv 10544243.5 \cdot \frac{\mathrm{lbf}}{\mathrm{in}^{2}}$
Poisson's ratio:
$v \equiv 0.16$
Radial location of applied load:
$r_{o} \equiv 0.00001 \cdot$ in
D is a plate constant used in determining boundary values; it is also used in the general equations for deflection, slope, moment and shear.
$D \equiv \frac{E \cdot t^{3}}{12 \cdot\left(1-v^{2}\right)}$
$\mathrm{D}=9205567.185 \mathrm{lbf} \cdot \mathrm{in}$

Boundary values

The L_{n} functions used in the equations below are defined at the end of this document.
M_{r} is radial moment, Q is shear, y is deflection and θ is slope.

Due to bending:

At the edge of the plate (a):

$$
\begin{array}{ll}
\mathrm{M}_{\mathrm{raTemp}}:=0 \cdot \frac{\mathrm{lbf} \cdot \mathrm{in}}{\mathrm{in}} & \mathrm{M}_{\mathrm{raTemp}}=0.000 \frac{\mathrm{lbf} \cdot \mathrm{in}}{\mathrm{in}} \\
\mathrm{y}_{\mathrm{aT} \text { 他p }}:=0 \cdot \mathrm{in} & \mathrm{y}_{\mathrm{aT} \text { Temp }}=0.000 \mathrm{in} \\
\theta_{\mathrm{a} \text { aTemp }}:=\frac{\gamma \cdot \Delta \mathrm{T}}{\mathrm{t} \cdot \mathrm{a}} \cdot\left(\mathrm{a}^{2}-\mathrm{r}_{\mathrm{o}}^{2}\right) & \theta_{\mathrm{aTemp}}=-0.001 \mathrm{deg} \\
\mathrm{Q}_{\mathrm{aTemp}} \equiv 0 \cdot \frac{\mathrm{bf}}{\mathrm{in}} & \mathrm{Q}_{\mathrm{aTemp}}=0.000 \frac{\mathrm{lbf}}{\mathrm{in}}
\end{array}
$$

At the center of the plate (c):
$\mathrm{M}_{\mathrm{CTemp}}:=\frac{\gamma \cdot \mathrm{D} \cdot(1+v) \cdot \Delta \mathrm{T}}{\mathrm{t}} \cdot\left(1-\mathrm{L}_{8}\right) \quad \mathrm{M}_{\mathrm{CTemp}}=-5.789 \frac{\mathrm{lbf} \cdot \mathrm{in}}{\mathrm{in}}$
$y_{\text {CTemp }}:=\frac{-\gamma \cdot \Delta T}{2 \cdot t} \cdot\left[a^{2}-r_{o}{ }^{2}-r_{0}{ }^{2} \cdot(1+v) \cdot \ln \left(\frac{a}{r_{0}}\right)\right] \quad y_{\text {CTemp }}=0.00007$ in

General formulas and graphs

 for deflection, slope, moment, shear and stress as a function of rDefine r, the range of the radius:
$r \equiv \frac{a}{100}, \frac{a}{50} . . a$

Victor Guarino	Calculation of Stresses and Deflections in	Page: 21 of 44
Argonne National Laboratory	C5 Due to Thermal and Pressure Loading	Date:12/18/2006

Deflection $\quad y T e m p(r):=y_{c T e m p}+\frac{M_{c T e m p} \cdot r^{2}}{2 \cdot D \cdot(1+v)}+L T_{y}(r)$

Deflections at the center and outer radius:
$y \operatorname{Temp}(0 \cdot$ in $)=0.00007$ in $\quad y \operatorname{Temp}(a)=0.00000$ in

Maximum deflection (magnitude):
$\begin{array}{r}\text { Y } \\ \text { (r) } \cdot \frac{100}{\mathrm{~mm}} \\ :=\mathrm{yTemp}(\mathrm{r}) \quad A\end{array} \mathrm{~A}:=\max (\mathrm{Y}) \quad \mathrm{B}:=\min (\mathrm{Y})$
$\mathrm{y}_{\text {max }}:=(\mathrm{A}>-\mathrm{B}) \cdot \mathrm{A}+(\mathrm{A} \leq-\mathrm{B}) \cdot \mathrm{B} \quad \mathrm{y}_{\max }=7.346 \times 10^{-5}$ in

Large deflection
 condition check

Check to verify that the absolute value of the maximum deflection is less than one-half the plate thickness (an assumption stated in the Notation file which must hold true):
check $:=\operatorname{if}\left(\left|\mathrm{y}_{\max }\right|>\frac{\mathrm{t}}{2}, 0,1\right) \quad$ check $=1.000$
If $\left|y_{\max }\right|$ is greater than $\mathrm{t} / 2$ (i.e., check $=0$), the equations in this table are subject to large errors. For large deflections, use the equations provided in Table 24a to obtain stress and deflection.

Slope

$$
\theta \operatorname{Temp}(\mathrm{r}):=\frac{\mathrm{M}_{\mathrm{cTemp}} \cdot \mathrm{r}}{\mathrm{D} \cdot(1+\mathrm{v})}+\mathrm{LT}_{\theta}(\mathrm{r})
$$

Victor Guarino	Calculation of Stresses and Deflections in	Page: 22 of 44
Argonne National Laboratory	C5 Due to Thermal and Pressure Loading	Date:12/18/2006

Slope at center and outer radius:
$\theta \operatorname{Temp}(0 \cdot \mathrm{in})=0.000 \mathrm{deg}$
$\theta \operatorname{Temp}(\mathrm{a})=-7.890 \times 10^{-4} \mathrm{deg}$

Maximum slope (magnitude):

$$
\begin{array}{ll}
\underset{\sim}{S_{(r)}^{S}} \cdot \frac{100}{\mathrm{Sm}} & :=\theta \operatorname{Temp}(\mathrm{r})
\end{array} \underset{\mathrm{m}}{\mathrm{~A}}:=\max (\mathrm{S}) \quad \underset{\mathrm{M}}{\mathrm{~B}}:=\min (\mathrm{S})
$$

Moment; radial and tangential

$$
\mathrm{M}_{\mathrm{tTemp}}(\mathrm{r}):=\frac{\theta \operatorname{Temp}(\mathrm{r}) \cdot \mathrm{D} \cdot\left(1-v^{2}\right)}{\mathrm{r}}+v \cdot \mathrm{M}_{\mathrm{rTemp}}{ }^{(\mathrm{r})}
$$

Victor Guarino	Calculation of Stresses and Deflections in	Page: 23 of 44
Argonne National Laboratory	C5 Due to Thermal and Pressure Loading	Date:12/18/2006

Radial and tangential moment near center and outer radii:
$\mathrm{M}_{\text {rTemp }}(0.00001 \cdot \mathrm{in})=-5.789 \frac{\mathrm{lbf} \cdot \mathrm{in}}{\text { in }} \quad \mathrm{M}_{\mathrm{rTemp}}(\mathrm{a})=0.000 \frac{\mathrm{lbf} \cdot \mathrm{in}}{\text { in }}$
$\mathrm{M}_{\mathrm{tTemp}}(0.0001 \cdot \mathrm{in})=-11.520 \frac{\mathrm{lbf} \cdot \mathrm{in}}{\text { in }} \quad \mathrm{M}_{\mathrm{tTemp}}(\mathrm{a})=-11.577 \frac{\mathrm{lbf} \cdot \mathrm{in}}{\text { in }}$

Maximum radial and tangential moment (magnitude):
$\mathrm{Mr}_{\text {(r) } \cdot \frac{100}{\mathrm{~mm}}}:=\mathrm{M}_{\mathrm{rTemp}}(\mathrm{r}) \mathrm{Ar}:=\max (\mathrm{Mr}) \quad \mathrm{B}:=\min (\mathrm{Mr})$
Mt $\quad 100:=\mathrm{M}_{\mathrm{tTemp}}{ }^{(\mathrm{r})} \quad \mathrm{At}:=\max (\mathrm{Mt}) \quad \mathrm{Bt}:=\min (\mathrm{Mt})$
(r) $\cdot \frac{100}{\mathrm{~mm}}:=\mathrm{M}_{\mathrm{tTemp}}{ }^{(\mathrm{r})} \quad \mathrm{At}:=\max (\mathrm{Mt}) \quad \mathrm{Bt}:=\min (\mathrm{Mt})$
$\mathrm{Mr}_{\text {max }}:=(\mathrm{Ar}>-\mathrm{B}) \cdot \mathrm{Ar}+(\mathrm{Ar} \leq-\mathrm{B}) \cdot \mathrm{B} \quad \mathrm{Mr}_{\max }=-0.000 \frac{\mathrm{lbf} \cdot \mathrm{in}}{\mathrm{in}}$
$\mathrm{Mt}_{\max }:=(\mathrm{At}>-\mathrm{Bt}) \cdot \mathrm{At}+(\mathrm{At} \leq-\mathrm{Bt}) \cdot \mathrm{Bt} \quad \mathrm{Mt}_{\max }=-11.577 \frac{\mathrm{lbf} \cdot \mathrm{in}}{\mathrm{in}}$

Shear $\quad \mathrm{QTemp}(\mathrm{r}):=\mathrm{LT}_{\mathrm{Q}}{ }^{(\mathrm{r})}$

Victor Guarino	Calculation of Stresses and Deflections in	Page: 24 of 44
Argonne National Laboratory	C5 Due to Thermal and Pressure Loading	Date:12/18/2006

Shear at center and outer radius:

QTemp $(0.01 \cdot \mathrm{in})=0.000 \frac{\mathrm{lbf}}{\text { in }} \quad$ QTemp $(a)=0.000 \frac{\mathrm{lbf}}{\text { in }}$

Maximum shear (magnitude):

$$
\mathrm{N}_{(\mathrm{r}) \cdot \frac{100}{\mathrm{~mm}}}:=\mathrm{QTemp}(\mathrm{r}) \quad \mathrm{A}:=\max (\mathrm{V}) \quad \quad \mathrm{B}:=\min (\mathrm{V})
$$

$\mathrm{Q}_{\max }:=(\mathrm{A}>-\mathrm{B}) \cdot \mathrm{A}+(\mathrm{A} \leq-\mathrm{B}) \cdot \mathrm{B} \quad \mathrm{Q}_{\max }=0.000 \frac{\mathrm{lbf}}{\text { in }}$

Bending stresses; radial and tangential

$$
\sigma_{\mathrm{rTemp}}(\mathrm{r}):=\frac{6 \cdot \mathrm{M}_{\mathrm{rTemp}}(\mathrm{r})}{\mathrm{t}^{2}} \quad \sigma_{\mathrm{tTemp}}(\mathrm{r}):=\frac{6 \cdot \mathrm{M}_{\mathrm{tTemp}}(\mathrm{r})}{\mathrm{t}^{2}}
$$

Victor Guarino	Calculation of Stresses and Deflections in	
Argonne National Laboratory	C5 Due to Thermal and Pressure Loading	Page: 25 of 44

Radial and tangential stress at center and outer radius:
$\sigma_{\text {rTemp }}(0.0001 \cdot \mathrm{in})=-0.074 \mathrm{psi}$
$\sigma_{\text {rTemp }}(\mathrm{a})=0.000 \mathrm{psi}$
$\sigma_{\text {tTemp }}(0.0001 \cdot \mathrm{in})=-14.688 \mathrm{psi}$
$\sigma_{\text {tTemp }}{ }^{(\mathrm{a})}=-14.761 \mathrm{psi}$

Maximum radial and tangential stresses:

$$
\begin{aligned}
& { }_{\mathrm{r} \cdot \frac{100}{\mathrm{~mm}}}:=\sigma_{\mathrm{tTemp}}{ }^{(\mathrm{r})} \underset{\mathrm{At}}{ }:=\max (\sigma \mathrm{t}) \quad \quad \mathrm{Bt}:=\min (\sigma \mathrm{t}) \\
& \sigma r_{\text {max }}:=(\mathrm{Ar}>-\mathrm{Br}) \cdot \mathrm{Ar}+(\mathrm{Ar} \leq-\mathrm{Br}) \cdot \mathrm{Br} \quad \sigma \mathrm{r}_{\text {max }}=-6.483 \times 10^{-8} \mathrm{psi} \\
& \sigma t_{\max }:=(\mathrm{At}>-\mathrm{Bt}) \cdot \mathrm{At}+(\mathrm{At} \leq-\mathrm{Bt}) \cdot \mathrm{Bt} \quad \sigma \mathrm{t}_{\max }=-14.761 \mathrm{psi}
\end{aligned}
$$

Review the maximum values for deflection, slope, moment, stress and shear

$$
\begin{array}{ll}
\mathrm{y}_{\max }=7.346 \times 10^{-5} \text { in } & \theta_{\max }=-0.001 \mathrm{deg} \\
\mathrm{Mr}_{\max }=-0.000 \frac{\mathrm{lbf} \cdot \mathrm{in}}{\mathrm{in}} & \mathrm{Mt}_{\max }=-11.577 \frac{\mathrm{lbf} \cdot \mathrm{in}}{\mathrm{in}} \\
\sigma r_{\max }=-0.000 \mathrm{psi} & \sigma \mathrm{t}_{\max }=-14.761 \mathrm{psi} \\
\mathrm{Q}_{\max }=0.000 \frac{\mathrm{lbf}}{\text { in }} &
\end{array}
$$

$$
\begin{aligned}
& \mathrm{L}_{8} \equiv \frac{1}{2} \cdot\left[1+v+(1-v) \cdot\left(\frac{\mathrm{r}_{0}}{\mathrm{a}}\right)^{2}\right] \\
& \mathrm{G}_{2}(\mathrm{r}) \equiv \mathrm{if}\left[\mathrm{r}>\mathrm{r}_{\mathrm{o}}, \frac{1}{4} \cdot\left[1-\left(\frac{\mathrm{r}_{0}}{\mathrm{r}}\right)^{2} \cdot\left(1+2 \cdot \ln \left(\frac{\mathrm{r}}{\left.\mathrm{r}_{\mathrm{o}}\right)}\right)\right)\right], 0\right] \\
& \left.G_{5}(r) \equiv \text { if }\left[r>r_{0}, \frac{1}{2}\left[1-\left(\frac{r_{0}}{r}\right)^{2}\right)^{2}\right], 0\right] \\
& G_{8}(r) \equiv \text { if }\left[r>r_{0}, \frac{1}{2} \cdot\left[1+v+(1-v) \cdot\left(\frac{r_{0}}{r}\right)^{2}\right], 0\right] \\
& \mathrm{LT}_{\mathrm{y}}(\mathrm{r}) \equiv \frac{\gamma \cdot(1+\mathrm{v}) \cdot \Delta \mathrm{T}}{\mathrm{t}} \cdot \mathrm{r}^{2} \cdot \mathrm{G}_{2}(\mathrm{r}) \\
& \mathrm{LT}_{\theta}(\mathrm{r}) \equiv \frac{\gamma \cdot(1+v) \cdot \Delta \mathrm{T}}{\mathrm{t}} \cdot \mathrm{r} \cdot \mathrm{G}_{5}(\mathrm{r}) \\
& \mathrm{LT}_{\mathrm{M}}(\mathrm{r}) \equiv \frac{\gamma \cdot \mathrm{D} \cdot(1+\mathrm{v}) \cdot \Delta \mathrm{T}}{\mathrm{t}} \cdot\left[\mathrm{G}_{8}(\mathrm{r})-\left(\mathrm{r}>\mathrm{r}_{\mathrm{o}}\right)\right] \quad \mathrm{LT}_{\mathrm{Q}}(\mathrm{r}) \equiv 0 \cdot \frac{\mathrm{lbf}}{\text { in }}
\end{aligned}
$$

Victor Guarino	Calculation of Stresses and Deflections in	Page: 27 of 44
Argonne National Laboratory	C5 Due to Thermal and Pressure Loading	Date:12/18/2006

3.0 Calculation of C5 Stresses and Deflections Due to 1atm Pressure

Solid circular plate

Uniformly distributed pressure from r_{o} to a

Enter dimensions,
 properties and loading

Plate dimensions:
thickness:
radius:

Applied uniform pressure:
$\mathrm{q} \equiv 14 \cdot \mathrm{psi}$

Modulus of elasticity:
$\mathrm{E} \equiv 9.999 \cdot 10^{6} \cdot \frac{\mathrm{lbf}}{\mathrm{in}^{2}}$
Poisson's ratio:
$v \equiv 0.16$

Radial location of applied load:
$r_{o} \equiv 0.00001 \cdot$ in

Shear modulus:
$G \equiv \frac{E}{2 \cdot(1+v)}$

D is a plate constant used in determining boundary values; it is also used in the general equations for deflection, slope,
moment and shear. $\mathrm{K}_{\text {sro }}$ is the tangential shear constant used
in determining the deflection due to shear.
$D \equiv \frac{E \cdot t^{3}}{12 \cdot\left(1-v^{2}\right)}$
$\mathrm{D}=8729546.722 \mathrm{lbf} \cdot \mathrm{in}$
$\mathrm{K}_{\text {sro }} \equiv$ if $\left[\mathrm{r}_{\mathrm{o}}>0,-0.30 \cdot\left[1-\left(\frac{\mathrm{r}_{\mathrm{o}}}{\mathrm{a}}\right)^{2} \cdot\left(1+2 \cdot \ln \left(\frac{\mathrm{a}}{\mathrm{r}_{\mathrm{o}}}\right)\right)\right],-0.30\right] \quad \mathrm{K}_{\text {sro }}=-0.300$

Boundary values

The G_{n} and L_{n} functions used in the equations below are defined at the end of this document.
M_{r} is radial moment, Q is shear, y is deflection and θ is slope.

Due to bending:

At the edge of the plate (a):
$\mathrm{M}_{\mathrm{raP}}:=0 \cdot \frac{\mathrm{lbf} \cdot \mathrm{in}}{\text { in }}$
$\mathrm{M}_{\mathrm{raP}}=0.000 \frac{\mathrm{lbf} \cdot \mathrm{in}}{\text { in }}$
$\mathrm{Q}_{\mathrm{aP}}:=\frac{-\mathrm{q}}{2 \cdot \mathrm{a}} \cdot\left(\mathrm{a}^{2}-\mathrm{r}_{\mathrm{o}}{ }^{2}\right)$
$\mathrm{Q}_{\mathrm{aP}}=-74.685 \frac{\mathrm{lbf}}{\text { in }}$
$\mathrm{y}_{\mathrm{a}}:=0 \cdot \mathrm{in}$
$\mathrm{y}_{\mathrm{a}}=0.000$ in
$\theta_{a P}:=\frac{q}{8 \cdot D \cdot a \cdot(1+v)} \cdot\left(a^{2}-r_{o}{ }^{2}\right)^{2}$
$\theta_{\mathrm{aP}}=0.012 \mathrm{deg}$

At the center of the plate (c):
$\mathrm{M}_{\mathrm{CP}}:=\mathrm{q} \cdot \mathrm{a}^{2} \cdot \mathrm{~L}_{17}$
$\mathrm{M}_{\mathrm{CP}}=314.750 \frac{\mathrm{lbf} \cdot \mathrm{in}}{\text { in }}$
$y_{C P}:=\frac{-q \cdot a^{4}}{2 \cdot D} \cdot\left(\frac{L_{17}}{1+v}-2 \cdot L_{11}\right)$
$y_{C P}=-0.001$ in

Due to tangential shear stresses:
$y_{\text {SroP }}:=\frac{K_{\text {sro }} \cdot q \cdot a^{2}}{t \cdot G}$

$$
\mathrm{y}_{\text {SroP }}=-5.1137 \times 10^{-5} \text { in }
$$

Victor Guarino	Calculation of Stresses and Deflections in	Page: 29 of 44
Argonne National Laboratory	C5 Due to Thermal and Pressure Loading	Date:12/18/2006

General formulas and graphs for deflection, slope, moment, shear and stress as a function of r

Define r, the range of the radius:
$\mathrm{r} \equiv \frac{\mathrm{a}}{100}, \frac{\mathrm{a}}{50} . . \mathrm{a}$

Deflection $\quad y P(r):=y_{c P}+\frac{M_{c P} \cdot r^{2}}{2 \cdot D \cdot(1+v)}+$ LT $_{y P}(r)$

Deflections at the center and outer radius:
$\mathrm{yP}(0 \cdot \mathrm{in})=-0.001 \mathrm{in}$
$\mathrm{yP}(\mathrm{a})=0.000$ in
Maximum deflection (magnitude):

Y
$\underset{\text { (r) } \cdot \frac{100}{\mathrm{a}}:=\mathrm{yP}(\mathrm{r}) \quad \underset{\mathrm{m}}{\mathrm{A}}:=\max (\mathrm{Y}) \quad \quad \mathrm{B}:=\min (\mathrm{Y}) .}{ }$
$y^{2}:=(\mathrm{A}>-\mathrm{B}) \cdot \mathrm{A}+(\mathrm{A} \leq-\mathrm{B}) \cdot \mathrm{B} \quad \mathrm{y}_{\max }=-0.0014$ in

Large deflection
 condition check

Check to verify that the absolute value of the maximum deflection is less than one-half the plate thickness (an assumption stated in the

Notation file which must hold true). If $\left|y_{\max }\right|$ is greater than $\mathrm{t} / 2$ (large deflection), the equations in this table used for plates with small deflections are subject to large errors.
check: $:=\operatorname{if}\left(\left|y_{\max }\right|>\frac{\mathrm{t}}{2}, 0,1\right) \quad$ check $=1.000$
If $\left|y_{\max }\right|$ is greater than $t / 2$ (i.e., check $=0$), only max y and σ can be found.

Slope $\quad \theta \mathrm{P}(\mathrm{r}):=\frac{\mathrm{M}_{\mathrm{cP}} \cdot \mathrm{r}}{\mathrm{D} \cdot(1+v)}+\mathrm{LT}_{\theta \mathrm{P}}(\mathrm{r})$

Slope at center and outer radius:
$\theta \mathrm{P}(0 \cdot \mathrm{in})=0.000 \mathrm{deg} \quad \theta \mathrm{P}(\mathrm{a})=0.012 \mathrm{deg}$

Maximum slope (magnitude):
S (r) $\cdot \frac{100}{}:=\theta P(r) \quad \underset{\sim N}{A}:=\max (S) \quad$ B $:=\min (S)$
$\theta_{\operatorname{maxP}}:=(\mathrm{A}>-\mathrm{B}) \cdot \mathrm{A}+(\mathrm{A} \leq-\mathrm{B}) \cdot \mathrm{B} \quad \theta_{\operatorname{maxP}}=0.012 \mathrm{deg}$

Moment; radial and tangential

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{rP}}(\mathrm{r}):=\mathrm{M}_{\mathrm{CP}}+\mathrm{LT}_{\mathrm{MP}^{(r)}}(\mathrm{r} \\
& \mathrm{M}_{\mathrm{tP}}(\mathrm{r}):=\frac{\theta \mathrm{P}(\mathrm{r}) \cdot \mathrm{D} \cdot\left(1-v^{2}\right)}{\mathrm{r}}+v \cdot \mathrm{M}_{\mathrm{rP}}(\mathrm{r})
\end{aligned}
$$

Victor Guarino	Calculation of Stresses and Deflections in	Page: 31 of 44
Argonne National Laboratory	C5 Due to Thermal and Pressure Loading	Date:12/18/2006

Radial and tangential moment at center and outer radius:

$$
\begin{array}{ll}
\mathrm{M}_{\mathrm{rP}}(0 \cdot \mathrm{in})=314.750 \frac{\mathrm{lbf} \cdot \mathrm{in}}{\mathrm{in}} & \mathrm{M}_{\mathrm{rP}}(\mathrm{a})=0.000 \frac{\mathrm{lbf} \cdot \mathrm{in}}{\mathrm{in}} \\
\mathrm{M}_{\mathrm{tP}}(0.01 \cdot \mathrm{in})=314.750 \frac{\mathrm{lbf} \cdot \mathrm{in}}{\mathrm{in}} & \mathrm{M}_{\mathrm{tP}}(\mathrm{a})=167.336 \frac{\mathrm{lbf} \cdot \mathrm{in}}{\mathrm{in}}
\end{array}
$$

Maximum radial and tangential moment (magnitude):
Mr
(r) $\cdot \frac{100}{\mathrm{a}}$

Mt $100:=M_{t P}(\mathrm{r}) \quad$ At $:=\max (\mathrm{Mt}) \quad \mathrm{Bt}:=\min (\mathrm{Mt})$
(r) $\cdot \frac{100}{a}$
$\mathrm{Mr}_{\text {maxa }}:=(\mathrm{Ar}>-\mathrm{B}) \cdot \mathrm{Ar}+(\mathrm{Ar} \leq-\mathrm{B}) \cdot \mathrm{B} \quad \mathrm{Mr}_{\max }=314.719 \frac{\mathrm{lbf} \cdot \mathrm{in}}{\text { in }}$
$\mathrm{Mt}_{\max }:=(\mathrm{At}>-\mathrm{Bt}) \cdot \mathrm{At}+(\mathrm{At} \leq-\mathrm{Bt}) \cdot \mathrm{Bt} \quad \mathrm{Mt}_{\max }=314.74 \frac{\mathrm{lbf} \cdot \mathrm{in}}{\text { in }}$

Shear
$\mathrm{Qp}(\mathrm{r}):=\mathrm{LT}_{\mathrm{QP}}{ }^{(\mathrm{r})}$

Victor Guarino	Calculation of Stresses and Deflections in	Page: 32 of 44
Argonne National Laboratory	C5 Due to Thermal and Pressure Loading	Date:12/18/2006

Shear at center and outer radius:
$\operatorname{Qp}(0.01 \cdot \mathrm{in})=-0.070 \frac{\mathrm{lbf}}{\text { in }} \quad \mathrm{Qp}(\mathrm{a})=-74.685 \frac{\mathrm{lbf}}{\text { in }}$

Maximum shear (magnitude):

V (r) $\frac{100}{\mathrm{a}}:=\operatorname{Qp}(\mathrm{r}) \quad \quad \mathrm{A}:=\max (\mathrm{V}) \quad \quad \mathrm{B}:=\min (\mathrm{V})$
$\mathrm{Qmax}_{\text {max }}:=(\mathrm{A}>-\mathrm{B}) \cdot \mathrm{A}+(\mathrm{A} \leq-\mathrm{B}) \cdot \mathrm{B}$
$\mathrm{Q}_{\max }=-74.685 \frac{\mathrm{lbf}}{\text { in }}$

Bending stresses; radial and tangential

$$
\begin{aligned}
& \sigma_{\mathrm{rP}}(\mathrm{r}):=\frac{6 \cdot \mathrm{M}_{\mathrm{rP}}(\mathrm{r})}{\mathrm{t}^{2}} \\
& \sigma_{\mathrm{tP}}(\mathrm{r}):=\frac{6 \cdot \mathrm{M}_{\mathrm{tP}}(\mathrm{r})}{\mathrm{t}^{2}}
\end{aligned}
$$

Victor Guarino	Calculation of Stresses and Deflections in	Page: 33 of 44
Argonne National Laboratory	C5 Due to Thermal and Pressure Loading	Date:12/18/2006

Radial and tangential stress at center and outer radius:

$\sigma_{\mathrm{rP}}(0.01 \cdot \mathrm{in})=401.311 \mathrm{psi}$	$\sigma_{\mathrm{rP}}(\mathrm{a})=0.000 \mathrm{psi}$
$\sigma_{\mathrm{tP}}(0.01 \cdot \mathrm{in})=401.311 \mathrm{psi}$	$\sigma_{\mathrm{tP}}{ }^{(\mathrm{a})=213.356 \mathrm{psi}}$

Maximum radial and tangential stresses:
$\operatorname{\sigma r}_{\mathrm{r} \cdot \frac{100}{\mathrm{a}}}:=\sigma_{\mathrm{rP}}(\mathrm{r}) \quad \mathrm{Ar}:=\max (\sigma \mathrm{r}) \quad \quad \mathrm{Br}:=\min (\sigma \mathrm{r})$
${ }_{r \cdot \frac{100}{\mathrm{a}}}:=\sigma_{\mathrm{tP}}(\mathrm{r}) \quad \quad \mathrm{At}:=\max (\sigma t) \quad \quad \mathrm{Bt}:=\min (\sigma t)$
$\underset{\text { ๙r maxax }}{\text { м }}:=(\mathrm{Ar}>-\mathrm{Br}) \cdot \mathrm{Ar}+(\mathrm{Ar} \leq-\mathrm{Br}) \cdot \mathrm{Br} \quad \sigma r_{\text {max }}=401.272 \mathrm{psi}$
$\underset{\text { ๙t max }}{\text { max }}:=(\mathrm{At}>-\mathrm{Bt}) \cdot \mathrm{At}+(\mathrm{At} \leq-\mathrm{Bt}) \cdot \mathrm{Bt} \quad \sigma_{\max }=401.293 \mathrm{psi}$

Review the maximum values for deflection, slope, moment, stress and shear
$y_{\text {max }}=-0.001$ in
$\theta_{\max }=-0.001 \mathrm{deg}$

$$
\begin{array}{ll}
\mathrm{Mr}_{\max }=314.719 \frac{\mathrm{lbf} \cdot \mathrm{in}}{\mathrm{in}} & \mathrm{Mt}_{\max }=314.736 \frac{\mathrm{lbf} \cdot \mathrm{in}}{\mathrm{in}} \\
\sigma_{\max }=401.272 \mathrm{psi} & \sigma \mathrm{t}_{\max }=401.293 \mathrm{psi} \\
\mathrm{Q}_{\max }=-74.685 \frac{\mathrm{lbf}}{\mathrm{in}} &
\end{array}
$$

Total deflection of plate (bending induced plus shear induced):

$$
\mathrm{y}_{\text {ro.total }}:=\mathrm{yP}(0 \cdot \mathrm{in})+\mathrm{y}_{\text {sroP }} \quad \mathrm{y}_{\text {ro.total }}=-0.0015 \text { in }
$$

The remainder of the document displays the general plate functions and constants used in the equations above.

$$
\begin{aligned}
& \mathrm{L}_{11} \equiv \operatorname{if}\left[\mathrm{r}_{\mathrm{o}}>0, \frac{1}{64} \cdot\left[1+4 \cdot\left(\frac{\mathrm{r}_{\mathrm{o}}}{\mathrm{a}}\right)^{2}-5 \cdot\left(\frac{\mathrm{r}_{0}}{\mathrm{a}}\right)^{4} \cdots\right], \frac{1}{64}\right] \\
& \left.\left[+\left[4 \cdot\left(\frac{r_{0}}{a}\right)^{2} \cdot\left[2+\left(\frac{r_{0}}{a}\right)^{2}\right] \cdot \ln \left(\frac{a}{r_{0}}\right)\right]\right]\right] \\
& \mathrm{L}_{17} \equiv \operatorname{if}\left[\mathrm{r}_{0}>0, \frac{1}{4} \cdot\left[1-\left(\frac{1-v}{4}\right) \cdot\left[1-\left(\frac{\mathrm{r}_{0}}{\mathrm{a}}\right)^{4}\right]-\left(\frac{\mathrm{r}_{0}}{\mathrm{a}}\right)^{2} \cdot\left[1+(1+v) \cdot \ln \left(\frac{\mathrm{a}}{\mathrm{r}_{0}}\right)\right]\right], \frac{1}{4} \cdot\left[1-\left(\frac{1-v}{4}\right)\right]\right] \\
& G_{11}(r) \equiv i f\left[\left(r>r_{0}\right) \cdot\left(r_{0}>0\right), \frac{1}{64} \cdot\left[1+4 \cdot\left(\frac{r_{0}}{r}\right)^{2}-5 \cdot\left(\frac{r_{0}}{r}\right)^{4}+4 \cdot\left(\frac{r_{0}}{r}\right)^{2} \cdot\left[2+\left(\frac{r_{0}}{r}\right)^{2}\right] \cdot \ln \left(\frac{r_{0}}{r}\right)\right], 0\right] \\
& G_{14}(r) \equiv \text { if }\left[\left(r>r_{0}\right) \cdot\left(r_{0}>0\right), \frac{1}{16} \cdot\left[1-\left(\frac{r_{0}}{r}\right)^{4}-4 \cdot\left(\frac{r_{0}}{r}\right)^{2} \cdot \ln \left(\frac{r_{0}}{r}\right)\right], 0\right] \\
& \mathrm{G}_{17}(\mathrm{r}) \equiv \mathrm{if}\left[\left[\left(\mathrm{r}>\mathrm{r}_{\mathrm{o}}\right) \cdot(\mathrm{r}>0)\right], \frac{1}{4} \cdot\left[1-\left(\frac{1-v}{4}\right) \cdot\left[1-\left(\frac{\mathrm{r}_{0}}{\mathrm{r}}\right)^{4}\right]-\left(\frac{\mathrm{r}_{0}}{\mathrm{r}}\right)^{2} \cdot\left[1+(1+v) \cdot \ln \left(\frac{\mathrm{r}}{\left.\mathrm{r}_{\mathrm{o}}\right)}\right)\right]\right], 0\right] \\
& \mathrm{LT}_{\mathrm{yP}}(\mathrm{r}) \equiv \frac{-\mathrm{q} \cdot \mathrm{r}^{4}}{\mathrm{D}} \cdot \mathrm{G}_{11}(\mathrm{r}) \quad \quad \mathrm{LT}_{\mathrm{MP}}(\mathrm{r}) \equiv-\mathrm{q} \cdot \mathrm{r}^{2} \cdot \mathrm{G}_{17}(\mathrm{r}) \\
& \mathrm{LT}_{\theta \mathrm{P}}(\mathrm{r}) \equiv \frac{-\mathrm{q} \cdot \mathrm{r}^{3}}{\mathrm{D}} \cdot \mathrm{G}_{14}(\mathrm{r}) \quad \quad \mathrm{LT}_{\mathrm{QP}}(\mathrm{r}) \equiv \mathrm{if}\left[\mathrm{r}>\mathrm{r}_{\mathrm{o}}, \frac{-\mathrm{q}}{2 \cdot \mathrm{r}} \cdot\left(\mathrm{r}^{2}-\mathrm{r}_{\mathrm{o}}{ }^{2}\right), 0\right]
\end{aligned}
$$

4.0 Calculation of C5 Combined Stresses and Deflections Due to Pressure and Temperature Difference

$$
\begin{aligned}
& \sigma_{\mathrm{r}}(\mathrm{r}):=\sigma_{\mathrm{rP}}(\mathrm{r})+\sigma_{\mathrm{rTemp}}{ }^{(\mathrm{r})} \\
& \sigma_{\mathrm{t}}(\mathrm{r}):=\sigma_{\mathrm{tP}}(\mathrm{r})+\sigma_{\mathrm{tTemp}}(\mathrm{r})
\end{aligned}
$$

Radial and tangential stress at center and outer radius:

$$
\begin{array}{ll}
\sigma_{\mathrm{r}}(0.01 \cdot \mathrm{in})=401.311 \mathrm{psi} & \sigma_{\mathrm{rP}}(\mathrm{a})=0.000 \mathrm{psi} \\
\sigma_{\mathrm{t}}(0.01 \cdot \mathrm{in})=386.550 \mathrm{psi} & \sigma_{\mathrm{tP}}(\mathrm{a})=213.356 \mathrm{psi}
\end{array}
$$

Maximum radial and tangential stresses:

$$
\begin{array}{lll}
\sigma_{\mathrm{r}}{ }_{\mathrm{r} \cdot \frac{100}{\mathrm{a}}:=\sigma_{\mathrm{r}}(\mathrm{r})} & \mathrm{Ar}:=\max (\sigma \mathrm{r}) & \mathrm{Br}:=\min (\sigma \mathrm{r}) \\
\sigma_{\mathrm{rt}} \frac{100}{\mathrm{a}}:=\sigma_{\mathrm{t}}(\mathrm{r}) & \text { At }:=\max (\sigma \mathrm{t}) & \mathrm{Bt}_{\mathrm{a}}:=\min (\sigma \mathrm{t})
\end{array}
$$

$$
\sigma \mathrm{m}_{\text {maxax }}:=(\mathrm{Ar}>-\mathrm{Br}) \cdot \mathrm{Ar}+(\mathrm{Ar} \leq-\mathrm{Br}) \cdot \mathrm{Br} \quad \sigma r_{\max }=401.272 \mathrm{psi}
$$

$$
\underset{\sim}{\sim} t_{\text {maxax }}:=(\mathrm{At}>-\mathrm{Bt}) \cdot \mathrm{At}+(\mathrm{At} \leq-\mathrm{Bt}) \cdot \mathrm{Bt} \quad \sigma_{\max }=386.531 \mathrm{psi}
$$

Deflections
$\mathrm{y}(\mathrm{r}):=\mathrm{yP}(\mathrm{r})+\mathrm{yTemp}(\mathrm{r})$

Deflections at the center and outer radius:
$y(0 \cdot i n)=-0.00137 \mathrm{in}$
$y(a)=0.00000$ in
Maximum deflection (magnitude):
Y $100:=y(r) \quad A:=\max (Y) \quad$ B $:=\min (Y)$
(r) $\cdot \frac{100}{a}$

2maxi: $=(\mathrm{A}>-\mathrm{B}) \cdot \mathrm{A}+(\mathrm{A} \leq-\mathrm{B}) \cdot \mathrm{B} \quad \mathrm{y}_{\text {max }}=-0.00137$ in

5.0Comparison with FEA Results

An FEA model was created of the C5 lens. Radiation was applied to the T4 surface and Radiation and Convection was applied to the T3 Surface. Radiation heat transfer was also applied to the outer radius to the support structure. The convection coefficient calculated above was used in the model as well as the average temperature of the N2 and T2 surface of C4. The model was restrained by 2 o-rings at the outer radius on the T4 surface and 14 psi was applied to the T3 surface.

The Figure below shows the stress distribution for the C5 Lens when simply supported at its edges and a 14psi pressure applied. The vonMises stresses are plotted which is a combined stress of the radial, tangential, and bearing stresses on the lens. The analysis above does not take into account the bearing stresses on the lens in the region of the support and only shows the stresses in the radial and tangential direcition separately. However, it can be seen that the scale of the stresses is similar between the FEA model and the analytical solution. The next figure shows the deflections of the C5 lens. In the analytical solution of thickness of 55.1 mm was used which is the thickness of the lens at its centerline. The calculated axial deflection of 0.0014 " matches very well with the FEA deflection of 0.00105 ".

Victor Guarino	Calculation of Stresses and Deflections in	Page: 38 of 44
Argonne National Laboratory	C5 Due to Thermal and Pressure Loading	Date:12/18/2006

Figures 3 and 4 below show the temperature distribution on the T3 and T4 Surfaces respectively on the C5 lens. There is good agreement between the finite difference model described in Section 1.0 above and the FEA model.

It should be noted that the temperature gradients within C5 are heavily dependent upon a many different factors such as:
-radiation between C4 and C5
-the N2 flow rate
-the N2 input temperature
-the thermal conduction at the outer radius. A very simple model of the thermal conduction at the outer radius of C5 was used in this analysis in which there was only contact between C5 and 2 o-rings that were each $3 / 16$ " in diameter.

The stresses and deflections however are dominated by the pressure and not the temperature distributions within the lens. The calculations and FEA model it is felt accurately model the stresses and deflections of the lens. If more accurate temperature distributions are needed then a more detailed FEA model will have to be created that more accurately models the actual contact at the outer radius and models the entire assembly in a manner done by the finite difference model. Also, further thought will have to go into what a practical N2 flow rate is (3.0cfm was used in this calculation) and whether or not the N 2 inlet temperature will be heated. In this analysis the temperature of the air, surrounding steel structure, and N 2 inlet temperature was all set to 25 C . Even slight changes in the N2 inlet temperature and flow rate could result in a very low N2 outlet temperature that could increase the risk of condensation on the lenses.

Victor Guarino		
Argonne National Laboratory	Calculation of Stresses and Deflections in C5 Due to Thermal and Pressure Loading	Page: 39 of 44 Date:12/18/2006

2602-v203-distribflatonC36-Pressure :: Static Nodal Stress
Units: psi Deformation Scale 1:0

Figure 1 - vonMises Stress Distribution in C5

Victor Guarino	Calculation of Stresses and Deflections in		
Argonne National Laboratory	C5 Due to Thermal and Pressure Loading		Page: 40 of 44
---:			
Date:12/18/2006			

2602-v203-distribflatonC36-Pressure :: Static Displacement
Units: in Deformation Scale 1:0
Units : in Deformation Scale 1:0

Figure 2 - Axial Deformation of C5

Figure 3 - Temperature Distribution on T3 Surface of C5

Victor Guarino	Calculation of Stresses and Deflections in	Page: 41 of 44
Argonne National Laboratory	C5 Due to Thermal and Pressure Loading	Date:12/18/2006

Figure 4 - Temperature Distribution on T4 Surface of C5 Lens

A comparisionn was made of the temperature distribution for various atmospheric temperatures. In all of these comparisions the atmospheric, support steel, and inlet N 2 temperatures ($\mathrm{Ta}, \mathrm{Ts}, \mathrm{Ti}$) were equal.

Temperatures when $\mathrm{Ta}=\mathrm{Ts}=\mathrm{Ti}=25 \mathrm{C}$

$$
\mathrm{T} 1 \mathrm{a}=\left(\begin{array}{c}
287.715 \\
287.890 \\
288.420 \\
288.848 \\
289.409 \\
290.135 \\
291.060
\end{array} \left\lvert\, \mathrm{K} \quad \mathrm{~T} 2 \mathrm{a}=\left(\begin{array}{c}
286.026 \\
286.205 \\
286.749 \\
287.193 \\
287.781 \\
288.554 \\
289.565 \\
290.886
\end{array}\right) \mathrm{K} \quad \mathrm{~T} 3 \mathrm{a}=\left(\begin{array}{c}
271.756 \\
272.050 \\
272.973 \\
273.763 \\
274.847 \\
276.329 \\
278.343 \\
281.034
\end{array}\right) \mathrm{K} \quad \mathrm{~T} 4 \mathrm{a}=\left(\begin{array}{l}
262.465 \\
262.787 \\
263.806 \\
264.686 \\
265.909 \\
267.619 \\
270.037 \\
273.518
\end{array}\right) \mathrm{K} \quad \mathrm{Tna}=290.817 \mathrm{~K}\right.\right.
$$

Victor Guarino	Calculation of Stresses and Deflections in	Page: 42 of 44
Argonne National Laboratory	C5 Due to Thermal and Pressure Loading	Date:12/18/2006

Temperatures when $\mathrm{Ta}=\mathrm{Ts}=\mathrm{Ti}=10 \mathrm{C}$

$\mathrm{T} 1 \mathrm{a}=\left(\begin{array}{l}272.551 \\ 272.780 \\ 273.437 \\ 273.932 \\ 274.550 \\ 275.307 \\ 276.214 \\ 277.275\end{array}\right) \mathrm{K} \quad \mathrm{T} 2 \mathrm{a}=\left(\begin{array}{c}271.036 \\ 271.277 \\ 271.974 \\ 272.503 \\ 273.170 \\ 273.998 \\ 275.009 \\ 276.224\end{array}\right) \mathrm{K} \quad \mathrm{T} 3 \mathrm{a}=\left(\begin{array}{l}259.525 \\ 259.810 \\ 260.682 \\ 261.402 \\ 262.369 \\ 263.660 \\ 265.373\end{array}\right) \mathrm{K} \quad \mathrm{T} 4 \mathrm{a}=\left(\begin{array}{l}252.011 \\ 252.315 \\ 253.254 \\ 254.039 \\ 255.107 \\ 256.566 \\ 258.582 \\ 261.417\end{array}\right) \mathrm{K} \quad$ Tna $=277.390 \mathrm{~K}$

Temperatures when $\mathrm{Ta}=\mathrm{Ts}=\mathrm{Ti}=-5 \mathrm{C}$

$\mathrm{T} 1 \mathrm{a}=\left(\begin{array}{c}261.719 \\ 261.819 \\ 262.116 \\ 262.352 \\ 262.661 \\ 263.057 \\ 263.560 \\ 264.184\end{array}\right) \mathrm{K} \quad \mathrm{T} 2 \mathrm{a}=\left(\begin{array}{c}260.518 \\ 260.624 \\ 260.940 \\ 261.194 \\ 261.528 \\ 261.962 \\ 262.524 \\ 263.254\end{array}\right) \mathrm{K} \quad \mathrm{T} 3 \mathrm{a}=\left(\begin{array}{l}248.037 \\ 248.265 \\ 248.965 \\ 249.545 \\ 250.324 \\ 251.362 \\ 252.736 \\ 254.522\end{array}\right) \mathrm{K} \quad \mathrm{T} 4 \mathrm{a}=\left(\begin{array}{l}241.976 \\ 242.225 \\ 242.990 \\ 243.630 \\ 244.496 \\ 245.672 \\ 247.281 \\ 249.517\end{array}\right) \mathrm{K} \quad \mathrm{Tna}=263.352 \mathrm{~K}$

High Energy Physics Division

Argonne National Laboratory
9700 South Cass Avenue, Bldg. 362
Argonne, IL 60439-4815
www.anl.gov

UChicago •
Argonne $_{\text {uc }}$

