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Abstract 
 

The Doppler electron velocimeter (DEV) has been shown to be theoretically possible 
[1, 2]. This report attempts to answer the next logical question: Is it a practical 
instrument? The answer hinges upon whether enough electrons are available  to create 
a time-varying Doppler current to be measured by a detector with enough sensitivity 
and bandwidth. The answer to both of these questions is a qualified yes. A target 
Doppler frequency of 1 MHz was set as a minimum rate of interest. At this target a 
theoretical beam current signal-to-noise ratio of 25-to-1 is shown for existing electron 
holography equipment. A detector is also demonstrated with a bandwidth of 1-MHz 
at a current of 10 pA. Additionally, a Linnik-type interferometer that would increase 
the available beam current is shown that would offer a more flexible arrangement for 
Doppler electron measurements over the traditional biprism. 
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NOMENCLATURE 
 
A Electron source or source current per unite area or electromagnetic field vector 
a Distance from source to biprsim 
α Source angle 
B Magnetic field or Beam brightness 
b Distance from biprism to viewing plane 
β Angle between object wave and reference wave 
c speed of light 
dB decibel 
DOE Department of Energy 
d Specimen thickness 
∇ Del operator 
Δ Gradient function 
E Electron energy or Electric field 
e Electron charge 
fD Doppler frequency 
F-1 Fourier Transform Operator 
γ Deflection angle of biprism 
h Plank’s constant 

 h/2π 
I Irradiance (for light) current for electrons 
K Constant 
k wavenumber, 1/ λ 
k̂  Direction unit vectors 
L Distance traveled through field 
κ Spectrum coordinate relative to the nominar wave number k0 
λ wavelength 
λinel Mean free electron path for inelastic collisions 
m Mass 
mo Rest mass of electron 
μsc Spatial coherence function 
μtc Temporal coherence factor 
n Order of interference 
Ω Solid angle into which the electron source emits 
P Observation Point/Plane 
Pinel Probability of inelastic collision 
p momentum 
Ф , φ Phase of the wave/wave-packet 
qc Fringe period 
r direction of wave propogation 
ρ Source size, source radius 
S Integration path 
s(k) Spectrum of the wave numbers 
SNL Sandia National Laboratories 
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t Time 
U Accelerating potential, electric potential 
VBiprism Biprism voltage 
v Fringe velocity 
v Particle velocity 
ν Doppler frequency 
V Fringe visibility 
xs,ys Source location 
xd,yd Coordinates in the detector plane 
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1. INTRODUCTION 
Making dynamic measurements at the nano-scale will become increasingly important as areas of 
research as disparate as materials research to nano-machines are pursued. This is demonstrated 
by the valuable information gained by dynamic studies of Microelectromechanical systems 
(MEMS). The same sort of insight, design information, and physical interactions are even less 
well understood in the nano-realm. It is thought that by designing a truly dynamic nano-scale 
device, broad new areas of research could be opened up in nano-dynamics. 
 
Building on the vast amount of work done to develop transmission electron microscopes (TEM), 
a Doppler electron velocimeter (DEV) is envisioned to open up this important field of nano-
dynamics. This is assisted by the fact that analogs of nearly all of the traditional optical 
equipment are available including: coherent sources, beam-splitters, bi-prisms, lenses, imaging 
systems and detectors. These have been developed and optimized for situations other than for the 
DEV, so further development and modification of these will be required. 
 
The theoretical background for the DEV has already been established [1, 2], and this SAND 
report reviews the work done in FY2008 to attempt to determine whether it is technically 
feasible. The key aspect to this is answering the question: what are the measurement bandwidth 
limitations of the DEV? The answer to this question revolves around the joint issues of electron 
beam coherence and maximum available source current. These two questions are considered in 
light of realistic and existing electron microscope equipment including electron sources and 
detectors. Section 1 gives a brief overview of electron waves and electron holography. Section 2 
develops the theory and mathematical equations behind the implementation of a Doppler electron 
system. Work done on an optical analog system showing that Doppler signals can be increased 
with single point measurements is covered in Section 3. The development and testing of a high-
bandwidth and low beam-current dynamic electron detector is in Section 4. Finally, Section 5 
briefly outlines types of experiments and ranges of dynamic behaviors that could be measured by 
a 1-MHz Doppler electron system. 
 
1.1. Doppler electron background 
An extremely short review of the concepts required to understand electron holography will be 
outlined in this section. This includes a discussion of the wave-particle duality, the meaning of 
particle waves, and the understanding of interference of electrons. For more depth please see 
Reference [1]. 
 
1.1.1. de Broglie waves 
In 1924, Louis de Broglie postulated that if light was a particle (a photon), then maybe electrons 
can be viewed as waves. Indeed, any particle (defined as a thing with mass) has a wave 
description, although for large (heavy) objects, the wavelength is infinitesimally small and not 
observable. Large is a bit of a euphemism; large for these purposes is really anything larger than 
an electron, proton, neutron, or atom. The famous de Broglie equation relating momentum and 
wavelength is: 

 h
p =

λ
, (1.1)  

where p is the momentum, h is Plank’s constant and λ is the wavelength. Combining this with the 
relativistic expression for momentum, the wavelength of an electron can be calculated as: 
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where c is the speed of light, mo is the electron rest-mass, and E is the electron energy. In an 
electron microscope the energy is supplied by an accelerating potential in the microscope 
column. Simplifying Equation (1.2) and including the microscope accelerating voltage U, an 
equation relating the electron wavelength and the accelerating potential can be found: 

 
-6

1.226

1+ 0.9788×10
λ=

U( U)
 (nm). (1.3)  

This states that, the wavelength can be directly controlled by the accelerating potential. Table 1 
contains some typical accelerating potentials and their resulting wavelengths. As can be seen, 
wavelengths in the picometers are rather easily obtained. The extremely short wavelengths have 
the advantage of avoiding the diffraction limitations inherent in laser based velocimeters. This, 
and the availability of sources and optical components for electron waves, makes the electron 
microscope attractive as a potential velocimeter test bed. 
 

Table 1.  Sample electron wavelengths and electron microscope 
accelerating potential. 

Acc. Potential  
U (kV) 

Wavelength 
λ (nm) 

Wavenumber 
k (1/nm) v/c 

0.1 0.12264 8.154 0.01978 
100 0.00370 270.163 0.54822 
500 0.00142 703.594 0.86286 

1000 0.00087 1146.886 0.94108 
2000 0.00050 1982.858 0.97907 

 
1.1.2. Interference of electrons 
As outlined, the de Broglie wave can describe the motion of everyday particles as waves, or 
maybe more accurately, wave packets. In everyday physics, this applies to light by means of the 
photon concept, which being both a boson and massless has some properties that heavier 
particles do not exhibit. The interference of electrons is not nearly as straightforward as for 
photons, because the wavelength is a variable dependent on a number of factors, including the 
electric and magnetic fields it travels through in the microscope, via the Lorentz force. This 
dependence leads to the strange idea that the wavelength and frequency of the electron are not 
clearly defined. Fortunately, this is not important as neither of these quantities are directly 
measurable. Furthermore, diffraction patterns are clearly seen in TEM work—and leads directly 
to the conclusion that electron waves can interfere even if their wavelengths are not clearly 
defined. The fundamental physics behind this is that interference is the measurement of the 
change of phase (Δφ) as two waves travel through space and are recombined; or it is, alternately 
thought of as the interference of two virtual point sources at the detector as illustrated in Figure 
1. The source A is split into to virtual sources, A1 and A2 by means of a biprism or beam splitter. 
This is the fundamental concept of all interferometric arrangements, whether optical or particle, 
such as the well known Michelson and Mach-Zehnder interferometers. Using the idea of two 
virtual sources, the interference of electrons can be described mathematically with the following 
reasoning. 
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Figure 1. Point source interference model. 

 
Electrostatic and magnetic fields are typically thought of as acting on the momentum of particles, 
but this interaction can be generalized in wave behavior to a phase-shift. This phase shift can be 
found by integrating around the path AA2PA1A, as shown in Figure 1, 

 
1

2 1

ˆ ˆ ˆ ˆˆ ˆ ˆ
A AP P

2 1
A A A A

- k dr k dr k dr k drφ φ ˆ× × ×∫ ∫ ∫ ∫
2

= × + - - ,  (1.4)  

where k = 2π/λ often called the wave-number, and r is the direction of propagation. Using the 
canonical expression for momentum, which includes Maxwell’s magnetic field term, where m is 
the mass, v is the velocity, e is the electron charge, and B is the magnetic field: 
 ˆˆ ' ( )p mv e B k= − ∇ × = , (1.5)  
and substituting Equation (1.5) into Equation (1.4), and simplifying via the Stokes theorem, an 
equation expressing the phase change of the electron wave as it passes through the sample can be 
found. Alternately, these equations can be derived from the Schrödinger equations, and using the 
WKB (Wetzel, Kramers, Brillouin) approximation for weak fields, the following phase shift 
equation can be formulated: 

 (2 1
1

ˆ( )mv e B drφ φ )− = − ∇ ×∫ ⋅ . (1.6)  

The line integral is carried out along the closed path of the interfering electrons (i.e., along 
AA2PA1A). Separating out the magnetic and electrostatic effects—the equation can be more 
easily understood as 

 2 1
1 2

( ) m
S

e e
mv dr B dR mv dr

h

π
φ φ φ− = ⋅ − ∇ × ⋅ = ⋅ −∫ ∫ ∫ . (1.7)  

Inspecting Equation (1.7) in light of Equation (1.6), we can see that the relation  
remains valid even with the wavelength ambiguity discussed previously. This is true even in the 
presence of a magnetic field, which simply adds an offset φm to the phase change. 

/ /k p mv= =

 
1.1.3. Möllenstadt electron biprism 
That holography works with electrons is not under dispute and has been demonstrated for many 
years. Because of coherence issues, the Möllenstadt electron biprism (Figure 2) is the standard 
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interference arrangement for the TEM and is briefly explained here as an example of the 
interference of particle beams. The biprism is so termed because of its relation to the Fresnel 
optical biprism interference experiments. The biprism is one of a number of simple wavefront 
splitting interferometers that in essence creates two point sources in space from a single source. 
This arrangement helps ensure the temporal and spatial coherence of the overlapping beams and 
hence their interference by creating two virtual sources from a single source. One side of the 
beam may be passed through a sample, which then causes some phase shift in the wavefront, and 
then it is recombined with the reference wave to create an interference pattern. Information about 
the sample is obtained by measuring the phase change, Δφ, as related in Equation (1.7). The 
interference effect is subject to a number of constraints, including the inherent coherence of the 
electron beam, both spatial and temporal. This concept is more thoroughly discussed in Section 
2. 
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Figure 2. Möllenstadt biprism. 
 
1.2 Applications for DEV 
Equation (1.7) has a number of interesting implications. It says that the phase of an electron 
wave is sensitive to three different parameters; velocity, electric fields and magnetic fields. This 
can be a positive point, in that any of these three parameters can be measured by the DEV. A 
detailed survey of possible applications is discussed in Section 5. However, these phase effects 
are likely to cause problems when assembling an actual device. This is due to the extreme 
sensitivity of the electron interferometer and the effects of time-varying electric fields, magnetic 
fields, and the mechanical stability of the system.  
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2. THEORY 

 
This section is reformatted from a report from Tom Milster, University of Arizona, for work 
done under contract to Sandia. Portions of the work have been reworked to better fit the flow of 
this report. 
 
The following sections review the considerations required to form an electron velocimetry 
signal. Analysis described in Litche’s recent review paper [3] is used as a model for the 
development. Section 2.1 reviews the analysis of a basic electron holography setup as applied to 
the DEV shown in Figure 3. Section 2.2 covers the basics of coherence as they apply to electron 
beams. This information is then mathematically presented in Section 2.3 – 2.4 and interpreted for 
the DEV. Finally, considerations for high-speed electron velocimetry are listed. 
 

 
Figure 3. Schematic of biprism holography setup [4]. 

 
 

2.1. Analysis of Basic Electron Holography 
A simplified ray diagram of basic electron holography without the object is shown in Figure 4. In 
this case, the electron gun is considered as a point source (A) generating a spherical wavefront. 
The biprism creates a linear phase shift outward from the center wire to the side of the chamber. 
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Two virtual sources  and  are created from the source A’s spherical wavefront passing on 
each side of the biprism. The deflection angle γ due to the linear phase shift is constant for each 
ray emitted from the source. Two rays, indicated by direction unit vectors  and , are 
deflected by the biprism toward the observation plane and meet there at the symmetry axis. The 
deflected direction unit vectors  and 

1A 2A

k

1̂k 2k̂

1̂′ 2k̂ ′  appear to come from the virtual sources  and  
respectively. 

1A 2A ,

 
Since the angular deviation is very small, on the order of 10-4 radians, the relationships between 
α, β and γ are given by: 

 a
b

β α= , (2.1)  

 2a
a b

β =
+

γ . (2.2)  

By the time the spherical waves reach the observation plane (a + b = several 100 mm from the 
sources), the wavefronts are essentially planar over the small region of observation near the 
central axis, and the fringe period, qc, is  

 
0

1 1

cq k
≈

β
, (2.3)  

where k0 = 1/λ. In addition, the deflection angle γ is linearly proportional to the biprism voltage 
, such that . The biprism voltage is typically a few volts. BiprismV 0 BiprismVγ = γ

 

 
Figure 4. Simplified ray diagram of basic electron holography. The 

specimen is not shown. 
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Usually, the assumption is made that electron waves emitted from different areas of the filament 
or tip are uncorrelated with each other.  If the emitted electrons have nearly the same energy, as 
shown in Table 2 for ΔE/E small, the emission of the tip is considered a quasimonochromatic 
extended source.  That is, the time average combination of electron waves emitted from different 
parts of the filament do not produce any beat frequencies within the bandwidth of the detector.  
However, electron waves emitted from individual source points can pass through components, 
like beam splitters and prisms, so that parts of the same wavefront interfere and produce electron 
“fringes”.  The fringes are distributions of electron density.  When several source points produce 
fringes in the detector plane, relative fringe shift can blur the aggregate fringe pattern.  Like with 
an optical system, consideration of the source size, distance and energy (wavelength) distribution 
is called the coherence of the system, and it affects the contrast of the fringe pattern.  Contrast is 
specified in terms of fringe visibility  V, as defined by  
 

 max min

max min

I I
I I

−
=

+
V , (2.4)  

 
where Imax and Imin are maximum and minimum irradiance values in the fringe image, 
respectively.  Coherence is reviewed more completely in Section 3.  For the remainder of this 
section, electron beams are assumed coherent. 
 

Table 2. Typical electron source brightness and beam currents. 
Electron Beam 
Sources 

Required 
Vacuum 
(Torr) 

Virtual Source 
Diameter 

(μm) 

Energy 
Width, ∇E 

(eV) 

Acceleration 
Voltage 

(kV) 

Measured 
Brightness, B 
(A cm-2 sr-1) 

Current Density 
at Specimen 

(A cm-2) 
Heated Field 
Emission 10-8-10-9 0.1 0.8 100 107-108 20 

RT Field 
Emission 10-10 0.002 0.28 100 2×109 4000 

Hair-Pin 
Cathode 10-5 30 0.8 100 5×105 1 

Tungsten (W) 
Cathode 10-6 10 – 50 1-2 100 1 to 5×105 3 

LaB6 Cathode 10-6 5 – 10 1 75 7×106 14 

 
2.2.  Introduction to Coherence 
By definition, a coherent source is one which exhibits interference when two parts of the wave 
are overlapped via an interferometer. One must take care of how this interference is discussed as 
there is some basic confusion due to the counterintuitive nature of many quantum mechanical 
effects. For instance, in optics, the wave is typically described as being split at the beam-splitter 
and then recombined at some imaging device to create interference fringes.  For electro-magnetic 
radiation such as light, this is likely an apt description because the photon of light is a boson. 
Bosons have the property of being able to be densely packed and are able to theoretically 
interfere with each other. This aids the experimentalist in allowing an extremely bright coherent 
source, the laser for instance, where at any given location in the beam-path, there are likely 
photons which can interfere. Electrons, which are fermions, impose two important limitations on 
interferometry. First, electrons can only interfere with themselves. This means that to describe 
the interference the mathematics of the wave function must be used. The wave function, which 
represents the electron, is split by the beam-splitter and then recombined at a detector. What the 
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detector “sees” is the magnitude of the wave function, or the probability that the electron will be 
at any given location at some point in time. This has the consequence that electron holograms are 
built up by individual events accumulated over time to create the desired fringe pattern. This was 
most elegantly shown by Tonomura using an electron microscope [5, 6], and described by 
Feynman [7]. The same effect of course can be observed with photons, but the possibility of 
having a large number of photons at any given location (i.e., high flux or irradiance) results in 
having “instantaneous” fringes. This density of photons, as defined in per cell of phase space in 
quantum mechanical terms is called the degeneracy. Even for photons with degeneracies of the 
order of 1012 [7], there is a practical limit on the rapidity of the fringe formation due to the power 
of the laser, but for most optical applications, this is typically not the limiting factor. For 
electrons, the degeneracy is limited to 1, in other words, two electrons of opposite spin per unit-
cell of phase space [8, 9]. This fundamentally limits the number of electrons per second from the 
source, or the brightness, Bmax, to [10]: 
 

 2
max 2

e E
B

hλ

Δ
=  (A·cm-2·sr-1), (2.5)  

 
where e is the electron charge, ΔE is the source energy spread, h is Plank’s constant, and λ is the 
electron wavelength. For a 300 keV electron and a degeneracy of 1, this leads to a maximum 
theoretical brightness of 3.9×1014 A·cm-2·sr-1. Real sources have of course a lower brightness, 
typically in the range of 6×109 A·cm-2·sr-1. 
 
This quantum mechanical assumption of fermion behavior is reinforced with the practical 
consideration that only one electron is traversing the interferometer at any given time. An 
electron spacing of 25 μm can be calculated by taking an electron beam with a current of 1 μA (a 
high current) and a velocity of 1.6×108 m/s (100 kV). This gives an electron spacing, much 
longer than the coherence length of 7-μm, further confirming the single electron interference 
assumption. Once single electron interference is understood, it is easier to make some headway 
on understanding the concept of coherence in an electron interferometer. 
 
Thinking about and explaining coherence and coherence limitations is often simplest in terms of 
Young’s double slit experiment [11]. There are two inter-related types of coherence often termed 
transverse and longitudinal coherence. Both are illustrated in Figure 5 in relation to Young’s 
double slit experiment. Transverse (or spatial coherence) is inversely related to the source size. 
That is, the smaller the source the greater is the transverse coherence. For interference to occur, 
the transverse coherence must be large enough to cover both holes of Young’s interferometer. 
This is alternately described for larger non-ideal sources by taking the ideal point source and 
shifting it ±ρ, to represent the true source size. This is the same as saying the real source is a 
combination of ideal sources emitting independently of one another. Translating the ideal source 
has the physical effect of shifting the resulting fringes ±Δxd as illustrated in the figure. If the 
translation of the fields is such that the shift is one fringe, the resulting fringe summation will 
average out the fringes and the source is said to be spatially incoherent. The longitudinal 
coherence is related to the source energy spread, i.e. how monochromatic is the source. The more 
monochromatic the source (smaller energy spread) the longer the temporal coherence. Each 
wavelength represented in Figure 5 by λ1, λ2…λn, creates a set of fringes of differing widths. The 
contributions of each of the wavelengths are again summed to yield a final fringe contrast. As 
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can be imagined, if too broad a number of wavelengths contribute to the fringe formation, the 
contrast will decrease to zero. This physical description which imagines a single perfect source 
that can be varied in either wavelength or position is analogous to the more involved description 
of partial coherence introduced by Born and Wolf [12] and covered in Sections 2.3 and 2.4. 
However for the DEV, electrons emitted with identical energy, and from the same location on 
the source, each represents an ideal source. The separate fringes created by these ideal electron 
sources are coherent and can be summed up to create the final fringe contrast. 
  

and 

 
 
 

Figure 5.  Young’s double hole interferometer showing coherence effects 
on fringe contrast. 

 
How does coherence affect the DEV? Longitudinal coherence is typically not a practical problem 
as sources with extremely small energy spreads are available (with some cost in beam current). 
Transverse coherence is generally considered more of an issue, not in that extremely small 
sources are not available, but the greater the transverse coherence required, the lower the 
resulting beam current. This current limitation directly influences the maximum fringe detection 
rate and therefore the bandwidth of the DEV. It is because of this current limitation that methods 
of circumventing the spatial coherence issues are being investigated. 
 
2.3. Spatial Coherence 
Initial discussion of fringe formation does not include the object, i.e. the object specimen is 
removed from the system. Fundamental limits of detection are derived based on fringe visibility 
due to source size and geometrical factors. 
 
First, theoretical relationships for the fringe pattern are obtained for a centered point source at 
( , )s sx y  = (0,0) with ΔE ~ 0. In this case, illustrated in Figure 4, the fringe pattern is nearly a 
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perfect cosine wave. Individual electron wavefronts from the object and reference waves are 
given by 
 ( ) [ ]1 0, exp 2 /d d dU x y j k x′ = − π β 2  , (2.6)  

and 
 ( ) [ ]2 0, exp 2 /d d dU x y j k x′ = π β 2  , (2.7)  

respectively, where ( ),d dx y  are coordinates in the detector plane with the biprism oriented in the 
xd axis. Electron density is given by 
 ( ) ( ) ( ) (2

1 2 0, , , 1 cos 2d d d d d d d )I x y U x y U x y k x′ ′∝ + = + π β . (2.8)  

Next, a second source point B is added in the source plane at position ( ),0sx , as shown in Figure 
6. Since angles α, β and γ are unchanged, the fringe pattern due to source B exhibits the same 
period  as the fringes from source A. However, this second fringe pattern is shifted by an 
amount 

01/ k β

d sx xΔ = . The net electron density at the detector plane is simply the sum of individual 
fringe patterns, because the time average of the wave combination from the two point sources 
results in no beat terms within the bandwidth of the detector. If the two source points exhibit the 
same brightness, this electron density is simply 
 ( ) ( ) ( )0 0, 2 cos 2 cos 2d d d d sI x y k x k x x⎡ ⎤∝ + π β + π β −⎣ ⎦  . (2.9)  

Depending on the position xs of source B, the net electron density exhibits varying visibility V, as 
shown in Figure 7. When the maximum of the unshifted fringe aligns with the minimum of the 
shifted fringe, the electron density is uniform across the detector plane and V = 0. When maxima 
of the individual fringe patterns align, V = 1. Notice that the fringe period is not a function of the 
shift. The aggregate electron density I, exhibits the same period as individual fringes, although it 
may be scaled in amplitude with a dc offset. 
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Figure 6.  A second point source of electron waves (B) is added at location 

(xs,0).  The net result is a fringe shift dxΔ  for the B fringes, where 

d sx xΔ = .  The resulting current density is the sum of individual 
fringe patterns  

 

 
Figure 7. Visibility V as a function of xs for the geometry of Figure 6. 

 
If the source is extended with normalized distribution function ( ),s si x y , each point in the 
distribution produces a fringe in the detector plane. The aggregate detector pattern is the 
integration of individual fringes, where  
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( ) ( ) ( )

( )

( ) [ ]

( )

0 0

0 0

0 0

0

, , 1 cos 2 2

1 cos 2 2

1 Re , exp (2 2 )

1 cos 2 ,

d d s s d s s s

d s s s

s s d s s s

sc sc
d

I x y K i x y k x k x dx dy

K k x k x dx dy

K i x y j k x k x dx d

K k x

∞

∞

∞

⎡ ⎤= + π β + π β⎣ ⎦

⎡ ⎤
= + π β + π β⎢ ⎥

⎣ ⎦
⎛ ⎞

y
⎧ ⎫

= + π β + π β⎜ ⎟⎨ ⎬⎜ ⎟⎩ ⎭⎝ ⎠
⎡ ⎤= + μ π β + θ⎣ ⎦

∫∫

∫∫

∫∫
  (2.10)  

here  
 
w
 

( ) ( ) ( ) ( )0

0

1
0 0 ,j ksc sc

k s sk k e i x yθ β −
β ∞ sdy⎡ ⎤μ β = μ β = ⎣ ⎦∫F  , (2.11)   

 
and 1−F represents the inverse Fourier transform of the argument and 0k β  is the transform 
variable. The constant K in Equation (2.10) is unimportant for relative comparisons. Equation 
(2.11) defines the spatial coherence function scμ , whose magnitude reduces aggregate fringe
visibility and whose phase shifts the aggregate fringe pattern. I n

 
n fact, e the waves in the 

fe  and object paths are as
 si c

rence sumed equal in electron flux, scre = μV

c
 < 

.2), it will be difficult to measure any type of fringe pattern with an object specimen present. 

tion of the angular subtense-α at the source of the 
o respective waves. From Equation (2.3),1 

 

 

. 
 
The development of Equations (2.10) and (2.11) is made without an object spe imen. Therefore, 
these equations represent the best possible result of experimental visibility. If V is too low (say
0
 
Equation (2.11) can also be written as a func
tw

( )0

0

a
1b

0 0 a
b

a a ,
b b

scj k
sc sc

s s sk
k k e i x y

⎛ ⎞θ α⎜ ⎟ −⎝ ⎠

∞α

⎛ ⎞ ⎛ ⎞ dy⎡ ⎤μ α = μ α =⎜ ⎟ ⎜ ⎟ ⎣ ⎦⎝ ⎠ ⎝ ⎠ ∫F  . (2.12)  

unt of 

haracterized by its brightness B, which is the current emitted per unit area A and solid angle Ω,  

 
Given an electron source and microscope geometry, it is instructive to determine the amo
coherent current available at a given degree of spatial coherence. The electron source is 
c
 

IB
A

=
Ω

 . (2.13)  

 the source distribution

 

 
 ( ),s si x yIf  is Gaussian with 

                                                 
1 The relationship in Equation (2.3) is slightly different than that derived by Litche [3], in that it contains the factor 
a/b, which is not in the Litche development. 
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 ( ) ( )21, exp /s s g
g

i x y ⎡ ⎤= − ρ ρ⎢ ⎥⎣ ⎦πρ
 , (2.14)  

e effective area of the source is  
 
th
 

2
gA = πρ  (2.15)  

id angle Ω is approximately the solid angle associated with the interacting wavefronts, 
here 

 
 
The sol
w
 

2Ω ≈ πα  (2.16)  

pplication of Equation (2.12) yields 
 

 

 
A

2

0 0
a aexp
b b

sc
gk k

⎡ ⎤⎛ ⎞ ⎛ ⎞μ α = − π αρ⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 . (2.17)  

ombination of Equations (2.13) and (2.15)-(2.17) yields 
 

 

 
C

( ) ( )
2

2
0

ln 1/sc sc scb BI
a k

⎛ ⎞μ = μ⎜ ⎟
⎝ ⎠

 (2.18)  

increa

 
for the total current available at a given degree of spatial coherence. Since the brightness 

ses linearly with acceleration voltage and *
0 1/ ~ ak V= λ  from Equat  ion tio(1.3), the ra  

2
0/B k  does not depend on acceleration voltage. The spatial coherence factor scμ  depends on 

 lower  increases 

*
aV  

in that  0k scμ  in Equation (2.17).  

er 09 A/cm2/sr, ρg = 1 
m, α = 0.8 mrad and  = 100 kV. If b/a = 1, 

 
As an example, consid  the RT Field Emission tip in Table 2 with B = 2x1

*
aV scμ  = 0.63 and Isc ~ 0.1 nA.  

e during each cycle of the vibration. The 
oisson-noise, or shot noise, can be calculated using: 

n
 
Consider the presence of an object specimen that only shifts the phase of the object wave, 
without any decrease of transmitted electron energy or amplitude. If an appropriate grating is 
placed in the detection plane, such that it aligns with the fringes and passes electrons through to 
an integrating detector, variations in the transmitted phase result in variations in detector current. 
Under the best conditions of 100% efficiency and all I 

sc electrons contributing to the maximum 
signal, about 0.1 nA (or N=6.24x108 electrons per second) are detected when the grating and 
fringes are perfectly aligned. DEV assumes a time-varying signal, which might be a periodic 
variation in transmitted phase through the object specimen. If the signal bandwidth is 1 MHz, 
then approximately 600 signal electrons are availabl
P
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 feI SCΔ= 2σ , (2.19)  

where σ is the Poisson noise in Amps, e is the electron charge, Isc is the average current and ∇f is 
e bandwidth of interest. This is approximately the sameth  as the simpler calculation [13]: 

 NSNR =  (2.20)  
Thus, considering only spatial coherence, a Poisson-noise-limited DEV system operating at 1 

n rience a maximum signal-to-noise ratio of about 25. 

e  of the electron at 100-kV acceleration voltage produces a wavelength change 
-5

creases away from the symmetry point, fringe contrast decreases as 

onal coherence factor μtc, which is called the temporal 
oherence factor. μtc is calculated by  

MHz u der ideal conditions will expe
 
2.4.  Temporal Coherence 
Section 2.3 assumes that wavelengths of individual source emitters are essentially equal. Of 
course, this condition can not be strictly true, because then all waves would necessarily be 
coherent. Instead, the emission area has a finite bandwidth of wavelengths associated with the 
energy spread ΔE of the emitted electrons, as shown in Table 2. Typically, ΔE ~ 1eV. A 1eV 
shift in the nergy
of about 10  nm. 
 
Although there is a spread in the wavelengths emitted from the source, each emitted electron 
wave has only one energy value and associated wavelength. Therefore, each electron wave is 
passed through both object and reference paths of the interferogram-generating electron optics 
and will produce a fringe pattern, but the fringe patterns from different electron waves will have 
slightly different period. Because the system is otherwise symmetric, the center points of all 
fringe patterns are aligned. The aggregate effect of adding fringe patterns with different periods 
s that, as distance ini

illustrated in Figure 5. 
 
A development similar to that used for Equations (2.10) and (2.11) can be used to show that the 
energy spread ΔE produces an additi
c
 

( ) ( ) ( ) ( )1
0( ) exp 2 /

tcj ntc tc
nn n e s i n k dθ − ⎡ ⎤ μ = μ

∞
= κ πκ κ⎣ ⎦

 
here n is the order of interference, s(k) is the spectrum of wave number

∫F  , (2.21)  

s and κ = k - k0 is the 

ximated with a simple rectangular function of width Δk, the 
mporal coherence function is  

 

 

w
spectrum coordinate relative to the nominal wave number k0, where κ « k0. 
 
If the energy spectrum is appro
te

( )
*

0

*
0

2sin sin

2
atc

a

n k n E
k V

n n k n E
k V

⎛ ⎞ ⎛Δ
π π⎜ ⎟ ⎜

⎝ ⎠ ⎝μ = =
Δ Δ

π π

⎞Δ
⎟
⎠ , (2.22)  
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since *
0 2 a

k E
k V
Δ Δ

= . For ΔE = 1 eV and  = 100kV, n ~ 105 before the first zero in visibility. For 

interference experiments and holography, which use 

*
aV

500n ≤ at most, temporal coherence does 
not pose any problem. 
 
When combined with contrast reduction due to spatial coherence, a reasonable approximation to 
the combined fringe pattern of Equation (2.10) without the object specimen is 
 
 ( ) ( )0, 1 cos 2sc tc sc tc

d d dI x y K k x⎡ ⎤= + μ μ π β + θ + θ⎣ ⎦  . (2.23)  

 
However, for DEV, a restriction on the maximum amplitude of the phase disturbance is implied 
by temporal coherence. In the example above where maximum n ~ 105, the maximum range of 
displacement for an object in reflection is about λx105 ~ 0.18 μm. This estimate is made without 
regard to inelastic energy loss, as discussed in the next section. 
 
2.5. Application of Theory to Inelastic Energy Loss 
If the electron waves interact with static electric or magnetic fields, there is no energy loss. 
However, inelastic collisions with matter and dynamic fields cause a change in the electron wave 
energy. If the energy change is small, Equation (2.8) can be rewritten as 
 
 ( ) ( )0, 1 cos 2 2d d dI x y k x t∝ + π β − πν  (2.24)  

 
where 
 

 E
h

δ
ν = , (2.25)  

 
where Eδ  is the energy loss associated with the interaction. Note that the effect of inelastic 
collisions in only the object specimen path of the interferometer is completely different than the 
effect of temporal coherence, where energy differences at the electron source travel along both 
paths. With inelastic interactions in the object specimen, the net effect is that fringes move along 
a direction perpendicular to the fringe lines at a velocity  
 

 
0

v
k
ν

=
β

. (2.26)  

 
Fringes can be detected if the integration time of the detector is short enough. Considering finite 
detector integration time, τ, an additional decrease in fringe visibility is given by  
 

 ( )sinEδ πντ
μ =

πντ
, (2.27)  
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which has its first zero at . Consider the case where ν = 1 Hz (δE = 4.135x10-15 eV). If 1/τ = ν
Eδμ  = 0.5, τ ~ 0.6 sec. Given the RT Field Emission tip example of Section 2.3, about 3.7x108 

electrons are available for detection. As mentioned in Litche [3], concerning this example, 
 

“… one would need such short exposure times that the number of collected electrons is 
very low, hence the signal disappears in quantum noise.” 

 
However, that application is for a distributed interferogram with an object specimen, where the 
entire interferogram must be recorded and processed in a computer in order to obtain information 
about the object. If a 1024 by 1024 pixel detector is used to collect the interferogram image, the 
average number of electrons per pixel in this example is approximately 350, which yields a 
Poisson signal-to-noise ratio of 18. For computer processing, this signal-to-noise ratio is 
acceptable, but a lower signal-to-noise ratio might be difficult to process.  
 
For the DEV system, signal electrons can be integrated for a much higher signal-to-noise ratio 
and a higher detection bandwidth, as described in Section 2.3. If ν = 1 MHz, δE = 4.135x10-9 eV, 
and a signal-to-noise ratio of about 25 can be achieved under ideal conditions. 
 
By comparison, inelastic interactions with matter are many orders of magnitude greater energy. 
For excitation of photons, δE is typically meV, plasmons at several eV and inner-shell 
excitations at several 10-eV. For these interactions, direct application of DEV is not practical. 
The frequency of the fringe motion associated with the inelastic energy loss is much higher than 
the detection bandwidth.  
 
Not all electrons interacting with an object experience inelastic collisions. These collisions occur 
with probability Pinel given by 
 
 ( )1 exp /inel inelP d= − − λ , (2.28)  

 
where the object specimen thickness is d and the mean free path for inelastic collisions is λinel. 
Wave energy arriving at the detector plane then provides a uniform detected background to the 
electron density distribution, which lowers fringe contrast by a factor 
 
 ( )exp / 2inel inelC d= − λ . (2.29)  
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3. LINNIK MICROSCOPE EXPERIMENTS 

One possibility for improving the beam current is to find a method of reducing the DEV spatial 
coherence requirements. This would allow a larger aperture to be used and therefore a greater 
current. This has been shown to work in the optical domain with an arrangement often referred to 
as a Linnik microscope [14]. This traditional Michelson arrangement uses an LED as a light 
source for measuring out-of-plane motion of an object. The setup and optical arrangement of a 
Linnik system is more difficult, due to the requirement of matching the path length between the 
object and reference legs as well as aligning the image from both legs. Figure 8 shows this 
pictorially with the microscope in imaging mode. The easiest way to visualize how this works is 
by thinking of the source as having areas of coherence, that if aligned will interfere. This is not 
unlike a speckle pattern in digital speckle pattern interferometry (DSPI). Using this setup with 
light, Doppler signals have been obtained. To increase the signal at the detector, the source was 
focused onto the object and reference and then aligned onto a single point detector with the result 
of increased Doppler signal, the so-called critical illumination case. This implies via analogy, 
that a less than perfectly coherent source can potentially be used for obtaining Doppler signals 
with an electron microscope. The importance of this conclusion is that loosening the coherence 
requirement will mean that greater current is available at the detector, which in turn increases the 
bandwidth of the detector.  
 
3.1. Introduction to the Linnik microscope 
The Linnik microscope is a well known interferometric arrangement that allows the use of a 
narrow band, yet spatially incoherent source to be used for interference experiments [14]. This 
arrangement, seen in Figure 8 is much like a Michelson interferometer and as such is ideally 
arranged to measure out-of-plane motions. 
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Figure 8. Point source ray diagram of Linnik Microscope 

 
In the traditional setup, the microscope is arranged with a light source collimated by lens LI. The 
illumination is then split by an amplitude splitting beam splitter with a reference and object leg 
with carefully matched path lengths. The matching of the path lengths is important because the 
source, a green LED in our experiment, has a short coherence length, typically on the order of 
tens of microns. This is fairly easily accomplished experimentally by exactly matching the 
optical paths and components in the two legs. In our experiments, this was done by having lenses 
LO and LR be identical Mitutoyo infinity corrected microscope objectives. As previously 
mentioned, the light is collimated by the first lens and then imaged at infinity on the object, a 
small moving mirror, and a reference mirror. The light is then recombined at the beam splitter 
and magnified onto a CCD camera via a simple tube lens. When the system is aligned and the 
path lengths are matched, high contrast fringes can be produced as shown in Figure 9. If the 
object moves out-of-plane, the fringes will move back and forth depending on the direction of 
motion. If a single point detector is put into the area of a bright fringe, a Doppler single can then 
be measured for this simple experiment. 
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Figure 9. Collimated LED looking at a small mirror. A slight tilt is added to 

the object to create the fringes. Field-of-view is approximately 
330 μm. 

 
As previously mentioned, increasing beam current is one of the hurdles to detecting fast moving 
fringes. On this topic, note that much of the energy for the Michelson interferometer is wasted, 
because it is spread out over the entire viewing area. What would happen if all of the energy 
were focused on a single spot on the object, and then refocused on a single detector: would a 
higher signal be available at the detector? 
 
3.2. Improving beam current via imaging the source 
With this goal in mind, the Linnik microscope was modified from a collimated source to a source 
imaged into the pupil and then imaged onto the object and reference mirrors. The imaged source 
was then recombined at the detector. A schematic the critical illumination arrangement is shown 
in Figure 10. Three experiments were conducted with the results shown in Table 3. The first case 
used a bare LED in the illumination aperture and yielded a Doppler signal of 7 mV. The 
traditional collimated arrangement shows an improvement in Doppler signal to 31 mV. Finally 
the imaged LED, where all of the source energy is collected and imaged on the object and 
reference mirror gives a gain in the peak-to-peak Doppler signal level to 54-100 mV.  
 

Table 3. Doppler signal level for different Linnik configurations. 
Configuration  Mean mV Doppler p-p mV 
Bare LED -4 7 
LED collimated via single objective -35 31 
LED imaged via 2 lenses (Critical illumination) -211 54 to 100 

 
This particular optical analogy is related to electron holography via what is called Electron Beam 
Diffracted Interferometry (EBDI). This configuration including an amplitude splitting BS and a 
recombining biprism has been shown to be successful in the literature [15, 16]. The arrangement 
has been successfully demonstrated in a Hitachi HF-2000 electron microscope, which is a 
commercially available system especially optimized for electron holography. The typical 
arrangement has the electron beam impinging on a crystal after traversing the first objective 
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lens—the crystal acts as an amplitude splitting beamsplitter. The diffracted beams travel through 
the microscope to the biprism, where the voltage field is set to deflect the beams at the 
complementary and opposite angle to the crystal diffraction to overlap them. Herring [16] 
specifically mentions the possibility of using this arrangement with a spatially incoherent 
extended source, for the reasons already outlined in this paper. 
 
3.3. Wavefront splitting versus amplitude splitting 
To mimic the wave-front splitting function of the electron biprism, a wave-front splitting mirror 
was used, rather than the amplitude splitting mirror used in the previous experiments as 
illustrated in Figure 10. This was accomplished via a half-silvered cube shown in Figure 11. A 
laser rather than a diode was used in this arrangement to simplify any temporal coherence 
questions, and the laser spot was focused into the field stop. With this arrangement, almost no 
Doppler signal resulted. This is because the beam splitter acts as a spatial filter. The logic 
implied in the ray diagram in Figure 10 works on-axis only. If you consider a simple coherent 
imaging system with the pupil split in half, you get the essentials of the interferometer, with the 
Doppler phase existing as a difference between the top and bottom halves of the pupil. But the 
focal spot can be considered to be the sum of the diffraction patterns from the top and bottom 
halves. As diagrammed in Figure 12, this can be viewed as the wide focal spot from the half 
aperture, upon which is superimposed a set of fringes. When the half apertures are in phase, the 
fringes serve to narrow the focal spot. But when they are out of phase, the fringes split the focal 
spot as shown in the bottom diagram, and in Figure 13. For this reason, the current electron 
microscope arrangement with two beam splitters, i.e. wave-front splitting will not work. 
Fortunately this is not the only possible arrangement in an electron microscope. Using the 
amplitude splitting components in conjunction with a biprism, it may be possible to create a 
Mach-Zehnder interferometer that would work along the lines of the Linnik microscope. This 
would allow both a single point measurement and the use of an extended source.  
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Figure 10.  Linnik microscope set-up in a critical illumination case with the 

source imaged at the pupil and again on the reference and 
object legs. The wavefront splitting mirror is shown in the 
center.  
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Figure 11. Photo of wave-front splitting half-silvered mirror. 
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Figure 12. Diagram and resulting amplitudes at the detector for a wave-

front splitting arrangement. 
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Figure 13. Focal spot of split-beam interferometer, with beams in and out of phase 
 

3.4. Conclusions 
The proposed EBSD arrangement for electron holography has some potential problems. The 
strength of the proposed optical arrangement is of course the increase of current at the detector, 
while not requiring a spatially coherent source. However, to maintain fringe contrast system 
stability will likely be important. Ongoing research is being conducted to analyze the optical 
analog and its application in electron microscopes to answer this question. Even with this 
arrangement beam current may still be too limited to detect the Doppler frequencies of interest. 
 
Theoretical and mathematical derivations of the Linnik microscope as applied to a Doppler 
electron system are contained in Appendix A. 
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4. ELECTRON DETECTION EXPERIMENTAL WORK 

The successful outcome of this research is predicated on the development of a fast and low 
current electron detector. For TEM work, nearly all detectors are of the imaging type, either 
having a CCD camera looking at a phosphor screen, or a CCD with a micro-channel plate 
amplifier in front of it. For single point measurements, these are of course inappropriate. For 
single-point detection, which is more commonly used in SEM’s, there are four main detector 
types: the Faraday cup, the Everhardt-Thornley detector, solid-state detectors, and electron 
multipliers. 
 
The Faraday cup detector is simply a conductor which absorbs a certain number of electrons as 
the electron beam impacts it. The physical arrangement is such that the electrons pass through a 
hole that is small enough to ensure that the back-scattered electrons do not escape, therefore 
maximizing the captured current. The material is also chosen such that it has a low scattering 
coefficient leading to more primary electrons being absorbed. 
 
The Everhardt-Thornley (ET) [17] is the most common detector used in an SEM and is shown in 
Figure 14. It can work in a number of different modes depending on the Faraday Cage bias. The 
bias can be set negatively to attract back-scattered electrons or positively to attract secondary-
electrons. Once inside the Faraday cage, the electrons are accelerated onto the scintillator. The 
resulting photons travel down the waveguide and impinge on the photocathode. This releases an 
electron which then is amplified in the electron amplifier, resulting in a current output signal.  
 

 
Figure 14. Schematic of an Everhardt-Thornley secondary electron detector 

(http://commons.wikimedia.org/wiki/Category:Secondary_electron_detector). 
 
Solid state or semiconductor detectors work on the principle of the creation of an electron-hole 
created by the incident electrons. The energy of the incident electron can create a number of 
holes, which if not separated from the electron will recombine. The external bias applied to the 
thin surface metal supplies this and creates an amplified current at the output. One potential 
drawback to this is the relatively high capacitance of the detector limits its bandwidth [18].  
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Figure 15. Schematic of a solid state detector. 

(http://commons.wikimedia.org/wiki/Image:Solid_state_electron_detector.JPG) 
 
Electron multipliers have been around and in different forms for many years. They are an 
integral portion of the Everhard-Thornley detector and micro-channel plates. They work by 
taking an incoming electron which strikes the internal surface of the multiplier and releases 
multiple secondary electrons. The voltage bias drives the electrons down the multiplier tube 
causing a cascading effect resulting in an amplified current at the output. A picture of an electron 
multiplier and the corresponding cascade schematic is shown in Figure 16. 
 

www.detechinc.com 

 
Figure 16. Electron multiplier and schematic. 

 
4.1. TEM experimental failures and the move to the SEM 
Early experiments to test the dynamic range of detectors were attempted in a Transmission 
Electron Microscope (TEM). The purpose of doing this was to mimic the final type of machine 
which could be used for the DEV. After numerous unsuccessful attempts to test in the TEM 
using a special sample holder containing a Faraday cup, it was decided that the SEM offered a 
far more flexible test bed. The failures of the TEM were mainly of two types. First, the very 
limited locations and feedthroughs available made developing custom detection equipment 
extremely difficult. Second, to test the dynamic attributes of the detector, scanning of the beam 
was going to be the first, and ultimately only, mode used to create a time varying current. While 
there are some limited scanning capabilities on the STEM, they were not nearly as flexible as 
those in the SEM. The move to the SEM also simplified the experimental flexibility by 
providing; images of our detector for alignment purposes, area and line scanning capability, 25-
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pin feedthroughs for signal attachment, and plenty of room for the detector and any associated 
hardware. The SEM also offered all of the attributes desired in a DEV system with beam electron 
objective lenses to focus the beam to a small spot and scanning capability of the spot. 
Additionally, the source used was a field emission gun, the type typically used for electron 
holography due to high brightness and good coherence. This last point was not strictly necessary 
for these experiments as the coherence of the beam was not used. Figure 17 shows the Zeiss 
Supra 55VP SEM used for the experiments covered in this section. 
 

 
Figure 17. Zeiss Supra 55VP SEM used for the experiments. 

4.2. SEM Testing of the Faraday Cup 
By far the simplest detector available is the Faraday cup. We used two different cups. The first 
one was a commercial cup supplied with the SEM for measuring beam current. This consists of a 
platinum plate with a ~ 50-μm hole as shown in Figure 18. All beam current measurements 
quoted in this report were made with this device. The cup measures the current by absorbing as 
many of the electrons as possible including both primary and secondary electrons. After using 
the commercial cup, which displayed a high level of noise due to the lack of shielding, we 
developed a shielded wire Faraday measurement device.  
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Figure 18. Commercial Faraday cup with 50-μm hole. 

 
For simplicity of construction, we chose to use a simple BNC wire, with the shielding and 
cladding removed. This was then mounted in a metal cap with a hole filed in the side (see Figure 
19). The cap was attached to the shielding of the cable to attempt to reject as much noise as 
possible. This wire absorbs the incoming electrons and conducts them out of the chamber to the 
amplifier. Even with good shielding, the Faraday cup proved to have too much noise and not 
enough gain, yielding an extremely low signal to noise ratio. To some extent, this can be 
overcome using synchronous detection. This is illustrated in Figure 20. The yellow line in the 
scope trace is the Faraday wire signal, and the blue line, used for the trigger, is the ET detector 
signal from the SEM. Note that even with synchronous detection, averaging was required to 
clean up the signal. The need for averaging and the terrible signal to noise of the Faraday cup, 
lead to the abandonment of this detector type in favor of the electron multiplier.  
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Figure 19. Faraday wire shown in the shielding cup in the SEM. 

 

 
Figure 20. Faraday scope trace (Yellow) and ET detector trace (Blue). 

 
4.3. Electron Multiplier Testing in the SEM 
4.3.1 Electron Multiplier and Amplification Circuitry 
An electron multiplier (EM) functions by amplifying the number of electrons via secondary 
electron emission. We obtained an EM from DeTech Inc., custom assembled using one of their 
standard EM tubes (Figure 16). Note that the Everhardt-Thornley detector uses an EM to amplify 
the signal, after going through a scintillator and then a photocathode. We decided to cut out the 
middlemen, and have the electrons go directly into the EM tube. The final EM detector with the 
grounded shield in place is shown in Figure 21. The shield had an approximately 500 μm hole 
drilled in the top to allow electrons to enter. This was placed in the microscope on the stage as 
shown in Figure 22. Figure 23 shows the external equipment used with the EM for making these 
measurements and included a current amplifier, a high voltage modulation driver, and a high-
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voltage power supply. An attempt was made to drive an additional plate on the top of the EM 
shielding to modulate the acceptance of electrons into the detector. This was successful in 
rejecting the electrons from the EM, however large noise spikes were created by the driving 
circuit which made it useless for testing the frequency response of the EM and the idea was 
abandoned.  
 

 
Figure 21. Shielded EM used in the experiments. 

 
 

 
Figure 22. Electron multiplier mounted in SEM chamber. 

Electron Multiplier 

Feedthrough 

Inside SEM Chamber 
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Figure 23. SEM Microscope showing electrical wiring. 

SEM Chamber 

Feedthrough

High-Voltage 
EM Supply 

Current Amplifier 

High-Voltage Modulator 

 
The EM was driven by a high voltage power-supply, with voltages between 1200 and 1550 volts. 
Voltages greater than 1550 were not used as they were likely to cause arcing due to a breakdown 
in the electrical insulation. The electron multiplier has a variable gain depending on the applied 
voltage as shown in Figure 24. The incoming electron beam is then amplified and output by the 
EM as a current. The output was attached to a low-noise transimpedence current amplifier 
followed by an operational amplifier with a gain of 11. The amplifier schematic is shown in 
Figure 25. Filter poles are used in both stages to limit the bandwidth to 1-MHz.  The overall gain 
of the current amplifier is 1.1×106 volts/ampere. Results for this configuration are discussed in 
the next section. 
 
While the EM noise was essentially limited by the electron statistics, some noise gain was 
experienced in the current amplifier due to the cable length between the electron multiplier and 
the current amplifier.  This can be reduced in a future modification by moving the 
transimpedance amplifier inside the microscope adjacent to the electron multiplier. 
 
Though we expected the temporal response to be flat-topped as the electron beam scanned across 
the aperture hole, there was significant variation from flat during the transit and it is not clear to 
us why this is so.  A guess would be geometry and secondary electron emission effects as 
discussed in the next section. 
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Figure 24.  Gain curve for the DeTech electron multiplier (from literature 

sent with the multiplier). 
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Figure 25. Amplifier schematic. 
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4.3.2 Electron Multiplier Results 
Two tests were conducted using the electron multiplier to ascertain its frequency response and 
noise level. Initially the frequency response was to be conducted using the EM shielding voltage 
to modulate the signal at 1 MHz, however, due to the noise inserted into the system by the large 
voltage applied, this method was abandoned. The inability to use this method had the 
repercussion of limiting the maximum rise time that could be measured due to the limited scan 
speeds available in the electron microscope scanning coils. A further complication is that the 
SEM only reported line scan rates down to Scan Speed 6, with a “zero” scan time reported for 
Scan Speeds 1-5. The reported time for Scan Speed 6 was 1 ms. Using the SEM reported 
information from Scan Speeds 6-10, a linear relationship was found for Scan Speed, 1/(repetition 
rate). It is important to note that the scan repetition is a function of both the scan speed and the 
scan resolution set on the microscope. For all of the measurements shown in this report, the 
resolution was set to 512 × 384, rather than the more usual 1024 × 768 to obtain the fastest scan 
speed possible. Extrapolating from the line created from Scan Speeds 6-10, the repetition rate for 
Scan Speed 1 is calculated to be 32 kHz. This rate agreed well with the experimental data 
measured with the EM. These repetition rates can then be used with the scan window size, in 
millimeters, to calculate the beam scan rate at the sample in meters-per-second. Rates between 
fractions of a meter-per-second up to 140 m/s were able to be realized with the available 
equipment.  
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Figure 26. Scan rate versus repetition rate. 

 

43 



The scan rate limitations made it somewhat difficult to demonstrate the desired 1-MHz detection 
rate. This was mainly due to the effect of the hole geometry and the secondary electron yield of 
the EM. This is illustrated in Figure 27, which plots the rise time for three different scan rates. 
As can be seen, with nominally the same trigger-time, different rise times occur for exactly the 
same beam current. If the hole on the EM had been perfect, and no secondary electrons were 
emitted, then a perfect step input would have been obtained, however, as can be seen there is a 
more complex interaction between the beam and the EM acceptance hole. Therefore, for 
purposes of calculating the maximum rise-time, the fastest scan rate setting was used. The best-
case results from the fastest scan rate of 140-m/s demonstrate a bandwidth of 2.5-MHz 
calculated by finding the rise time of the signal (4-μs) as illustrated in Figure 28. The plot shows 
four different curves: two of the curves are of a scope average used to remove the noise from the 
signal and two of the curves are for single-sample acquisitions, at two different gain levels. The 
gain was set by changing the voltage applied to the EM, for high-gain a voltage of 1440-volts 
was used, for low gain a voltage of 1400-volts was used. The voltage did not change the rise 
time, but does however improve the signal-to-noise ratio (SNR). 
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Figure 27. Rise time for different scan rates. 
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Figure 28. Rise-time experiment showing a 2.5 MHz bandwidth 

 
The SNR was calculated by taking the mean value of the signal during the time it was at its peak, 
and then calculating the RMS noise during this same time. This is illustrated in Figure 29, which 
shows the EM response at four different SEM current settings and all with the same scan speed. 
This resulted in different numbers of electrons entering the hole, from a low of around 400 to a 
high of 22-thousand electrons. Obviously when the number of electrons for a pulse reaches the 
level of 400, regardless of the EM gain, the electron statistical noise is going to dominate the 
signal. However, even with the noisy signal, it is possible to detect when the beam enters and 
leaves the EM acceptance hole. With rising beam current and greater numbers of electrons-per-
second, the SNR level increases as expected as outlined in Table 4. 
 

Table 4. Electron multiplier SNR for different beam currents. 
 

Beam Current 
(pA) 

Number of 
Electrons 

SNR 
(dB) 

315 22,259 22.91 
44 3109 15.3 
6 424 7.5 
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Figure 29. Typical signal response showing the noise levels at different beam currents. 

 
4.4. Evaluation of the EM as a High-Rate Beam Current Detector. 
The results of the detector experiments were an unqualified success. We have shown 2-MHz 
response time with beam currents as low as 44 pA, and maybe down to 6 pA. I have been unable 
to find any other detectors used in electron microscopes with this type of response times. The 
Everhardt-Thornley detectors are likely to have similar capabilities, however, the simplicity of 
the simple EM detector, particularly for the detection of time-varying Doppler beam currents 
make it an ideal single-point detector for DEV application. 
 
I believe this detector has immediate applications in dynamic nano-scale work, even without the 
development of the DEV. This detector could be used to measure resonant frequencies and 
possibly mode-shapes of nano-cantilevers in a scanning electron microscope. The basic setup 
would be to use the cantilever motion to modulate the beam current as it oscillates with the SEM 
spot at a stationary point. Some idea of the mode shape could be obtained by looking at the 
resulting time domain signal. 
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5. POTENTIAL APPLICATIONS FOR THE DEV 

5.2 Applications Introduction 
One of the powers of the DEV is that the electron beam, unlike a laser, can be affected by not 
just the velocity of a surface as in a traditional laser Doppler application, but by a varying 
magnetic or electric field. Really, anything that changes the phase of the passing electron beam 
can be a candidate for DEV measurements. This is seen in the following equation given without 
derivation [16]: 

 1
( )mv eA dSφΔ = −∫ . (5.1)  

where φ is the phase, v is the velocity, A is the electromagnetic field vector potential, S is the 
integration path containing the area between the object and reference beam and is Plank’s 
constant divided by 2π. This is an important equation and somewhat difficult to understand. It 
states that the wavefront is not perpendicular to the direction of momentum, mv, as is typically 
the case, but is perpendicular to the generalized momentum (mv - eA), often termed the canonical 
momentum. Equation (5.1) leads to an ambiguity in the phase calculated when an electron travels 
through an electromagnetic field because the vector A is not uniquely defined. This is overcome 
practically by integrating around a closed loop that contains the object beam and the reference 
beam, as discussed in Section 1.2. The magnetic or electric fields referred to are those contained 
between the two beams of the interferometer. Equation (5.1) can be simplified with some further 
math and separated into an electrostatic and magnetic portion: 

 2e eLUemv dt BdS BdS
v

φΔ = − = −∫ ∫
e

∫ . (5.2)  

where B is the magnetic field, U is the electric field, and L is the distance traveled through the 
field. The first portion of the equation is the effect of the electric field on the phase and the 
second contains the effect of the magnetic field. This equation does not, however, include the 
energy shift due to inelastic scattering off of a moving surface which is the first topic I will 
address. 
 
5.2. Mechanical Motion 
Mechanical motion of an object is the first type of motion traditionally associated with Doppler. 
In an electron microscope it works by setting up a beam splitting interferometer and reflecting a 
portion of the beam onto the sample, which reflects it back to be recombined to create the 
moving fringes. The object in this arrangement is functioning as an electron mirror. An electron 
mirror can be created if the surface of the object is conducting, and held at a potential. In front of 
the mirror is another electrode which causes the electrons to reverse direction after reaching the 
surface of the object. With the DEV setup in this configuration, the resulting Doppler frequency 
is: 

 4
3

d
fD dt

vφ
λ
Δ

= = , (5.3)  

where fD is the Doppler frequency in Hz, dφ/dt is the instantaneous rate of phase change, Δv is 
the velocity difference between the object and reference leg of the interferometer. Using this 
relation and varying the electron energy, an idea of the range of velocities able to be measured 
can be determined as shown in Table 5. 
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5.3. Varying electric fields 
The electric field applies a force to the passing electrons which changes the phase of the 
reference leg in relation to the object leg according to Equation (5.2). This arrangement has been 
used typically to measure either a samples thickness or its mean inner potential. Other examples 
have used the phase shift to measure the coherence length of an electron beam by changing the 
applied field until loss of fringe contrast occurs indicating a phase shift greater than the 
coherence length has occurred [19]. Of course, if the electric field is time-varying, a time varying 
phase shift, or Doppler frequency will result according to the following equation: 

 ( )d eL d
fD dt v dt

UφΔ
= = , (5.4)  

where U is the potential difference between the object and reference beams, v is the group 
velocity and L is the distance the beam travels through the electric field. Table 5 shows the 
measurable field changes in kV/s for a 1 MHz bandwidth DEV. Because the Doppler frequency 
depends on the velocity of the electron through the field, the sensitivity of the DEV can be varied 
by changing the electron velocity, controlled by the accelerating potential of the microscope. 
That is, by using a low energy electron beam (slow electrons) greater sensitivity to the electric 
field is obtained. 
 
5.4. Varying magnetic fields 
Another quantity that can be measured is the magnetic field. This property has already been 
exploited in electron holography to measure static and quasi-static magnetic fields in various 
materials [5]. The equation simplified from above relates the magnetic field to the Doppler 
frequency by: 

 ( ) dd eL mfD dt dt
φ ΦΔ

= = , (5.5)  

where dΦm/dt is the time varying rate of the magnetic field change in Webers/s contained 
between the object and reference beams. Interestingly, the phase change only depends on the 
path and the magnetic flux and is not related to the electron beam energy. 
 

Table 5. Dynamic rates for a 1-MHz sampling capability 

Source Acc. 
(kV or keV)

electron 
λ (nm)

electron 
v (m/s) Δv (μm/s) dU /dt (kV/s) dφ /dt  (Wb/s)

0.01 0.38783 1.88E+06 290.87 1 6.58E-10
0.1 0.12264 5.93E+06 91.98 4 6.58E-10
10 0.01220 5.85E+07 9.15 38 6.58E-10

100 0.00370 1.64E+08 2.78 108 6.58E-10
200 0.00251 2.08E+08 1.88 137 6.58E-10

1000 0.00087 2.82E+08 0.65 186 6.58E-10

TEM Parameters Measured Properties
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6. CONCLUSIONS 
6.1. Possible DEV Configurations and Applications 
It is shown in Section 3.1 that the basic electron holography setup with a reference grating might 
be practical for DEV. However, interaction with the object specimen is not spatially defined. 
This geometry works well for object phase changes uniformly across the object, but not when 
phase varies across the object. 
 
Instead, Leuthner’s STEM system [20] shown in Figure 30 may be more practical for obtaining 
DEV signals as a function of position on the object specimen. Although not designed as a DEV 
system, it is easily adapted. Instead of detecting phase at each scan point, the dwell time can be 
increased and the PMT electrical signal can be analyzed by taking the Fourier transform of 
temporally sampled signals. The average square of these Fourier transforms will correspond to 
the power spectrum of the DEV signal. The spot size of this STEM-like system using modern 
equipment should be similar to the 0.2 nm spot size achieved with the Isakozawa et al. system 
[21]. However, the reference grating required in the Leunthner-like system might be problematic. 
For example, the grating design influences signal quality. In addition, gratings might be useful 
over only a limited range of electron voltages.  

 
Figure 30. STEM Holography. (a) Conceptual diagram; and (b) 

Experimental setup [20]. 
 
Instead of using a reference grating, the Mach-Zehnder-like concept shown in Figure 31 might 
provide a more convenient arrangement. In this system, a converging electron beam focuses onto 
the sample. Because the beam is split by Grating 1, a complementary beam is focused into the 
reference path. The object and reference beams are recombined by the second electron biprism. 
At this point, interference occurs, but the fringe spatial frequency will probably be too high to be 
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detected. Grating 2 is used to heterodyne the combined pattern into a zero-order beam. After 
Grating 2, electron optics reimage the test object onto a detector plane. Because each point in the 
object path is conjugate to a point in the reference path, an interference image is generated 
directly on the detector plane, that is a Linnik-type configuration. If a sufficiently fast imaging 
detector is available, a DEV signal image could be directly detected. More likely is that a fast 
point detector will need to be scanned across the image plane in order to obtain a DEV signal. A 
scanner element system could be incorporated, like in the Leunthner system, in order to avoid 
having to scan the detector. For low-energy electrons (< a few keV), gratings are a practical 
alternative for the beam splitter elements. For example, transmission characteristics of 
transmission gratings used with low-energy (0.5 keV) electrons has been discussed by 
McMorran [22]. For higher-energy electrons, periodic crystals may be a better choice. 
 

 
Figure 31. Conceptual arrangement of a Mach-Zehnder-like STEM DEV 

device. 
 

The system concept shown in Figure 10 is similar to an optical Linnik microscope. A full 
analysis of the Linnik microscope is given in Appendix A. Although the optical Linnik 
microscope is reasonably straightforward to use, a primary difficulty is alignment of the beam 
paths. They must be matched so that the point spread functions of each path overlap in the 
detection plane for good fringe contrast. In this respect, the Linnik configuration exhibits 
different coherence properties than the basic electron holography setup. It is not necessary to use 
a coherent source with the Linnik configuration. 
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APPENDIX A: THOERETICAL DEVELOPMENT FOR PARTIALLY 
COHERENT LINNIK SYSTEM 

 
This appendix is from Tom Milster, University of Arizona, delivered as part of his contract with 
Sandia National Laboratories. 
 
A.1 Imaging in each path 
From Eq. (A.24) of the July 25, 2008 report,, coherent imaging in each path is governed by  
 

( ) ( ) ( ) ({ })

( ) ( )

0 0

1 10 0
0 0 0

0 0
0 0 0

1, , ** , exp 2

1 , ** , ,

jk r r
z y x T T

T T T

jk r r
z

T T T

x yU x y e U T m m j W
m m m

x ye U h x y
m m m

′+ − −
=

′+
=

⎛ ⎞
,′ ′ ′ ′⎡ ⎤= ξ η⎜ ⎟ π ξ η⎣ ⎦

⎝ ⎠
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

F F
(A.1)  

 
where low numerical aperture is assumed for both object and image spaces,2 ( 0 0, )x y  are 

coordinates of the image plane, ( ),′ ′ξ η are spatial frequencies associated with the exit pupil, mT is 

transverse magnification of the path, ( ),T TT m m′ ′ξ η

)
is the transmission of the entrance pupil 

scaled to the exit pupil, ( ,W ′ ′ξ η

)
 is the aberration function in units of waves, 

( ,p px r y r′ ′ ′ ′ ′= λ ξ = λ η′  are coordinates on the exit pupil reference sphere with radius r′ , and 

is the coherent point spread function. Note that Eq. (A.1) describes propagation for 
each coherent field component emitted by the source. Each path is linear and shift invariant. 

( )0 0,h x y

 
The aberration function accounts for displacement ( ,W ′ ′ξ η ) ( ),x yΔ Δ  of the image point in the 

observation plane and axial defocus zΔ . Other aberration terms due to spherical aberration 
astigmatism, etc., are included in an additional term ( ),w ′ ′ξ η . We assume that displacements 

,x yΔ Δ  and  are small compared to rzΔ ′ . The aberration function is given by 
 

 ( ) ( ) ( )2 2, ,x y zW W′ ′ ′ ′ ′ ′ ′ ′ξ η = ξ Δ + η Δ + ξ + η + ξ ηi w , (A.2)  
 
where 
 

 /z
z

z

rW
r

′Δ
=

′ + Δ
 (A.3)  

 

                                                 

2 For low numerical aperture, 1γ
≈

′γ
. 
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A.2 The coherence function and fringe visibility 
 
Following the development of Hopkins,2 we know that irradiance in the observation plane is 
given by  
 

 ( ) ( ) ( ) ( ) ( ) ( )0 0 1 0 0 2 0 0 1 0 0 2 0 0 12, ; , , 2 , , RetotalI x y I x y I x y I x y I x y ⎡ ⎤τ = + + γ τ⎣ ⎦ , (A.4)  
 
where I1 and I2 are the irradiances at the observation point from the test (1) and reference (2) 
paths, τ is the propagation delay between the reference and test paths, and  is the 
normalized mutual coherence function given by

( )12γ τ
3 

 

 ( )
( ) ( )

( ) ( )

*
1 0 0 2 0 0

12
1 0 0 2 0 0

, ; , ;

, ,

U x y t U x y t

I x y I x y

+ τ
γ τ = . (A.5)  

 
We assume that the paths are reasonably well matched, so τ is small compared to the source’s 
inverse bandwidth. In this case, the approximation τ = 0 is a reasonable assumption. 
Additionally, we assume that irradiance differences in the observation plane are small with 
respect to ( )1 0 0,I x y  and (2 0 0, )I x y , so if 
 

 ( ) ( )1 0 0 2 0 0, ,I x y I x y≈ , (A.6)  
 
then 
 

 ( ) ( ) ( ){ }0 0 1 0 0 12, ;0 2 , 1 Re 0totalI x y I x y ⎡ ⎤≈ + γ⎣ ⎦ . (A.7)  

 
Fringe contrast, found by using Eq. (A.7), is 
  

 
[ ] [ ]
[ ] [ ] ( )max min

12
max min

0total total

total total

I I
V

I I
−

=
+

≈ γ . (A.8)  

 
With τ = 0 and application of Eq. (A.6), Eq. (A.5) becomes 
 

 ( )
( ) ( )

( )
( )
( )

*
1 0 0 2 0 0 12 0 0

12
1 0 0 1 0 0

, ; , ; ,
0

, ,
U x y t U x y t J x y

I x y I x y
γ = = , (A.9)  

 
where  is the mutual intensity at the observation plane. Use of Eq. (A.1) to describe 
the fields at the observation plane for each path yields 

(12 0 0,J x y )

                                                
 

 
3  denotes time average. 
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(A.10) 
 
The term  describes an effective mutual intensity reflected from the test and 
reference surfaces. To continue the analytical framework, is further 
decomposed into elements describing propagation from the illumination pupil to the reference 
and test surfaces. That is, 

12 0 1 1 2 2( , , , )zJ x y x y=

12 0 1 1 2 2( , , , )zJ x y x y=
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 (A.11)  

 
where  is the transverse magnification between the illumination pupil and the reference and 
test surfaces,  is the mutual intensity at the illumination pupil, and and  
describe the coherent point spread functions to the reference and test surfaces from the 
illumination pupil.  

Tim

( , , ,i i i i iJ x y x y′ ′)

)

1ih 2ih

 
Finally, is decomposed into elements describing propagation from the source to 
the illumination pupil. That is, 

( , , ,i i i i iJ x y x y′ ′
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(A.12)  
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where is the transverse magnification of the source to the illumination pupil, Tsm sih  is the 
associated point spread function, and ( ),s sM x y  is the radiant exitance (in units of Wm-2) of the 
quasi-monochromatic source distribution. 
 
 
A.3 Incoherent illumination pupil (Critical illumination) 
 
If the illumination pupil is illuminated incoherently with the source directly in the pupil,  
 

 ( ) ( ) ( ), , , , ,i i i i i i i i i i iJ x y x y M x y x x y y′ ′ ′ ′= κ δ − − , (A.13)  
 
where κ is a constant chosen to assure proper volume of ( ), , ,i i i i iJ x y x y′ ′ as defined by 
Goodman,4 where  
 

 
( )2
λ

κ =
π

. (A.14)  

 
Effective mutual intensity between the reference and test surfaces now becomes 
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∫ ∫

(A.15)  

 
 
Combination of Eq. (A.15) with Eq. (A.10) yields 
 

                                                 
4 J. Goodman, Statistical Optics, (John Wiley and Sons, Inc., New York, 1985) 

56 



( )

( ) ( )

*
12 0 0 1 2

*
10 0 0 20 0 0

1

, , , ,

, ,

,

i i
Ti Ti T T T T

Ti Ti

i
T

u v u v u vJ x y M h u v h u v dudv
m m m m m m

h x u y v h x u y v du dv du dv

u vM
m m

uh u
m

∞ ∞ ∞ ∞ ∞ ∞

−∞ −∞ −∞ −∞ −∞ −∞

∞ ∞

−∞ −∞

∞ ∞

−∞ −∞

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞′′ ′′ ′ ′
= κ − − − −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦
′′ ′′ ′ ′ ′′ ′′ ′ ′× − − − −

⎛ ⎞
= κ ⎜ ⎟

⎝ ⎠

′′
−

×

∫ ∫ ∫ ∫ ∫ ∫

∫ ∫

∫ ∫ ( )

( )

10 0 0

* *
2 20 0 0

, ,

, ,

T

i
T T

v v h x u y v du dv
m

dudv
u vh u v h x u y v du dv
m m

∞ ∞

−∞ −∞

⎡ ⎤⎛ ⎞′′
′′ ′′ ′′ ′′− − −⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥
⎢ ⎥⎛ ⎞′ ′⎢ ⎥′ ′ ′ ′× − − − −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∫ ∫

 

(A.16) 
 
Although Eq. (A.16) appears ominous, it can be significantly simplified. First, we analyze only 
the first integral inside the brackets that pertains to the test path (1). Coherent point spread 
functions from test and reference planes to the observation plane are scaled as 
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 (A.17)  

 

Then, use of the substitutions 
 

 
0

0

x
T

y
T

x
T

y
T

us u
m
vs v
m
xq u
m
yq v
m

′′
= −

′′
= −

= −
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 (A.18)  

 
yield the simple convolution of the point spread functions of the illumination and imaging 
portions of the test path (1), such that 
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 . (A.19)  ( ) ( )1 10, ,i x y x x y y xh s s h q s q s ds ds
∞ ∞

−∞ −∞

′ − −∫ ∫ y

 
Equation (A.19) is a function of ( ),x yq q , which are the differences between the source 
coordinate and the observation-plane coordinate. When integrated over the source coordinates, 
the result is only a function of the observation-plane location.  
 
Expanding Eq. (A.19) into the Fourier domain leads considerable insight into this problem. 
When the expansion is substituted back into Eq. (A.16), the result is 
 

 ( ) ( ) ( )
1 2
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∫ ∫ , (A.20)  

where  

 
 ( ) ( ) ( ){ }1 1

1 1, , exp 2
x yT x y q q Th q q T j W− − ,⎡ ⎤′= ξ η π ξ η⎣ ⎦F F , (A.21)  

 
 ( ) ( ) ( ){ }2 2

1 1, , exp 2
x yT x y q q Th q q T j W− − ,⎡ ⎤′= ξ η π ξ η⎣ ⎦F F , (A.22)  

 

 ( ) ( ) ( )12
1, , ,i Ti Ti
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′ ξ η = ξ η ξ ηm , (A.23)  
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1 1, ,T

T T

W W W
m m

⎛ ⎞ξ η
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⎝ ⎠
)1 ,i  (A.24)  

 
and 
 

 ( ) (
2 2, ,T

T T

W W W
m m

⎛ ⎞ξ η
ξ η = + ξ η⎜ ⎟

⎝ ⎠
)2 ,i . (A.25)  

 
From Eq. (A.23) to Eq. (A.25), the pupil functions from test and reference planes to the 
observation plane are also scaled due to the scaled coherent point spread function in Eq. (A.17). 
 
In essence, ( )

1
,T x yh q q  and  are the combined point spread functions of the 

illumination (subscript i) and imaging portions of the test path (1) and reference path (2), 
respectively, of the interferometer. 

(
2

,T x yh q q )

( ),T ′ ξ η  is the effective limiting aperture of the system. 

 and  are the combined aberration functions of the illumination and imaging 
portions of the test path (1) and reference path (2), respectively. 

(
1

,TW ξ η) )(
2

,TW ξ η
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Equation (A.20) can be simplified if we assume that the source is uniform, the aberrations are 
small and that the observation is made in the uniform region. Under these assumptions, Eq. 
(A.20) simplifies to 
 

 , (A.26)  ( ) ( )
1 2

*
12 , ,T x y T x y x yJ h q q h q q dq dq

∞ ∞

−∞ −∞

∝ ∫ ∫
 
which is simply overlap of the total coherent point spread functions from the test path (1) and 
reference path (2). J12 is not a function of ( )0 0,x y  in this region of the observation plane, so 
visibility is uniform. 
 
Equation (A.26) is conceptually appealing. Maximum visibility is achieved with low or matching 
aberrations in each path. Displacements caused by alignment errors shift the point spread 
functions with respect to each other, so the overlap integral decreases rapidly. Defocus 
differences between the two paths cause one point spread function to be large compared to the 
other, and as such reduces the overlap. These conditions are illustrated in Fig. 3 of the July 25, 
2008, report.  
 
 
A.4 Kohler illumination 
 
Consider a condenser that collimates a quasimonochromatic extended source, as shown in Fig. 2 
of the July 25, 2008, report. The mutual intensity in the illumination pupil can be described by 
propagating from the source plane, through the condenser lens and to the illumination pupil. For 
the case where the illumination pupil is apart from condenser by a distance equal to the focal 
length of the condenser, the mutual intensity is9 
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where  
 

 ( ) ( ) ( ), , , , ,s s s s s s s s s s sJ x y x y M x y x x y y′ ′ ′ ′= −κ δ − . (A.28)  
 
In Eq. (A.27), it is assumed that the condenser is large enough to ignore its pupil function and 
there is no aberration. Substitution of Eq. (A.28) into Eq. (A.27) yields 
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where i i ix x x′= −δ and i i iy y y′= −δ . The effective mutual intensity of the reference and test 
planes is  
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From Eq. (A.24) of the July 25, 2008 report and Eq. (A.29), Eq. (A.30) becomes 
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where 
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Equation (A.31) can be reorganized as 
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Integrations with xs , , and v  yield delta functions. Using the sifting property of delta 
functions, Eq. (A.33) is simplified to 
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. Notice that the effective mutual intensity 

in Eq. (A.34) is a function of coordinate differences xδ and yδ . From Eq. (10) ,  
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The mathematical procedure for continuing analysis of Eq. (B.35) is similar to the procedure 
used from Eqs (B.30) to (B.34). The result is 
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where 
 

 
( ) 1 2

1 2

, , ,

, ,

T i i
Ti Ti Ti Ti

T Ti T Ti T Ti T Ti

u v u vW u v W W
m m m m

u v u vW W
m m m m m m m m

⎛ ⎞ ⎛ ⎞
= − − − − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞

+ − − − − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. (A.37)  

 
Because of the same coordinates of the detector plane in Eq. (A.35), Eq. (A.36) doesn’t show 
Fourier transform relation. 
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