
TOTAL PAGES: - so
COPY .A.

Issued by Sandia National Laboratories. operated for the United States Department of
Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government, nor any agency
thereof, nor any of their employees, nor any of their contractors, subcontractors, or their
employees, make any warranty, express or implied, or assume any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represent that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government, any agency
thereof, or any of their contractors or subcontractors. The views and opinions expressed
herein do not necessarily state or reflect those of the United States Government, any
agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the
best available copy.

Available to DOE and DOE contractors from
U S . Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865)576-8401
Facsimile: (865)576-5728
E- M ail:
Online ordering: httu://www.osti.mv/bridge

reports @ adonis.osti.gov

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800)553-6847
Facsimile: (703)605-6900
E-Mail: orders @ntis.fedworld.gov
Online order: httn://ww w. nti s. eovlhel dordermethods. as~?loc=7 -J.-O#online

http://adonis.osti.gov
mailto:ntis.fedworld.gov

SANDIA REPORT

Unlimited Release
Printed February 2005

SAN D2005-0698

IP STORAGE: A PERFORMANCE AND SECURITY STUDY, LDRD 04-1 021

Helen Y. Chen
Neal Bierbaum

Scalable Computing R & D

Jamie Van Randwyk
Frank Bielecki

Cyber Security Department

ABSTRACT
Effective, high-performance, networked filesystems and storage is needed to solve VO bottlenecks

between large compute platforms. Frequently, parallel techniques such as PFTP [11 are employed to
overcome the adverse effect of TCP’s congestion avoidance algorithm in order to achieve reasonable
aggregate throughput. These techniques can suffer from end-system bottlenecks due to the protocol
processing overhead and memory copies involved in moving large amounts of data during VO. Moreover,
transferring data using PFTP requires manual operation, lacking the transparency to allow for interactive
visualization and computational steering of large-scale simulations from distributed locations.

that remote clients can transparently access data through a distributed global filesystem available to local
clients. We started our work characterizing the performance behavior of iSCSI in Local Area Networks
(LANs). We then proceeded to study the effect of propagation delay on throughput using remote iSCSI
storage and explored optimization techniques to mitigate the adverse effects of long delay in high-
bandwidth Wide Area Networks (WANs).

Lastly, we evaluated iSCSI in a Storage Area Network (S A N) for a Global Parallel Filesystem. We
conducted our benchmark based on typical usage model of large-scale scientific applications at Sandia. We
demonstrated the benefit of high-performance parallel VO to scientific applications at the IEEE 2004
Supercomputing Conference, using experiences and knowledge gained from this study.

This paper evaluates the emerging Internet SCSI (iSCSI) protocol [2] as the file/data transport in order

1
2 iSCS1 ..

Project Description 5

2.1 Background .. 5
2.2 Benchmark Methodology ... 7
2.3 Results and Analysis7

2.3.1 Local Area Network .. 7
2.3.2 Wide Area Network ... 9

ISCSI-based Parallel Storage System .. 12
3.1 Background .. 12
3.2 Results .. 13

4 The SC04 StorCloud Demonstration ... 14
5 Conclusion and Future Work ... 16
6 References_. 18
7 Acknowledgement ... 19

3

FIGURES
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Protocol Layers of an iSCSI Storage System
Hardware iSCSI performances with Direct I/
Software iSCSI performances with Direct I/O
Multi Host Performance Tests
Software iSCSI tests with Intransa iSCSI targets
iSCSI WAN Performance
TerraGRID VO Server Protocol Stack
TerraGRID read scalability test
TerraGRID write scalability test
TerraGRID read and write scalability test over InfiniBand
The StorCloud Testbed

6
8
8
9
9

12
13
13
14
14
15

4

1 Project Description

between large compute platforms. Frequently, parallel techniques such as PFTP [I] are employed to
overcome the adverse effect of TCP’s congestion avoidance algorithm in order to achieve reasonable
aggregate throughput. These techniques can suffer from end-system bottlenecks due to the protocol
processing overhead and memory copies involved in moving large amounts of data during I/O. Moreover,
transferring data using PFTP requires manual operation, lacking the transparency to allow for interactive
visualization and computational steering of large-scale simulations from distributed locations.

that remote clients can transparently access data through a distributed global filesystem available to local
clients. We started our work characterizing the performance behavior of iSCSI in Local Area Networks
(LANs). We then proceeded to study the effect of propagation delay on throughput using remote iSCSI
storage and explored optimization techniques to mitigate the adverse effects of long delay in high-
bandwidth Wide Area Networks (WANs).

Lastly, we evaluated iSCSI in a Storage Area Network (S A N) for a Global Parallel Filesystem. We
conducted our benchmarks based on typical usage model of large-scale scientific applications at Sandia.
We demonstrated the benefit of high-performance parallel I/O to scientific applications at the IEEE 2004
Supercomputing Conference, using experiences and knowledge gained from this study.

Effective, high-performance, networked filesystems and storage is needed to solve I/O bottlenecks

This paper evaluates the emerging Internet SCSI (iSCSI) protocol [2] as the file/data transport in order

2 iSCSl

2.1 Background

Traditionally, storage systems are directly attached to computer servers via a local bus. This
architecture has inherent restrictions in its ability to scale in number as well as the ability to share its storage
resources. A Storage Area Network [3] overcomes these limitations by using a dedicated, centrally
managed infrastructure where storage YO is performed via networking protocols. By decoupling the
storage systems from the host computers, storage devices such as hard drives, redundant array of
independent disks (RAID) controllers [4], and tertiary archival systems can be shared by multiple computer
servers to allow more efficient utilization. However, S A N technologies have distance limitations and are
typically deployed as data center solutions.

Emerging IP-based storage protocols place filesystem and data traffic onto an IP network, thereby
enabling block-level 1/0 to SCSI clients across Wide Area Networks (WANs). iSCSI is the most promising
IP storage technology that can be used to implement a global mass storage subsystem cost effectively.
iSCSI achieves cost efficiency by leveraging the popularity of TCP/IP [5] and Ethernet [6]. Figure 1
depicts a conceptual layout of a hardware iSCSI solution that uses the IP network for file and block I/O.
Note that software-based iSCSI simply uses the host resident TCP/IP stack in contrast to its hardware
counterpart.

within a data center [7]. For transparent data sharing over distance, our work further characterizes iSCSI’s
performance in high-bandwidth and long-delay networks. We investigated the impact of tunable
parameters in iSCSI, TCP/IP, and the underlying Ethernet protocol to improve 1/0 performance over high-
speed WANs.

At the iSCSI level, the parameters of interest from a performance perspective are: the SCSI command
request size, the iSCSI command window credit amount, the number of simultaneous iSCSI connections in
a session, and the option of sending solicited vs. unsolicited data. The command request size, the command
window credit amount, and the number of simultaneous connections may impact both large read and write
performance. The choice of solicited vs. unsolicited data may impact only write performance. At the
TCP/IP level, the most important parameters are the send and receive window sizes, especially in networks
with a large bandwidth-delay product such as the ASC DISCOM network [SI. In addition, the gigabit
Ethernet NIC driver must maintain large buffers to match the large bandwidth and delay product to avoid
“send stalling” [9]. Details on these parameters are presented in the following paragraphs.

Through a literature search we found that previous studies focused mainly on iSCSI’s performance

5

The iSCSI command request size is the amount of data that is sent or received as part of a SCSI
command encapsulated in an iSCSI packet. The iSCSI command window credit amount is manually set on
the target and determines the maximum number of iSCSI commands that can be outstanding at a given
time. The product of these two parameters will determine the maximum amount of data that can be
pipelined in the network in order to deal with the network latency. Increasing this value will generally
improve network throughput in high-speed WAN.

Figure 1, Protocol Layers of an iSCSI Storage System.

The primary reason for iSCSI to support multiple connections per session is to take advantage of
trunking in gigabit LAN switches. Trunking allows each TCP connection to utilize a different physical link,
thereby improving the overall throughput. In fact, the number of simultaneous connections in an iSCSI
session will even impact its performance on a single link between the initiator and target. A packet loss in
a TCP connection triggers TCP's slow-start and congestion avoidance algorithm, resulting in a drop in
throughput that could take a long time to recover in long-&lay and high-speed networks. By using multiple
connections in a session, the overall impact of this temporary drop in throughput is reduced because each
TCP connection can adjust its transfer rate; together they can achieve multiple times theii fair share of
bandwidth, effectively giving the iSCSI traffic priority over others during congestion. Unfortunately, the
iSCSI protocol obeys the SCSI command ordering rules, which will reduce the parallelism among multiple
connections, offsetting the benefit realized via multiple connections. An extension of the iSCSI protocol is
being proposed to support out-of-order SCSI commands, leaving the innovation to iSCSI target vendors to
handle out-of-order commands.

FirsrBurstLength, MarBurstLengrh, and MarRecvDataSegmentLengrh. FirstBurstLength determines the
maximum amount of unsolicited data that the initiator can send per command. MnxBursrLengrh determines
the maximum amount of solicited data that the initiator can send per command.
MarRecvDatuSegmentLengrh is the maximum data segment size that can be sent in each protocol data unit
(PDU). There are many ways to set these parameters. In this study, we consider two cases that can produce
results in two extremes: most-unsolicited and most-solicited data transfer allowed by the iSCSI protocol.
Most-unsolicited data implies that the FirstBurstLength is greater than or equal to the maximum write
command request size that the initiator generates. Most-solicited data implies that the unsolicited data
mode is disabled during the login negotiation; it is effectively equivalent to setting the FirstBurstLengrh to
zero. In this mode, the target will notify the initiator when it is ready to receive data for a given command.

Three independent parameters determine the solicited vs. unsolicited types of data transfer:

6

This will give the target more control in the receive buffer allocation, but will introduce extra round trip
delay compared to the fully unsolicited mode.

2.2 Benchmark Methodology

monitor system and network-level statistics:

1.

We evaluated and selected the following public domain benchmark tools to generate traffic and to

Xdd is a tool for measuring and characterizing storage subsystem I/O on single and cluster systems. It
is designed to provide persistent and reproducible performance measurements of raw and buffered
storage traffic.
Performance Co Pilot (PCP) is a framework that supports system-level performance monitoring and
management. PCP monitors system-level performance to allow correlation of end-user quality of
service with platform activity, tracking complex interactions between resource demands on a single
system.
Ethereal is an open-source CUI-based network protocol analyzer. It allows an analyst to interactively
browse packet data from a live network or from a previously saved packet capture file. In addition to
TCP and IP, Ethereal can also parse the iSCSI protocol.

As part of this project a new, versatile test integration and control program was developed. This
program, named testrun, provides a platform for integrating test definition, execution, and organization of
results and information to ensure that accurate, meaningful analyses can be performed. It is written in a
general manner to support a wide variety of testing projects. It will be released for general Sandia use at the
end of this project.

An XML definition file for each unique type of test controls the testrun program. This description
defines the test program (e.g., xdd or ZOzone) to be run with the options defining the specific test. If
multiple instances of an option are defined with different values, it will perform multiple tests with unique
combinations of these options. It also defines the hosts and instances on each host of the test to be run.
Each run is performed simultaneously across all hosts; each host is controlled via an SSH connection to the
primary control host for complete security, even over a wide area network. In addition, testrun manages the
sophisticated Performance Copilot monitor, starting it on each host performing the test immediately prior to
the beginning of the test and shutting it down after the test is completed. At the completion of each testrun
all results are collected into a four-level highly-structured result tree.

searching and processing of hundreds or even thousands of runs by a variety of tools. The results are also
reported in a multi-level tree of interlinked HTML files. This provides easy browsing from a top level of the
entire test series run throughout the project down to a single instance of a test on a single host and then back
again with a few clicks of a mouse button.

2.3 Results and Analysis

2.3.1 Local Area Network

scale iSCSI testbed. The Adaptec iSCSI Host Bus Adapter (HBA) implements hardware iSCSI with
TCPDP offloaded in an ASIC. Four Adaptec host bus adapters are installed one each in a Dell PowerEdge
2650, a dual 2.4GHz Xeon processor server. The HBAs act as iSCSI initiators and are connected to a
Network Appliance FAS 960 Filer through four gigabit Ethernet ports back-to-back. The FAS 960 exports
its volume manager to iSCSI clients through its software-based iSCSI interface and kernel resident TCPDP
stack. We measured a baseline of the performance of iSCSI using the testrun program described above.

We measured the throughput of xdd sessions using 5 GB files. Nine tests were conducted in total, three
each with VO requests ranging 4K, 8K, and 32K Bytes respectively. The 5 GB file size was selected to
offset the effect of the Linux virtual filesystem’s buffer cache. As shown in Figure 2, a single xdd session
can saturate the gigabit link with 8K or larger read requests, and the associated CPU overhead averaged a
low 12 to 19%, leaving ample cycles for file level operations as well as scientific computation.

2.

3.

The results of each run are reported in a series of XML files to allow consistent, unambiguous

For this set of experiments, we partnered with Adaptec and Network Appliance to prototype a small-

7

H a r d w a r e i S C S I w i t h Direct IO

Figure 2, Hardware iSCSI performance with Direct UO
We repeated the above experiment with a software iSCSI implementation for comparison, using a

public domain iSCSI initlator, developed principally by Cisco until recently, and a gigabit Ethernet NIC
made by SysKonnect. Results are depicted in Figure 3. We observe that the software-level iSCSI's
performance is comparable to its hardware counter part in the 4K and 8K tests, and is about 10% less in the
32K tests. The CPU overhead, however, has roughly doubled, although more than 60% of the CPU
resources me still available to the filesystem as well as user applications. Additionally, we were able to
achieve this performance only by turning on gigabit Ethernet's jumbo frame feature; we experienced CPU
bottleneck using the 1500 byte frame due to the extra overhead necessary to process the TCPm protocol
and more frequent interrupts from the increased number of arriving packets.

S o f t w a r e i S C S I with Direct IO

1000000 3 ~

l B l o c k (8)
mAvg (ME/s)

/OClisnt % C P U 133,483135.855 135.61 6137.6491 35.82 136.469136.958136.275/37.3581
Runs

Figure 3, Software iSCSI performance with Direct UO
A multi-host test was conducted subsequently to evaluate the aggregate performance of iSCSI. Each

host repeated a series of xdd runs identical to those described above. Results are presented in the following
graph. As shown, the per-session throughput is much lower than the single-host single-session instances.
We found that the degradation was not due to any shortage in local compute power. An examination at the
FAS 960 filer revealed that 100 % of its CPU was consumed in processing iSCSI requests from the four
concurrent sessions, indicating that hardware iSCSI is very much needed at the server side. The dual 2.2
GHz Xeon processors in the NetApp Filer cannot keep up with the concurrent demands from four iSCSI
initiators. In addition to handling network UO, the tiler must also perform UO operations for its own
storage device.

8

S e q u e n t i a l R e a d P e r f o r m a n c e

2 1 5 0

I 1 H o s t 2 H o s t s 2 H o s t s 4 H o s t s 4 H o s t s
Total Tota l

Figure 4, Multi Host Performance Tests

Because NepApp’s loan agreement expired before we could conduct our WAN experiment, we
repeated the same multi-host tests using two Intransa IP5000 iSCSI targets to establish a baseline. The new
configuration consisted of four software iSCSI initiators on Dell 2650s accessing two Intransa targets
through a 24-port Dell switch. We chose the software iSCSI implementation for the WAN experiment
because hardware iSCSI lacked the flexibility and an interface to allow for necessary TCP and iSCSI tuning
in order to fill the long, fat pipe. Results are plotted in Figure 5. As shown, one iSCSI session can fill a
gigabit Ethernet pipe and two concurrent iSCSI sessions can scale linearly to fill two gigabit pipes. Four
concurrent iSCSI sessions, however, did not achieve similar scaling due to network bottleneck -- a result of
four initiators competing for two gigabit Ethernet ports. We also observed that more than 30% of the dual
2.4 GHz processors were consumed to achieve a typical gigabit Ethernet rate, which is in agreement with
results from previous tests against the NetApp filer.

I 1 host 2 host 4 host

Figure 5, Software iSCSI tests with Intransa iSCSI targets

2.3.2 Wide Area Network

In order to isolate the effect of network latency from the idiosyncrasies of commercial network
products, we used a WAN emulator in our initial experiment. This allowed us to easily vary the network
latency while keeping all other parameters constant. Our experimental setup consisted of an open source
software initiator by Cisco running on a Dell 2650 and an Intransa IP5000 iSCSI target, interconnected
by an ADTECH 4000 WAN emulator from Spirent Communications. In our experiment, the network
bandwidth is 1 Ghps, which is the maximum supported by the emulator. Since our focus is on network
performance, we configured the IP5000 in write-back mode and set the traftic patterns such that all reads
are served from the target’s cache to elinunate possible disk YO bottlenecks. We studied four values of
round trip latency: 0 ms as a baseline, 2, 10 and 50 ms for different WAN scenarios. In addition, we
validated our emulated WAN test over the Tri-Lab DISCOM network, allocating 1 Gbps of bandwidth
from the 2.4 Gbps OC48 link. We present our tuning techniques and performance results in the
following paragraphs.

9

TCP Tuning

TCP’s primary function (as opposed to UDP) is to ensure reliable and in-order delivery of data. To
achieve this, TCP uses an assigned sequence space to uniquely identify each byte in the data stream of a
TCP session. It is the receiving host’s responsibility to acknowledge cumulatively the data it has received
by sending the sequence number of the last in-order byte. The receiving host queues out-of-order data in its
reassembly queue until the holes in the sequence are filled. Meanwhile, the sending host must be prepared
to retransmit unacknowledged data by keeping data in a retransmit queue.

TCP maintains a static amount of buffer between itself and the receiving application. The receiver
implements a window-based flow control to prevent the sender from overrunning its buffer; the receiver
enforces flow control by announcing its available buffer space in the TCP header. The amount of available
space will change over time and is affected by the receiving application’s ability to keep up with the rate of
data-arrival from the network. The advertised receive window is the upper bound of the sender’s window.
Since only one window full of data can be sent within one RTT (round-trip time), TCP’s theoretical
throughput can be derived by dividing the effective window size by the network’s RTT.

Over the past decades, Internet bandwidth has been increasing exponentially. It follows that a
proportional amount of buffer space must also be maintained by end systems in order to fully utilize the
much larger bandwidth, especially when they are separated by a long RTT. For our experimental 1 Gbps
WAN test with a 25 ms RTT, we must maintain a TCP window that equals the product of 1 Gbps and the 25
ms RTT in order to fill the OC48 link.

TCP window = BW* RTT = 1 Gbps*0.25s = 25 Mb or 3.125 MB (1)

In the scientific application usage model, often the amount of data going into the network is more than
a router’s output bandwidth. Since only a finite number of packets can be queued at the router, packets will
be dropped during steady state. TCP uses “slow start” to probe the network for the bottleneck bandwidth in
the path, and an “additive-increase and multiplicative-decrease” (AIMD) algorithm to further adjust its
window size to accommodate the dynamically changing network conditions. Slow-start sets TCP’s initial
window to one segment and increases the size by one after each positive acknowledgement until a
predefined threshold is reached; linear growth follows thereafter. A receiver sends duplicate
acknowledgements of the same sequence number to notify the sender of missing packets. In response, the
sender’s TCP will reduce its transmission rate by halving its current window. The sender must record the
reduced window and use it as its current upper bound if it is smaller than the receiver’s advertised window.
To recover, TCP grows its window linearly by adding one segment every round-trip-time (RTT).

(BDP) networks because it will take many long RTTs to recover a very large original window. Many
extensions to TCP have been proposed to tune the performance in large BDP networks. These include Fast
TCP [lo], High Speed TCP [l l] , TCP Vegas [12], Dynamic Right Sizing [13], etc. In general, these
techniques use a larger TCP window, faster slow-start, and larger maximum-transfer-units to improve
throughput. They try to avoid loss by reducing burst sizes, using Explicit Congestion Notifications (ECN),
and increasing packet reorder threshold at the receiver. Faster recovery is attempted via an increased link
maximum transfer unit (MTU or frame size), more aggressive AIMD, no delayed-ACK, and larger initial
window and slow-start increments. A simplified macroscopic congestion model derived in [141 illustrates
that TCP’s maximum segment size (MSS) can directly impact TCP’s throughput.

Unfortunately AIMD can be very damaging to TCP performance in large Bandwidth-Delay-Product

Throughput -= (MSS * .7) / (RTT * P ”) (2)

Thus, we used Jumbo frames in our emulated WAN as well as in the experimental DISCOM WAN.
The software iSCSI initiator relied on Linux’s built-in TCP auto tuning capability to optimize performance,
where the receiving TCP (on read VO) will adjust its advertised TCP window to the smaller of the 2-RTT or
the “ipv4.tcp-w(r) mem” amount of buffer. We set a 10 MB maximum for the send and receive buffers
using the following commands:

sysctl -w net.core.rmem-max=l0485760
sysctl -w net.core.wmem~max=l0485760
sysctl -w net.core.rmem-default= 10485760
sysctl -w net.core.wmem-default= 10485760

10

sysctl -w net.ipv4.tcp-rmem="4096 10485760 10485760"
sysctl -w net.ipv4.tcp-wmem="4096 10485760 1048S760"

In addition to the send and receive buffer tuning, it is also necessary to increase the sending NIC

ifconfig eth2 txqueuelen 1000

driver's queue size in order to prevent "send stalling":

And it is necessary to increase the kernel network device backlog buffer (receive queue) in the receiver's
kernel to prevent dropping packets at the receiving host:

sysctl -w net.core.netdev~max~backlog=2500

iSCSl Tuning

performance. This involves using the iSCSI 'most unsolicited data mode as part of the iSCSI PDU to
bypass the overhead for the R2T (ready to transfer) handshake. To achieve this, Intransa had to provide
Sandia with development code to support the "most unsolicited" mode. The following commands are used
to manually enable the "most unsolicited" data mode at the Intransa IP5000 target:

As mentioned earlier, a number of iSCSI parameters also need to be tuned for better WAN

iscsi-ioctl-command -s 8 ImmediateData=Yes
iscsi-ioctl-command -s 8 InitialR2T=No

Lastly, the TCP window size for iSCSI sessions needs to be set on the IP5000 to the desired size via the
setsocketopt() system call. Since the Intransa iSCSI target is Linux based, it should be able to take
advantage of Linux's TCP auto tuning capability -- a request that we have also relayed to Intransa. To set
the TCP window size at the IP5000, the following was used to provide a 10 MB window:

iscsijoctl-command -w 10240

Additionally, we had to modify the maximum number of outstanding commands allowed, also referred
to as SCSI command window size, in order to utilize the large buffer allocated by the receiver's TCP. The
following command sets the number of maximum outstanding SCSI commands to 64:

iscsi-ioctl-command -W 64

Similar tuning is performed on the iSCSI initiator. The Cisco Linux iSCSI initiator requires that we
modify the configuration file to negotiate for the 'most unsolicited' mode with the iSCSI target. These
changes are made in the /etc/iscsi.conf file:

ImmediateData=yes
InitialR2T=no

We also patched the Cisco Linux iSCSI initiator to support both a larger block size and a larger maximum
number of outstanding SCSI commands. This helped to increase the throughput of tagged queuing devices
such as the Intransa IP5000. This is achieved by increasing the value of the maximum number of outstanding
commands in the iscsi-1imits.h file. We found that setting ISCSI-CMDS-PER-LUN to 64 had delivered
optimal throughput without oversubscribing the IP5000's memory subsystem. To better support larger block
size and send more uniform data we increase the default max-sector size of the SCSI device driver from 256
(512 bytes) to 512 (1024 bytes). This worked well in our situation because 1024 is the default sector size for
the Intransa iSCSI device. As a result, we achieved more uniform I/O processing and improved the
throughput on the initiator. The results are presented below. To make this change, we edited the iscsi.c file
and added 'sh->max-sectors=S 12;' to the structure declaration.

Measurements

command for all tests, using a 256 KB VO request size to write and read 1 GB files.

./xdd -op write -targets 1 /dev/raw/rawl -reqsize 256 -blocksize 1024 -mbytes 1024 -queuedepth 32

Figure 6 summarizes the throughput of iSCSI over the emulated WAN. We ran the following xdd

11

0 50 100 150

m(n-d

Figure 6, iSCSI WAN Performance

We observe similar throughput for READ and WRITE at latencies of 20 ms or less, but we observed
better throughputs for READ than WRITE at latencies greater than 20 ms. We deduce tbat the asymmetric
in performance were caused by differences in CPU speed between the initiator and target; the Dell 2650
uses dual 2.4 GHz Xeon processors and the IP5000 a single 800MHz MIPS processor. In this situation the
receiver had to bandle a larger burst of incoming M i c than in lower latency networks because TCP
windows are larger in bigger RlT networks. As mentioned earlier, we were able to schedule 1 Gbps of
bandwidth from the black DISCOM WAN to validate our results from our emulated WAN. We found
about 10 MBls of degradation in both READ and WRITE operations compared to our emulation. We
believe this is caused by the presence of bit errors in DISCOMs SONET infrashucture, as well as
occasional queuing delay experienced at DISCOMs IP routers and ATM switches. In conclusion, we
found that iSCSI transport can deliver satisfactory performance to meet HPC requirements io both JAN and
WAN environments. We selected an iSCSI-based parallel storage product to continue our study.

3 ISCSI-based Parallel Storage System

3.1 Background

This architecture uses commodity components and can therefore be implemented at 1/10 the cost of
specialized Symmetnc Multiprocessing systems (SMF’). As such, the cost of computational science has
dropped dramatically, which in turn promoted sophisticated parallel algorithms to be developed using the
Message Passing Interface (MPI) [15].

Unfortunately, storage platforms faled to keep pace. Today labor intensive data movements are
performed to stage computational tasks on local cluster nodes because data sharing through NFS [161 failed
to scale in large clusters. The standardized NFS protocol presents data at a level of abstraction to provide a
broad common view among all compute platforms: files and directories. But this level of abstraction forces
metadata as well as block YO requests to go through a single server, making it a roadblock to effectively
scaling the level of shared access to its clients. Many cluster filesystems are being developed to address
t h ~ s issue [171. Cluster filesystems combine a common namespace for data sharing and block UO to storage
for performance between distributed compute systems in order to alleviate the NFS bottleneck. In this
study, we choose to evaluate an alternative a p p m h that implements parallel storage architecture to address
the same issue. We present background information on this approach and its performance characteristics in
the following paragraphs.

TemGRID
TerraGIUD [181 uses a Shared Access Scheduling Scheme (SASS) to enable open-source “standalone”

Linux filesystems to be deployed as a scalable, massively parallel, global filesystem. It takes advantage of
an intelligent software implementation of the iSCSI protocol stack to deliver parallel, block-level UO tbat
works with whatever runs on Linux. In addition, it tums emsting commodity fabrics such as Ethernet and

mgh-performance computing (HPC) has driven the development of clustered computing architecture.

12

Infiniband into scalable I/O networks to achieve cost efficiency. TerraGRID fully harnesses Linux
filesystems and utilities, with 99% of its components available as open source freeware. These components
include: ext2, patches to Linux and ext2, and the Linux MD driver. A proprietary iSCSI driver provides the
glue to bind all the open source components together to deliver a parallel storage system that allows every
client to share an identical global name space and to execute SCSI requests in parallel. The protocol stack
used by TerraGRID is depicted in Figure 7. On the server side, the iSCSI logic is implemented as a user
level daemon; it presents a raw disk device, a file, or a set of files as block containers to the iSCSI initiator
pool. On the client side, the TerraGRID iScSI logic is implemented as a kernel module. This kernel
module discovers all configured targets via the iSCSI session login protocol upon startup and presents these
targets as SCSI devices to its operating system. Each initiator in turn runs software RAID in order to
transmit UO requests to all targets in parallel. By running MD across the same set of targets, all initiators
can share the same global namespace and can schedule UO requests in parallel to the common set of targets
using the SASS algorithm.

Physical Storage
Applications

File System

Linux MI3 driver File System

TerriGRlD iSCSl Logic TerriGRlD iSCSl Logic

TCP/IP Slack TCP/IP Stack

Gigabit Ethernet Gigabit Ethernet
~ -

Figure 7, TerraGRID I/O Server Protocol Stack

3.2 Results

in terms of scalability; our tests varied the number of clients from one to six against a software RAID
device built across eight TerraGRID targets. Again, we configured ‘Yestrun” to run the xdd benchmark,
reading and writing 5 GB files in 8 MB chunks, and scaling from one to six clients. We present the read
oerformance in Figure 8 and the write performance in Figure 9.

Because we had limited hardware resources, we were only able to conduct a “proof-of-concept” study

Scaling of sequential read by number of
clients

500 1 0 0

400 80

300

200

1 0 0 20

0 0
1 2 3 4 5 6

Figure 8, TerraGRID read scalability test.

Our read results (Figure 8) show that TerraGRID can achieve linear scale up. Because we have eight
servers, each with one 15K rpm SCSI drive, their aggregate storage bandwidth maximized at 480 MB/s.
Our results show that ‘‘ xdd reads” have reached this upper bound and that the TerraGRID SASS was able
to scale to handle UO requests from six concurrent clients. From the same graph we observe that the CPU
utilization on TerraGRID clients experienced a steady decline, from 80% to 40%. as the number of
application nodes increases. This information helped us to eliminate CPU power from being the
performance bottleneck. Furthermore, because only 60% of the total network bandwidth was consumed
during the benchmark, it also eliminated the network from being the limiting factor.

13

Scaling of sequential write by number of
clients

I

D Aggregate write ~

4o

20
, t %cpu/cllent j 100

50
0 0

I 1 2 3 4 5 6

Figure 9, TerraGRID write scalability test

Figure 9 depicts the results of our write benchmark. As shown, TerraGRID's write performance is
poorer than the read performance. We attribute the poorer throughput to extra scheduling overbead
necessary to cany out write operations; extra overbead to synchronize the leases of the file's metadata to
different nodes was necessary in order to preserve data consistency during parallel writes.

We repeated the same benchmark over InfiniBand [19] to evaluate TerraGrid's performance in higher-
speed networks (10 Gbps). Again, due to resource limitations, we used only four TerraGRID servers with a
maximum aggregate disk bandwidth of 240 MB/s. As expected, we were disk-bound (Figure 10) on reads,
achieving an aggregate throughput slightly over 21 1 MB/s. Also shown is the poorer write performance,
with the aggregate throughput leveled at around 155 MB/s, consistent with the result obtained in the gigabit
Ethernet experiments.

As mentioned earlier, so far only a proof-of-concept study was conducted. We plan to repeat OUT test
on a 128-node cluster for a more meaningful evaluation of TerraGRID's scalability in terms of the number
of clients it can support: can TerraGRID still maintain the same aggregate throughput bounded by storage
bandwidth? Subsequent to the scalability validation, we also plan to explore the potential of extending
TerraGRID's data sharing ability over the DISCOM WAN.

1 2 3 4 5 6

Figure 10, TerraGRID read and Write scalability test over InfiniBand

4 The SCW Storcloud Demonstration

StorCloud [20] was a new Supercomputing Conference initiative in 2004 that offered a high-
performance storage capability in order to showcase state-of-the-an HPC technologies such as parallel
filesystems, parallel algorithms, and interconnects. We decided to participate in this endeavor because it
offered us the opportunity to partner with leading hardware and software industry partners to test out a
much larger number of parallel file and storage technologies than possible otherwise. Our goal was to
demonstrate the benefit of parallel UO techniques and high-speed storage arrays to computational
science. We invited three outstanding scientists from Sandia and Lawrence Livermore National
Laboratories to demonstrate their innovations on the use of high-performance parallel YO to enhance
their scientific computauon. These include: Blockbuster [21], a scalable animation display, from LLNL;

14

Massively Parallel Quantum Chemistry (MPQC) 1221, and Direct Numerical Simulation for
Homogeneous Charge Compression Auto-Ignition [23], from SNL. We are proud to announce that the
LLNL Blockbuster won the “Fastest Random U O and MPQC the “Most Innovative Use of Storage”
awards sponsored by the SC04 StorCloud Initiative. Details of the StorCloud testbed and the
demonstration applications are presented below.

The StorCloud Testbed I n f r a s t r n c ~

Figure 11 depicts the logical topology of our Storcloud testbed. At the ASC booth, forty-eight
Opteron-based compute servers from Appro and sixteen @-bit Xeon-based UO servers from Dell were
interconnected using 4X InfiniBand. This cluster was booted using oneSIS [24] (cluster management
software developed at Sandia) that supported the T e r n a l e TerraGRID, the Panasas ActiveScale [25], and
the IBM GPFS [26] filesystems. TerraGRID accesses StorageTek disk arrays through sixteen 2-gigabit
Fibre Channel links through the sixteen UO servers. Panasas DirectFlow on the compute nodes reads from
and writes to the Panasas Activescale storage via two IO-gigabit Ethernet trunks. IBM GPFS on the sixteen
YO servers are configured to access both StorageTek disks via Fibre Channel and IP5000 iSCSI targets via
gigabit Ethernet. Please note that the StorageTek FC, the Intransa iSCSI, and the Panasas Activescale
storage arrays were located at the StorCloud booth across the exhibitor show floor from the ASC booth.

GPFS is a high-performance shared-disk filesystem from IBM that can provide fast data access from all
nodes in a homogenous or heterogeneous cluster of servers running either the AIX 5L or the Linux
operating system. GPFS allows parallel applications simultaneous access to the same or different files from
any node which has the GPFS fdesystem mounted while also managing the metadata of GPFS. “Its YO
performance”, IBM claims, ‘%an meet the objectives of a wide range of applications including seismic data
processing, digital library file serving, and data mining in business intelligence.”

The Panasas ActiveScale File System turns files into smart data objects and dynamically distributes
data activity across its StorageBlades cluster. The clustering architecture employed by Panasas enables
parallel data paths between StorageBladesand Linux clients, thereby eliminating the inherent performance
and capacity bottlenecks of traditional networked filesystems. ‘The core principle of the object-based
architecture is managing data as large virtual objects in contrast with traditional storage systems that
manage data in small blocks. Data objects can be resized without limitation and independently from other
storage system activity, allowing the management of all data within a single namespace and providing
independent and parallel growth properties.”

o Catalyst Cisco

NNSNASC

- 4~ m - IOOlgE - ICngE - 2 0 ISR%Bo-- Tz7e-
Dell 1850

(16 VO nodes) (48 compute nodes)

Figure 11, the StorCloud Testbed

15

Scalable Animation Display

developed at Lawrence Livermore National Laboratory.
Blockbuster relies on the combined power of a cluster of
visualization nodes to perform rendering in parallel. During a
Blockbuster run, each node in the cluster reads large chunks of
data in parallel from different sections of a single scientific data-
set. As such, this application will need to use a high-speed
parallel filesystem in order to keep up with the rendering speed
for the high resolution animation on large panel displays. The
Blockbuster application will be run on the 16-node Dell cluster
using the IBM GPFS to read large chunks of data in parallel
from different sections of a single scientific data-set stored on
the StorageTek storage at the StorCloud booth. We also demonstrate a more cost efficient capability that
uses GPFS to access data on the iSCSI-based Intransa IF5000 storage also located at the Storcloud booth.

Massively Parallel Quantum Chemistry (MPQC)

Blockbuster is a scalable animation display application

MPQC is a quantum chemistry code developed at Sandia It
can be used to compute molecular energies, geometries, and other
properties. It is designed to keep most of the intermediates
requued in main memory or re-computing relatively inexpensive
quantities as needed. However, SNL scientists recently
implemented second-order Moeller-Plesset perturbation theory
explicitly including the inter-electron coordinate (MF2-Rl2) in
MPQC. The code, therefore, has larger storage requirements than
standard Moeller-Plesset perturbation theory (MF'2). As such, the
availability of high performance parallel storage will make
possible computations that cannot currently be done, allowing
larger systems to be treated or higher accuracy results to be
obtained. We demonstrate this cambilitv bv runnine Mpoc
ME-Rl2 on the 48-node Appro Ikd-Ciustk accessing the
StoraeeTek storaee at the Storcloud booth via the 16-node Dell - I

Clustcs; which i m p l c i i i c n t \ flir 'l'errasi.de TerraGRID parallel It0 subsystem.

Direct Numerical Simulation for Homogeueow Charge Compression Auto-Ignition Using ScaIable
P a d e l YO

S3D is an existing Sandia Direct Numerical Simulation (DNS) compressible Navier-Stokes solver
coupled with an integrator for detailed chemistry. The
development of S3D has been supported by DOE'S Office of
Science and Basic Energy program. DNS databases generated by
S3D are also used by the ASC Alliance program to test and
validate turbulent combustion sub models for large-eddy
simulations. A typical S3D time-step in a 2D run generates 600
MB of mtart and visualization data. As such, production runs are
consirained to save data at predetermined intervals, creating
opportunities for potential loss of critical information, more
complicated analysis, and difficulties in real-time code steering.
We will demonstrate the acceleration of a high fidelity S3D
simulation using the same 48-node Appro Mid-Cluster to access
Panasas's Activescale filesystem located at the StoCloud booth.

u

.I "~

5 Conclusion and Future Work

even when iSCSI is implemented in software. The fact that iSCSI uses TCP/IE' as its data transport allowed
us to tap the wealth of knowledge from years of research to easily master tuning techniques for iSCSI to

Our initial study demonstrated that iSCSI transport can deliver throughput at the gigabit Ethernet rate,

16

perform over distance. We are confident that iSCSI is a suitable choice for implementing a high-
performance, distributed, enterprise filesystem for transparent sharing of data over WAN.

Confident that iSCSI can be tuned to perform in LAN and WAN, we then evaluated an iSCSI-based
parallel storage subsystem called TerraGRID. TerraGRID uses a proprietary, Shared Access Scheduling
Scheme to turn multiple standalone Linux ext2 filesystems into a massively parallel global filesystem. Our
test demonstrated that TerraGRID can scale to deliver optimal sequential reads and writes to parallel
applications running on a 16-node testbed. We observed that TerraGRID was able to push enough UO to
saturate the aggregate disk bandwidth across all servers. In order to make a more meaningful assessment on
TerraGRID’s ability to synchronize its metadata and to manage distributed locks while servicing concurrent
VO requests, however, we plan to continue our study on clusters with 128 or more nodes.

extending data-sharing to remote clients can be challenging because of the inherent propagation delay.
However, we believe remote visualization only performs large sequential “‘reads’’, and since read operations do
not modify file content, they will not incur much metadata update if any, and therefore, its performance should
not be impacted by the presence of propagation delay. In the case of interactive compute steering, we envision
that exclusive leases for the state of a file’s metadata can be granted exclusively to each remote client, which
in effect suspends the execution of the parallel applications that are waiting for steering in any case. This
again will render WAN latency irrelevant with respect to the application’s overall performance. We will
continue our study to validate this hypothesis and at the same time investigate whether parallel NFS 1271 can
provide a standardized interface to export data sharing capabilities of many global filesystems.

Due to delayed deployment, we were not able to fully evaluate iSCSI security. But because iSCSI sits
on top of TCP/IP, it has optional provisions for full IPsec [28], which includes user authentication, message
authentication, encryption, and key exchange functionality. Because iSCSI is an application that runs with
TCPAP, its security implementation can leverage proven technology based on existing IPsec standards.
Together with iSCSI’s ability to use Access Control Lists (ACLs) on its target, we believe basic
components exist to implement proper protections for an iSCSI-based distributed filesystem.

within a year. The order of magnitude jump in speed, however, has generated concerns in a server’s ability
to sustain maximum throughput. A typical software implementation of TCP/IP consists of 70,000
instructions, requiring 1 GHz of processing power to drive at a 1 gigabit Ethernet rate. In addition to
processing the TCPAP protocol, more compute cycles are needed to service interrupts for moving data from
the network to the kernel and then to a user buffer. Moreover, with each move, limited memory-bus
bandwidth is consumed, keeping the server CPU from performing useful tasks. At 10 Gbps, this burden
will be prohibitive. TCP offload engines (TOE) and Remote Direct Memory Access (RDMA) technologies
are being developed to implement intelligent network interface cards (RNIC) [29] targeted to resolve this
issue. How to integrate the emerging RNIC into our VO infrastructure is critical to the future of HPC and
thus is an area of interest for future study.

Low latency is critical to a parallel filesystem’s ability to scale its metadata management. As such,

10 gigabit Ethernet is appearing in backbone networks today and will be adopted in server platforms

17

6 References

[11 Jason King, “Parallel FTP Performance in a High-Bandwidth, High-Latency WAN’,
httr,://www.llnl.gov/asci/discom/scOODaper final.pdf, November 2000

[2] Hufferd, John L., iSCSI - The Universal Storage Connection, Addison-Wesley, 2003

[3] Simitci, Huseyin, “Storage Network Performance Analysis”, Wiley Publishing, 2003, pg. 1 1 6-1 17,

[4] Schmidt, Friedhelm, “The SCSI Bus & IDE Interface - Protocols, Applications & Programming”,
Addison-Wesley, 1997

[5] Stevens, W. Richard, ‘‘TCPDP Illustrated Volume 1 - The Protocol”, Addison-Wesley Publishing
Company, February 1994, pg. 297-321

Stallings, William, “Networking Standards - A Guide to OSI, ISDN, LAN, and MAN”, Addison-
Wesley Publishing Company, July 1993, pg. 270-3 12

290-295

[6]

[7] http://www.stalker.com/notes/SFS.html

[8] http://www.sandia.gov/ASC/discom.html

[9] J. Mahdavi, “Enabling High Performance Data Transfers on Hosts: (Notes for Users and System
Administrators)”, Technical note, Revised: December 1997.

[101 Jin, D. Wei, SH Low G. Buhrmaster, J. Bunn, DH Choe, RLA Cottrell, JC Doyle W. Feng, 0. Martin,
H. Newman, “FAST TCP: From Theory to Experiments”, http://netlab.caltech.edu/FAST

[111 Floyd, Sally, “High-speed TCP for Large Congestion Windows”, RFC 3649, December 2003,
ftp://ftp.rfc-editor.org/in-notes/rfc3649.txt

[12] Brakmo, L., O’Malley, S. and Peterson, L., “TCP Vegas: New Techniques for Congestion Detection
and Avoidance”, Proceedings of the SIGCOMM ‘94 Symposium, August 1994, pg. 24-35

[13] W. Feng, M. Fisk, M. Gardner, and E. Weigle, “Dynamic Right-Sizing: An Automated, Lightweight,
and Scalable Technique for Enhancing Grid Performance,” Lecture Notes in Computer Science, 2334:
69-83,2002

[141 Mathis, Heffner, Reddy, “Web100: Extended TCP Instrumentation for Research, Education and
Diagnosis,” ACM Computer Communications Review, Vol. 33, (3), July 2003.

[151 MPI httd/www.beedub.com/clusterfs.html

[161 http://www.faas.ordrfcs/rfc 1094.html

[171 httD://www.stalker.com/notes/SFS.html

[181 http://terrascale.com/prod over e.html

[191 Futral, William T., “InfiniBand Architecture - Server I/O Solutions”, Intel Press, 2001
Development and Deployment, a Strategic Guide to

[20] www.sc-conference.org/sc2004/storcloud.html, November, 2004

[2 11 http://blockbuster.sourceforge.net/

[22] httD://www.rnDac.or&

[23] JHCHEN@sandia.gov and PPPEBAY ‘2 sandia.gov

[24] httd/onesis.sourceforge.net/

[25] http://www.Danasas.comAibrary.html

[26] http://wWw- 1 .ibm.com/servers/eserver/clusters/software/gDfs.Ddf

[27] Talpey, Tom, Shepler, Spencer, Bauman, Jon, htt~://www.ietf.org/internet-drafts/draft-ietf-nfsv4-sess-
0O.txt. July, 2004

18

http://www.stalker.com/notes/SFS.html
http://www.sandia.gov/ASC/discom.html
http://netlab.caltech.edu/FAST
ftp://ftp.rfc-editor.org/in-notes/rfc3649.txt
http://www.faas.ordrfcs/rfc
http://terrascale.com/prod
http://blockbuster.sourceforge.net
mailto:JHCHEN@sandia.gov
http://sandia.gov
http://httd/onesis.sourceforge.net
http://www.Danasas.comAibrary.html
http://wWw

[28] S. Kent,”IPsec”, http://ietf.orp/rfc/rfc2401 .txt, November 1998

[29] http://h200O0 1. www2.hp.com/bc/docs/support/SupportManual/c0025703 1 /coo25703 1 .vdf

7 Acknowledgement

The authors would like to express our appreciation to Mitch Sukalski, Scott Cranford, and Jeff Decker
for their technical input and editorial comments. In addition, we would like to thank the Tri-lab StorCloud
team for their outstanding contributions, which made the demonstration a success at the Supercomputing
2004 conference. The infrastructure team members are Josh England, Michael lee, Matt Leininger, Mitch
Sukalski, Mitch Williams, and Parks Fields. The Scientific Application team included Joseph Kenny,
Curtis Janssen, Philippe Pebay, Jacqueline Chen, David Bremer, and Holger Jones.

http://ietf.orp/rfc/rfc2401
http://h200O0

Distribution

1 MS 9151 K. Washington.
1 MS 9 15 1 J. Handrock
1 MS 9158 M. W. Sukalski
1 MS 9158 J. P. Kenny
1 MS 9158 C. Jannsen
1 MS 9158 N. R. Bierbaum
1 MS 9158 S. Cranford
1 MS 9158 H. Y. Chen
1 MS 9159 S. Thomas
1 MS 9152 J. Friesen
1 MS 9158 D. Evensky
1 MS 9152 D. Cohen
1 MS 9158 J. England
1 MS 9159 M. Hardwick
1 MS 9151 C. Oien
1 MS 9004 B. Hess
1 MS 9011 3. Howard
1 MS 901 1 J. Van Randwyk
1 MS 901 1 F. Bielecki
1 MS 901 1 T. J. Toole
1 MS 9012 B. Maxwell
1 MS 9012 R. Gay
1 MS 9916 J. Berry
1 MS 9019 S. Carpenter
1 MS 0139 A. Hale
1 MS 0806 L. Stans
1 MS 0806 T. Pratt
1 MS 0806 L. Tolendino
1 MS 0806 S. Gossage
3 MS 9018 Central Technical Files, 8945-1
1 MS 0899 Technical Library, 9616
1 MS 9021 Classification Office, 851 1 for Technical Library, MS 0899,9616
1 MS 9021 Classification Office, 85 1 1 for DOE/OSTI
1 MS 0188 D. Chavez, LDRD Office, 1030

	IP STORAGE: A PERFORMANCE AND SECURITY STUDY, LDRD 04-1021
	ABSTRACT
	CONTENTS
	FIGURES
	1 Project Description
	2 iSCSl
	2.1 Background
	2.2 Benchmark Methodology
	2.3 Results and Analysis

	3 ISCSI-based Parallel Storage System
	3.1 Background
	3.2 Results

	4 The SC04 StorCloud Demonstration
	5 Conclusion and Future Work
	6 References
	7 Acknowledgement

