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Abstract

Genetic programming (GP) has proved to be a highly versatile and useful tool
for identifying relationships in data for which a more precise theoretical con-
struct is unavailable. In this project, we use a GP search to develop trading
strategies for agent based economic models. These strategies use stock prices
and technical indicators, such as the moving average convergence/divergence
and various exponentially weighted moving averages, to generate buy and sell
signals. We analyze the effect of complexity constraints on the strategies as well
as the relative performance of various indicators. We also present innovations
in the classical genetic programming algorithm that appear to improve conver-
gence for this problem. Technical strategies developed by our GP algorithm
can be used to control the behavior of agents in economic simulation pack-
ages, such as ASPEN-D, adding variety to the current market fundamentals
approach. The exploitation of arbitrage opportunities by technical analysts
may help increase the efficiency of the simulated stock market, as it does in
the real world. By improving the behavior of simulated stock markets, we can
better estimate the effects of shocks to the economy due to terrorism or natural
disasters.
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Successful Technical Trading

Agents Using Genetic

Programming

Introduction

Agent based economic simulations depend on the aggregation of individual decisions
by the agents to model larger scale phenomena. In order to achieve accurate macro
predictions it is not strictly necessary that the agent decisions accurately model the
complexity and variety of individual human choices. It is often, however, necessary
that the major groups of individuals (and their respective strategies) are represented.
In financial markets there are two classes of strategies: fundamental and technical
trading. Fundamental trading estimates the value of an asset based on information
about current and future cash flows and tries to hold assets whose net present value
exceeds their current price. Because so many agents constantly estimate the worth
of financial assets, there is little opportunity to make excess returns (above the risk
premia for that asset) of stocks based on publicly available information. Some traders
believe that predictable patterns emerge in prices over time. For example, if the
market adjusts slowly to positive news about a particular asset, a trader noticing the
beginning of an upward trend can buy while the asset is still undervalued. Trading
based on patterns in the asset price, volume traded, and other market data, rather
than news about the asset’s expected returns, is called technical trading. Functions
of this data that are used in technical trading are called technical indicators.

The economic simulation package ASPEN-D simulates the behavior of firms and
household agents to model US financial markets. We are especially interested in
equity markets. In this model, households use only fundamental strategies to make
stock purchases. While the majority of stock trades in the real world are likely based
on market fundamentals, there are probably sufficient technical traders to have a
significant affect on the behavior of the market as a whole. In order to incorporate
traders who mimic this effect we need to create successful technical trading rules.

Historically, the consensus in the academic literature has been that equity mar-
kets are efficient, meaning there is no systematic way for discovering successful trading
rules based on purely technical indicators. Advancements in computing technology
and data mining techniques have, on the whole, confirmed this hypothesis. Nev-
ertheless, there is a growing interest in the use of genetic algorithms as a tool to
discover patterns in the noise found in financial data. Genetic programming (GP),
in particular, has the ability to find highly nonlinear and nonintuitive relationships
using only moderate computing resources. Several attempts have been made in recent
years to use this powerful algorithm to discover technical trading rules, but the most
prominent studies have failed to consistently produce trading rules that outperformed
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buy-and-hold strategies in either a profit maximizing or risk adjusted sense[1][5].

Genetic programming methods often need extensive customization in order to
effectively solve a particular class of problem. The solution space to be searched,
the specifics of the genetic operations, and the GP parameters can have a significant
impact on the success of the search. Recent papers use the same data as previous
attempts and present evidence that past failure to identify successful trading rules
was a result of GP implementation specifics, rather than the impossibility of the
problem[2][3].

We incorporate techniques from past research as well innovations to the GP algo-
rithm in order to develop technical trading strategies based on real stock index data
and evaluate the efficacy of various indicators and parameters in generating successful
trading rules. The resulting GP engine can then be used on simulated data to gen-
erate rules to drive the trading strategy of a class of technical traders in ASPEN-D.
This will add variety and, hopefully, efficiency to the model, paving the way for ex-
periments to determine how financial markets would react to various negative shocks,
such as terrorist attacks.

Overview of Genetic Programming

Genetic Programming is an evolutionary optimization algorithm, which means it
solves problems by mimicking the process of evolution[4]. A population of candidate
solutions is maintained and modified in such a way that the weak solutions are re-
moved and replaced by variants of the strongest until little or no progress can be
made over the best solution in the population. When this occurs we say that the
problem has converged to a feasible solution.

Population Construction

The first step in this process of evolution is the creation of a population of randomly
generated candidate solutions. Each candidate is evaluated according to its ability to
solve the problem and assigned a fitness value. The population is sorted according to
fitness so that fitter solutions are put at the top of the population. The individuals at
the top of the population are reproduced with greater probability than those at the
bottom. The population is then modified via mutation and crossover, processes which
mimic the effects of sexual reproduction and adaptation in nature. Each iteration of
this process is called a generation. After many generations, the population will tend
toward high fitness.

Each of the solutions in the population can be described in the form of a tree. A
tree is a software construction comprised of mathematical operators and data linked
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Figure 1. An example GP tree.

together (see Figure 1). The bottom of the tree consists of terminal nodes. These
nodes reference elements of data, such as asset price values or technical indicators such
as an exponential moving average. Alternately, they can contain a random constant.

In each generation, the entire population of trees is evaluated, substituting the
corresponding data and indicator values into the terminals. The terminals pass their
data up to the operator nodes, which perform mathematical operations on them and
pass the result to the operator nodes above them. Finally, a resulting value is passed
to the return node at the top of each tree, serving as the value of the tree at that time
index. For each tree, the return values for all times are used by the fitness function.
The tree may also be divided into subtrees, each of which consists of all operators
and terminals below a given node.

Simulated Evolution

Crossover is generally considered the most important genetic operation and is anal-
ogous to breeding in nature. Two random trees are chosen from the population and
random subtrees are selected from each of those trees. The subtrees are then switched,
creating two new individuals. Alternately, a subtree may be simply copied from one
tree into the second, creating one new individual. Since subtrees are selected ran-
domly, this operation can potentially increase the depth of a tree tremendously. For
this reason a tree depth limitation may be imposed. If a tree is crossed over and
exceeds the tree depth, the bottom levels may be cut off or alternately the crossover
may be disallowed.
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The second genetic operation is mutation. We consider two varieties: node muta-
tion and tree mutation. In node mutation, the program chooses a few random nodes
in the tree and changes them, with some probability, to nodes that take the same
number of arguments. This retains the shape of the tree. Operator nodes change
operations and terminals may change which indicator they refer to or which constant
they produce. Instead of regenerating constants from the uniform distribution, as in
the creation of the tree, node mutation changes the value of the constant by a small,
random amount.

Tree mutation selects a random subtree, deletes the subtree, and recreates a new
subtree for that location. Since this does not preserve the shape of the tree, this
operation can result in very large trees. For this reason, a restriction on the number
of nodes or levels in the resulting trees is usually applied to tree mutation operations.
If the resulting tree exceeds one of these limitations, it may be truncated, or the
operation may be rejected. In our experiments, the latter option generally produced
fitter trees.

Our method of controlling the population of candidates from one generation to
another differs somewhat from the classical GP setup, and most innovations were
made in the interest of minimizing memory and computational requirements. First,
we generate a random population. In general, the larger the population the better. In
fact, performance of GP algorithms is usually more closely linked to population size
than number of generations[4]. The population is then sorted according to the fitness
criterion, which in our case requires evaluation of the tree at each S&P500 closing
price and calculating the performance of the resulting strategy. Some percentage of
the population is then killed (deleted), starting at the bottom. The deleted poor
performers are then replaced with relatively high performing trees from the popula-
tion. This kill-replace operation is performed before other genetic operations in each
generation and generally increased the convergence of our experiments. We typically
killed about a fourth of the population. After this is done, we traverse the population,
performing genetic operations probabilistically on each tree. Typical probabilities are
50% crossover, 20% node mutation, 10% tree mutation, 10% kill and regenerate, 10%
leave as is. The top few performers are left alone to ensure that the top fitness in
the population never decreases. If crossover is chosen, the partner tree is selected
from a probability distribution that heavily favors trees on the high performing end.
In this way high performing genes (in the form of subtrees) propagate more quickly
through the population. After the genetic operations are completed, the population
is re-sorted and we enter the next generation.

After a few hundred generations, the highest fitness tree serves as a feasible solu-
tion and the population may lack sufficient genetic diversity to improve on it signifi-
cantly. This is generally a good stopping point, but if we want to continue searching
for even better trees, we can kill all the trees in the population except for the top few,
regenerate, and continue to the next generation. Although the resulting population
will have a low average fitness, the wiping clean operation, which we call “the plague”
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serves to jump-start the diversity of the gene pool and helped combat genetic stag-
nation in our experiments. Ultimately, we found that overfitting was a more serious
problem than genetic stagnation, so our use of the plague was limited. Problems
requiring more complex strategies may have more need for the genetic stagnation
avoidance.

Our Implementation

There are two main components in any genetic programming search. These are the
node types that make up the individual trees and the fitness function that determines
how these trees are evaluated.

After describing our implementation of these two components, we focus on our
resolution to the common pitfalls encountered by genetic programming such as over-
fitting the data and a lack of genetic diversity. By tailoring our GP search to the
needs of this problem, we can produce more successful trading strategies than a more
general purpose search would produce.

Tree Structure

Each tree consists of two node types: operator nodes and terminal nodes. Operator
nodes take anywhere from two to four arguments and perform an operation on those
arguments. Previous attempts at this problem used more complicated operator nodes
to implement a combination of real valued and Boolean operators. We decided to
use three mathematical operators: addition, subtraction, and multiplication, and
two types of if constructs. We chose not to use a division operator because of the
likelihood of generating numbers that are too far from the scale of our data. Each
of the mathematical operators work as one would expect, accepting two arguments
(which may be subtrees or terminal nodes) and performing the given operation on
the values returned by these arguments. The first if construct, simply referred to
as “IF”, accepts three arguments. If the first argument returns a value greater than
zero, “IF” returns the value of the second argument, otherwise it returns the value
of the third argument. The other if construct, “IFGT” (if greater than), is similar to
“IF” except that it takes four arguments. This node compares the values of its first
two arguments. If the value of the first node is greater than that of the second, the
value of the third node is returned, otherwise the value of the fourth is returned.

The other node type is the terminal node which makes up the bottom of each
branch of the tree. These nodes access data from the technical indicators or return
constants. Some previous attempts at this problem used only untransformed S&P500
prices as an indicator, a simplification that we believe may have contributed to their
failure to construct successful trading strategies. In our experiments, we used not only

11



S&P500 prices but several high level technical indicators. The data used represents
daily S&P500 closing prices during the period from April 4, 1983 to June 18, 2004.

Technical Indicators

One class of technical indicators that we used was the exponential moving average
(ema). The ema is a weighted average of the S&P500 prices from the current day
to the beginning of the data. The length parameter, k, controls how responsive to
recent trends the ema is. At time i, the k day ema is

emai = emai−1 +
(

2

k + 1

)

(pi − emai−1) (1)

where pi is the asset price at time i and emai−1 is the previous day’s ema with length
parameter k.

The advantage exponential moving averages have over simple moving averages
is they weight recent data more heavily than distant data. This makes the ema
relatively more responsive to short term trends. We used exponential moving averages
with lengths 20, 50, and 200, although these lengths are not necessarily optimal. A
technical trader could compare a short term ema (20 day or so) to a long term ema
(200 day or so) and buy when the short term ema crossed above the long term ema.
Another technical indicator we used was the moving average convergence/divergence
(macd). The macd is found by taking the difference of a 12 day and a 26 day ema
of the closing prices. A macd trigger line is then formed using a 9 day ema of the
macd line. A technical trader could use the macd components in a way similar to the
ema. The macd indicates the general behavior of a market trend. If the macd and
its trigger are diverging, a trend is accelerating, and the opposite is true if they are
converging. At the beginning of our analysis, we hand formulated strategies based
on the conventional usage of these indicators and compared them to a buy-and-hold
strategy. We found that both ema and macd based strategies compare unfavorably
with buy-and-hold over our data.

Another branch of technical indicators we used involved the number of advanc-
ing/declining issues (stocks) rather than the index closing price. The McClellan
Oscillator is often thought of as a market momentum indicator and can be used to
generate trading strategies. It is found by taking the difference of a 19 day and 39 day
ema of the difference between advancing and declining issues. The usual associated
trading strategy involves “overbought” (above +100) and “oversold” (below -100)
ranges. When oscillator moves from oversold to positive, a buy signal is generated,
and a sell signal is generated when the oscillator moves from overbought to negative.
We also used the Arms Index, which uses not only issues but also volume data. How-
ever, this indicator did not prove useful in any of our experiments, so we omit further
discussion except to mention that its lack of success may be due to a recent change in
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the market from a quarter based pricing system to one based on decimals. The trees
were also able to use lagged S&P data as well as lagged technical indicator data, but
we found that lags of greater than one day were not generally useful. The lag feature
allows the GP to generate approximate time derivatives by taking the difference of
an indicator and its value for the previous day.

Since the technical indicators generate data that may be on highly incompatible
scales, we decided to normalize all of our indicator data to the interval [-1,1]. In
addition to the scaling problem, some indicators have a much greater time dependence
than others. For example, S&P closing prices exhibit much higher volatility during
recent years than during the first years in our sample. To compensate for this problem
we converted our closing prices to a moving z-score by taking the difference of the
current price and average price (over the past 200 days) and then dividing by the
sample standard deviation over that period.

As is common in many genetic programs, we also used a terminal node that did
not reference indicator data, returning instead a random constant. This constant was
generated using the uniform probability distribution between -1 and 1 so as to be on
the same scale as our normalized data.

Fitness Criterion

The other important component of a genetic program is a fitness function that mea-
sures the success of a solution strategy. Since the goal of our agents is to maximize
the return on their investment, it is natural to use a fitness function that computes
the return that a one dollar investment would generate using the tree’s strategy. For
our fitness function, each tree is evaluated at each time step. If the tree returns a
value greater than 0, a buy signal is generated, otherwise a sell signal is generated. If
the tree was “in the market” at the previous time step and a buy signal is generated
no action is taken; similarly a sell signal has no effect if the tree is “out of the mar-
ket.” Each tree begins with a dollar at the beginning of the training period. When it
sells, the initial investment is multiplied by the ratio of the sell price to the buy price.
After the run through all the times, the original dollar is subtracted off so that the
fitness most nearly corresponds to the trading profit. It should also be noted that “in
the market” implies the investment of all the trader’s money and “out of the market”
implies a withdrawal of all the trader’s money. There were no partial investments.

The addition of the sell penalty and the variation in the range over which we
tested the trees prevented the fitness from reflecting the actual profits the strategy
would yield, but our fitness is a monotonic transformation of that profit function.
In other words, trees with higher fitness values earn greater returns than trees with
lower fitness values.

Genetic programming algorithms are very effective at generating solutions that
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maximize the fitness function. In our case, a solution is generated that buys and sells
at very prudent times over the training data. Unfortunately, fitting past data is not
necessarily indicative of having predictive power over future data. For this reason we
reserved a portion of our data to serve as a validation set, so we could evaluate the
performance of solutions against data that had not been used in training. Initially we
trained over the first 4750 observations and then used the last 500 days as validation
data. In order to correct for the time dependence in the behavior of this financial
market, we also performed experiments using groups of data 100 observations long
distributed evenly throughout the data as our validation data (each was separated
from the next by 300 days of training data). In the end we returned to the 4750/500
strategy because it more closely mimics the way a real trader would learn.

If our hypothesis of trend predictability based on technical indicators is correct and
the GP is behaving well, solutions that preform well over the training set should also
generate returns that significantly outperform buy-and-hold strategies when evaluated
over validation data. Unfortunately, genetic programming searches are susceptible to
the problem of overfitting. This occurs when a tree matches the specifics of the
training data extremely well but has no predictive power over unseen data. This
situation is similar to the problem of using an interpolated polynomial to approximate
a small data set. As the order of the polynomial increases, more data points are
intersected, but the behavior of the polynomial between points and outside the data
range becomes highly oscillatory and useless as a predictive tool.

As with polynomial interpolation, the main cause of overfitting is too many degrees
of freedom. In order to mitigate the overfitting problem, we implemented several
restrictions into our GP. We limited the number of levels each tree can have (excluding
the return node level) to four. We also limited the total number of allowed nodes
in a tree, usually to 20 or 24. Perhaps most importantly, we limited the number
of times the GP bought and sold by including a fitness penalty proportional to the
number of transactions the tree made over the training data. At first we tried to
mimic the transaction costs faced by real world traders, but because of innovations
in financial markets over the years, those costs were too small to make a noticeable
difference in the resulting strategies. In order to restrict the freedom of the GP, we
included a fairly substantial transaction penalty in the fitness function, although we
did not penalize transactions while validating data because we use validation fitness
to compare against buy-and-hold.

Finally, we restricted the number of generations the GP was allowed to complete
to a few hundred because longer runs tended to increase training fitness without
improving the validation fitness. In other words, the GP search found the fundamental
trends relatively quickly, so long runs were not necessary.
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Results

We ran a series of numerical experiments to determine which set of indicators and
parameters was most effective at generating effective trading strategies. Any combi-
nation of parameters and indicators may generate strategies that obtain a high fitness
over the training range, but we consider a setup effective if, on average, the solution
trees that it finds outperform buy-and-hold strategies over validation data. It must
be remembered that GP search is a highly stochastic process. Profit earned over the
validation range can vary from negative to four times the buy-and-hold result. For
this reason, optimization of the parameters is difficult at best.

We found several ingredients requisite to effective tree generation. The first is
judicious choice of indicators. We were unable to find any high performing trees
without the inclusion of the z-scored S&P500 data values, the McClellan indicator,
and either several ema’s of different lengths or the macd and its trigger line. Since
we could not determine a significant difference in the efficacy of the macd and ema
inclusions (or both, in fact), it appears that these indicators span essentially the same
information. We tried many different lengths of ema without noticing a significant
difference in the result. For the rest of the experiments we present here, we used the
z-score of the S&P500 prices, the McClellan oscillator, and ema’s of length 20, 50,
and 200 or the macd and its trigger. All of this data was normalized to [-1,1] before
performing the search. For most runs, we implemented a 0.2% penalty for every time
the strategy sells.

Our experiments indicate that there was a large range of acceptable values for
GP parameters. We typically used a tree depth of four, maximum number of nodes
around 20 or 24, and maximum number of generations in the 300-500 range. Typical
population size was 2,500 and 750 were killed off per generation. A large population
size was key to search success; populations below about 500 were generally ineffective.
In general, runs that utilized a training range broken into 300 day periods separated by
100 day validation ranges outperformed runs that divided the data into one contiguous
training set and a single validation set. Despite this result, we chose to run most of
our experiments using a single validation set in order to better simulate the problem
a trader faces.

A noteworthy trading strategy from this set had a training fitness of 11.46 (com-
pared to 5.31 for buy-and-hold) and a validation data fitness of 0.397 (compared to
0.1098). Strategies generated using this sell penalty traded less frequently and were
more consistently profitable than those generated with no sell penalty was imple-
mented. Figures 2 and 3 illustrate the tree and its trading strategy.

Hand picking trees that perform well over the validation range violates the princi-
ple of blind testing. To avoid this source of bias we ran the same problem 206 times
and saved the training and validation finesses of each tree. By evaluating the aver-
age predictive values of these solutions, we test against the hypothesis that the GP
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Figure 4. Results from a 206 independent run experiment

cannot generate trees that perform better than random strategies. The mean valida-
tion fitness of these trees is .13760, compared to .1098 for buy-and-hold. The sample
standard deviation of these returns was 0.06339. Figure 4(a) shows the kernel density
estimator (a numerical approximation of the probability distribution function) for
these returns.

A correlation between the training fitness and validation performance of solution
trees generated using the same parameter set would give reason to believe that the
GP searches either did not converge or lacked sufficient diversity to find a global max.
A least squares regression (see Figure 4(b)) on the results of the multi-run experiment
shows a slight positive correlation between these two quantities. A hypothesis test for
statistical significance of the slope parameter indicates that this positive correlation is
statistically significant at the 5% level. This could be an indicator that an increased
population size or an increase in the number of allowable generations (above 300).

Conclusion

Our numerical experiments provide strong evidence supporting a degree of technical
predictability in the daily returns to holding S&P500 index funds. This has impli-
cations for the efficient market hypothesis, especially since the S&P500 is one of the
most studied indices in the world.

Although the returns to following any particular solution strategy generated by
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our GP search engine may not outperform a buy and hold strategy, on average they
do. This means, for example, that a strategy of investing a percentage of one’s funds
in the S&P500 proportional to the number of solution strategies that recommend
being in the market that day would likely outperform an index fund and potentially
incur even less risk. It should also be remembered that in our simulations, the return
to being “out of the market” is exactly zero. In real world applications, money that
is withdrawn from an index fund generally earns an immediate return at the risk free
rate. With this addition, our results would look even more impressive.

In short, we find that genetic programming can be used to identify predictable
patterns in financial asset prices. This completes the first phase in the construction of
technical traders. Now we can generate technical strategies based on simulated stock
data from ASPEN-D and put these strategies to work in the code. We expect that
technical trading agents will help the model simulate real world financial markets. The
model can then be used to estimate the economic effects of shocks such as terrorist
attacks and natural disasters. This information can be useful for developing strategies
to mitigate these negative effects. Effective implementation may take a few iterations
of generating and testing technical traders because their inclusion in the simulation
may change the behavior of the simulated stock prices.
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