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Abstract 
As composites gain wider acceptance in all sectors of the economy, new method-
ologies must be developed to increase their cost effectiveness in manufacturing. 
The neoteric Resin Infusion between Double Flexible Tooling (RIDFT) process is 
undergoing modifications to improve its cost-effectiveness by developing method-
ologies for in-mold coating and the incorporation of UV curing. 
In-mold coating is desired by the composites industry since it eliminates the current 
paint process, which is not only laborious and time consuming, but expensive, and 
presents safety issues. Two methodologies (paint films and coinfusion) for imple-
menting in-mold coating were investigated. It was demonstrated that thermoform-
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able paint films could be used to produce coated RIDFTed components. Coinfu-
sion was also successfully implemented. 
 
This work also investigated the feasibility of designing and incorporating a Cure on 
Demand system into the RIDFT process, using ultraviolet (UV) light for the curing 
of composite laminates. The objective was to develop a process for the RIDFT 
that would eliminate or reduce the inflexibility in the current production process, 
resulting in shortened production cycle times. UV-cured laminates were produced 
at a fraction of the time required to produce catalyst-cured laminates. Mechanical 
and material characterization tests were performed on each of the UV-cured lami-
nates produced. The results were referenced against those obtained for laminates 
produced using a catalyst curing system to determine their overall quality. The 
UV-cured laminates, after undergoing tensile and rheological thermal tests, were 
found to have mechanical and material properties comparable, or in a few instances 
slightly better, than that of thermally cured laminates. 
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1.  Introduction 
Over the past four decades, polymer composites have been regarded by many researchers as the 
material of the future due to their high strength to weight ratios, corrosion resistance, and 
functional integration [1]. However, the production economics of polymer composites tend to 
limit their application in the mass production sector. The lead times to manufacture are simply too 
high. Several production processes are available, with liquid composite molding techniques being 
the most amenable to mass production.  

Techniques such as resin transfer molding (RTM), vacuum-assisted resin transfer molding 
(VaRTM), and their variants have been successfully implemented for the manufacture of polymer 
composite components. Once manufactured, composite components undergo a series of finishing 
processes to prepare the substrate for painting. Some of the current painting methodologies are 
not only laborious, time consuming, and expensive, but may also release materials that are harmful 
to the environment.  

This work assessed the viability of manufacturing in-mold coated components using the neoteric 
Resin Infusion between Double Flexible Tooling (RIDFT) process developed at the Florida State 
University. The assessment of in-mold coating (IMC) was two-fold: by means of a 
thermoformable paint film, and by the coinfusion of the resin and coating materials. An assessment 
was also conducted to ascertain the viability of using UV lamps to cure photoinitiated resins for 
the rapid production of components using the RIDFT process. 
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2.  RIDFT Process 
RIDFT was developed from a need to overcome mold filling and long production cycle time 
problems in manufacturing composite parts when using traditional RTM and VaRTM processes. 
The RIDFT concept vastly improves upon the processing procedure of traditional RTM/VaRTM 
processes. In this innovative process, the resin infusion and resin-fiber wetting is finished between 
two flexible tools in a two-dimensional, flat shape, and then the entire wetted reinforcement and 
flexible tooling is formed to a specified part shape by using vacuum. The production steps for the 
RIDFT process are shown in Figure 1 [2]. 

Step 1: Load fiber Step 2: Seal Machine Step 3: Infuse Fiber

Step 4: Seal Chamber Step 5: Vacuum 
Form Part

Step 6: Demold

Step 1: Load fiber Step 2: Seal Machine Step 3: Infuse Fiber

Step 4: Seal Chamber Step 5: Vacuum 
Form Part

Step 6: Demold

 

Figure 1.  Schematic of the RIDFT process. 

The first step of the process is to place dry fibers or fabrics onto the bottom layer of silicone 
rubber, which is directly over the mold. The fiber is precut to fit the desired shape to be formed. 
After carefully placing the fiber within the machine, the top layer of silicone is placed over the 
fiber and bottom layer of silicone, and then sealed around the edges. The sealed bag is kept in a 
flat panel shape. Next, the fiber lay-up between the two rubber layers is vacuum-infused using low 
viscosity resin. The vacuum chamber between the bottom rubber layer and mold setting cavity is 
sealed and a vacuum is pulled. This vacuum forces the silicone sheets with the wetted fibers or 
fabrics together to form over the shape of the mold. Finally, the cured part is removed from the 
RIDFT machine as a manufactured part. 

With RIDFT, resin contact with the mold surface does not occur and eliminates the need to 
prepare the mold before each cycle; therefore, the cleanup and pre-manufacturing prep work is 



15

reduced. In addition to reducing a manufacturing step, tool wear experienced from continuous 
use, as seen with the RTM process, is eliminated. Furthermore, because resin flows in a two-
dimensional, flat shape, a number of flow-related problems in traditional RTM/VaRTM processes 
are avoided. Stacking or lay-up time for forming reinforcement into part shapes is saved and fiber 
preform applications in the process are not required. 



16

3.  In-Mold Coating 
The automotive coatings market has been significantly influenced by the macroeconomic 
environment, the drive towards lower costs and higher efficiency, technology innovation, and 
sound environmental practice [3]. Environmental concerns have led the efforts to reduce solvent 
use in coating applications. The latest technology and materials development promise to lower 
assembly paint-line emissions, eventually eliminating solvents in paint, while improving scratch 
resistance and the overall durability of a vehicle finish.  

In 2002, the worldwide market in automotive paints was worth $6.6 billion [3]. In the last few 
years, the U.S. market for automotive paint has seen a growth on average revenues of 1% above 
the rate of new car production, but volumes have fallen at a rate of 0.5% per year. This may be 
attributed to the deployment of more efficient coating equipment and paint with higher solid 
levels. It is imperative that methodologies are sought to reduce the costs associated with painting, 
as well as the negative environmental impacts.  IMC of composite components may address these 
issues. IMC has been successfully used for many years for exterior body panels made from 
compression-molded, Sheet Molding Compound (SMC) to improve their surface quality in terms 
of functional and cosmetic properties [4]. When injected onto a cured SMC part, IMC cures and 
bonds to provide a paint-like surface [5]. Other methods for IMC are the use of thermoformable 
paint films and the coinfusion of coating materials. 

3.1 In-Mold Coating Using Thermoformable Paint 
Films 

The goal was to create a procedure for producing composite parts with a decorative finish to 
meet the customer’s specifications. Similar processes have been previously developed, such as 
coating thermoforms and some two-step processes with thermosets, which have had some success 
in industry, but still hold many limitations. Developing a one-step forming and coating process 
should reduce processing time and associated costs, with obvious advantages to manufacturers. 

This study utilizes Avery Dennison Avloy-film (AL10041g3.1525). The aim was to establish the 
variables that affect adhesion of the paint film to the part during the forming process. Reducing 
paint separation and improving the surface finish as much as possible is also important. The 
problem encountered was the accelerated curing of the vinyl ester resin when exposed to heat, 
which is necessary to sufficiently melt the paint film for proper adhesion. This reduces the time 
available for forming. 

3.1.1 Procedure 

Experimental assessments were carried out using the RIDFT prototype shown in Figure 2. The 
materials used were 7781 glass fibers with Derakane 470-45 vinyl ester resin. Six layers of glass 
fibers, cut to 6 inches × 5 inches, were used for each laminate. Surface veils were prepared for 
selected runs and cut to the same dimensions as the fibers. The fibers were placed on the bottom 
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silicone layer. When used, the surface veils were placed on the top fiber layer. The paint film was 
placed on the surface veil or the topmost fiber layer. The top silicone frame (Figure 3) was then 
placed, and the assembly sealed under a vacuum. The resin was catalyzed, assuring a suitable gel 
time. A mixture of 1% methyl ethyl ketone peroxide (MEKP) and 0.15% cobalt naphthalate 
(CONAP) was used for all experiments. Gel time at room temperature was between 50-60 
minutes. Infusion was initiated within 20 seconds of the addition of the MEKP solution to the 
resin CONAP mixture. Approximately three minutes were allowed to elapse as fibers were 
completely infused. This time was consistent and only deviated by ± 20 seconds. Fiber infusion 
was completed before application of heat to allow for proper wetting. Time zero was set once 
infusion was completed, and all test parameters set by the designed experiment were set from this 
time. This means that the testing procedure was conducted in two phases. Phase one included 
wetting of fibers through infusion. This portion of the experiment took less than three minutes. 
The second phase began when all testing parameters were conducted. 

Figure 2.  RIDFT prototype. 

Figure 3.  RIDFT prototype showing top and bottom sealing frames. 

The effect of production variables, such as the temperature of the paint film, duration of heat 
application, and the use of a surface veil, on paint film adhesion, formability, and the resulting 
surface quality was investigated using design of experiments (DoE).  
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3.1.2 Design of Experiments 

The DoE selected was a 24-1 resolution IV with one center-point, which was doubled due to the 
categorical variable and surface veil application. This design provided information about the main 
effects and two factor interactions. It also assumes that all three-factor interactions can be 
neglected. This type of design provides a test for curvature, which may be a factor in some of the 
responses observed. It also required 10 runs to be performed, which addressed the limited 
resources such as time and material. If required, this experiment could be easily replicated to 
obtain an estimate of error, which was another consideration. The parameters and levels of each 
variable examined are included in Table 1. 

Table 1.  DoE parameters and associated levels (paint film) 

Variables High Level Low Level 
Lamp distance 5 inches 0 inches 
Heat duration 3 minutes 0 minutes 
Time of application 5 minutes 0 minutes 
Use surface veil No Yes 

 
These parameters were selected because earlier tests revealed that less than a one-minute window 
exists between the time the paint film is formable and the resin become rigid using the current 1% 
MEKP/0.15% CONAP to resin mixture, dependent on the temperature and duration of the heat 
applied. Table 2 shows the final response for each run. 

3.1.2.1  Adhesion Response 
The range of the response for examining paint film adhesion was set between 0 and 3.  An 
explanation of this range is given below: 

• 0 – No adhesion throughout part; 
• 1 – No adhesion on some of the part; 
• 2 – paint adhered, but air pocket remained; 
• 3 – Compete adhesion, no air pockets. 

The test runs that resulted in the best adhesion were those that were unable to form completely 
(Figure 4). On these parts, the paint film adhered fully. However, due to the increased 
temperatures resulting from the heat lamp and the curing resin, the part was unable to form and 
caused the paint film to blister, resulting in a very poor surface finish. Such effects were not 
expected, since the operating temperatures of the paint film were not exceeded with the lamp 
used. However, additional heat resulting from the curing resin may have increased the system’s 
temperature. 

The DoE (Figure 5) suggested that the lamp distance and heat duration significantly affects 
adhesion. All other parameters were not found to be significant. 
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Table 2.  DoE response sheet with tabulated scores (paint film) 

RUN Distance Application Duration Veil Adhesion Formability S.F. Finish
1 5 5 2 yes 1.5 3 4
2 2.5 2.5 2.5 no 3 2 3
3 5 0 3 yes 2.5 2.25 2
4 0 5 3 yes 3 0 0
5 0 5 2 no 2.5 2.25 2
6 0 0 3 no 3 0 0
7 2.5 2.5 2.5 yes 2.5 1.2 3
8 5 0 2 no 2 2.9 4
9 0 0 2 yes 2.5 2.75 2
10 5 5 3 no 2.5 1.25 3

Figure 4.  Surface finish of well-adhered part with blistering effect. 
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Figure 5.  Half normal plot for adhesion. 

3.1.2.2  Formability Response 
A similar scheme to adhesion was created to measure formability. In this case, the responses 
varied from 0 to 2. A breakdown of the scheme can be explained as: 

• 0 – Flat part obtained; 
• 1 – Flared corners or edges; and 
• 2 – Fully formed, perfect box. 

Figures 6 and 7 show the flared corners and fully formed box, respectively. The half normal plot 
for this test (Figure 8) implied that only the lamp distance and heat duration were of significance. 

Figure 6.  Part with flared corners. 
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Figure 7.  Part with perfect corners. 

Figure 8.  Half normal plot for formability. 

3.1.2.3  Surface Finish Response 
A similar scheme was used as with the previous responses. In this case, the responses ranged from 
0 to 4, with 0 being low and 4 being high or optimum. The breakdown is given below: 

• 0 – Paint separation, failure of paint film; 
• 1 – Coarse print-through of fiber or surface veil (throughout entire part); 
• 2 – Grainy print-through of fiber or surface veil (throughout entire part); 
• 3 – Partial print-through (not throughout entire part); and 
• 4 – No print-through, smooth surface. 

There was one unexplained effect that involved the paint film becoming transparent. It appeared 
as if the paint separated at some locations (Figure 9). The results from the DoE (Figure 10) 
indicated that, as with the previous responses, the significant variables for surface finish were 
lamp distance and duration of heat exposure.  
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Figure 9.  Part with paint separation. 

Figure 10.  Half normal plot for surface finish. 

3.1.3 Conclusion 

This work intended to evaluate the viability of utilizing paint films as a means of IMC components 
produced by the RIDFT process. The results indicate that the heating duration and resultant 
temperature affected the paint quality. Furthermore, the temperature increase necessary for 
softening the paint films prematurely initiated curing, which impaired the formability of the fiber-
resin assembly.  

It was found that, although the current paint films did not adhere very well to the substrate, their 
inclusion did not affect resin flow. As such, it can be inferred that the use of an appropriate film 
with better adhesion characteristics will allow for the IMC of RIDFTed components. Further 
work is continuing, and paint films from other sources are being investigated. 



23

3.2 In-Mold Coating by Means of Coinfusion 
The goal was to create a procedure for producing composite parts with a decorative finish to 
meet the customer’s specifications by coinfusing the resin and the coating material in a single 
process without opening the mold. The preliminary results of IMC assessment studies for 
RIDFTed components are presented here. A room-temperature cure vinyl ester resin was used 
with DuPont Imron 5000 paint. 

3.2.1 Approach 

Based on the work by Gillio et al. [6], a simplified schematic of the co-injection setup is shown in 
Figure 11. In the majority of cases, the flow of a polymer inside a mold filled with a stationary 
fiber bed was modeled using Darcy’s law (Eqn. 1). 

Figure 11.  Schematic of the 1D flow model in coinfusion resin transfer mold (CIRTM) [6]. 

The macroscopic velocity, u, is given by 

 dx
dPku

µ
=

, (1) 

where k is the permeability of the fiber preform, µ is the viscosity of the resin, and dp/dx is the 
pressure gradient in the flow direction. 

In coinjection, the top and the bottom preforms could have different permeabilities and the resins 
injected could have different viscosities, leading to different resin velocities between the top and 
the bottom halves of the mold. The injection is assumed to be at the same pressure, since this is 
the case in the majority of VaRTM type processes [6]. In such a case, the velocities of the two 
flow fronts will be given by 

 
1

1
1

1 l
Pku i

µ
= (2) 

 
2

2
2

2 l
Pku i

µ
= . (3) 

The RIDFT set-up is illustrated in Figures 12 and 13. 
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Coating Inlet

Resin Inlet

Vacuum source

Resin 
Flow 
Media

AA

Figure 12.  RIDFT IMC (Top view). 

Section A-A

Silicone Layer

Silicone Layer

Reinforcing Fiber
Separation layer

Figure 13. RIDFT IMC (Detailed). 

The resin and coating material were infused through separate flow media under a vacuum (Figure 
12). A layer of FERRO Prepak™ material separated the paint and resin to prevent mixing during 
infusion (Figure 13). The paint was infused first, followed by the resin, which dissolved the 
separation layer on contact. 

3.2.2 Discussion of Results 

A series of experiments were performed. Initial tests used an impermeable vacuum bag as the 
separation layer. The coating and the resin were coinfused successfully, demonstrating the 
viability of the experimental set-up (Figure 14). The bagging material was obviously unsuitable as 
a separation layer for IMC due to adhesive incompatibilities.  

Other materials were assessed including the FERRO #MCO8 Prepak™ material. Initial infusion 
with coating and resin showed promise. However, since the coating material is more viscous than 
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the resin (30:1) and permeability k1>k2 when infused concurrently, the resin filled the mold faster 
than the paint. Additionally, the resin depletes the separation material on contact (Figure 15). 
Therefore, it was necessary to first infuse the paint, then infuse the resin. 

 

(a)       (b) 

Figure 14.  (a) Top (coating) side of coinfused component; (b) Bottom (resin) side of 
component. 

 

(a)       (b) 

Figure 15.  (a) Resin in contact with FERRO #MCO8 Prepak™ separation material; (b) De-
pletion of separation layer after three seconds 

The separation layer was also found to be depleted by the coating material (Figure 16), although 
at a much slower rate than the resin. Nonetheless, the coating material depletion rate was enough 
to interfere with the integrity of the coinfused component. This is seen in Figure 17. 

Resin 
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(a)    (b) 

Figure 16.  (a) Coating material in contact with FERRO #MCO8 Prepak™ separation mate-
rial; (b) Depletion of separation layer after 60 seconds. 

Figure 17.  Paint percolation observed through the underside of the flexible RIDFT mold. 

Figure 17 shows that the coating material was able to deplete the separation layer. This means 
that when the resin was infused, the flow was disturbed by the presence of the paint. This may 
have resulted in the paint interfering with the fiber-matrix interface. Figure 18 is the 
microstructure of a failed IMC specimen. It shows extensive fiber pullout, which is indicative of a 
poor fiber-matrix bond. This poor interfacial bond may have resulted in the radical difference of 
storage modulii observed in the uncoated and coated parts (see Figures 19 and 20). Although the 
results are promising, work is required to determine a more suitable separation layer material. 
Other paint formulations should also be evaluated. 

3.2.3 Conclusion 

In this experimental study, coinfusion was implemented. The resin and paint were coinfused 
between the flexible diaphragms. However, the separation layer did not perform as required, 
allowing the paint to seep through and mix with the resin. Material selection should continue to 
determine a more suitable separation layer material. Other paint formulation should also be 
evaluated in future work. 

Paint 
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Figure 18.  Microstructure of IMC RIDFTed component showing poor interfacial bonding. 

 

Figure 19.  DMA diagram showing composite storage modulii for uncoated RIDFTed 
composite parts. 

The ability to in-mold coat a composite will certainly advance its manufacturing. Nonetheless, the 
methodology for sustaining or improving mechanical properties and appearance of products 
should be the premise of implementing IMC. By applying IMC into the process today known as 
RIDFT, its unique approach to integrating flexible coatings with substrates is a natural fit for 
market segments such as automotive, agricultural, construction equipment, marine, lawn and 
garden, and aerospace. 
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Figure 20.  DMA diagram showing composite storage modulus for a coated, RIDFTed 
component. 
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4.  Implementation of UV Curing 
The production cycle times of composite components largely depend on the time to cure. The 
ratio of the catalyst/resin mixture gives an estimate of the gelation and curing time, which 
determines the overall processing window for the manufacturing process. For room-temperature, 
cure-catalyzed resins, the time from gelation to cure can vary between one to three hours [7]. The 
composite part made would cure to sufficient demolding strength after twice the amount of time it 
took to gel the resin [7]. Consequently, a part that took one hour for the laminate to gel will 
require at least an additional two hours before it is ready to be demolded. This results in a 
manufacturing process that has a long production cycle time, in addition to an inflexible 
characteristic due to the restrictive nature of the processing window. 

The ability to shorten the curing time will certainly enhance the compatibility of composites to the 
mass production sector. The RIDFT process was investigated with the view of shortening 
production cycle times by an alternative curing technique that involves the use of ultraviolet (UV) 
light. 

4.1 Experimentation 

4.1.1 Materials 

The reinforcement material used for the experiments was a 7781 satin weave E-Glass fiber. The 
resin used was an epoxy based vinyl ester (Dera-kane 470-45). This resin was converted into a 
photoinitiated (light curing) resin by the addition of two classes of photoinitiators – the phenylbis 
(2,4,6-trimethylbenzoyl)-phosphine oxide (BAPO), and the alpha hydroxyl ketone oxide (AHK). 
The chemical structure of BAPO photoinitiator is shown in Figure 21. 

Figure 21.  Chemical structure of Phenylbis (2,4,6 trimethylbenzoyl)-
phenylphosphineoxide [8]. 

BAPO is a versatile photoinitiator used for radical photo polymerization of unsaturated resins 
upon exposure to UV light. It has demonstrated useful application in white-pigmented 
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formulations, the curing of glass fiber reinforced polyester/styrene systems, and clear-coats for 
outdoor use with light stabilizers [8]. 

The outstanding absorption properties of BAPO also allow for curing of thick sections. It can be 
used in combination with other photoinitiators, such as the alpha hydroxyl ketone oxide (AHK), 
as well. 

4.1.1.1  Physical Properties of BAPO 
1. Yellowish, powdery appearance at room temperature. 

2. Melting point range of 127-133oC. 

3. Solubility at 20oC(g/100g solution) in some monomer solutions is given in Table 3. 

Table 3.  Solubility of BAPO and AHK in monomer solutions  

Photoinitiators Acetone Butyl 
Acetate Methanol Toluene 

BAPO 14 6 3 22 

AHK 
>50 >50 >50 >50 

 
The other class of photoinitiators used was the AHK. This is a highly efficient, non-yellowing 
photoinitiator, used to initiate the photopolymerisation of chemically unsaturated prepolymers in 
combination with mono or multifunctional vinyl monomers. The chemical structure of AHK is 
shown in Figure 22. 

 

O

OH

Figure 22.  Chemical structure of alpha hydroxyl ketone photoinitiator [8]. 

4.1.1.2  Physical Properties of AHK 
1. White to off-white crystalline powder appearance. 

2. Melting point range of between 45-49oC

3. Solubility at 20oC (g/100g solution) in various monomer solutions is given in Table 3. 
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Both classes of photoinitiators can be used in combination with one another. The ratio of each 
photoinitiator mixed into the matrix is determined largely by the results required; this would 
include such component characteristics as surface finish quality, adhesion properties, and 
mechanical properties. 

4.1.2 Preparation of Light-Curing Resins 

As mentioned earlier, the resin used for the entire experiments was an epoxy-based vinyl ester 
resin. In order to make this resin light curable, photoinitiators were added in different proportions 
(%) of resin volume. The two classes of photoinitiators used for the experiments were BAPO and 
AHK. A measured quantity of resin, depending on the number of fiber layers, was poured into a 
500 ml beaker that had been preweighed. The weight of the resin in the beaker was then measured 
and recorded. A predetermined quantity of 0.6% weight per hundred of resin (phr) for both 
classes of photoinitiators was measured unto two petri dishes. The photoinitiators were then 
mixed into the resin and stirred continuously until they were completely dissolved. For the 
experiments requiring a blend of both classes of photoinitiators, a mixture of both the BAPO and 
the AHK in the ratio of 1:3 for a total of 1.0 phr of resin content was used to produce the desired 
photoinitiated resin. 

4.1.3 Fiber Preparation 

The glass fabrics were cut into squares measuring 260 mm × 260 mm. The fibers were weighed 
using a digital measuring scale. Information about fiber weight was used to calculate the fiber 
volume fraction in each of the laminates. The dimensions of the fiber layers ensured that the 
laminates were large enough to produce sufficient specimen samples for the tensile and DMA 
tests. This was done to reduce or eliminate any anomaly that might arise with respect to the 
results obtained for each sample tested. 

4.1.4 Design of the UV Stand 

A stand for the UV lamp was constructed using a combination of stainless-steel angle iron, box 
tubing, and flat sheets. The angle iron was cut into two parts measuring 2 ft. × 2 ft. The box 
tubing was divided into four parts measuring 2 ft. in length, and two parts measuring 1ft. The 
stainless-steel plate was cut into two parts measuring 2 ft. × 2 ft. The two box tubing parts 
measuring 2 ft. served as the vertical stands through which the UV lamp could be lowered or 
raised. These were welded unto the angle irons. The flat steel plate was also welded unto the two 
remaining box tubings, which were used to connect both sets of angle irons. The entire setup 
(Figure 23) was mounted over the small RIDFT machine, as shown in Figure 24. 
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Figure 23.  3D schematic representation of the UV lamp support stand. 

Figure 24.  UV Lamp mounted over the RIDFT. 

4.1.5 UV Experiments 

The pre-cut layers of fiber were placed atop the bottom silicone membrane of the RIDFT. Flow 
paths were cut and placed at the infusion and the vacuum points. The top membrane was lowered 
into the setup and both membranes were sealed with the aid of a vacuum. Photoinitiated resin was 
then infused between the two silicone membranes. Once infusion was complete, aluminum foil 
was used to cover the resin infusion and the vacuum port rubber tubes to protect them from the 
intense UV light. The UV lamp position with respect to the distance from the surface of the top 
silicone membrane was then set in accordance to the design matrix. The UV lamp was turned on 
for the required duration of irradiation. The complete UV setup is shown in Figure 25.  
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Figure 25.  UV curing equipment in use. 

Three sets of experiments were performed using a duration of irradiation of 60, 90, and 120 
seconds. The experiments were timed using a digital stopwatch. The UV lamp was set at full 
power and placed 12 inches above the surface of the silicone membrane. After UV curing, the 
laminate was demolded from the RIDFT machine. Each laminate was weighed to ascertain the 
final weight of the composite, which would be used to calculate the fiber volume content in each 
laminate. The laminates were then prepared for tensile and thermal analysis testing. 

4.1.6 Mechanical Testing and Material Characterization 

Material property tests were performed on all laminates produced using a dynamic mechanical 
analyzer. These tests help determine the elastic properties of the composite laminates when 
subjected to sinusoidal loading. This gives an indication of the overall viscoelastic properties of 
each of the composite laminates. Values for both the storage modulus and glass transition 
temperatures (Tg) were obtained for each of the laminates, which helped facilitate the screening 
and comparison of the mechanical properties for each laminate produced. 

Specimens for the DMA tests were produced by cutting out strips measuring 60 mm × 13 mm. 
The strips were positioned and clamped into place in the equipment as shown in Figure 26. Each 
laminate was heated at a constant rate and deformed (oscillated) at constant amplitude (strain) of 
10.0 mm and frequency of 1 Hz. A ramp rate of 5oC/minute for a final temperature of 250oC was 
used, resulting in a total run time of 50 minutes. 

Tensile tests were performed on each of the laminates. These tests were carried out in accordance 
with the ASTM 3039 standards [9]. Specimens for the tensile test were produced by cutting out 
laminate strips measuring 200 mm × 25 mm. The specimens were cut 3 mm oversize and final 
dimensions obtained by grinding. Aluminum end tabs 3.2 mm thick and measuring 50 mm × 25 
mm were locally bonded onto both ends of each laminate using Epon 562 resin in conjunction 
with a 105 hardener. This resulted in a gage section of 100 mm (Figure 27). 
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Figure 26.  Composite specimen mounted on DMA machine in preparation for testing. 

Figure 27.  Tensile test specimens. 

Six specimen strips were cut from each of the composite laminates. Each specimen strip was 
placed between the grips of two load cells of an MTS Systems tensile testing machine, as shown 
in Figure 28. An extensometer was used to measure strain from the experiments. The test 
specimens were held so that sufficient lateral pressure was applied to prevent slippage between 
the grip face and tabs. The tensile tests were carried out at a crosshead separation rate of 2 mm 
per minute. 

4.2 Results and Discussion 

4.2.1 DMA (Dynamic Mechanical Analysis) Results 

Three separate sets of DMA experiments were carried out using a duration of irradiation of 60, 
90, and 120 seconds. The goal was to determine if UV-cured laminates could be produced with 
consistent material properties for each case, as well as to determine what effect, if any, an increase 
or decrease in the duration of irradiation would have on the overall material properties for each of 
the UV cured laminates. DMA results for each set of experiments are shown in Figures 28 to 31. 
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Figure 28.  Setup for the tensile testing of composite laminates. 

Examination of the DMA plot in Figure 29 for the UV laminate cured for 60 seconds shows that 
both samples tested produced similar results with respect to the Tg and the storage modulus. 
However, the plot does reveal an almost instantaneous decline in the storage modulus of the 
composite laminate right from the onset of testing. This invariably implies that the laminate 
experiences an instant decline in its viscoelastic properties once subjected to sinusoidal loading. 
This may have resulted from inadequate crosslinking of the functional groups in the thermoset 
(vinylester molecules) brought on by an incomplete curing reaction. 

The DMA plot for the UV composite laminate cured for 90 seconds (Figure 30) shows that both 
samples produced consistent Tg and storage modulus values. However, in contrast to the results 
obtained for the laminate cured for only 60 seconds, these laminates did not experience an 
immediate decline in storage modulus when subjected to sinusoidal loading. This probably 
indicates that the laminates have been cured to a better degree when exposed to an irradiation 
time of 90 seconds under the UV lamp. 

Similar to what was obtained in the two previous plots, the UV laminates cured for 120 seconds 
produced consistent material properties, as shown in Figure 31. The laminates do not appear to 
lose their viscoelastic properties immediately once subjected to sinusoidal loading. 

Figure 32 shows the DMA results for a laminate that was cured using MEKP and an infrared heat 
lamp for 30 minutes. The material properties for the two samples appear consistent with regards 
to the storage modulus and the glass transition temperature. The plot also shows that the 
composite laminates undergo a steady decline in its viscoelastic properties when subjected to 
sinusoidal loading, as evidenced by the steady decline in the storage modulus value. A summary of 
the DMA results is given in Table 4. 
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Figure 29.  DMA Results for UV laminates cured for 60 seconds. 

Figure 30.  DMA Results for UV laminates cured for 90 seconds. 
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Figure 31.  DMA Results for UV laminates cured for 120 seconds. 

Figure 32.  DMA Results for laminates cured using MEKP Catalyst. 

The results shown in Table 4 indicate that the most favorable results with regards to both the 
storage modulus and the Tg were obtained from the laminates cured using UV light for 90  
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Table 4.  Summary of DMA results (laminates with 15 layers of glass). 

Experiment Duration of 
Irradiation 

Storage 
Modulus 

(MPa) 
Tg (oC) 

1-UV 60 s 11593 159.76 

2-UV 60 s 12199 159.26 

3-UV 90 s 18361 162.10 

4-UV 90 s 18330 162.89 

5-UV 120 s 13970 165.70 

6-UV 120 s 13155 167.29 

7-MEKP 30 min 14395 153.53 

8-MEKP 30 min 16818 150.24 

seconds. Increasing the irradiation time from 90 to 120 seconds resulted in a 24% decrease in 
storage modulus (Figure 33). This suggests that the extra 30 seconds provides excessive 
irradiation, which may be detrimental to the cured laminate. The lower storage modulus value, as 
well as the shape of the curve for the DMA plot (Figure 29) obtained for UV laminates cured for 
60 seconds, may be attributed to incomplete curing of the laminates, which made it undergo an 
instant decline in its material properties during the DMA test. Conversely, the DMA plots for the 
UV laminates cured for 90 seconds and 120 seconds, as well as the MEKP cured laminates, show 
a steady decline in storage modulus during DMA testing. This supports the earlier postulation that 
an incomplete (polymerization) curing reaction was the most likely reason behind the immediate 
loss of material properties in the UV laminates cured for 60 seconds. 

UV Laminate Storage Modulus vs. Curing Time
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Figure 33.  Laminate storage modulus versus UV curing time. 
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4.2.2 Tensile Properties 

The DMA material property tests performed earlier indicated that the UV laminates cured for 90 
seconds had the best properties with regards to both the storage modulus and Tg. As a follow up, 
two separate sets of tensile test experiments were carried out using three different samples of a 
UV composite laminate that was cured for 90 seconds, as well as three different samples for an 
MEKP-cured thermal laminate. The tensile test results are given in Table 5. 

Table 5.  Tensile test results (15 layers of glass – 40% Vf). 

Setup Tensile 
Strength (MPa) 

Young’s 
Modulus 

(GPa) 
1-UV 319.41 28.89 

2-UV 315.47 27.39 
3-UV 320.62 28.34 
4-MEKP 318.46 15.81 
5-MEKP 

306.62 12.74 
6-MEKP 

316.19 14.74 
 

The plot in Figure 34 shows that there is no statistically significant difference in the tensile 
strength for both the UV-cured and the MEKP laminates as evidenced by the overlapping error 
bars. However, there does appear to be a statistical difference in the tensile modulus for both sets 
of laminates, with the UV-cured laminates having a greater value (83%), as shown in Figure 35. 
McCarthey [10], in his UV cocooning experiments, demonstrated that UV curing helps to trap 
styrene molecules that would ordinarily have been lost through evaporation, making them 
available to help drive the polymerization curing reaction. This may have been responsible for the 
improved tensile modulus results obtained for the UV-cured laminates. 
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Figure 34.  Tensile strength versus laminate type. 
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Figure 35.  Tensile modulus versus laminate type. 

4.2.3 Microstructural Study 

In addition to mechanical and material property tests, an Environmental Scanning Electron 
Microscope (ESEM) was used to examine the microstructure of the UV-cured laminates and the 
thermally-cured MEKP-based laminates. The objective was to determine if proper adhesion and 
fiber wet-out occurred in each of the laminates. 

The ESEM micrograph for a UV-cured laminate in Figure 36 shows that good fiber wet-out was 
achieved in the laminates. This is critical for any composite laminate, because the matrix acts as 
the load transfer medium in the laminate, enabling the composite to achieve its full mechanical 
strength under service conditions. Figure 37 also shows a UV-cured laminate. Good adhesion 
between the matrix and the fibers can be observed from the bunched fiber segments. Figure 38 
shows a damaged section of a MEKP-cured laminate. The visible fragmented matrix sections are 
indicative of a good fiber-matrix bonding.  

Figure 36.  ESEM micrograph of a UV-cured laminate showing good fiber wet out. 
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Figure 37.  ESEM micrograph of a UV-cured laminate showing good fiber-matrix adhe-
sion. 

Figure 38.  ESEM micrograph of a thermally-cured laminate. 

4.3 Conclusion 
This work successfully incorporated a UV curing system to the RIDFT process. The resulting UV 
laminates not only exhibited consistent mechanical and thermal mechanical properties, but also 
had properties that were comparable to thermally cured composite laminates made using the same 
settings. 
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Experiments were performed that determined the best exposure time was 90 seconds. A shorter 
time (60 s) resulted in incomplete curing, and a longer time (120 s) resulted in laminates with 
inferior properties.  

A comparison was made between the tensile properties of the UV-cured and the MEKP-cured 
laminates. No significant differences were found between the tensile strengths of the UV-cured 
(90s) and the MEKP-cured laminates. However, the Young’s modulus differed considerably 
between the two. The UV laminates had a higher Young’s modulus (83%) than the MEKP 
laminates. A comparison of the cure times yielded a factor of 20:1 in favor of UV curing (based 
on a curing time of 90 s). 

The radiometric measurements of some critical process design requirements need to be studied in 
future work. Some of these parameters include peak and focus irradiance, which is characteristic 
of the different types of reflectors used in the lamp, spectral distribution, and energy dose with 
temperature and time. Radiometric measurements would be critical in quantifying the successful 
exposure parameters so the cure on demand process could be readily duplicated. 

Further research should determine the effects of the silicone membrane on the actual UV energy 
dose getting to the substrate, establishing the optimal lamp settings unique to the RIDFT process 
with respect to the type, nature of bulb, and reflector cavity used in the UV lamp. This would 
invariably help improve the overall efficiency by determining the exact form of wavelength and 
levels of irradiance that would reduce the total energy delivered to the membrane while still 
accomplishing complete cure. 
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5.  Summary of Findings 
In the duration of the sponsored research work, developmental work was carried out to enhance 
the capabilities of the RIDFT process. In-mold coating was investigated as a methodology for the 
painting of composite components manufactured by the RIDFT process. Paint films were 
implemented with promising results. Due to the morphology of the paint films assessed, problems 
occurred with adhesion. As such, it was suggested that films with better adhesion characteristics 
should be assessed. Such a film is the GE Lexan material. Another methodology was sort for in-
mold coating, which involved the coinfusion of two fluids into the mold. In this case, the 
coinfusion was shown to be viable; however, a suitable separation material needs to be used to 
prevent the premature mixing of the two fluids. Another approach may be the formulation of 
coating materials that will better interact with the FERRO #MCO8 Prepak™ material. 

This work also investigated the utilization of UV lamps to cure photoinitiated resin during the 
RIDFT process. The idea was to take advantage of the translucent nature of the silicone 
diaphragms used in the RIDFT process. UV curing was successfully implemented, reducing 
curing times by a factor of 20 compared with thermal curing, whilst improving the mechanical 
properties of the resulting components. 
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