
SANDIA REPORT
SAND2004-5113
Unlimited Release
Printed October 2004

Manticore and CS Mode:
Parallelizable Encryption with Joint
Cipher-State Authentication

Erik Anderson, Cheryl Beaver, Timothy Draelos,
Richard Schroeppel, and Mark Torgerson
Cryptography and Information Systems Surety Department

Russell Miller
Digital Microelectronics Department

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNT Digital Library

https://core.ac.uk/display/71319273?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Issued by Sandia National Laboratories, operated for the United States Department of
Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government, nor any agency
thereof, nor any of their employees, nor any of their contractors, subcontractors, or their
employees, make any warranty, express or implied, or assume any legal liability or re-
sponsibility for the accuracy, completeness, or usefulness of any information, appara-
tus, product, or process disclosed, or represent that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United States Govern-
ment, any agency thereof, or any of their contractors or subcontractors. The views and
opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from
the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.doe.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/ordering.htm

D
EP

ARTMENT OF ENERG
Y

• •U
N

IT
ED

STATES OF AM

ER
IC

A

SAND2004-5113
Unlimited Release

Printed October 2004

Manticore and CS Mode: Parallelizable
Encryption with Joint Cipher-State

Authentication

Erik Anderson, Cheryl Beaver, Timothy Draelos,
Richard Schroeppel, and Mark Torgerson

Cryptography and Information Systems Surety Department

Russell Miller

Digital Microelectronics Department

Sandia National Laboratories
P.O. Box 5800

Albuquerque, NM 87185-0785

Abstract

We describe a new mode of encryption with inexpensive authentication,
which uses information from the internal state of the cipher to provide the
authentication. Our algorithms have a number of benefits: 1) the encryption
has properties similar to CBC mode, yet the encipherment and authentication
can be parallelized and/or pipelined, 2) the authentication overhead is minimal,
and 3) the authentication process remains resistant against some IV reuse.
We offer a Manticore class of authenticated encryption algorithms based on
cryptographic hash functions, which support variable block sizes up to twice
the hash output length and variable key lengths. A proof of security is presented
for the MTC4 and Pepper algorithms. We then generalize the construction to
create the Cipher-State (CS) mode of encryption that uses the internal state of
any round-based block cipher as an authenticator. We provide hardware and
software performance estimates for all of our constructions and give a concrete
example of the CS mode of encryption that uses AES as the encryption primitive
and adds a small speed overhead (10-15%) compared to AES alone.

3

Keywords: Authenticated Encryption, Encryption Mode, Cipher-State Mode, In-
expensive Authentication, Luby-Rackoff, Feistel, Middletext, Hash, Cipher, Manti-
core, MTC4, Pepper

4

Contents

1 Introduction . 7
2 Manticore4 (MTC4) . 8

2.1 Security Considerations . 9
2.2 Initialization Vector Considerations . 15

3 Reduced Manticore4 (RMTC4) . 16
4 2 Round Manticore (Pepper) . 17

4.1 Security of Pepper . 18
5 Cipher-State Mode of Encryption (CS) . 21

5.1 Security Considerations . 24
6 Software Implementation Results . 25
7 Hardware Implementation Results . 27
8 Conclusion . 27
References . 28

Appendix

A Test Vectors for CS-AES-128 . 31

Figures

1 Block diagram for the MTC4 algorithm. 10
2 Block diagram for the Pepper Algorithm. 18
3 Block diagram for the CS Mode. 23

Tables

1 Least primitive polynomials for selected degrees. 24
2 Software performance comparisons. 25
3 Hardware performance comparisons. 28

5

6

Manticore and CS Mode:
Parallelizable Encryption with

Joint Cipher-State
Authentication

1 Introduction

When choosing a cipher, its mode of operation, and method of authentication, one
needs to consider the security, speed, size, and functionality required by the appli-
cation. Data security schemes have typically relied on combining an encryption step
(with a mode of cipher operation) and a message authentication mechanism. These
separate processes lead to undesirable computational costs.

One would like to speed up the process by using information from the encryption
step for authentication. Recent research has considered authenticated encryption
schemes that are more efficient than current standards and practices of separate
data encryption and data authentication [11, 12, 24, 26]. In particular, OCB [24] is
parallelizable and offers CBC-like authenticated encryption with only two extra block
cipher invocations over that needed for encipherment alone. CCM [26], as specified
in NIST Draft Pub 800-38C, offers authenticated encryption with associated data
(AEAD) for AES, which accommodates a combination of secret and non-secret data
by authenticating all data and encrypting only secret data.

We strive to take a new and different approach - to examine using a cipher’s in-
ternal state as inputs for an authentication mechanism. We use the term ’Manticore’
to reflect the combination of cryptographic functions resulting from this encryption
method with joint cipher-state authentication. Our approach is also parallelizable,
yet exhibits many of the practical benefits of CBC mode. The authentication adds
minimal cost to the encryption process. The presented methods also offer security in
the face of initialization vector (IV) reuse, which, to our knowledge, existing authen-
ticated encryption mechanisms do not. Finally, given the landscape of cryptographic
algorithms, we have chosen to not pursue patents on these new algorithms so as not
to contribute to the current patent minefield. This report covers a superset of our
work that was published in [1].

We examine block ciphers comprised of 2r rounds. The authentication tag is a
function of the encryption state after r rounds. Our first construction, MTC4, is
based on a four round Feistel network with cryptographic hash functions as round
functions. Many of the components necessary for security can be added into the round
functions because of the hash algorithm’s ability to accept arbitrary length inputs. In
Section 2.1, the MTC4 algorithm is shown to be secure with respect to both privacy
and integrity, under general security assumptions.

7

Extensive research has been conducted on the security and construction of low
round Feistel ciphers. In [16], Luby and Rackoff show how to construct 2n-bit pseudo-
random permutations using a Feistel network. Their constructions are secure against
any adversary who has combined adaptive chosen plaintext and ciphertext attacks. In
[13], Knudsen provides a nice survey and analysis of the security bounds for low round
Feistel constructions. Much research has also been done finding practical instantia-
tions of low round Feistel networks using cryptographic hashes as round functions.
In [2, 17], the authors examine three round ciphers, while Lim [15] looks at four
round constructions. Naor and Reingold [19] and Patel, Ramzan, and Sundaram [21]
examine replacing some of the hash functions used in the various rounds with less
expensive function calls.

Section 3 presents a reduced computation version of MTC4, RMTC4, which uses a
more efficient function for rounds 1 and 4. In Section 4, we present a 2-round version
of the Manticore class of algorithms called Pepper and provide a proof of security.
Pepper is faster than MTC4, but it is not resistant to IV reuse.

For our last construction, discussed in Section 5, we show how to take an arbitrary
round-based cipher and extend it to provide inexpensive authentication. As with the
hash-based construction, the general version exhibits encryption properties similar
to CBC mode, is parallelizable, and the authentication adds minimal overhead and
provides security against some IV reuse. We use AES as a concrete example and
have submitted the CS (Cipher State) mode to NIST as a proposed mode of op-
eration for AES [20]. Sections 6 and 7 respectively present software and hardware
implementation results of our authenticated encryption constructions.

2 Manticore4 (MTC4)

As its namesake implies, our Manticore constructions comprise a number of common
elements. The basic cipher elements use cryptographic hash functions in a n-round
Feistel network and can be viewed as a variant of [15]. One attractive feature is the
ability of the hash to accept arbitrary sized inputs. This allows us to insert an IV,
round counter, and block counters into the round inputs in a simple fashion, which
provides properties similar to CBC mode, yet each block can be computed in parallel.
This construction can be used to create a block cipher of any bit length up to twice
the hash size. Of course, the hash may be truncated to produce shorter block sizes.
The key size is adjustable and impacts performance only when the input block size
of the hash function is exceeded.

The MTC4 algorithm is a 4-round ManTiCore construction. Let H be a crypto-
graphically strong hash function mapping an arbitrary number of bits to n bits. Let
K be a k-bit key and IV be a v-bit initialization vector. Let M = m1,m2, · · · ,m2j

be the message to be encrypted, where each mi is h bits in length. We assume the

8

message M is padded with some suitable padding scheme, if necessary, so it is a
multiple of 2n bits in length.

The following is the MTC4 algorithm, which is depicted in Figure 1.

MTC4
INPUT (IV,M),K
OUTPUT (IV,C,AUTH)
Set CS ← 0
For i from 1 to 2j − 1 by 2 do

Set x← mi ⊕H(K, IV, 0, i,mi+1)
Set y ← mi+1 ⊕H(K, IV, 1, i, x)
Set CS ← CS ⊕ x⊕ y
Set ci+1 ← x⊕H(K, IV, 2, i, y)
Set ci ← y ⊕H(K, IV, 3, i, ci+1)

Set AUTH = H(K, IV, 0, 0, CS)
RETURN (IV,C,AUTH)

To enable a security proof, the fields presented to the hash must be aligned to ensure
independence. Hence the sizes of the round and block counters must be consistent.
At a minimum, we need at least 2 bits to represent the round number and log2(j) bits
for the block number. Let u represent a round counter of fixed length and z a block
counter of fixed length. Although cryptographic hash functions accept arbitrary-
length inputs, typically they process a block of b bits at a time. For instance, SHA-
1 [8] operates on 512-bit blocks and outputs 160 bits. From an efficiency standpoint,
one should limit the parameter size so the arguments fit in one input block, that
is k + v + u + z + n ≤ h, where h is the input block size of the hash function
H. Given that they do, the expected speed of MTC4-SHA-1 is on the order of the
160/512 ∗ 1/2 = 5/32 times as fast as SHA-1. The cost to authenticate the entire
message is essentially that of having to hash only a single block of data. In addition,
both the encryption and authentication for each message block can be computed in
parallel, leaving a single hash of the combined pre-authenticators, CS, to complete
the process.

2.1 Security Considerations

When viewed strictly as a block cipher, MTC4’s security relies on the pseudorandom-
ness of a four-round Feistel network and the properties of a cryptographic hash. For
a wide range of key and block sizes, the non-inversion properties of a cryptographic
hash satisfy the definition for an ideal function as described in [13]. Thus, in MTC4
and like ciphers, the work to mount a key recovery attack, even given inputs and
outputs of the round functions, is the minimum of 1) exhaustion of the key space or
2) inversion of the hash. So if k ≤ n, the best method to recover the key is exhaus-
tion. In practice, the inputs and outputs of the round function are not given to an

9

m1 m2

HK,IV,1,1

HK,IV,2,1

c1 c2

HK,IV,1,2j-1

HK,IV,2,2j-1

m2j-1 m2j

c2j-1 c2j

H
K,IV,0,0

CS

AUTH

H
K,IV,0,1

HK,IV,3,1 HK,IV,3,2j-1

H
K,IV,0,2j-1

R0
IV,1

R1
IV,1

R2
IV,1

R3
IV,1

R0
IV,2j-1

R1
IV,2j-1

R2
IV,2j-1

R3
IV,2j-1L3

IV,1

L0
IV,1

L3
IV,2j-1

L0
IV,2j-1

CS1

CSi/2

CSj

Figure 1. Block diagram for the MTC4 algorithm.

adversary, so a non-exhaustive key recovery method is harder than inverting the hash
directly.

The strength of the authentication mechanism is tied to the collision resistance
property of the cryptographic hash. If one were to hold the IV fixed and publish
the secret key, and one were to assume that it takes work less than 2

h
2 to construct a

collision in the hash, then one would be able to push a known differential down to the
end of the second round with that same amount of work. The combining function for
the pre-authenticator, CS, is a simple XOR so one may combine several differentials
to create a collision in the pre-authenticator CS. There are a couple of things to note.
The collision resistance property of a cryptographic hash removes the possibility of
pushing differentials down to the second round. The fact that the key is indeed secret
means that one may use a function that is not perfectly collision resistant. What is
needed to foil the attack above is a function that, including a k-bit key, requires at
least 2

h
2 work to find a collision in the output. In the remainder of this section, we

take a more formal look at the security of MTC4.

There are two notions of security to consider. The first is message privacy, which
looks at the security of the encryption and decryption processes. The second is cipher-
text integrity, which measures the ability to force an authentication. For notational
purposes, we first provide a quick review of message privacy.

A symmetric scheme SE = (K, E,D) consists of three algorithms, a key gener-

10

ation algorithm K(n) that takes a security parameter n and returns a random key
K, and encryption and decryption algorithms EK ,DK respectively. The encryption

algorithm takes a message m and key K and returns a ciphertext C
R← EK(m),

either randomly or based on some predetermined state. The decryption algorithm
DK takes a ciphertext C and returns deterministically either a message m such that
(DK ◦ EK)(m) = m or the symbol ⊥, reflecting that C was not a valid ciphertext.

Definition (Indistinguishability of a Symmetric Encryption Scheme [6]) Let b
R←

{0, 1} and (m0,m1) denote two equal length plaintexts. Following [4], define the left-
or-right encryption oracle EK(LR(·, ·, b)), as the oracle taking queries of the form
(m0,m1) and returning either EK(m0) if b = 0 or EK(m1) if b = 1. A symmetric
encryption scheme is said to be secure against chosen-plaintext attacks if for any ad-
versary Acpa with oracle access to EK(LR(·, ·, b)), denoted A

EK(LR(·,·,b))
cpa , the advantage

in determining the correct value of b is negligible.

More formally, let SE = (K, E,D) be a symmetric encryption scheme and consider
the following experiment.

Expind−cpa−b
SE,Acpa

1. K
R← K

2. d← AEK(LR(·,·,b))
cpa

3. Return d

The advantage obtained by the adversary in distinguishing the correct value of b is
defined as

Advind−cpa
SE ,Acpa

:=
∣∣∣Pr[Expind−cpa−1

SE,Acpa
= 1]− Pr[Expind−cpa−0

SE,Acpa
= 1]

∣∣∣.

The advantage of the encryption scheme SE over all adversaries Acpa making q queries
totaling ≤ µ bits is defined as

Advind−cpa
SE (q, µ) := max

Acpa

{Advind−cpa
SE ,Acpa

}.

Proposition 1. Let MTC4 denote the 4-round Manticore encryption scheme with
round function f , where f is a random function taking n+v+u+z-bits to n-bits. Then
for any q queries totaling ≤ µ bits, the distinguishing advantage Advind−cpa

MTC4 (q, µ) = 0
in the IND-CPA model.

Proof: Let Acpa be any distinguishing algorithm and Γ the set of all transcripts σ
such that Acpa(σ) = 1. Let TMTC4 denote the transcript generated by Acpa given

11

oracle access to MTC4. The advantage may be rewritten as

Advind−cpa
MTC4,Acpa

(q, µ) =
∣∣∣Pr[Expind−cpa−1

MTC4,Acpa
= 1]− Pr[Expind−cpa−0

MTC4,Acpa
= 1]

∣∣∣

=
∣∣∣
∑

σ∈Γ

(
PrMTC4[TMTC4 = σ | b = 1]−

PrMTC4[TMTC4 = σ | b = 0]
)∣∣∣.

Notice that for each round in the encryption block, the IV/counter value pairs are
unique. This implies the output of the each round, including the final authentication
tag AUTH, are random. Therefore for every transcript σ,

PrMTC4[TMTC4 = σ | b = 1] = PrMTC4[TMTC4 = σ | b = 0]

=
1

2nµ
· 1

2nq
.

where q and µ are the number of different IV’s and bits queried. Therefore it follows,

Advind−cpa
MTC4 (q, µ) = 0.

Since MTC4’s message security and authentication are integrated, one must be cau-
tious that neither leaks enough information to allow an adversary to mount an attack.
To ensure that tapping the internal state of the cipher does not compromise security,
we need to show that the ciphertext integrity is protected.

Definition (Integrity Awareness [6]) Let SE = (K, E,D) be a symmetric encryption
scheme and Actxt an adversary with access to two oracles, EK and VK . The oracle VK

takes a ciphertext C and returns 1 if there is a plaintext m satisfying EK(m) = C and
0 otherwise. If after C1, . . . , Cq oracle replies to EK, Actxt can produce a ciphertext C
different from Ci, i = 1, . . . , q, satisfying VK(C) = 1, then we say Actxt was successful.
The adversary’s success is defined as

Advint−ctxt
SE,Actxt

:= Pr[VK(C) = 1].

The ciphertext integrity for the symmetric encryption scheme SE over all adversaries
Actxt is defined as

Advint−ctxt
SE (q, µ) := max

Actxt

{Advint−ctxt
SE ,Actxt

}.

Proposition 2. Suppose MTC4 has round function f , where f is a random function
taking n + v + u + z bits to n bits. Then for any q queries totaling ≤ µ bits, the
advantage in forging an authentication is

Advind−ctxt
MTC4 (q, µ) =

1

2n
+

1

2n

(
1− 1

2n

)
.

Proof: Let Actxt be any algorithm as defined in the Integrity Awareness model
and let σ denote the transcript generated by Actxt’s plaintext query/ciphertext replies.
We will use the word ciphertext loosely to define the ciphertext/authentication tag
pair. We observe that the final integrity check query made by Actxt must satisfy one
of the following four cases:

12

Case 1: Actxt queries a ciphertext using an IV that it has not
seen before.

Case 2: Actxt queries a ciphertext/IV pair using a previously
seen IV, but the ciphertext is longer than the one con-
tained in σ.

Case 3: Actxt queries a ciphertext/IV pair that is either shorter
or the same length as that contained in σ, but at least
one of the ciphertext blocks is changed by Actxt.

Case 4: Actxt queries a truncated version of a ciphertext/IV
pair contained in σ.

Recall the advantage Actxt achieves in forging an authentication is defined as

Advint−ctxt
MTC4,Actxt

:= Pr[VK(C) = 1].

If we let Ψ denote the set of all ciphertext such that VK(C) = 1, the above equation
can be rewritten as

Advint−ctxt
MTC4,Actxt

=
∑

σ

Pr[Ψ 3 C ← Actxt | TMTC4 = σ] · Pr[TMTC4 = σ].

If we can show for arbitrary transcripts σ that Actxt’s advantage is bounded above by
some negligible factor for each of the four cases, then our claim will follow. We now
analyze each case separately.

Case 1 is straightforward since the authenticator has never seen an input with this
type of IV. Hence Pr[Ψ 3 C ← Actxt | TMTC4 = σ] = 1/2n. In Case 2, the output
of both RIV,inew

1 and RIV,inew

2 for each new counter value inew is random, since they
are both independent of the transcript σ. Algorithm Actxt may choose to keep the
same authentication tag AuthIV in its final query or replace it with another. It is
not difficult to show the best choice for Actxt is not to change AuthIV . Therefore the
probability of success is no larger than

Pr[Ψ 3 C ← Actxt | TMTC4 = σ] (1)

≤ Pr
[
CSIV

new = CSIV
old or CSIV

new 6= CSIV
old and

f
(
IV.0.0.CSIV

new

)
= AuthIV | TMTC4 = σ

]

=
1

2n
+

1

2n

(
1 − 1

2n

)
.

For Case 3, there are two different types of attacks that Actxt may choose from.
Without loss of generality, we will assume that only one ciphertext block is changed
and all the rest remain untouched. Changing several ciphertext blocks does not give
Actxt an advantage. Given this assumption, the two cases are:

13

(3.a) For some i, the left hand output LIV,i
3 is changed,

but the right hand RIV,i
3 remains the same.

(3.b) For some i, the right hand output RIV,i
3 is changed.

For case 3.a, observe the value RIV,i
2 must be different from the original, since LIV,i

3

has been modified. The output f(IV.2.i.RIV,i
2) must be random and hence following

Equation 2, Actxt’s success can be no larger than 1/2n + 1/2n(1 − 1/2n). Case 3.b
follows the same reasoning, except now the probability that CSIV

new = CSIV
old is no

longer 1/2n. In particular, we have

Pr[CSIV
new = CSIV

old | TMTC4 = σ]

= Pr[RIV,i
2,new = RIV,i

2,old and RIV,i
1,new = RIV,i

1,old or

RIV,i
2,new 6= RIV,i

2,old and RIV,i
2,new ⊕RIV,i

1,new = RIV,i
2,old ⊕RIV,i

1,old]

= 0 +
1

2n

(
1 − 1

2n

)
.

Therefore,

Pr[Ψ 3 C ← Actxt | TMTC4 = σ] =
1

2n

(
1− 1

2n

)
+

1

2n

(
1 − 1

2n

(
1 − 1

2n

))
.

For the fourth and final case, suppose Actxt returns a query to a truncated version
of an IV with mIV blocks. Let m′

IV < mIV denote the number of blocks in the
truncated ciphertext. Since,

CSIV
new = CSIV

old ⇔
mIV∑

i=m′
IV +1

(
f(IV.0.i.RIV,i

0)⊕ f(IV.1.i.RIV,i
1)

⊕ LIV,i
0 ⊕RIV,i

0

)
= 0

and TMTC4 = σ ⇔ for each IV and i = 1, . . . ,mIV

(LIV,i
0 , RIV,i

0) input

f(IV.0.i.RIV,i
0)⊕ f(IV.2.i.RIV,i

2) = LIV,i
0 ⊕RIV,i

3

f(IV.1.i.RIV,i
1)⊕ f(IV.3.i.RIV,i

3) = RIV,i
0 ⊕ LIV,i

3

f(IV.0.0.CSIV) = AuthIV

are independent events, it follows that

Pr[Ψ 3 C ← Actxt | TMTC4 = σ]

≤ Pr[CSIV
new = CSIV

old | TMTC4 = σ]+

Pr[CSIV
new 6= CSIV

old and

f(IV.0.0.CSIV
new) = AuthIV | TMTC4 = σ]

=
1

2n
+

1

2n

(
1− 1

2n

)
.

14

In each of the four cases, the probability that Actxt successfully returns an au-
thenticated ciphertext after seeing an arbitrary transcript σ is bounded above by
1/2n + 1/2n(1 − 1/2n). Therefore,

Advint−ctxt
MTC4,Actxt

(q, µ)

=
∑

σ

Pr[Ψ 3 C ← Actxt | TMTC4 = σ] · Pr[TMTC4 = σ]

≤
∑

σ

(1

2n
+

1

2n

(
1 − 1

2n

))
· Pr[TMTC4 = σ]

=
1

2n
+

1

2n

(
1− 1

2n

)
.

Equality holds when Actxt chooses Case 2, 3.a, or 4 for its final query. Hence,

Advint−ctxt
MTC4 (q, µ) =

1

2n
+

1

2n

(
1− 1

2n

)
.

It is important to note that in each of the above propositions we assumed our cryp-
tographic primitive was perfectly random. Similar security results follow whenever
we assume our primitive is a pseudorandom function.

2.2 Initialization Vector Considerations

In a typical cipher design, the codebook mode of operation is undesirable, since re-
peats in plaintext give repeats in ciphertext. CBC mode overcomes this to some
extent, since repeats in the plaintext do not generally produce repeats in the cipher-
text. Further, if two identical messages have different IV s, then they encrypt to
different values. However, given a repeated IV , if two messages agree on the first few
blocks of plaintext, then CBC mode will return ciphertexts that agree in the same
positions.

Because of the counters, MTC4 has some CBC-like properties. In particular,
repeated plaintext blocks in the same message encrypt to different values, and given
identical messages with different IV s, the correlation between the two ciphertexts is
negligible. However, given a repeated IV , two messages that have identical plaintext
blocks in identical positions will produce identical ciphertext in that position. This
is a little weaker than what occurs in CBC mode.

The assumption of unique IV s, counters, nonces and the like are often used in
cryptographic designs to allow proofs of security in various adversarial models. The
fact that when IV s are repeated, plaintext blocks in equal positions give equal ci-
phertext implies that the cipher can be distinguished from random. This is also true
of most cryptographic designs that rely on unique message nonces to attain the de-
sired level of security. Unfortunately, many of these other designs also have easily
exploited weaknesses whenever an IV is repeated. For instance, the authentication

15

mechanisms of both XORMAC [5] and OCB [24] are trivially broken with a few
messages processed with the same IV .

Since security under nonce reuse is difficult, the solution is often to insist the
implementation never reuse nonces and so pass responsibility to the implementors.
However, nonce reuse is a practical concern and may result from natural or malicious
causes. This must be addressed widely from the management down through the hard-
ware. For instance, if the particular hardware supporting an algorithm is rebooted,
often sequence numbers and the like simply start over.

Our goal is to offer a scheme that addresses a pragmatic set of system-wide secu-
rity issues, including security under nonce reuse, that has measured degradation in
security when various suppositions are not met, rather than a more brittle approach
where it is disastrous to reuse an IV . To this end, the inputs of our authentication
designs are key dependent and never exposed. Even if an adversary has multiple
messages processed with the same IV , the advantage in foiling the authentication
mechanism is limited.

3 Reduced Manticore4 (RMTC4)

The MTC4 algorithm incorporates very attractive qualities of integral authentication
with the positive aspects of CBC encryption using a single cryptographic primitive.
The ability to execute the algorithm in parallel for multiple-block messages offers the
potential for high-performance security. Additional efficiency options to speed up the
construction are also possible. One option is to devise and use a faster cryptographic
hash function. It is important to note that noninvertibility is a necessary attribute of
the hash function used in the Manticore algorithms, but the requirement for collision
resistance can be weakened. Only collision resistance of the keyed hash, with unknown
key, is required. This observation offers fertile research ground for modifying existing
or devising new hash functions suitable for MTC4.

Another option of speeding up MTC4 is to follow the approach of [21, 22] and
require less computation in the first and last round functions. The following algorithm
is a straightforward application of the ideas of Patel, et al [21] to MTC4. Reduced
Manticore4 (RMTC4) is a four-round Feistel construction, where the second and third
round functions are cryptographic hash functions, but the first and last rounds are
not.
Let H be a cryptographically strong hash function mapping an arbitrary number of
bits to h bits. Let K be a k-bit key and IV be a v-bit initialization vector. Let
M = m1,m2, · · · ,m2j be the message to be encrypted, where each mi is h bits in
length. We assume the message M is padded with some suitable padding scheme, if
necessary, so it is a multiple of 2h bits in length.

16

RMTC4
INPUT (IV,M),K
OUTPUT (IV,C,AUTH)
Set k1 ← H(K, 1), k2 ← H(K, 2), k3 ← H(K, 3), k4← H(K, 4)
Set CS ← 0
For i from 1 to 2j − 1 by 2 do

Set x← mi ⊕ Fk1,k2(mi+1)
Set y ← mi+1 ⊕H(K, IV, 0, i, x)
Set CS ← CS ⊕ x⊕ y
Set ci+1 ← x⊕H(K, IV, 1, i, y)
Set ci ← y ⊕ Fk3 ,k4(ci+1)

Set AUTH = H(K, IV, 2, 0, CS)
RETURN (IV,C,AUTH)

Depending on the relative speed of F verses H, RMTC4 encryption is up to twice
as fast as MTC4. Naor and Reingold [19] give two alternatives for F to retain security
of the cipher. The first is the notion of pairwise independence. They give the following

as an example. Let G be a finite field. Then Fa,b(x)
def
= ax + b, where a 6= 0, b ∈ G

are uniformly distributed and pairwise independent. In particular, one may use the
field G = GF (2n), which can be efficiently implemented in hardware. See Sections
6 and 7 for results of our implementations of this linear function defined over prime
fields with primes 160-bits and 128-bits in size.

4 2 Round Manticore (Pepper)

In this section, we present a version of Manticore with two rounds that we call Pepper
because of its increased speed. Pepper is a very fast authenticated encryption scheme
that uses the internal state of the cipher for authentication and is provably secure
whenever the underlying primitives are pseudorandom. It is based on a 2 round Luby-
Rackoff block cipher, which is the minimal number of rounds needed for cryptographic
security. The running pre-authenticator is an XOR of the left-hand plaintext input
and right-hand ciphertext output of each block cipher. This method provides the best
cryptographic security out of any 2 round Luby-Rackoff based schemes that use an
XOR of the internal state for the pre-authenticator. The authenticated encryption
scheme Pepper is described as follows.

Let M = m1,m2, · · · ,m2j be the message to be encrypted, where each mi is n bits
in length. We assume the message M is padded with some suitable padding scheme,
if necessary, so it is a multiple of 2n bits in length. Let u represent a 1-bit round
counter of and z a block counter of fixed length. Let FK be a pseudorandom function
mapping v+u+z+n-bits to n-bits and IV a v-bit message specific initialization vector.

17

m1 m2

c1 c2

m2j-1 m2j

c2j-1 c2j

H
K,IV,0,0

CS

AUTH

H
K,IV,0,1

HK,IV,1,1 HK,IV,1,2j-1

H
K,IV,0,2j-1

R0
IV,1

R1
IV,1

R0
IV,2j-1

R1
IV,2j-1L1

IV,1

L0
IV,1

L1
IV,2j-1

L0
IV,2j-1

Figure 2. Block diagram for the Pepper Algorithm.

Pepper
INPUT (IV,M),K
OUTPUT (IV,C,AUTH)
Set CS ← 0
For i from 1 to 2j − 1 by 2 do

Set CS ← CS ⊕ FK(IV, 0, i,mi+1)
Set ci+1 ← mi ⊕ FK(IV, 0, i,mi+1)
Set ci ← mi+1 ⊕ FK(IV, 1, i, ci+1)

Set AUTH = FK(IV, 0, 0, CS)
RETURN (IV,C,AUTH)

4.1 Security of Pepper

Refer to Section 2.1 for security definitions. We assume a unique IV is used per
encryption.

Proposition 3. Let the authenticated encryption scheme Pepper have round function
f , where f is a random function taking n + v + u + z-bits to n-bits. Then for any
q queries totaling ≤ µ bits, the distinguishing advantage Advind−cpa

Pepper (q, µ) = 0 in the
IND-CPA model.

Proof: Let Acpa be any distinguishing algorithm and Γ the set of all transcripts σ
such that Acpa(σ) = 1. Without loss of generality we will assume Acpa is deterministic
and chooses queries that maximizes its advantage. Let TPepper denote the transcript

18

generated by Acpa given oracle access to Pepper. The advantage may be rewritten as

Advind−cpa
Pepper,Acpa

(q, µ) =
∣∣∣Pr[Expind−cpa−1

Pepper,Acpa
= 1]− Pr[Expind−cpa−0

Pepper,Acpa
= 1]

∣∣∣

=
∣∣∣
∑

σ∈Γ

(
Pr[TPepper = σ | b = 1]−

Pr[TPepper = σ | b = 0]
)∣∣∣.

Notice that for each round in the encryption block, the IV/counter value pairs are
unique. This implies the output of the each round, including the final authentication
tag AUTH, are random. Therefore for every transcript σ,

Pr[TPepper = σ | b = 1] = Pr[TPepper = σ | b = 0]

=
1

2nµ
· 1

2nq
.

where q and µ are the number of different IV’s and bits queried. Therefore it follows,

Advind−cpa
Pepper (q, µ) = 0.

Proposition 4. Suppose Pepper has round function f , where f is a random function
taking n + v + u + z-bits to n-bits. Then for any q queries totaling ≤ µ bits, the
advantage in forging an authentication is

Advint−ctxt
Pepper (q, µ) <

δ + 2

2n
where δ = µ/2n.

Proof: Let Actxt be any algorithm as defined in the Integrity Awareness model
and let σ denote the transcript generated by Actxt’s plaintext query/ciphertext replies.
We will use the word ciphertext loosely to define the ciphertext/authentication tag
pair. We observe that the final integrity check query made by Actxt must satisfy one
of the following four cases:

Case 1: Actxt queries a ciphertext using an IV that it has not
seen before.

Case 2: Actxt queries a ciphertext/IV pair using a previously
seen IV, but the ciphertext is longer than the one con-
tained in σ.

Case 3: Actxt queries a ciphertext/IV pair that is either shorter
or the same length as that contained in σ, but at least
one of the ciphertext blocks is changed by Actxt.

Case 4: Actxt queries a truncated version of a ciphertext/IV
pair contained in σ.

19

Recall the advantage Actxt achieves in forging an authentication is defined as

Advint−ctxt
Pepper,Actxt

:= Pr[VK(C) = 1].

If we let Ψ denote the set of all ciphertext such that VK(C) = 1, the above equation
can be rewritten as

Advint−ctxt
Pepper,Actxt

=
∑

σ

Pr[Ψ 3 C ← Actxt | TPepper = σ] · Pr[TPepper = σ].

If we can show that in each of the four cases Actxt’s advantage is bounded above by
some negligible factor over all but a small number of transcripts, then our claim will
follow. We now analyze each case separately.

Case 1 is straightforward since the authenticator has never seen an input with this
type of IV. Hence Pr[Ψ 3 C ← Actxt | TPepper = σ] = 1/2n for arbitrary transcripts

σ. In Case 2, the output of both RIV,inew

0 and RIV,inew

1 for each new counter value
inew is random, since they are both independent of the transcript σ. Algorithm Actxt

may choose to keep the same authentication tag AuthIV in its final query or replace
it with another. It is not difficult to show the best choice for Actxt is not to change
AuthIV . Therefore the probability of success is no larger than

Pr[Ψ 3 C ← Actxt | TPepper = σ] (2)

≤ Pr
[
CSIV

new = CSIV
old or CSIV

new 6= CSIV
old and

f
(
IV.0.0.CSIV

new

)
= AuthIV | TPepper = σ

]

=
1

2n
+

1

2n

(
1 − 1

2n

)
.

For Case 3, there are two different types of attacks that Actxt may choose from.
Without loss of generality, we will assume that only one ciphertext block is changed
and all the rest remain untouched. Changing several ciphertext blocks does not give
Actxt an advantage. Given this assumption, the two cases are:

(3.a) For some i, the left hand output LIV,i
1 is changed,

but the right hand RIV,i
1 remains the same.

(3.b) For some i, the right hand output RIV,i
1 is changed.

For case 3.a, observe the value RIV,i
0 must be different from the original, since LIV,i

1

has been modified. The output f(IV.0.i.RIV,i
0) must be random and hence following

Equation 2, Actxt’s success can be no larger than 1/2n + 1/2n(1 − 1/2n). Case 3.b
follows the same reasoning, except now the probability that CSIV

new = CSIV
old is no

longer 1/2n. In particular, we have

Pr[CSIV
new = CSIV

old | TPepper = σ]

= Pr[RIV,i
0,new = RIV,i

0,old or RIV,i
0,new 6= RIV,i

0,old and

LIV,i
0,new ⊕RIV,i

1,new = LIV,i
0,old ⊕RIV,i

1,old]

=
1

2n
+

1

2n

(
1− 1

2n

)
.

20

Therefore,

Pr[Ψ 3 C ← Actxt | TPepper = σ] =
3

2n

(
1− 1

2n

)
+

1

23n
.

For the fourth and final case, suppose Actxt returns a query to a truncated version
of an IV with mIV blocks. Let Λ be the set of all transcripts σ such that,

mIV∑

i=m′
IV +1

(
LIV,i

0 ⊕RIV,i
1

)
= 0 for some IV and m′

IV < mIV (3)

Since CSIV
new = CSIV

old if and only if Equation 3 holds, it follows that

Pr[Ψ 3 C ← Actxt | TPepper = σ] =

{
1 : if σ ∈ Λ
1
2n : else

In each of the four cases, the probability that Actxt successfully returns an au-
thenticated ciphertext after seeing a transcript σ /∈ Λ is bounded above by 3/2n.
Therefore if we let δ = µ/2n, it follows that

Advint−ctxt
Pepper,Actxt

(q, µ)

=
∑

σ

Pr[Ψ 3 C ← Actxt | TPepper = σ] · Pr[TPepper = σ]

<
∑

σ∈Λ

Pr[TPepper = σ] +
∑

σ/∈Λ

3

2n
· Pr[TPepper = σ]

< Pr[Λ 3 σ ← TPepper] +
3

2n

≤ δ − 1

2n
+

3

2n
.

Hence,

Advint−ctxt
Pepper (q, µ) <

δ + 2

2n
.

5 Cipher-State Mode of Encryption (CS)

MTC4 is a specific implementation of a Luby-Rackoff cipher using internal state for
authentication. Here we examine a more general case and propose a simple method
of adding authentication to any round-based block cipher as a mode of encryption.
This provides a computationally low cost alternative to CBC mode, with stronger
authentication properties. It is parallelizable, allowing faster execution. As with
MTC4, the new idea is to tap into the middle of the encryption for authentication
information. Of course, the security of the construction depends on the security

21

of the underlying cipher. The algorithm uses a 2n-round, d-bit block cipher, E.
Half-way through each block encryption, the state (middletext) is tapped and non-
commutatively mixed into a running pre-authenticator, CS. The final value of the
pre-authenticator is passed through a one-way function and appended to the message.
The one-way function may be either created from the cipher, E, or a cryptographically
strong hash function, H.

We use a simple linear feedback shift register (LFSR) as a pseudo-random number
generator (PRNG) to pre-whiten the plaintext. The ciphertext is post-whitened with
the same parameter, R. Multiple steps of the PRNG and the authentication combin-
ing operation are easy to compute, facilitating parallelism. The polynomial selected
for the authentication combiner and the PRNG is the lexicographically least primi-
tive polynomial, p(x), of degree d. (A polynomial is primitive when x has maximum
order). For the CS algorithm with 128-bit AES, we use p(x) = x128 +x7 +x2 +x+1.
Table 1 shows the least primitive polynomials for various degrees.

The algorithm given below and depicted in Figure 3 illustrates the CS construc-
tion for a j-block message, M = m1, . . . ,mj, initialization vector, IV , and encryption
key, K.

CS
INPUT (IV,M),K
OUTPUT (IV,C,AUTH)
Set CS ← 0
Set R← E(K, IV ⊕K)⊕K
If R = 0, Set R = K
For i from 1 to j do

Set t← E1−n(K,mi ⊕R)
Set CS ← CS ∗ x (mod p(x)) ⊕ t
Set ci ← E(n+1)−2n(K, t)⊕R
Set R← R ∗ x (mod p(x))

IF using E only, Set AUTH = E(K,CS ⊕R)⊕ CS
ELSE, Set AUTH = H(K,CS,R)
RETURN (IV,C,AUTH)

The block cipher is split into two roughly equal pieces, E1−n and E(n+1)−2n. E1−n

returns the middletext after completing half of the rounds. In the case of AES, this
includes the initial XOR of the zeroth-round key, through five rounds of AES, finishing
after the XOR of the fifth-round round key. The middletext is tapped to compute
the running pre-authenticator. The second half of AES resumes with the middletext,
starting with the S-box mapping of round 6, and continuing through round 10. Since
the middletext is not altered, but merely tapped for authentication, the combined
result of the two cipher halves is the same as an ordinary AES encryption of the

22

m1 R1

AES1-5(K, m)

AES(K, A Rj+1) A

A

AUTH

AES(K, IV K) K
R1

t1

AES5-10(K, t1)

m1

c1

c R1

m

c

mj Rj

AES1-5(K, m)

tj

AES5-10(K, tj)

mj

cj

c Rj

m

c

R1*xi-1(mod p(x))
Ri

Σti*xj-i(mod p(x))

ti

j

i=1

Figure 3. Block diagram for the CS Mode.

plaintext mi⊕R. Appendix A provides test vectors for CS mode using AES-128. For
the additional-round variants of AES, the extra rounds are divided evenly between
the two halves. For definiteness, any odd round goes with the first half.

We propose that new ciphers should define this tap point. The location is some-
what arbitrary, but should be far enough away from the start and end of the encryp-
tion so that the middletext has no simple relationship to either plaintext or ciphertext.
Placing the tap point near the middle of the cipher provides the maximum protection
against the differential attack sketched below.

The non-commutative combining operation in the pre-authenticator, CS, is cheap
to compute, simple to advance multiple steps, and the results from separate compu-
tations are easy to combine. For both encryption and decryption, the authentication
combiner and whitening PRNG can be easily adjusted for several kinds of parallelism:
low-level parallelism where successive cipher blocks are parceled out; higher-level par-
allelism where larger chunks of the message are handled by different processors; and
even pipelined chip architectures that process consecutive cipher blocks in consecutive
clocks. The adjustments are straightforward for the more complex cases of pipelined
hardware that intermixes processing for multiple messages, or when messages are
broken into variable-sized pieces, or even when several kinds of parallelism are used
together.

The IV is used to initialize the LFSR-PRNG for whitening the plaintext and
concealing the raw ciphertext, and as an ingredient in the final message authenticator.
Ideally, the IV s are unpredictable and cannot be influenced by an opponent. As
with the MTC algorithms, nonrepeated IV s are preferred. However, the fact that

23

Table 1. Least primitive polynomials for selected degrees.

Degree Primitive Polynomial Low-order Portion (Hex)
64 x64 + x4 + x3 + x + 1 1B
96 x96 + x7 + x6 + x4 + x3 + x2 + 1 DD
128 x128 + x7 + x2 + x + 1 87
160 x160 + x5 + x3 + x2 + 1 2D
192 x192 + x8 + x6 + x4 + x3 + x2 + 1 15D
224 x224 + x8 + x7 + x5 + x4 + x2 + 1 1B5
256 x256 + x10 + x5 + x2 + 1 425
320 x320 + x4 + x3 + x + 1 1B
384 x384 + x10 + x6 + x4 + x3 + x2 + 1 45D
512 x512 + x8 + x5 + x2 + 1 125
768 x768 + x13 + x8 + x7 + x5 + x3 + 1 21A9
1024 x1024 + x9 + x8 + x7 + x5 + x + 1 3A3

the authentication mechanism is hidden from the adversary’s view means that the
method has a certain amount of resistance to IV reuse.

As a final note, the use of an involutional block cipher is not recommended with
this scheme. We don’t know of such ciphers in widespread use.

5.1 Security Considerations

One security concern with CS-AES is that it could somehow leak information from
the middle of an encryption. We consider this below.

The authenticator value AUTH is computed in a finalization step from the pre-
authenticator value CS. This step is either a strong hash or a strong cipher, so we
expect no detectable relationship between the pre-authenticator values and authen-
ticator values.

In the strongest attack we know, we assume a long period of IV reuse for the
attacker to make headway. (If the IV is changed even occasionally, the attacker has
no prospect of collecting a statistically useful amount of message data.) Any attack
based on finding weak correlations between middletext values of related messages is
doomed, since weak correlations will be destroyed by the finalization step.The only
useful datum for an attacker is that two messages have the same authenticator. From
this, he guesses that the pre-authenticator values are also the same, and he tries to de-
duce a relationship between the messages. Two different single-block messages (with
the same IV and same key) will have different middletexts and therefore differing
pre-authenticator values. So, nontrivial collisions of single-block messages are impos-

24

Table 2. Software performance comparisons.

Algorithm MByte/Sec Algorithm MByte/Sec
SHA1 77 AES 69
MTC4-SHA1 14 CS-AES-AES 61
RMTC4-SHA1 18 CS-AES-SHA1 61
Pepper-SHA1 26 CS-AES-MD5 61
MD5 239 AES-CBC-HMAC-SHA-1 32
MTC4-MD5 28 AES-CBC-HMAC-MD5 44
RMTC4-MD5 29
Pepper-MD5 56

sible. (We can take this a step further: Take a multi-block message and vary one
particular block within it, running through all possible values. Then the ciphertext
and middletext will run through all values, and so will the pre-authenticator. So, two
messages which match in all but one block will have differing pre-authenticators.)

For two-block messages, the attacker can try to engineer a pre-authenticator col-
lision using differentials. (XOR-based differentials propagate transparently through
the PRNG whitening step.) He uses a two-block differential (δ1, δ2), and hopes that
the encryption of the two-block messages (P1, P2) and (P1⊕ δ1, P2⊕ δ2) will produce
compatible middletext differentials. The middletexts are (M1, M2) and (N1, N2).
For a pre-authenticator collision, the equation M1 ∗ x (mod p(x)) ⊕ M2 = N1 ∗ x
(mod p(x))⊕N2 must hold. This will happen if the second-block differential M2⊕N2

is a one-bit left shift of the first-block differential M1 ⊕N1. Also, the high-order-bit
of the first-block differential is 0, so no carry occurs in the multiplication by x. The
chance of a match is the square of the individual probabilities for the half-cipher
differentials, which is comparable to the chance of a differential propagating through
the full cipher. For a strong cipher, like AES, this is negligible.

6 Software Implementation Results

To test the performance of our algorithms, we chose Wei Dai’s Crypto++ 5.1 C++
cryptographic library [7] as a common framework. The Crypto++ library uses Bar-
reto’s implementation of AES [3]. Test programs were compiled using Microsoft Visual
C++ 7.1 and executed on a Dell Precision 340 computer with 2.53 GHz Pentium IV
processor. 1024-byte messages were used. Table 2 provides comparative figures of the
Manticore algorithms and the CS-AES mode against core cryptographic primitives
and the typical usage of AES in CBC mode for encryption with HMAC authentication
[14].

25

Our implementation of the MTC4 algorithm is limited by the speed of the prim-
itives. Improvements on the hash primitives are worth investigating. One simple
enhancement is to use only the compression functions of the hash algorithms (i.e., no
byte-swapping or padding). The number of bytes used for the round and block coun-
ters in MTC4 were 1 and 4 respectively. The timing estimates of MTC4 discussed
in Section 2 suggest that MTC4-SHA-1 and MTC4-MD5 should be approximately
6 and 8 times slower, respectively, than simply hashing the same message. Taking
the authentication steps and extra XOR operations into account, these estimates are
borne out. MD5 [23] has recently been shown to have collisions [25], but these attacks
don’t work against a keyed hash, as we use it in our Manticore algorithms.

The RMTC4 algorithms are implemented using a pairwise independent permuta-
tion for Rounds 1 and 4. Specifically, we compute Fki,ki+1(m) = (kim (mod p))+ki+1

(mod 2h), where ki and ki+1 are derived from K using the available hash function
(i.e., ki = H(K, i)), and p is chosen to be (2160 − 47) and (2128 − 159) for SHA-1
and MD5 respectively and h = 160 and 128 respectively. This function results in a
3 times speedup of Rounds 1 and 4 for RMTC4-SHA-1 and a 2 times speedup for
RMTC4-MD5.

The CS mode of encryption can run about as fast as the underlying cipher plus
a small overhead for authentication in each round and at the end. In software, a
significant fraction of the overhead is due to the mixing operation in the whitening
parameter, R, and for the running authentication, A. The speed of this operation
would be negligible in hardware.

The most common computers today use the register-challenged Pentium micro-
processor. Without care, an AES encryption program can wreak havoc with a com-
piler’s register allocation on the Pentium. To counter this problem, we mention a few
programming tricks for improving performance.

Typically, the plaintext message will be supplied as a large array of bytes, with
multiple calls to the encryption routine to process the entire array. For the CS-AES
implementation, the pre-whitening of the plaintext can be done in a separate pass
over the array before any calls to the encryption routine. If assembly language is
available, the entire R variable can be kept in registers. The carry bit and Pentium
rotate instruction are used in the multiplication R ∗ x. Similarly, the post-whitening
of the ciphertext can be carried out as a separate pass over the ciphertext array, after
all the encryptions are done.

The running pre-authenticator A can be pre-multiplied by x before entering the
encryption routine. Then, the middle round of the encryption need only XOR the
middletext cipher state into A. This makes a minimal disturbance to the AES en-
cryption routine. Even better is to simply record all of the middletext cipher states in
a separate array, and then, after all the encryptions are completed, compute A with
a pass over the array of saved middletext.

26

Another aspect of highly pipelined machines is the large penalty for a mispredicted-
predicted branch. The typical way of coding the modular reduction by the LFSR
polynomial p(x) is to check the high order bit with an IF statement, and if needed,
XOR a small fixup constant, F , into the reduced value. The no-branch way to do
this is to always XOR, with a value of either 0 or F , computed from the high-order
bit. This is most easily done with a conditional-move instruction, when available.
The Pentium SETC instruction, which moves the carry bit into a register can also
be used to one’s advantage. Alternatively, if H is the high order bit, the expression
((H << 8) − 1) AND F will be 0 when H is 0, and F when H is 1. Although
somewhat ugly, this is better than the IF statement.

Finally, we note that we have utilized Brian Gladman’s highly optimized AES im-
plementations [10] and identified a slight complication in the decryption/authentication
phase of the CS-AES mode. Gladman’s decryption routine uses a different byte ar-
rangement of the cipher state and never explicitly calculates the end-of-round-5 mid-
dletext that we use for the authentication. We chose to write a modified round 5 to
compute the required middletext.

The MTC4 and RMTC4 algorithms and the CS mode of encryption are block-
parallelizable, which will make implementations with a parallelization capability faster
with no loss of security. Future work will include optimizing our algorithms as well
as fully utilizing Gladman’s efficient AES implementations.

7 Hardware Implementation Results

In this section, we present hardware performance estimates of our encryption modes
compared to their underlying cryptographic primitives. Table 3 summarizes the sim-
ulation results of VHDL and Verilog code synthesized to a target CMOS 0.5µm, 5V
library, a radiation-hardened technology. A 30 MHz clock rate was used for the timing
figures.

For the MTC4, RMTC4, and Pepper algorithms, we implemented SHA-1 and a
160-bit modular multiplier in a VHDL Register-Transfer-Level design. The SHA-1
algorithm and modular multiply were optimized to use a shift register for the main
data storage, which reduced the area used, with a corresponding increase in speed.
In RMTC4, we use GF(2) modular arithmetic operations to compute Fki,ki+1(m) in
Rounds 1 and 4.

8 Conclusion

We take advantage of the internal state of a secure block cipher to provide secure au-
thentication. The ciphers we present possess the beneficial attributes of CBC mode

27

Table 3. Hardware performance comparisons.

Algorithm Gate Count Timing
SHA-1 13K 193 clocks/512-bit block

MTC4-SHA-1 25K 193 + 776 clocks/320-bit block
RMTC4-SHA-1 43K 193 + 466 clocks/320-bit block
Pepper-SHA-1 20K 193 + 391 clocks/320-bit block

AES 26K 14 clocks/128-bit block
CS-AES-AES 45K 36 clocks + 16 clocks/128-bit block

without the performance limitations. The arbitrary input size and inherent strength
of cryptographic hash functions allow for an extremely flexible round function for
a Feistel cipher and a proof of security for privacy and integrity. It allows various
length blocks, IV ’s, counters, and keys, and is able to do so without having to design
a new cipher to account for each case. The specification of the MTC4 and Pepper
ciphers also allows for an extremely fast authentication step. Not only can the en-
cryption and decryption process be parallelized and/or pipelined, the speed of typical
cryptographic hash functions comes to bear and provides for a reasonably fast cipher
design. Research opportunities exist for exploring faster hash functions appropriate
for the MTC4 and Pepper round functions. We also present a Cipher-State mode
of encryption that provides authentication from the internal state of a multi-round
block cipher, such as AES. All of our algorithms provide an encryption mode with lit-
tle overhead for authentication, resistance against IV reuse (except Pepper), positive
CBC mode qualities, and opportunities for parallelization.

References

[1] E. Anderson, C. Beaver, T. Draelos, R. Schroeppel, M. Torgerson, “ManTiCore:
Encryption with Joint Cipher-State Authentication,” Australasian Conference on
Information Security and Privacy, LNCS 3108, Springer-Verlag, 440-453, 2004.

[2] R. Anderson, E. Biham, “Two Practical and Provably Secure Block Ciphers:
BEAR and LION,” Fast Software Encryption, LNCS 1039, Springer-Verlag, 113-
120, 1996.

[3] P. Barreto, “The Block Cipher Rijndael,” http://www.esat.kuleuven.ac.be/ ˜rij-
men/rijndael/.

[4] M. Bellare, A. Desai, E. Jokipii, P. Rogaway, “A Concrete Security Treatment of
Symmetric Encryption,” In FOCS ’97, IEEE, 394-403.

28

[5] M. Bellare, R. Guerin, P. Rogaway, “XOR MACS: New Methods for Message
Authentication using Finite Pseudorandom Functions,” CRYPTO 1995, LNCS
963, Springer-Verlag, 1995.

[6] M. Bellare, C. Namprempre, “Authenticated Encryption: Relations Among No-
tions and Analysis of the Generic Composition Paradigm,” ASIACRYPT 2000,
LNCS 1976, Springer-Verlag, 531-545, 2000.

[7] W. Dai, “Crypto++ Library,” http://www.eskimo.com/weidai/ cryptlib.html.

[8] Department of Commerce/NIST, “Secure Hash Standard,” FIPSPUB 180-1, 2001.

[9] Department of Commerce/NIST, “Advanced Encryption Standard,” FIPSPUB
197, 2001.

[10] B. Gladman, “Implementations of AES (Rijndael) in C/C++ and Assembler,”
http://fp.gladman.plus.com/cryptography technology/rijndael/.

[11] V. D. Gligor, P. Donescu, “Fast Encryption and Authentication: XCBC Encryp-
tion and XECB Authentication Modes,” Fast Software Encryption (FSE), LNCS
2355, Springer-Verlag, 92-108, 2001.

[12] C. Jutla, “Encryption Modes with Almost Free Message Integrity,” Advances in
Cryptology - EUROCRYPT 2001, LNCS 2045, Springer-Verlag, 2001.

[13] L. Knudsen, “The Security of Feistel Ciphers with Six Rounds or Less,” J. of
Cryptology, Volume 15 # 3, 207-222, 2002.

[14] H. Krawczyk, M. Bellare, R. Canetti, “HMAC: Keyed hashing for message au-
thentication,” Internet RFC 2104, February 1997.

[15] C. H. Lim, “Message Encryption and Authentication Using One-Way Hash Func-
tions,” Proc. of 3rd Annual Workshop on Selected Areas in Cryptology (SAC ’96),
Queens University, Kingston, Ontario, Canada, 117-131, 1996.

[16] M. Luby, C. Rackoff, “How to Construct Pseudorandom Permutations from Pseu-
dorandom Functions,” SIAM Journal of Computing, 17: # 2, 373-386, 1988.

[17] S. Lucks, “Faster Luby-Rackoff Ciphers,” FSE, LNCS 1039, 189-203, 1996.

[18] U. M. Maurer, “A Simplified and Generalized treatment of Luby-Rackoff Pseu-
dorandom Permutation Generators,” EUROCRYPT 1992, LNCS 658, 239-255,
1992.

[19] M. Naor, O. Reingold, “On the Construction of Pseudo-Random Permutations:
Luby-Rackoff revisited,” J. of Cryptology, Volume 12 # 1, 29-66, 1999.

[20] NIST Modes of Operation for Symmetric Key Block Ciphers,
http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/.

29

[21] S. Patel, Z. Ramzan, G. S. Sundaram, “Towards Making Luby-Rackoff Ciphers
Optimal and Practical,” Fast Software Encryption, LNCS 1636, 171-185, 1999.

[22] S. Patel, Z. Ramzan, G. S. Sundaram, “Sha-zam: A Block Cipher. Fast as
DES, Secure as SHA,” Contribution for the Third-Generation Partnership Project
(3GPP), December 6, 1999.

[23] R. Rivest, “The MD5 message digest algorithm,” IETF Network Working Group,
RFC 1321, April 1992.

[24] P. Rogaway, M. Bellare, J. Black, T. Krovetz, “OCB: A Block-Cipher Mode of
Operation for Efficient Authenticated Encryption,” 8th ACM Conf. on Computer
and Communications Security, ACM Press, 2001.

[25] X. Wang, D. Feng, X. Lai, H. Yu, “Collisions for Hash Functions MD4, MD5,
HAVAL-128 and RIPEMD,” Cryptology ePrint Archive: Report 2004/199.

[26] D. Whiting, R. Housley, N. Ferguson, “Counter with CBC-MAC (CCM),” June
2002. http://csrc.nist.gov/encryption/modes/proposedmodes/

30

A Test Vectors for CS-AES-128

The following test parameters and outputs are for the CS algorithm using AES-128
as the cipher and both AES-128 and SHA-1 as the one-way function for the final
authenticator.

K : 000102030405060708090A0B0C0D0E0F

IV : 0123456789ABCDEF0123456789ABCDEF

m1 00112233445566778899AABBCCDDEEFF

R1 : FDED29920913A3DA8C9ECA2F0FD434AA

m1 ⊕ R1 : FDFC0BA14D46C5AD04076094C309DA55

t1 : C31FDB743AA199CB78AA156AED162EB9

A1 : C31FDB743AA199CB78AA156AED162EB9

AES(K, m1 ⊕ R1) : FEE2017432993F8D81E1251E9BD6125E

c1 : 030F28E63B8A9C570D7FEF31940226F4

R2 : FBDA5324122747B5193D945E1FA869D3

A1 ⊕ R2 : 38C588502886DE7E61978134F2BE476A

AES(K, A1 ⊕ R2) : 08A2C2E93DFEEBEBEDD5CD4AB7351526

AUTH-AES : CBBD199D075F7220957FD8205A233B9F

AUTH-SHA-1 : ECFA375F615DB07834F50C7B9C3B08A9C9D3F12F

31

The second test is an iterative multi-block test with a total of 1,000,000 blocks.
The input parameters are the same as the first test, but the ciphertext of the current
block is used as the plaintext in the next block. For this test, intermediate results
are given for only the first two blocks and the final block.

K : 000102030405060708090A0B0C0D0E0F

IV : 0123456789ABCDEF0123456789ABCDEF

m1 : 00112233445566778899AABBCCDDEEFF

R1 : FDED29920913A3DA8C9ECA2F0FD434AA

m1 ⊕ R1 : FDFC0BA14D46C5AD04076094C309DA55

t1 : C31FDB743AA199CB78AA156AED162EB9

A1 : C31FDB743AA199CB78AA156AED162EB9

AES(K, m1 ⊕ R1) : FEE2017432993F8D81E1251E9BD6125E

c1 : 030F28E63B8A9C570D7FEF31940226F4

m2 : 030F28E63B8A9C570D7FEF31940226F4

R2 : FBDA5324122747B5193D945E1FA869D3

m2 ⊕ R2 : F8D57BC229ADDBE214427B6F8BAA4F27

t2 : E005EF3D83A7F60BD8486A7B15CC93DD

A2 : 663A59D5F6E4C59D291C40AECFE0CE28

AES(K, m2 ⊕ R2) : 778A4DF11D9CAB517F68DD65E6053BFA

c2 : 8C501ED50FBBECE46655493BF9AD5229
...

m1,000,000 : 8C9A9C08367E40D4A0BDF5405E0A8358

R1,000,000 : 8F3461728ECD3A7B3D3CC89808967071

m1,000,000 ⊕ R1,000,000 : 03AEFD7AB8B37AAF9D813DD8569CF329

t1,000,000 : 0DF19348FE1FD9EFEC91D9843B13566A

A1,000,000 : D72D708155DB739339471E4D1EAB6D85

AES(K, m1,000,000⊕R1,000,000) : 7C73C0F8EA2923A80A65651995CAA8C5

c1,000,000 : F347A18A64E419D33759AD819D5CD8B4

R1,000,001 : 1E68C2E51D9A74F67A799130112CE065

A1,000,000 ⊕ R1,000,001 : C945B26448410765433E8F7D0F878DE0

AES(K, A1,000,000 ⊕R1,000,001) : 4A49085400CF9BA45A84774B6020EF55

AUTH-AES : 9D6478D55514E83763C369067E8B82D0

AUTH-SHA-1 : 29520E37A0D635C41694F30AA9C09FE5AF525D2B

32

DISTRIBUTION:

2 MS 0785
W. E. Anderson, 5514

5 MS 0785
T. J. Draelos, 5514

2 MS 0785
C. L. Beaver, 5514

2 MS 0785
R. C. Schroeppel, 5514

2 MS 0785
M. D. Torgerson, 5514

1 MS 0785
T. S. McDonald, 5514

1 MS 0785
R. E. Trellue, 5501

1 MS 0451
S. G. Varnado, 5500

1 MS 1202
W. R. Cordwell, 5943

1 MS 1202
A. N. Campbell, 5940

1 MS 1072
R. A. Gonzales, 1735

2 MS 1072
R. D. Miller, 1735

1 MS 1072
K. K. Ma, 1735

1 MS 9018
Central Technical Files,
8945-1

2 MS 0899
Technical Library, 9616

2 MS 0612
Review & Approval Desk,
9612 For DOE/OSTI

1 MS 0123
LDRD Program Office
(Attn: Donna Chavez),
1011

33

	Manticore and CS Mode: Parallelizable Encryption with Joint Cipher-State Authentication
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	1. Introduction
	2. Manticore4 (MTC4)
	2.1 Security Considerations
	2.2 Initialization Vector Considerations

	3. Reduced Manticore4 (RMTC4)
	4. 2 Round Manticore (Pepper)
	4.1 Security of Pepper

	5. Cipher-State Mode of Encryption (CS)
	5.1 Security Considerations

	6. Software Implementation Results
	7. Hardware Implementation Results
	8. Conclusion
	References
	Appendix A
	Distribution List

